CN114373820A - 一种薄膜太阳电池及其制备方法 - Google Patents

一种薄膜太阳电池及其制备方法 Download PDF

Info

Publication number
CN114373820A
CN114373820A CN202210029909.4A CN202210029909A CN114373820A CN 114373820 A CN114373820 A CN 114373820A CN 202210029909 A CN202210029909 A CN 202210029909A CN 114373820 A CN114373820 A CN 114373820A
Authority
CN
China
Prior art keywords
layer
solar cell
thin film
film solar
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210029909.4A
Other languages
English (en)
Inventor
李辉
李丛梦
古宏伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Electrical Engineering of CAS
Original Assignee
Institute of Electrical Engineering of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Electrical Engineering of CAS filed Critical Institute of Electrical Engineering of CAS
Priority to CN202210029909.4A priority Critical patent/CN114373820A/zh
Publication of CN114373820A publication Critical patent/CN114373820A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0445PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明属于光伏技术领域,特别涉及一种薄膜太阳电池及其制备方法。本发明提供的薄膜太阳电池,包括依次层叠设置的衬底、第一载流子传输层、p型光学吸收层、n型窗口层、铁电膜层、第二载流子传输层和金属栅电极层;所述铁电膜层的材质包括BaTiO3、KNbO3、NaNbO3或BiFeO3。本发明同时利用传统光伏器件的p‑n结内建电场和铁电材料的退极化场,通过p‑n结内建电场、铁电退极化场多物理场耦合增强效应提高光生载流子分离与传输能力,降低复合,增加电池的开路电压,提高薄膜太阳电池的光电转化效率。

Description

一种薄膜太阳电池及其制备方法
技术领域
本发明属于光伏技术领域,特别涉及一种薄膜太阳电池及其制备方法。
背景技术
太阳能电池利用光生伏特效应可直接将太阳能转化为电能,是太阳能的有效利用技术,可缓解人们日常生产和生活对电能不断增加的需求。太阳能电池的工作原理是:光吸收层在光照下产生电子-空穴对,在两种半导体材料构成的p-n结的内建电场作用下分离,产生载流子,经由载流子传输层移向电极,外接负载后形成回路。太阳能电池中,薄膜太阳电池(CIGS)材料吸收系数高,抗辐射能力强,弱光性能好,无光致衰减,稳定,寿命长,是一种理想的光吸收材料。
但是CIGS由于带隙限制和低的内建电场,难以实现光生载流子的有效分离和电荷的高效传输(Shockley,W.and Queisser,H.J.(1961)Detailed Balance Limit ofEfficiency of PN Junction Solar Cells.Journal of Applied Physics,32,510-519.以及M.A.Green,and S.P.Bremner,“Energy conversion approaches and materials forhigh-efficiency photovoltaics,”Nature Mater,vol.16,no.1,pp.23–34,2017.)。铁电光伏器件可产生带隙以上的光电压,但是传统铁电材料光学吸收系数小、带隙较大,导致短路电流密度低(Yang SY,Seidel J,Byrnes SJ,Shafer P,Yang CH,Rossell MD,etal.Above-bandgap voltages from ferroelectric photovoltaic devices.NatNanotechnol.2010;5(2):143-7.),仍不能提供CIGS光生载流子的有效分离和电荷的高效传输,光电转化效率低。
发明内容
有鉴于此,本发明的目的在于提供一种薄膜太阳电池及其制备方法,本发明提供的薄膜太阳电池能够实现光生载流子的有效分离和电荷的高效传输,光电转化效率高。
为了实现上述发明的目的,本发明提供以下技术方案:
本发明提供了一种薄膜太阳电池,包括依次层叠设置的衬底、第一载流子传输层、p型光学吸收层、n型窗口层、铁电膜层、第二载流子传输层和金属栅电极层;
所述铁电膜层的材质包括BaTiO3、KNbO3、NaNbO3或BiFeO3
优选的,所述第一载流子传输层和第二载流子传输层的材质独立地包括钼或透明导电氧化物;所述透明导电氧化物包括铝掺杂氧化锌、氟掺杂锡氧化物或锡掺杂铟氧化物;所述第一载流子传输层的厚度为750~880nm;所述第二载流子传输层的厚度为470~700nm。
优选的,所述p型光学吸收层的材质包括Cu(In1-xGax)(Se,S)2、Cu2BaSn(SxSe1-x)4、Cu2MnSn(SxSe1-x)4或Cu2ZnSn(SxSe1-x)4,x的取值独立地为0~1;所述p型光学吸收层的厚度为1.5~2.5μm。
优选的,所述n型窗口层的材质包括CdS、ZnMgO、ZnO、ZnS或CdZnS;所述n型窗口层的厚度为300~400nm。
优选的,所述金属栅电极层的材质包括Ag、Au或Ni-Al-Ni;所述金属栅电极层的厚度为130~200nm。
优选的,所述p型光学吸收层和n型窗口层之间还设置有缓冲层。
优选的,所述缓冲层的材质包括CdS、CdI、ZnS或ZnMgO;所述缓冲层的厚度为65~120nm。
优选的,所述铁电膜层的厚度≤50nm。
本发明还提供了上述技术方案所述薄膜太阳电池的制备方法,包括以下步骤:
在衬底上依次制备第一载流子传输层、p型光学吸收层、n型窗口层、磁控溅射铁电膜层、第二载流子传输层和金属栅电极层。
优选的,所述p型光学吸收层制备得到后、n型窗口层制备前还包括:在所述p型光学吸收层表面制备缓冲层。
本发明提供了一种薄膜太阳电池,包括依次层叠设置的衬底、第一载流子传输层、p型光学吸收层、n型窗口层、铁电膜层、第二载流子传输层和金属栅电极层;所述铁电膜层的材质包括BaTiO3、KNbO3、NaNbO3或BiFeO3。本发明在传统光学吸收层薄膜光伏器件中引入BaTiO3、KNbO3、NaNbO3或BiFeO3材质的铁电膜层,可以引入大剩余极化强度的铁电退极化场,而且铁电膜层材料为n型材料,可以和p型光学吸收层构筑成p-n结场,同时由于铁电材料高带隙和低载流子传导能力,铁电膜层可以承担高阻挡层的作用。在本发明中,第一载流子传输层(底电极)表面电阻低,导电性好;光吸收层可将光能转化为电子-空穴对;窗口层、铁电层同为高阻层,可防止电池内部短路,高透,保证大部分太阳光透过进入吸收层;n型窗口层和铁电膜层同为n型层,与p型吸收层构筑成异质结;且铁电膜层的退极化场可提高载流子的分离;第二载流子传输层(上电极)有低的表面电阻和高的可见光透过率,避免光损失,并收集电流;金属栅与上电极形成欧姆接触,栅状电极还增加了入射光面积。本发明同时利用传统光伏器件的p-n结内建电场和铁电材料的铁电退极化场多物理场耦合增强效应提高光生载流子分离与传输能力,降低复合,增加电池的开路电压,提高薄膜太阳电池的光电转化效率。
进一步的,缓冲层可降低吸收层与窗口层之间带隙不连续性和晶格失配率,同时保护吸收层不被后续工艺破坏、避免产生缺陷。
实施例测试结果表明,本发明提供的薄膜太阳电池的短路电流密度为30.40~32.79mA/cm2,开路电压为690.04~696.47mV,填充因子为62.64~70.59%,光电转换效率为13.68~16.07%。
附图说明
图1为本发明提供的薄膜太阳电池结构示意图,图1中,1-衬底,2-第一载流子传输层,3-p型光学吸收层,4-缓冲层,5-n型窗口层,6-铁电膜层,7-第二载流子传输层,8-金属栅电极层;
图2为实施例1制备的薄膜太阳电池的断面SEM图;
图3为实施例1制备的薄膜太阳电池的IV测试图;
图4为实施例2制备的薄膜太阳电池的IV测试图;
图5为实施例3制备的薄膜太阳电池的IV测试图;
图6为对比例1制备的薄膜太阳电池的IV测试图;
图7为对比例2制备的薄膜太阳电池的IV测试图。
具体实施方式
本发明提供了一种薄膜太阳电池,包括依次层叠设置的衬底、第一载流子传输层、p型光学吸收层、n型窗口层、铁电膜层、第二载流子传输层和金属栅电极层;
所述铁电膜层的材质包括BaTiO3、KNbO3、NaNbO3或BiFeO3
在本发明中,若无特殊说明,所述技术方案中各组成均为本领域技术人员熟知的市售商品。
图1为本发明提供的薄膜太阳电池结构示意图,下面结合图1对本发明提供的薄膜太阳电池进行说明。
本发明提供的薄膜太阳电池包括衬底。在本发明中,所述衬底的材质优选为玻璃、不锈钢或聚酰亚胺。
本发明提供的薄膜太阳电池包括所述衬底上的第一载流子传输层。在本发明中,所述第一载流子传输层的材质优选包括钼或透明导电氧化物;所述透明导电氧化物包括铝掺杂氧化锌(AZO)、氟掺杂锡氧化物(FTO)或锡掺杂铟氧化物。在本发明中,所述第一载流子传输层的厚度优选为750~880nm,更优选为770~860nm。在本发明中,所述第一载流子传输层的表面优选为鱼鳞状结构;所述鱼鳞状结构有利于增加膜层间的接触面积,增大层间附着力。
本发明提供的薄膜太阳电池包括所述第一载流子传输层上的p型光学吸收层。在本发明中,所述p型光学吸收层的材质优选包括Cu(In1-xGax)(Se,S)2(CIGS)、Cu2BaSn(SxSe1-x)4(CBTS)、Cu2MnSn(SxSe1-x)4(CMTS)或Cu2ZnSn(SxSe1-x)4(CZTS);x的取值独立地优选为0~1。在本发明中,所述p型光学吸收层的厚度优选为1.5~2.5μm,更优选为1.6~2.4μm。
本发明提供的薄膜太阳电池包括所述p型光学吸收层上的n型窗口层。在本发明中,所述n型窗口层的材质优选包括CdS、ZnMgO、ZnO、ZnS或CdZnS。在本发明中,所述n型窗口层的厚度优选为300~400nm,更优选为310~390nm。
本发明提供的薄膜太阳电池包括所述n型窗口层上的铁电膜层。在本发明中,所述铁电膜层的材质包括BaTiO3(BTO)、KNbO3、NaNbO3或BiFeO3。在本发明中,所述铁电膜层的厚度优选≤50nm。
本发明提供的薄膜太阳电池包括所述铁电膜层上的第二载流子传输层。在本发明中,所述第二载流子传输层的材质优选包括钼或透明导电氧化物;所述透明导电氧化物包括铝掺杂氧化锌、氟掺杂锡氧化物或锡掺杂铟氧化物。在本发明中,所述第二载流子传输层的厚度优选为470~700nm,更优选为500~690nm。
本发明提供的薄膜太阳电池包括所述第二载流子传输层上的金属栅电极层。在本发明中,所述金属栅电极层的材质优选包括Ag、Au或Ni-Al-Ni。在本发明中,所述金属栅电极层的厚度优选为130~200nm,更优选为140~190nm。
在本发明中,所述p型光学吸收层和n型窗口层之间优选还设置有缓冲层。在本发明中,所述缓冲层优选为n型缓冲层。在本发明中,所述缓冲层的材质优选包括CdS、CdI、ZnS或ZnMgO。在本发明中,所述缓冲层的厚度优选为65~120nm,更优选为70~120nm。
本发明还提供了上述技术方案所述薄膜太阳电池的制备方法,包括以下步骤:
在衬底上依次制备第一载流子传输层、p型光学吸收层、n型窗口层、磁控溅射铁电膜层、第二载流子传输层和金属栅电极层。
在衬底上制备第一载流子传输层前,本发明优选将所述衬底进行清洁。本发明对所述衬底的清洁没有特殊限定,以保证衬底表面洁净无杂质为准。
在本发明中,制备第一载流子传输层的方法优选为直流磁控溅射。
在本发明中,制备p型光学吸收层的方法优选为三步共蒸发法。
在本发明中,制备n型窗口层的方法优选为射频磁控溅射。
在本发明中,制备铁电膜层的方法为磁控溅射,更优选为射频磁控溅射。
在本发明中,制备第二载流子传输层的方法优选为射频溅射。
在本发明中,制备金属栅电极层的方法优选为射频磁控溅射。
在本发明中,当所述p型光学吸收层和n型窗口层之间还包括缓冲层时,所述p型光学吸收层制备得到后、n型窗口层制备前还包括:在所述p型光学吸收层表面制备缓冲层。在本发明中,制备缓冲层的方法优选为化学水浴沉积法(CBD法)。
为了进一步说明本发明,下面结合实施例对本发明提供的一种薄膜太阳电池及其制备方法进行详细地描述,但不能将它们理解为对本发明保护范围的限定。显然,所描述的实施例仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1
在洁净的玻璃衬底上通过直流磁控溅射法生长厚800nm、材质为Mo的第一载流子传输层;在第一载流子传输层的表面采用三步共蒸发法生长厚1.7μm、材质为CuIn0.6Ga0.4Se2的p型光学吸收层;在p型光学吸收层上通过化学水浴沉积法生长120nm、材质为n型CdS的缓冲层;在缓冲层上通过射频磁控溅射生长厚度为370nm、材质为ZnMgO的n型窗口层;在n型窗口层上通过射频磁控溅射生长厚50nm、材质为BaTiO3的n型铁电膜层;在铁电膜层上通过射频溅射生长厚690nm、材质为铝掺杂氧化锌的第二载流子传输层;在第二载流子传输层上通过射频磁控溅射生长厚180nm、材质为Ag的金属栅电极层,得到所述薄膜太阳电池。
对实施例1制备的薄膜太阳电池的断面进行扫描电镜测试,所得断面SEM图见图2。由图2可见,薄膜太阳电池的断面层状结构明显,且从中可得出该薄膜太阳电池的吸收层厚1.7μm。
对实施例1制备的薄膜太阳电池进行光电测试,所得IV测试图见图3。由图3可见,薄膜太阳电池的短路电流密度为32.68mA/cm2,开路电压为696.47mV,填充因子为70.59%,光电转换效率为16.07%。
实施例2
在洁净的玻璃衬底上通过直流磁控溅射法生长厚769.2nm、材质为Mo的第一载流子传输层;在第一载流子传输层的表面采用三步共蒸发法生长厚2.27μm、材质为CuIn0.5Ga0.5Se2的p型光学吸收层;在p型光学吸收层上通过化学水浴沉积法生长120nm、材质为n型CdS的缓冲层;在缓冲层上通过射频磁控溅射生长厚度为370nm、材质为ZnMgO的n型窗口层;在n型窗口层上通过射频磁控溅射生长厚48nm、材质为BaTiO3的n型铁电膜层;在铁电膜层上通过射频溅射生长厚700nm、材质为铝掺杂氧化锌的第二载流子传输层;在第二载流子传输层上通过射频磁控溅射生长厚180nm、材质为Au的金属栅电极层,得到所述薄膜太阳电池。
对实施例2制备的薄膜太阳电池进行光电测试,所得IV测试图见图4。由图4可见,薄膜太阳电池的短路电流密度为32.79mA/cm2,开路电压为690.04mV,填充因子为62.64%,效率为14.16%。
实施例3
在洁净的玻璃衬底上通过直流磁控溅射法生长厚850.8nm、材质为Mo的第一载流子传输层;在第一载流子传输层的表面采用三步共蒸发法生长厚2.04μm、材质为CuIn0.6Ga0.4Se2的p型光学吸收层;在p型光学吸收层上通过化学水浴沉积法生长117.5nm、材质为n型CdS的缓冲层;在缓冲层上通过射频磁控溅射生长厚度为334.7nm、材质为ZnMgO的n型窗口层;在n型窗口层上通过射频磁控溅射生长厚50nm、材质为BaTiO3的n型铁电膜层;在铁电膜层上通过射频溅射生长厚690nm、材质为铝掺杂氧化锌的第二载流子传输层;在第二载流子传输层上通过射频磁控溅射生长厚190nm、材质为Ag的金属栅电极层,得到所述薄膜太阳电池。
对实施例3制备的薄膜太阳电池进行光电测试,所得IV测试图见图5。由图5可见,薄膜太阳电池的短路电流密度为30.40mA/cm2,开路电压为691.82mV,填充因子为65.04%,光电转换效率为13.68%。
对比例1
在洁净的玻璃衬底上通过直流磁控溅射法生长厚800nm、材质为Mo的第一载流子传输层;在第一载流子传输层的表面采用三步共蒸发法生长厚1.98μm、材质为CuIn0.5Ga0.5Se2的p型光学吸收层;在p型光学吸收层上通过化学水浴沉积法生长120nm、材质为n型CdS的缓冲层;在n型窗口层上通过射频磁控溅射生长厚50nm、材质为BaTiO3的n型铁电膜层;在铁电膜层上通过射频溅射生长厚690nm、材质为铝掺杂氧化锌的第二载流子传输层;在第二载流子传输层上通过射频磁控溅射生长厚130nm、材质为Au的金属栅电极层,得到所述铁电薄膜耦合CIGS薄膜太阳能电池。
对对比例1制备的铁电薄膜耦合CIGS薄膜太阳电池进行光电测试,所得IV测试图见图6。由图6可见,薄膜太阳能电池的短路电流密度为28.06mA/cm2,开路电压为611.08mV,填充因子为63.42%,光电转换效率为10.88%。
对比例2
在洁净的玻璃衬底上通过直流磁控溅射法生长厚800nm、材质为Mo的第一载流子传输层;在第一载流子传输层的表面采用三步共蒸发法生长厚1.85μm、材质为CuIn0.5Ga0.5Se2的p型光学吸收层;在p型光学吸收层上通过化学水浴沉积法生长120nm、材质为n型CdS的缓冲层;在缓冲层上通过射频磁控溅射生长厚度为350nm、材质为ZnMgO的n型窗口层;在n型窗口层上通过射频磁控溅射生长厚230nm、材质为BaTiO3的n型铁电膜层;在铁电膜层上通过射频溅射生长厚580nm、材质为铝掺杂氧化锌的第二载流子传输层;在第二载流子传输层上通过射频磁控溅射生长厚190nm、材质为Au的金属栅电极层,得到所述铁电薄膜耦合CIGS薄膜太阳能电池。
对对比例2制备的铁电薄膜耦合CIGS薄膜太阳电池进行光电测试,所得IV测试图见图7。由图7可见,薄膜太阳能电池的短路电流密度为26.73mA/cm2,开路电压为496.57mV,填充因子为31.59%,光电转换效率为4.19%。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (10)

1.一种薄膜太阳电池,包括依次层叠设置的衬底、第一载流子传输层、p型光学吸收层、n型窗口层、铁电膜层、第二载流子传输层和金属栅电极层;
所述铁电膜层的材质包括BaTiO3、KNbO3、NaNbO3或BiFeO3
2.根据权利要求1所述的薄膜太阳电池,其特征在于,所述第一载流子传输层和第二载流子传输层的材质独立地包括钼或透明导电氧化物;所述透明导电氧化物包括铝掺杂氧化锌、氟掺杂锡氧化物或锡掺杂铟氧化物;所述第一载流子传输层的厚度为750~880nm;所述第二载流子传输层的厚度为470~700nm。
3.根据权利要求1所述的薄膜太阳电池,其特征在于,所述p型光学吸收层的材质包括Cu(In1-xGax)(Se,S)2、Cu2BaSn(SxSe1-x)4、Cu2MnSn(SxSe1-x)4或Cu2ZnSn(SxSe1-x)4,x的取值独立地为0~1;所述p型光学吸收层的厚度为1.5~2.5μm。
4.根据权利要求1或3所述的薄膜太阳电池,其特征在于,所述n型窗口层的材质包括CdS、ZnMgO、ZnO、ZnS或CdZnS;所述n型窗口层的厚度为300~400nm。
5.根据权利要求1所述的薄膜太阳电池,其特征在于,所述金属栅电极层的材质包括Ag、Au或Ni-Al-Ni;所述金属栅电极层的厚度为130~200nm。
6.根据权利要求1所述的薄膜太阳电池,其特征在于,所述p型光学吸收层和n型窗口层之间还设置有缓冲层。
7.根据权利要求6所述的薄膜太阳电池,其特征在于,所述缓冲层的材质包括CdS、CdI、ZnS或ZnMgO;所述缓冲层的厚度为65~120nm。
8.根据权利要求1所述的薄膜太阳电池,其特征在于,所述铁电膜层的厚度≤50nm。
9.权利要求1~8任一项所述薄膜太阳电池的制备方法,其特征在于,包括以下步骤:
在衬底上依次制备第一载流子传输层、p型光学吸收层、n型窗口层、磁控溅射铁电膜层、第二载流子传输层和金属栅电极层。
10.根据权利要求9所述的制备方法,其特征在于,所述p型光学吸收层制备得到后、n型窗口层制备前还包括:在所述p型光学吸收层表面制备缓冲层。
CN202210029909.4A 2022-01-12 2022-01-12 一种薄膜太阳电池及其制备方法 Pending CN114373820A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210029909.4A CN114373820A (zh) 2022-01-12 2022-01-12 一种薄膜太阳电池及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210029909.4A CN114373820A (zh) 2022-01-12 2022-01-12 一种薄膜太阳电池及其制备方法

Publications (1)

Publication Number Publication Date
CN114373820A true CN114373820A (zh) 2022-04-19

Family

ID=81144470

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210029909.4A Pending CN114373820A (zh) 2022-01-12 2022-01-12 一种薄膜太阳电池及其制备方法

Country Status (1)

Country Link
CN (1) CN114373820A (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030037815A1 (en) * 2001-08-24 2003-02-27 Jeong Kim Solar cell using ferroelectric material(s)
CN105390564A (zh) * 2015-11-03 2016-03-09 绵阳师范学院 一种铁电-半导体pn结型新型叠层太阳电池
CN106449810A (zh) * 2016-11-25 2017-02-22 中国科学院电工研究所 一种CdTe/CIGS梯度吸收层薄膜太阳能电池及其制备方法
CN106981532A (zh) * 2017-02-20 2017-07-25 中国科学院电工研究所 一种柔性cigs多晶薄膜太阳电池
CN109713059A (zh) * 2018-12-27 2019-05-03 中国科学院电工研究所 一种cigs电池器件及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030037815A1 (en) * 2001-08-24 2003-02-27 Jeong Kim Solar cell using ferroelectric material(s)
CN105390564A (zh) * 2015-11-03 2016-03-09 绵阳师范学院 一种铁电-半导体pn结型新型叠层太阳电池
CN106449810A (zh) * 2016-11-25 2017-02-22 中国科学院电工研究所 一种CdTe/CIGS梯度吸收层薄膜太阳能电池及其制备方法
CN106981532A (zh) * 2017-02-20 2017-07-25 中国科学院电工研究所 一种柔性cigs多晶薄膜太阳电池
CN109713059A (zh) * 2018-12-27 2019-05-03 中国科学院电工研究所 一种cigs电池器件及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
安东尼奥·卢克等: "《光伏技术与工程手册》", 31 July 2019, 机械工业出版社, pages: 633 *

Similar Documents

Publication Publication Date Title
KR101372536B1 (ko) 탠덤형 박막 태양전지 및 그의 제조방법
CN207320169U (zh) 一种渐变带隙的钙钛矿电池
KR101103770B1 (ko) 화합물 반도체 태양 전지 및 그 제조 방법
EP2573820A2 (en) Photovoltaic device including a CZTS absorber layer and method of manufacturing the same
EP2430670A1 (en) Tandem photovoltaic cell and method using three glass substrate configuration
KR20140109530A (ko) 박막 태양전지
CN102244111A (zh) 一种薄膜太阳能电池
CN109638100B (zh) 具有背面反射体的光伏器件
JP2010287607A (ja) タンデム型薄膜太陽電池
KR20170126352A (ko) 반투명 cigs 태양전지 및 이의 제조방법 및 이를 구비하는 건물일체형 태양광 발전 모듈
CN104600146A (zh) 一种双面薄膜太阳能电池
CN112993169B (zh) 一种nip异质结太阳能电池及其制造方法
CN114373820A (zh) 一种薄膜太阳电池及其制备方法
KR20090034079A (ko) 이셀렌화몰리브덴층을 포함하는 태양전지 및 그의 제조방법
CN208570618U (zh) 一种太阳能电池
KR20120043315A (ko) 화합물 반도체 광 흡수층을 구비한 태양전지
CN207458972U (zh) 一种新型的异质结太阳电池
US9570636B2 (en) Solar cell and method of fabricating the same
KR20130068565A (ko) 전자빔 조사를 이용한 몰리브덴 박막의 전도도 향상 방법
US9349901B2 (en) Solar cell apparatus and method of fabricating the same
KR101419805B1 (ko) 박막형 태양전지용 후면 전극 및 이를 포함하는 박막형 태양전지
CN221381674U (zh) 钙钛矿叠层太阳能电池
CN113013340B (zh) 一种异质结太阳能电池及其制造方法
TWI850761B (zh) 雙面吸光型光伏電池
CN107425088A (zh) 一种新型的异质结太阳电池

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20220419