CN114377151A - 一种双重响应型聚合物前药胶束及其制备方法 - Google Patents

一种双重响应型聚合物前药胶束及其制备方法 Download PDF

Info

Publication number
CN114377151A
CN114377151A CN202210077180.8A CN202210077180A CN114377151A CN 114377151 A CN114377151 A CN 114377151A CN 202210077180 A CN202210077180 A CN 202210077180A CN 114377151 A CN114377151 A CN 114377151A
Authority
CN
China
Prior art keywords
mpeg
plga
dox
dual
micelle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210077180.8A
Other languages
English (en)
Other versions
CN114377151B (zh
Inventor
陈立江
郝俊旭
王惊雷
王大壮
曹莲蕊
沈超
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Liaoning University
Original Assignee
Liaoning University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Liaoning University filed Critical Liaoning University
Priority to CN202210077180.8A priority Critical patent/CN114377151B/zh
Publication of CN114377151A publication Critical patent/CN114377151A/zh
Application granted granted Critical
Publication of CN114377151B publication Critical patent/CN114377151B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/69Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit
    • A61K47/6905Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a colloid or an emulsion
    • A61K47/6907Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a colloid or an emulsion the form being a microemulsion, nanoemulsion or micelle
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7028Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages
    • A61K31/7034Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages attached to a carbocyclic compound, e.g. phloridzin
    • A61K31/704Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages attached to a carbocyclic compound, e.g. phloridzin attached to a condensed carbocyclic ring system, e.g. sennosides, thiocolchicosides, escin, daunorubicin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/56Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule
    • A61K47/59Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyureas or polyurethanes
    • A61K47/593Polyesters, e.g. PLGA or polylactide-co-glycolide
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/56Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule
    • A61K47/59Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyureas or polyurethanes
    • A61K47/60Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyureas or polyurethanes the organic macromolecular compound being a polyoxyalkylene oligomer, polymer or dendrimer, e.g. PEG, PPG, PEO or polyglycerol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/62Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being a protein, peptide or polyamino acid
    • A61K47/64Drug-peptide, drug-protein or drug-polyamino acid conjugates, i.e. the modifying agent being a peptide, protein or polyamino acid which is covalently bonded or complexed to a therapeutically active agent
    • A61K47/645Polycationic or polyanionic oligopeptides, polypeptides or polyamino acids, e.g. polylysine, polyarginine, polyglutamic acid or peptide TAT
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G81/00Macromolecular compounds obtained by interreacting polymers in the absence of monomers, e.g. block polymers

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Public Health (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Veterinary Medicine (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Epidemiology (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Molecular Biology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nanotechnology (AREA)
  • Dispersion Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicinal Preparation (AREA)

Abstract

本发明涉及一种双重响应型聚合物前药胶束及其制备方法,属于高分子化学领域及药物制剂领域。运用分子动力学模拟中的结构优化、退火、动力学模拟等方法从疏水性聚合物中筛选出与药物作用最强的、最理想的材料,选择聚乙二醇单甲醚作为亲水端,连接含有二硫键的氧化还原片段,再以酰胺键连接药物构成了聚合物前药,最终将聚合物前药进一步物理负载游离的药物,制备成为双重响应型聚合物前药胶束。本发明制备的聚合物前药胶束mPEG‑PLGA‑SS‑DOX/DOX,载药量与包封率良好,具有pH敏感与氧化还原双重敏感释药的特性,展现出比单重敏感更高的释放药物能力。

Description

一种双重响应型聚合物前药胶束及其制备方法
技术领域
本发明属于药物制剂领域与高分子化学领域,具体涉及一种双重响应型聚合物前药胶束 及其制备方法。
背景技术
两亲性聚合物被广泛应用于疏水给药。在水中自组装形成的核壳纳米颗粒。其中疏水的 核心由装载的疏水药物构成,而亲水的外壳在外部与水接触。聚合物胶束因其结构简单、大 小可调、易于修饰和制备等优点,可以使用配体修饰胶束的表面。胶束可通过增强渗透性和 滞留效应(Enhanced Permeability and Retention Effect,EPR)被动聚集在肿瘤部位并可通过受 体/配体修饰主动靶向肿瘤。在临床使用的纳米药物中,聚合物胶束已经呈现出独具一格的优 势,通过负载各种含有生物活性的物质,能够克服多种生物体内的药物递送障碍,起到多种 多样的治疗效果。
刺激响应型聚合物胶束也是研究的重点。pH敏感胶束已成为一种多功能药物传递系统, 可在低pH值的细胞外或细胞内环境中加速药物释放。肿瘤细胞外基质、核内体(pH=5.5-6.0) 和溶酶体(pH=4.5-5.0)具有不同的酸性环境。制备pH敏感聚合物胶束,第一种方法是连接 疏水性和亲水性块腙、缩醛、酮、亚胺、酯酰胺乙烯基醚和其他碎片,可以在低pH下可降 解的片段进行连接;第二种方法是利用pH响应性材料构建嵌段模块,如poly(氨基酸),poly (β-氨基酯)等,它们在pH变化时触发电荷转换,聚合物链的性质发生改变,引起胶束核壳 结构变化释放药物。一些研究人员制备了缩醛联聚乙二醇(Mn=5000)和聚乳酸胶束及负载 紫杉醇clitaxel(PTX)。胶束在肿瘤环境(pH 6.5-5.5)中解体,以提高各种载药或偶联化疗 药物在癌症治疗中的疗效。
氧化还原敏感的胶束依靠二硫键在肿瘤细胞中谷胱甘肽(GSH)浓度高时降解,导致胶 束解体并释放载药。肿瘤组织中谷胱甘肽的浓度是正常组织的5倍。制备氧化还原敏感胶束 的主要方法是通过谷胱甘肽(GSH)敏感键(二硫化物键)将亲疏水部分连接成两亲聚合物。 含氧化还原敏感片段的胶束结构在血液循环中是稳定的。一些研究人员制备了还原敏感的吉 西他滨药物前聚合物,在10mM的二硫苏糖醇(DTT)下药物释放速度较快。与游离吉西他 滨相比,还原敏感胶束对人胰腺癌细胞的细胞毒性更大。
分子动力学(Molecular Dynamics,MD)模拟是一种从动态系统预测分子结构和功能特性 的技术,以评估生物体(如蛋白质、核酸)大分子结构与小分子配体之间的相互作用。它也 被用来研究纳米粒子的结构及其形成的原子细节。可以模拟药物与聚合物载体之间的动态相 互作用,评价和筛选聚合物材料。
耗散粒子动力学(Dissipative particle dynamics,DPD)方法是一种介观计算模拟方法,与 聚合物自组装行为的时间尺度一致。许多研究表明,DPD模拟可以预测药物载体的自组装行 为,也可以用来定性和粗略量化纳米粒子的载药能力。
阿霉素(DOX)是常用一线化疗药物,具有极强的药理活性,抗肿瘤谱广,对乳腺癌、肺癌等多种实体肿瘤均具有显著疗效,其作用机制主要是阿霉素分子嵌入DNA,抑制核酸的合成。因此,构建一种新型双重响应型递药系统,使阿霉素在肿瘤组织能更加高效的释放,阿霉素减少在正常组织的分布,降低药物不良反应,延缓药物在体内释放,有效提高阿霉素的疗效是十分必要的。
发明内容
本发明目的之一是采用计算机模拟策略,设计合成了兼具pH响应型和氧化还原敏感性 的高分子前药物胶束,具有良好的物理化学性质和抗肿瘤作用;目的之二是利用DPD模拟预 测和验证设计的pH响应型和氧化还原响应型聚合物胶束的自组装过程和载药性能。
本发明采用的技术方案为:
一种双重响应型聚合物前药胶束,所述双重响应型聚合物前药胶束为具有pH响应型和 氧化还原响应型聚合物前药胶束mPEG-R-SS-D1/D2,结构中包括亲水性嵌段mPEG、氧化还 原敏感片段二硫键、疏水性嵌段R、带有氨基的药物化合物D1和抗肿瘤药物D2,所述二硫键以酰胺键连接D1
其中,R为聚乳酸-羟基乙酸(PLGA),构成双重响应型聚合物前药胶束 mPEG-PLGA-SS-D1/D2,具有如(Ⅰ)所示的结构式:
Figure BDA0003484509950000021
或,R为聚赖氨酸(PLL),构成双重响应型聚合物前药胶束mPEG-PLL-SS-D1/D2,具有如(Ⅱ)所示的结构式:
Figure BDA0003484509950000022
或,R为聚苯丙氨酸(PPHE),构成双重响应型聚合物前药胶束mPEG-PPHE-SS-D1/D2,具有如(Ⅲ)所示的结构式:
Figure BDA0003484509950000031
进一步的,上述一种双重响应型聚合物前药胶束,所述双重响应型聚合物前药胶束 mPEG-PLGA-SS-D1/D2中,D1为阿霉素(DOX),构成双重响应型聚合物前药胶束 mPEG-PLGA-SS-DOX/D2,具有如(Ⅳ)所示的结构式:
Figure BDA0003484509950000032
更进一步的,上述一种双重响应型聚合物前药胶束,所述mPEG-PLGA-SS-DOX/D2中的 mPEG为聚乙二醇单甲醚mPEG2000
更进一步的,上述一种双重响应型聚合物前药胶束,所述mPEG-PLGA-SS-DOX/D2中的 D2为阿霉素(DOX),对HepG2细胞有细胞毒性。
进一步的,一种双重响应型聚合物前药胶束的制备方法,包括如下步骤:
1)运用分子动力学模拟筛选出符合聚合物体系的疏水性嵌段;
2)运用耗散粒子动力学模拟预测和验证胶束的自组装过程和载药性能;
3)将疏水性嵌段R与亲水性片段mPEG缩合为mPEG-R-OH;
4)将mPEG-R-OH与2,2'-二硫代乙二酸制备成具有氧化还原响应型的共聚物mPEG-R-SS-COOH;
5)将mPEG-R-SS-COOH与带有氨基的药物化合物D1通过酰胺键连接制备具有pH和氧 化还原响应型的共聚物mPEG-R-SS-D1
6)通过纳米沉淀法制备出双重响应型聚合物前药胶束mPEG-R-SS-D1/D2
更进一步的,所述mPEG-PLGA-SS-DOX/D2的制备方法,包括如下步骤:
1)利用Materials Studio软件中的Forcitce模块对聚合物前药分子体系优化,得到均方位 移(MSD)曲线,由MSD的斜率计算得出药物在体系的扩散系数,筛选出疏水性嵌段PLGA, 设计出mPEG-PLGA-SS-DOX体系;
2)利用Materials Studio软件中的Synthia模块分别计算PEG、PLGA、DOX和H2O的摩 尔质量和密度,建立珠子模型,然后在Mesocite模块中设计出模拟系统的周期性体系的体积 为20rc×20rc×20rc,内含7.2×104个珠子;
3)将PLGA和甲氧基聚乙二醇(mPEG-OH)分别溶于无水二氯甲烷(DCM)中,混合 均匀后注入无水三乙胺(TEA),在氮气保护下搅拌,在室温下反应24小时,反应结束后, 将反应产物溶液滴入过量冷无水乙醚中沉淀3次,抽滤,取沉淀物溶于二甲基亚砜(DMSO) 中,转移至透析袋,透析24小时,冷冻干燥,得到mPEG-PLGA-OH共聚物;
4)将2,2'-二硫代乙二酸加入乙酸酐中,在氮气保护下搅拌,在30℃下反应2小时,反 复加入甲苯,旋转蒸发得到的棕色油状产物溶于无水DCM中,再加入4-二甲氨基吡啶(DMAP)、1-乙基-(3-二甲基氨基丙基)碳酰二亚胺盐酸盐(EDCI)和步骤3)得到的 mPEG-PLGA-OH共聚物,在40℃下搅拌反应36小时,反应结束后,将反应产物溶液滴入过 量冷无水乙醚中沉淀3次,取沉淀物溶于DMSO中,转移至透析袋,透析24小时,冷冻干 燥,得到mPEG-PLGA-SS-COOH共聚物;
5)将步骤4)得到的mPEG-PLGA-SS-COOH共聚物、EDCI、N-羟基丁二酰亚胺(NHS) 和TEA溶于无水DCM中,在室温下搅拌1小时,得到溶液A;将TEA加入盐酸阿霉素 (DOX·HCl)中,在室温下避光搅拌1小时,得到溶液B;将溶液A和溶液B在室温下混合, 避光搅拌反应48小时,反应结束后,将反应产物溶液滴入过量冷无水乙醚中沉淀3次,抽滤, 取沉淀物溶于DMSO中,转移至透析袋,透析24小时,冷冻干燥,得到mPEG-PLGA-SS-DOX 红色共聚物;
6)将D2溶于乙腈中,再加入步骤5)得到的mPEG-PLGA-SS-DOX红色共聚物、TEA 和乙腈,超声10分钟后,将得到的混合溶液滴加到去离子水中,1000rpm连续搅拌反应10min,反应结束后,在40℃下旋转蒸发除去乙腈,再加入去离子水,得到双重响应型聚合物前药胶束mPEG-PLGA-SS-DOX/D2溶液。
更进一步的,上述mPEG-PLGA-SS-DOX/D2的制备方法,所述透析袋分子量为3.5kDa。
更进一步的,上述mPEG-PLGA-SS-DOX/D2的制备方法,所述透析,以蒸馏水作为透析 液,分别在2小时、4小时、6小时、8小时、10小时、12小时、18小时更换透析液。
本发明的有益效果为:
1、本发明的聚合物前药胶束通过物理包埋与共轭键合的双重载药方式可以获得较大的载 药量,有助于单位计量的纳米药物在肿瘤部位的累积,起到更好治疗作用。并且相较于单一 的物理包埋的负载药物方式,这种物理包埋与共轭键合的双重载药方式更加不容易渗漏或突 释,有助于纳米药物的稳定性。
2、本发明的聚合物前药胶束mPEG-PLGA-SS-DOX/DOX,载药量与包封率良好。mPEG-PLGA-SS-DOX/DOX纳米粒具有pH敏感与氧化还原双重敏感释药的特性,展现出比 单重敏感更高的释放药物能力。此外,由于聚合物前药材料的疏水性和酰胺键/酯键的稳定性, 在正常条件下阿霉素不会轻易水解断裂下来,对于抗癌药物的递送而言是增加了稳定性与缓 释作用。
附图说明
图1为分子结构图,其中,a:阿霉素(DOX),b:聚乙二醇单甲醚(mPEG),c:聚乳酸-羟基 乙酸共聚物(PLGA),d:mPEG-PLGA-SS-DOX,e:聚赖氨酸(PLL),f:mPEG-PLL-SS-DOX,g:聚苯丙氨酸(PPHE),h:mPEG-PPHE-SS-DOX,i:mPEG-PLGA。
图2为周期性体系图,其中,a:mPEG-PLGA-SS-DOX/DOX,b:mPEG-PLGA/DOX,c:mPEG-PLL-SS-DOX/DOX,d:mPEG-PPHE-SS-DOX/DOX。
图3为mPEG-PLGA/PLL/PPHE-SS-DOX/DOX体系的均方位移(MSD)曲线图。
图4为DPD模拟中各种分子的珠子划分图。
图5为DPD模拟中H2O、mPEG-PLGA-SS-DOX和DOX的不同比例下 mPEG-PLGA-SS-DOX/DOX的外观和分布图。
图6为mPEG-PLGA-SS-DOX的合成路线图。
图7为mPEG-PLGA-SS-DOX的凝胶渗透色谱图。
图8为芘在不同浓度的mPEG-PLGA-SS-DOX/DOX中荧光强度比值(I384/I373)曲线图。
图9为mPEG-PLGA-SS-DOX/DOX的粒径图。
图10为mPEG-PLGA-SS-DOX/DOX的透射电镜图。
图11为mPEG-PLGA-SS-DOX/DOX在体外敏感条件下的释放曲线图。
图12为mPEG-PLGA-SS-DOX/DOX和DOX对HepG2和HEK293细胞的增殖抑制作用 对比图(统计学差异表示为*P<0.05,**P<0.01)。
具体实施方式
下面通过具体实施方式来进一步说明本发明的技术方案。本领域技术人员应该明了,所 述实施例仅仅是帮助理解本发明,不应视为对本发明的具体限制。
实施例1双重响应型聚合物前药胶束mPEG-PLGA-SS-DOX/DOX的制备
采用MD模拟方法选择合适的疏水嵌段聚乳酸-羟基乙酸(PLGA),以聚乙二醇单甲醚 (mPEG)为亲水性嵌段,2,2'-二硫代二乙酸为氧化还原反应片段,聚合物与药物阿霉素(DOX) 通过酰胺键(pH敏感键)共价连接和物理包埋方式制备出mPEG-R-SS-D1(化学键联)/D2(物理包埋)双重响应型聚合物前药胶束。
(一)运用分子动力学模拟筛选出符合聚合物体系的疏水性嵌段
步骤如下:
1、以mPEG为亲水性嵌段,疏水材料(PLGA或PLL或PPHE)与2,2'-二硫代二乙酸通过酯键结合,药物阿霉素(DOX)与材料通过酰胺键结合,利用Materials Studio软件中的Materials Visualizer模块绘制出分子的全部原子结构,建立分子模型,结果如图1。
2、利用Materials Studio软件中的Forcitce模块对聚合物前药全原子模型进行结构优化, 能量收敛阈值设为1.0e-4kcal/mol,力收敛阈值设为
Figure RE-GDA0003529951980000062
最大循环次数为10000步, 切换到能量棒,选择Compass II力场计算系统的势能,然后选择原子法计算范德华力和静电, 将药物阿霉素(DOX)和材料放置在一个没有其他粒子的立方体盒中,形成聚合物前药物周期 性体系,如图2所示,建立了周期性体系:mPEG-PLGA-SS-DOX/DOX、mPEG-PLGA/DOX、 mPEG-PLL-SS-DOX/DOX,d:mPEG-PPHE-SS-DOX/DOX。
3、在目标周期系统构造成功后,进行了三步动态平衡,利用Materials Studio软件的 Forcitce模块模拟了结构优化、退火和周期系统动力学,当三个步骤的动态平衡完成后,以第 三步动态仿真的最后一帧作为起点,在仿真条件不变的情况下,进行了一段时间的动态仿真 以达到平衡,对动态模拟的结果进行平均方位角偏移(MSD)计算,结果如图3所示,可以 确定粒子是否可以自由扩散、传输或组合,从而筛选出疏水性嵌段PLGA,设计出mPEG-PLGA-SS-DOX体系。
(二)运用耗散粒子动力学模拟预测和验证聚合物前药胶束形成过程、聚合物浓度和药 物浓度对聚合物前药胶束自组装结构的影响
步骤如下:
1、采用耗散粒子动力学方法进行粗粒化模拟,利用Materials Studio软件中的Synthia模 块分别计算PEG、PLGA、DOX和H2O的摩尔质量和密度,结果如表1所示,每个分子的体 积等于分子质量与密度之比;根据珠体体积原理,可以推导出所涉及分子的粗颗粒珠体,如 图4所示,将4个H2O分子、2个PEG单体和2个PLGA单体作为一个粗粒粒子,5个粗粒 粒子作为一个DOX分子。
表1 DPD模拟中各种分子的珠子划分参数表
Figure BDA0003484509950000062
2、由Materials Studio软件中的共混模块计算混合能ΔEmix,通过Mesocite模块进行DPD 模拟,模拟时间步长为0.03ns,模拟步长为333333,设计出周期体系的体积为20rc×20rc×20rc, 包含7.2×104个珠子。
3、为了使药物传递体系的达到药物含量最大,且能够保持完整的球形核-壳结构,改变 体系中H2O、mPEG-PLGA-SS-DOX和DOX的比例,由图5可以看出,当 H2O:mPEG-PLGA-SS-DOX:DOX的比例为90%:7.5%:(1.875-3.75)%时,即 mPEG-PLGA-SS-DOX:DOX的比例为2~4:1时,给药体系结构合理,当 mPEG-PLGA-SS-DOX:DOX的比例为2:1时,给药系统的药物含量最大,且能保持球形核- 壳结构完整。
(三)共聚物mPEG-PLGA-SS-DOX的合成
步骤如下:
1、mPEG-PLGA-OH的合成
1.1)将300mg(即0.15mmol)COOH-PLGA-OH溶解于2mL无水DCM中,再加入61.8 mg(即0.3mmol)二环己基碳二亚胺(DCC),在氮气环境下搅拌10min得反应混合物,将 34.5mg(即0.3mmol)N-羟基丁二酰亚胺(NHS)溶解于无水二氯甲烷(DCM)中,之后 加入到反应混合物中,在氮气环境下搅拌24h,然后使用0.45μm滤膜过滤,去除副产物, 过滤后得到活化的PLGA溶液,将其滴加到冷无水乙醚中沉淀,将沉淀进行减压干燥,得到 活化的PLGA;
1.2)取200mg(即0.1mmol)活化的PLGA溶解于2mL的无水DCM中,取400mg (即0.2mmol)mPEG-OH溶解于另2mL无水DCM中,将两溶液混合均匀后加入60μL(即 0.2mmol)无水三乙胺(TEA),在氮气保护下温和搅拌,在室温下反应24h,反应结束后, 将反应产物溶液滴入过量冷无水乙醚中沉淀3次,抽滤得到沉淀物,将沉淀物溶于3mL二甲 基亚砜(DMSO)中,转移至透析袋(MWCO 3500)中,以蒸馏水作为透析液透析24h,在 2h、4h、6h、8h、10h、12h、18h更换透析液,冷冻干燥,得到426.6mg(产率为71.1%) 白色固体,即为mPEG-PLGA-OH共聚物,在-20℃下保存。
2、mPEG-PLGA-SS-COOH共聚物的合成
2.1)将57mg(即0.3mmol)2,2'-二硫代乙二酸和2mL乙酸酐加入到50mL圆底烧瓶中, 在氮气保护下搅拌,在30℃下反应2小时,然后反复加入20mL甲苯,重复旋转蒸发3次去除未反应完的乙酸酐,得到棕色油状产物;
2.2)将2.1)得到的棕色油状产物溶于4mL无水DCM中,取出2mL样品溶液,并向 其中加入18.5mg(即0.15mmol)4-二甲氨基吡啶(DMAP)、28.8mg(即0.15mmol)1-乙 基-(3-二甲基氨基丙基)碳酰二亚胺盐酸盐(EDCI)和400mg(即0.1mmol)mPEG-PLGA-OH 共聚物,在40℃下搅拌反应36小时,反应结束后,将反应产物溶液滴入过量冷无水乙醚中 沉淀3次,将沉淀物溶于3mL DMSO中,转移至透析袋(MWCO 3500)中,以蒸馏水作为 透析液透析24h,在2h、4h、6h、8h、10h、12h、18h更换透析液,冷冻干燥,得到318.7 mg(产率为76.2%)白色固体,即为mPEG-PLGA-SS-COOH共聚物,在-20℃下保存。
3、mPEG-PLGA-SS-DOX共聚物的合成
3.1)将209.1mg(即0.05mmol)mPEG-PLGA-SS-COOH、14.4mg(即0.075mmol)EDCI、9.1mg(即0.075mmol)NHS和60μL(即0.2mmol)无水TEA溶于2mL无水DCM,在室 温下搅拌1h活化羧基,得到溶液A;
3.2)称取43.5mg(即0.075mmol)盐酸阿霉素(DOX·HCL),加入30μL(即0.1mmol)TEA,在室温下避光搅拌1h,得到溶液B;之后将溶液A和溶液B混合,在室温下避光搅拌 48h,反应结束后,将反应产物溶液滴入过量冷无水乙醚中沉淀3次,抽滤,取沉淀物溶于3 mLDMSO中,转移至透析袋(MWCO 3500)中,以蒸馏水作为透析液透析24h,在2h、4 h、6h、8h、10h、12h、18h更换透析液,冷冻干燥,得到144.6mg(产率为61.2%)红色 固体,即为mPEG-PLGA-SS-DOX,在-20℃下保存。
以上合成路线如图6所示。
mPEG-PLGA-SS-DOX的核磁结果为:1H NMR(600MHz,DMSO-d6)δ7.81(5H,d), 5.52(3H,s),5.85–4.98(17H,m),5.25–4.98(10H,m),5.00(9H,ddd),4.77(2H,d), 4.54(4H,d),4.51(2H,s),4.61–4.21(5H,m),4.07–3.62(11H,m),3.63(5H,s),3.63 (2H,s),3.52(81H,s),3.46–3.42(3H,m),3.29(90H,d),2.62(1H,s),2.54–2.48(45H, m),1.43(30H,dd),1.40(2H,d),1.40(4H,d),1.37–1.13(7H,m),1.00(3H,d), 0.85–0.66(1H,m)。
运用凝胶渗透色谱法(Gel Permeation Chromatography,GPC)对所合成的 mPEG-PLGA-SS-DOX进行了表征,结果如图7所示,从图中可以看出,聚合物主峰分布集 中,说明所得聚合物纯度较高。此外,通过GPC可以测得聚合物的平均分子量为4687,符 合预期的聚合物分子量范围,证明共聚物mPEG-PLGA-SS-DOX合成成功。
(四)双重响应型聚合物前药胶束mPEG-PLGA-SS-DOX/DOX的制备
步骤如下:称取5mg DOX溶于5ml乙腈中,从中取出1mL,向其中加入10mg mPEG-PLGA-SS-DOX和2μL TEA,再加入1mL乙腈,超声10min,使其完全溶解,然后 将混合溶液逐滴滴加至4mL去离子水中,1000rpm连续搅拌反应10min,使混合均匀,之 后将溶液在40℃下旋转蒸发去除乙腈,再补加去离子水至蒸馏前的体积,即得到淡红色聚合 物前药胶束mPEG-PLGA-SS-DOX/DOX溶液。
(五)mPEG-PLGA-SS-DOX/DOX聚合物前药胶束临界胶束浓度(critical micelleconcentration,CMC)测定
用芘作为荧光探针测定胶束的CMC,芘溶液荧光发射光谱中I384/I373的比值与芘浓度有 关,当芘分子逐渐被胶束溶解在水中时,I384/I373比值发生变化,突变的中点为胶束形成浓度, 即临界胶束浓度CMC。用荧光光谱法记录在不同溶液浓度下I384/I373的比值,并绘制相应曲 线,如图8所示,计算得到该聚合物前药胶束的CMC值为5.1μg/mL,证明该聚合物前药胶 束具有较低的CMC值,能够自组装形成稳定的胶束。
(六)mPEG-PLGA-SS-DOX/DOX聚合物前药胶束的粒径、电位的测定
采用动态光散射仪测定的mPEG-PLGA-SS-DOX/DOX的粒径和电势如图9和表2所示,该聚合物前药胶束粒径为47.04±0.103nm,具有EPR效应,能靶向肿瘤细胞,增加实体肿瘤部位药物浓度;电位为-23.8±0.189mV,这是聚乙二醇亲水性层的特点,负电位可以避免胶束 进入体内后网状内皮系统的识别,达到增加稳定性的效果;该聚合物前药胶束分散指数(PDI) 为0.231±0.001,表明明胶颗粒均匀性良好。
表2 mPEG-PLGA-SS-DOX/DOX聚合物前药胶束的粒径、PDI和电位
Figure BDA0003484509950000091
制备的mPEG-PLGA-SS-DOX/DOX样品进行透射电镜(TEM)观察,如图10所示,胶 束透射电镜显示,该聚合物前药胶束为球形颗粒,粒径范围为50~60nm,略大于动态光散射测量的粒径范围。
(七)mPEG-PLGA-SS-DOX/DOX聚合物前药胶束的体外释放实验
采用透析法研究了不同介质(pH 5.0、pH 5.0+10mM GSH、pH 7.4、pH 7.4+10mMGSH) 中mPEG-PLGA-SS-DOX/DOX对DOX的释放规律,结果如图11所示,在pH为7.4的生理 条件下模拟正常体液,72h该聚合物前药胶束累积释放量为32.13%;在pH为5.0的模拟肿 瘤细胞环境条件下,该聚合物前药胶束释放72h的累积释放量为61.58%;在pH为7.4、GSH 为10mM时,该聚合物前药胶束释放72h的累积释放量为70.14%;在pH为5.0、GSH为10 mM条件下,该聚合物前药胶束在72h的累积释放量为87.79%;原料药DOX在12h内的释 放量为98.40%。在pH敏感释放实验中,在pH为7.4条件下,8小时后不到20%的DOX被 胶束释放,在pH5.0条件下,8小时后不到38%的DOX被胶束释放,表明酸性环境快速促进 了DOX的释放。
在谷胱甘肽敏感释放实验中,当pH为7.4时,10mM GSH能快速破坏胶束并促进DOX释放,释放量为45%,而不添加谷胱甘肽,胶束就不能有效降解。而当pH为5.0、GSH为 10mM时,DOX的释放量迅速增加到61%,说明pH和GSH的协同作用共同诱导了DOX的 胶束释放。mPEG-PLGA-SS-DOX/DOX胶束不仅在正常生理条件下具有良好的稳定性,而且 在pH和细胞内运输过程中降低的双重敏感环境的刺激下能够快速、彻底地释放药物。
(八)mPEG-PLGA-SS-DOX/DOX聚合物前药胶束的细胞毒性研究实验
采用MTT法测定mPEG-PLGA-SS-DOX/DOX的细胞毒性。将HEK293和HepG2细胞转 移到96孔板(1×104细胞/孔)中孵育过夜,分别加入梯度浓度的DOX和用培养基稀释的 mPEG-PLGA-SS-DOX/DOX(等效DOX浓度)胶束溶液,每个浓度平行于三个孔,HEK293 和HepG2细胞再孵育48h,取液后加入200μL MTT溶液,孵育4h,吸取上清,加入200μL DMSO,摇匀10min,用酶联免疫吸附剂在490nm处检测96孔板。
结果如图12所示,我们发现在细胞系中,mPEG-PLGA-SS-DOX/DOX的毒性要小于DOX, 尤其在高浓度时,mPEG-PLGA-SS-DOX/DOX与DOX的存活率分别为32.86±2.95%、20.35±1.24%(HepG2)与43.11±2.62%、12.75±1.45%(HEK293),且具备显著性差异(**P<0.01)。根据细胞试验结果,我们可以推测在体循环中,mPEG-PLGA-SS-DOX/DOX聚合物 前药胶束的副作用相对游离原料药要更小,并且胶束在细胞层面上是响应性释放,这会使化疗药物的递送过程中具备更好的靶向释药作用。

Claims (9)

1.一种双重响应型聚合物前药胶束,其特征在于,所述双重响应型聚合物前药胶束为具有pH响应型和氧化还原响应型聚合物前药胶束mPEG-R-SS-D1/D2,结构中包括亲水性嵌段mPEG、氧化还原敏感片段二硫键、疏水性嵌段R、带有氨基的药物化合物D1和抗肿瘤药物D2,所述二硫键以酰胺键连接D1
其中,R为聚乳酸-羟基乙酸(PLGA),构成双重响应型聚合物前药胶束mPEG-PLGA-SS-D1/D2,具有如(Ⅰ)所示的结构式:
Figure FDA0003484509940000011
或,R为聚赖氨酸(PLL),构成双重响应型聚合物前药胶束mPEG-PLL-SS-D1/D2,具有如(Ⅱ)所示的结构式:
Figure FDA0003484509940000012
或,R为聚苯丙氨酸(PPHE),构成双重响应型聚合物前药胶束mPEG-PPHE-SS-D1/D2,具有如(Ⅲ)所示的结构式:
Figure FDA0003484509940000013
2.根据权利要求1所述的一种双重响应型聚合物前药胶束的制备方法,其特征在于,包括如下步骤:
1)运用分子动力学模拟筛选出符合聚合物体系的疏水性嵌段;
2)运用耗散粒子动力学模拟预测和验证胶束的自组装过程和载药性能;
3)将疏水性嵌段R与亲水性片段mPEG缩合为mPEG-R-OH;
4)将mPEG-R-OH与2,2'-二硫代乙二酸制备成具有氧化还原响应型的共聚物mPEG-R-SS-COOH;
5)将mPEG-R-SS-COOH与带有氨基的药物化合物D1通过酰胺键连接制备具有pH和氧化还原响应型的共聚物mPEG-R-SS-D1
6)通过纳米沉淀法制备出双重响应型聚合物前药胶束mPEG-R-SS-D1/D2
3.根据权利要求1所述的一种双重响应型聚合物前药胶束,其特征在于,所述双重响应型聚合物前药胶束mPEG-PLGA-SS-D1/D2中,D1为阿霉素(DOX),构成双重响应型聚合物前药胶束mPEG-PLGA-SS-DOX/D2,具有如(Ⅳ)所示的结构式:
Figure FDA0003484509940000021
4.根据权利要求3所述的一种双重响应型聚合物前药胶束,其特征在于,所述mPEG-PLGA-SS-DOX/D2中的mPEG为聚乙二醇单甲醚mPEG2000
5.根据权利要求3所述的一种双重响应型聚合物前药胶束,其特征在于,所述mPEG-PLGA-SS-DOX/D2中的D2为阿霉素(DOX)。
6.根据权利要求3所述的一种双重响应型聚合物前药胶束,其特征在于,所述mPEG-PLGA-SS-DOX/D2的制备方法,包括如下步骤:
1)利用Materials Studio软件中的Forcitce模块对聚合物前药分子体系优化,得到均方位移(MSD)曲线,由MSD的斜率计算得出药物在体系的扩散系数,筛选出疏水性嵌段PLGA,设计出mPEG-PLGA-SS-DOX体系;
2)利用Materials Studio软件中的Synthia模块分别计算PEG、PLGA、DOX和H2O的摩尔质量和密度,建立珠子模型,然后在Mesocite模块中设计出模拟系统的周期性体系的体积为20rc×20rc×20rc,内含7.2×104个珠子;
3)将PLGA和甲氧基聚乙二醇(mPEG-OH)分别溶于无水二氯甲烷中,混合均匀后注入无水三乙胺,在氮气保护下搅拌,在室温下反应24小时,反应结束后,将反应产物溶液滴入过量冷无水乙醚中沉淀3次,抽滤,取沉淀物溶于二甲基亚砜中,转移至透析袋,透析24小时,冷冻干燥,得到mPEG-PLGA-OH共聚物;
4)将2,2'-二硫代乙二酸加入乙酸酐中,在氮气保护下搅拌,在30℃下反应2小时,反复加入甲苯,旋转蒸发得到的棕色油状产物溶于无水二氯甲烷中,再加入4-二甲氨基吡啶、1-乙基-(3-二甲基氨基丙基)碳酰二亚胺盐酸盐和步骤3)得到的mPEG-PLGA-OH共聚物,在40℃下搅拌反应36小时,反应结束后,将反应产物溶液滴入过量冷无水乙醚中沉淀3次,取沉淀物溶于二甲基亚砜中,转移至透析袋,透析24小时,冷冻干燥,得到mPEG-PLGA-SS-COOH共聚物;
5)将步骤4)得到的mPEG-PLGA-SS-COOH共聚物、1-乙基-(3-二甲基氨基丙基)碳酰二亚胺盐酸盐、N-羟基丁二酰亚胺和三乙胺溶于无水二氯甲烷中,在室温下搅拌1小时,得到溶液A;将三乙胺加入盐酸阿霉素中,在室温下避光搅拌1小时,得到溶液B;将溶液A和溶液B在室温下混合,避光搅拌反应48小时,反应结束后,将反应产物溶液滴入过量冷无水乙醚中沉淀3次,抽滤,取沉淀物溶于二甲基亚砜中,转移至透析袋,透析24小时,冷冻干燥,得到mPEG-PLGA-SS-DOX红色共聚物;
6)将D2溶于乙腈中,再加入步骤5)得到的mPEG-PLGA-SS-DOX红色共聚物、三乙胺和乙腈,超声10分钟后,将得到的混合溶液滴加到去离子水中,1000rpm连续搅拌反应10min,反应结束后,在40℃下旋转蒸发除去乙腈,再加入去离子水,得到双重响应型聚合物前药胶束mPEG-PLGA-SS-DOX/D2溶液。
7.根据权利要求6所述的一种双重响应型聚合物前药胶束,其特征在于,所述透析袋分子量为3.5kDa。
8.根据权利要求6所述的一种双重响应型聚合物前药胶束,其特征在于,所述透析,以蒸馏水作为透析液,分别在2小时、4小时、6小时、8小时、10小时、12小时、18小时更换透析液。
9.权利要求5所述的双重响应型聚合物前药胶束对HepG2细胞有细胞毒性。
CN202210077180.8A 2022-01-24 2022-01-24 一种双重响应型聚合物前药胶束及其制备方法 Active CN114377151B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210077180.8A CN114377151B (zh) 2022-01-24 2022-01-24 一种双重响应型聚合物前药胶束及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210077180.8A CN114377151B (zh) 2022-01-24 2022-01-24 一种双重响应型聚合物前药胶束及其制备方法

Publications (2)

Publication Number Publication Date
CN114377151A true CN114377151A (zh) 2022-04-22
CN114377151B CN114377151B (zh) 2024-02-20

Family

ID=81203574

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210077180.8A Active CN114377151B (zh) 2022-01-24 2022-01-24 一种双重响应型聚合物前药胶束及其制备方法

Country Status (1)

Country Link
CN (1) CN114377151B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110604820A (zh) * 2019-10-17 2019-12-24 辽宁大学 一种双重敏感型聚合物-药物连接物及其制备方法和应用
CN116459215A (zh) * 2023-06-02 2023-07-21 辽宁大学 一种刺激响应型双药共递送胶束及其制备方法和应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103599548A (zh) * 2013-11-20 2014-02-26 中国科学院长春应用化学研究所 一种紫杉醇高分子键合药及其制备方法
CN106265509A (zh) * 2016-08-10 2017-01-04 国家纳米科学中心 一种pH和Redox双响应两亲性嵌段共聚物及其制备方法和用途
US20190091147A1 (en) * 2016-12-26 2019-03-28 Jiangnan University Preparation Method for Charge Reversaland Reversibly Crosslinked Redox-Sensitive Nanomicelles
CN113912841A (zh) * 2021-10-22 2022-01-11 清华大学深圳国际研究生院 一种pH和Redox双响应两嵌段两亲性聚合物前药及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103599548A (zh) * 2013-11-20 2014-02-26 中国科学院长春应用化学研究所 一种紫杉醇高分子键合药及其制备方法
CN106265509A (zh) * 2016-08-10 2017-01-04 国家纳米科学中心 一种pH和Redox双响应两亲性嵌段共聚物及其制备方法和用途
US20190091147A1 (en) * 2016-12-26 2019-03-28 Jiangnan University Preparation Method for Charge Reversaland Reversibly Crosslinked Redox-Sensitive Nanomicelles
CN113912841A (zh) * 2021-10-22 2022-01-11 清华大学深圳国际研究生院 一种pH和Redox双响应两嵌段两亲性聚合物前药及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JUNXU HAO等: ""pH-redox responsive polymer-doxorubicin prodrug micelles studied by molecular dynamics, dissipative particle dynamics simulations and experiments"", 《JOURNAL OF DRUG DELIVERY SCIENCE AND TECHNOLOGY》, vol. 69, pages 1 - 17 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110604820A (zh) * 2019-10-17 2019-12-24 辽宁大学 一种双重敏感型聚合物-药物连接物及其制备方法和应用
CN116459215A (zh) * 2023-06-02 2023-07-21 辽宁大学 一种刺激响应型双药共递送胶束及其制备方法和应用

Also Published As

Publication number Publication date
CN114377151B (zh) 2024-02-20

Similar Documents

Publication Publication Date Title
Shi et al. pH-Sensitive nanoscale materials as robust drug delivery systems for cancer therapy
Zheng et al. Redox sensitive shell and core crosslinked hyaluronic acid nanocarriers for tumor-targeted drug delivery
Zhang et al. Self-assembled pH-responsive MPEG-b-(PLA-co-PAE) block copolymer micelles for anticancer drug delivery
Kim et al. Hydrogen bonding-enhanced micelle assemblies for drug delivery
Ding et al. Biocompatible reduction-responsive polypeptide micelles as nanocarriers for enhanced chemotherapy efficacy in vitro
Wang et al. Acid-triggered drug release from micelles based on amphiphilic oligo (ethylene glycol)–doxorubicin alternative copolymers
CN114377151A (zh) 一种双重响应型聚合物前药胶束及其制备方法
Xiao et al. Degradable and biocompatible aldehyde-functionalized glycopolymer conjugated with doxorubicin via acid-labile Schiff base linkage for pH-triggered drug release
Hu et al. Tailoring the physicochemical properties of core-crosslinked polymeric micelles for pharmaceutical applications
Zhang et al. Galactosylated reduction and pH dual-responsive triblock terpolymer Gal-PEEP-a-PCL-ss-PDMAEMA: a multifunctional carrier for the targeted and simultaneous delivery of doxorubicin and DNA
US20110118200A1 (en) A pegylated and fatty acid grafted chitosan oligosaccharide, synthesis method and application for drug delivery system
Yuan et al. Multistage pH-responsive mesoporous silica nanohybrids with charge reversal and intracellular release for efficient anticancer drug delivery
Zhou et al. Engineered borate ester conjugated protein-polymer nanoconjugates for pH-responsive drug delivery
CN113754793B (zh) 一种苯硼酸枝接的壳寡糖衍生物及其制备方法和应用
Zhang et al. Borneol and poly (ethylene glycol) dual modified BSA nanoparticles as an itraconazole vehicle for brain targeting
Pan et al. Synthesis and characterization of biodegradable polyurethanes with folate side chains conjugated to hard segments
Chen et al. Poly (N-isopropylacrylamide) derived nanogels demonstrated thermosensitive self-assembly and GSH-triggered drug release for efficient tumor Therapy
CN112279983B (zh) 一种电荷翻转两亲嵌段共聚物、制备方法、前体聚合物、纳米胶束和应用
Hassanzadeh et al. A proof-of-concept for folate-conjugated and quercetin-anchored pluronic mixed micelles as molecularly modulated polymeric carriers for doxorubicin
CN102863557A (zh) 乳糖酸修饰的脂肪酸-三甲基壳聚糖聚合物制备方法及应用
Zhang et al. Morphology tunable and acid-sensitive dextran–doxorubicin conjugate assemblies for targeted cancer therapy
Nguyen et al. Preparation and characterization of oxaliplatin drug delivery vehicle based on PEGylated half-generation PAMAM dendrimer
CN111249253B (zh) 核壳结构刺激响应型药物载体的制备方法及药物释放方法
Mahani et al. Doxorubicin-loaded polymeric micelles decorated with nitrogen-doped carbon dots for targeted breast cancer therapy
Han et al. Development of a pH-responsive polymer based on hyaluronic acid conjugated with imidazole and dodecylamine for nanomedicine delivery

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant