CN114373809A - 一种高抑制比背入射AlGaN基日盲探测器 - Google Patents

一种高抑制比背入射AlGaN基日盲探测器 Download PDF

Info

Publication number
CN114373809A
CN114373809A CN202210021438.2A CN202210021438A CN114373809A CN 114373809 A CN114373809 A CN 114373809A CN 202210021438 A CN202210021438 A CN 202210021438A CN 114373809 A CN114373809 A CN 114373809A
Authority
CN
China
Prior art keywords
type
layer
algan
solar blind
based solar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210021438.2A
Other languages
English (en)
Inventor
周东
陆海
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzhou Gamin Photoelectric Technology Co ltd
Original Assignee
Suzhou Gamin Photoelectric Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzhou Gamin Photoelectric Technology Co ltd filed Critical Suzhou Gamin Photoelectric Technology Co ltd
Priority to CN202210021438.2A priority Critical patent/CN114373809A/zh
Publication of CN114373809A publication Critical patent/CN114373809A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02162Coatings for devices characterised by at least one potential jump barrier or surface barrier for filtering or shielding light, e.g. multicolour filters for photodetectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/108Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the Schottky type
    • H01L31/1085Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the Schottky type the devices being of the Metal-Semiconductor-Metal [MSM] Schottky barrier type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • H01L31/1844Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising ternary or quaternary compounds, e.g. Ga Al As, In Ga As P
    • H01L31/1848Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising ternary or quaternary compounds, e.g. Ga Al As, In Ga As P comprising nitride compounds, e.g. InGaN, InGaAlN

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Light Receiving Elements (AREA)

Abstract

本发明公开了一种高抑制比背入射AlGaN基日盲探测器,在蓝宝石衬底背面镀有UVC滤光膜,UVC滤光膜截止波长范围为280nm‑400nm。本发明高抑制比背入射AlGaN基日盲探测器,改进了现有AlGaN基日盲探测器抑制比偏低,在UVA和UVB有微弱响应的不足,通过实践验证,本发明的高抑制比AlGaN基日盲探测器与常规AlGaN基日盲探测器制备工艺兼容,在保证日盲波段量子效率的同时,进一步抑制了AlGaN基日盲紫外探测器在UVA和UVB波段的响应。

Description

一种高抑制比背入射AlGaN基日盲探测器
技术领域
本发明涉及一种高抑制比背入射AlGaN基日盲探测器,属于半导体日盲光电探测器件技术领域。
背景技术
紫外线辐射是大自然中最强的一种辐射,其波长范围为200nm~400nm,根据波长范围,可分为UVA(400nm-320nm)、UVB(320nm-290nm)、UVC(280nm-200nm)三个波段范围。太阳光是地球表面紫外光的重要来源,由于大气臭氧层的吸收,太阳光到达地面的辐射存在一个240~280nm的光谱盲区,称为“日盲区”;工作在这一波段的紫外探测器可以不受太阳背景辐射的影响,而具有很高的灵敏度和信噪比,在火灾报警、导弹尾焰探测跟踪等领域具有重要应用。
紫外探测技术的核心器件是紫外探测器,目前常见的紫外探测器件可分为为真空紫外探测器件和固态紫外探测器件。其中,固态紫外探测器件以基于半导体材料的光电二极管为主,常用于制备紫外探测的半导体材料是第一代半导体材料Si及第三代半导体材料GaN和SiC。其中,Si的禁带宽度为1.12eV,波段响应范围覆盖近红外-可见-紫外范围,对可见光具有强烈的响应,在用于紫外探测时,需使用价格昂贵、面积大的紫外滤光片,而且,Si材料对紫外具有强烈的吸收效果,导致Si探测器在紫外波段的量子效率极低,在制备紫外探测器时,需进行特殊的紫外增强型结构设计以及特殊工艺流程设计和改进。作为第三代半导体代表材料的(Al)GaN和SiC材料具有大禁带宽度、高电子漂移速度、高临界击穿场强、高热导率、化学稳定性优、对可见光无响应等优点,是制备紫外探测器的理想材料,其中(Al)GaN具有直接带隙、带隙可调等优点,是制备日盲紫外探测器的优选材料。
当前在紫外探测市场上,已出现商业化的(Al)GaN和SiC紫外探测器,其结构主要为PIN结构和Schottky结构。AlGaN日盲紫外探测器主要基于蓝宝石衬底上生长AlGaN材料技术路线。虽然伴随着UVC LED技术的快速发展,AlGaN外延材料晶体质量得到大幅提升,但AlGaN材料与蓝宝石衬底之间存在大的晶格失配与热膨胀系数失配的物性制约,以及Al原子相比Ga原子存在较大的表面黏附系数和较低的表面迁移率等因素,蓝宝石上外延AlGaN外延生长中容易产生大量的穿透位错,AlGaN材料中依然存在较高的蓝光带和黄光带缺陷,导致目前AlGaN日盲紫外探测器在UVB和UVA波段依然有微弱响应,日盲特性抑制比不高,在实际应用中,依然会受到太阳光的干扰,严重影响UVC监控的信噪比。
发明内容
本发明提供一种高抑制比背入射AlGaN基日盲探测器,目的是解决当前AlGaN基日盲探测器抑制比差,受太阳光干扰严重的问题。
为解决上述技术问题,本发明所采用的技术方案如下:
一种高抑制比背入射AlGaN基日盲探测器,在蓝宝石衬底背面镀有UVC滤光膜,UVC滤光膜截止波长范围为280nm-400nm。
本申请高抑制比背入射AlGaN基日盲探测器,在蓝宝石衬底背面蒸镀UVC滤光膜,与传统AlGaN基日盲紫外探测器具有相同的制备工艺流程,在不增加AlGaN基日盲紫外探测器制备工艺难度的同时,结合UVC滤光膜的高UVC选择性与AlGaN紫外探测器的日盲选择性,进一步增强AlGaN基日盲紫外探测器的抑制比。
上述日盲探测器对UVA、UVB波段具有更好的抑制性,具有更高的日盲抑制比。
为保证该高抑制比背入射AlGaN基日盲探测器的综合性能,UVC滤光膜在UVC波段的透过率高于80%,UVC滤光膜在UVA和UVB波段的透过率低于0.1%。
为了进一步提高抑制比,上述UVC滤光膜材料为氧化铪、氧化锆、氧化硅或氧化钇中的两种及以上的复合结构。进一步优选,UVC滤光膜材料为氧化铪和氧化硅交替蒸镀的复合结构,氧化铪的单层厚度为2~10nm,氧化硅的单层厚度为5~15nm。
本申请蒸镀的方式等,直接参照现有技术即可。
上述UVC滤光膜的厚度优选为0.5-10μm。
上述高抑制比背入射AlGaN基日盲探测器,包括从上到下依依次相接的金属pad、肖特基金属电极、低掺杂浓度的n型AlxGa1-xN光吸收层、重掺杂的n型AlyGa1-yN欧姆接触层、i型AlGaN过渡层、i型AlN缓冲层、蓝宝石衬底和UVC滤光膜;i型AlGaN过渡层的顶部周边超出重掺杂的n型AlyGa1-yN欧姆接触层的底部周边、形成环形电极区,n型欧姆接触电极设在环形电极区上,金属pad、肖特基金属电极、低掺杂浓度的n型AlxGa1-xN光吸收层和重掺杂的n型AlyGa1-yN欧姆接触层的侧壁上设有钝化层;为了确保高抑制比背入射AlGaN基日盲探测器的UVC高选择性,x、y满足0.72<y,0.37<x<0.6,该条件是为了确保从衬底背入射的光能透过n型重掺杂AlyGa1-yN层被低掺杂浓度的n型AlxGa1-xN光吸收层吸收。
为了保证器件的综合性能,低掺杂浓度的n型AlxGa1-xN光吸收层的平均掺杂浓度介于1×1014-1×1017cm-3之间,重掺杂的n型AlyGa1-yN欧姆接触层的掺杂浓度介于1×1018-2×1019cm-3之间;钝化层所采用的材质为二氧化硅、氮化硅、氮化铝、氧化铝或氧化铪中的至少一种。
为进一步确保器件的综合性能,钝化层的厚度为50-1000nm;金属Pad的厚度为1-3μm;肖特基金属电极的厚度为5-300nm;低掺杂浓度的n型AlxGa1-xN光吸收层的厚度为100-600nm;重掺杂的n型AlyGa1-yN欧姆接触层的厚度为300-800nm;i型AlGaN过渡层的厚度为200-800nm;i型AlN缓冲层为低温或者高温生长的非故意掺杂AlN,i型AlN缓冲层的厚度为0.25-5μm;蓝宝石衬底的厚度为100-500nm;n型欧姆接触电极的厚度为100-500nm。
上述肖特基金属电极为Ni、Au或Pt的单层金属或两层以上的复合结构,形状为圆形或方形,肖特基金属电极为n型肖特基金属电极;n型欧姆接触电极为Ti、Al、Ni、Au或Pt的单层或两层以上的复合结构,形状为环形;金属Pad为Ti、Al、Ni、Au或Pt的单层或两层以上的复合结构,形状为圆形或方形,覆盖部分或全部n型肖特基金属电极。
上述AlGaN基日盲紫外探测器,280nm-200nm波长的紫外光会穿过UVC滤光膜、蓝宝石衬底以及n型重掺杂AlyGa1-yN层。
本申请未提及的制备工艺参照现有AlGaN基日盲探测器等的制备工艺即可。
本发明未提及的技术均参照现有技术。
本发明高抑制比背入射AlGaN基日盲探测器,改进了现有AlGaN基日盲探测器抑制比偏低,在UVA和UVB有微弱响应的不足,通过实践验证,本发明的高抑制比AlGaN基日盲探测器与常规AlGaN基日盲探测器制备工艺兼容,在保证日盲波段量子效率的同时,进一步抑制了AlGaN基日盲紫外探测器在UVA和UVB波段的响应。
本发明提出的高抑制比AlGaN基日盲探测器,并不仅仅局限于AlGaN基肖特基极紫外探测器,亦包含其他结构的AlGaN基宽禁带半导体探测器,如PIN结构,MSM结构等;同时,亦适用于蓝宝石上外延其他宽禁带半导体紫外探测器结构,包括GaN、GaO、金刚石等宽禁带半导体。
附图说明
图1为本发明实施例1中高抑制比背入射AlGaN基日盲探测器的结构图;
图2为本发明高抑制比背入射AlGaN基日盲探测器的制备工艺流程;
图3为常规AlGaN基日盲探测器响应度与本发明高抑制比背入射AlGaN基日盲探测器响应度对比图。
图中,101为UVC滤光膜,102为蓝宝石衬底,103为i型AlN缓冲层,104为i型AlGaN过渡层,105为重掺杂的n型AlyGa1-yN欧姆接触层,106为低掺杂浓度的n型AlxGa1-xN光吸收层,107为n型欧姆接触电极,108为n型肖特基金属电极,109为金属pad,110为钝化层。
具体实施方式
为了更好地理解本发明,下面结合实施例进一步阐明本发明的内容,但本发明的内容不仅仅局限于下面的实施例。
本申请“厚度”、“上”、“下”等方位词为基于附图所示的方位或位置关系,仅是为了便于描述本申请,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
实施例1
如图1所示,一种高抑制比背入射AlGaN基日盲探测器,该器件是制备在蓝宝石衬底上,从下到上依次包括:UVC滤光膜101,蓝宝石衬底102,i型AlN缓冲层103,i型AlGaN过渡层104,重掺杂的n型AlyGa1-yN欧姆接触层105,低掺杂浓度的n型AlxGa1-xN光吸收层106,n型肖特基金属电极108和金属pad 109;i型AlGaN过渡层104的顶部周边超出重掺杂的n型AlyGa1-yN欧姆接触层105的底部周边、形成环形电极区,n型欧姆接触电极7设在环形电极区上、为环形,金属pad 109、n型肖特基金属电极108、低掺杂浓度的n型AlxGa1-xN光吸收层106和重掺杂的n型AlyGa1-yN欧姆接触层105的外围设有钝化层110,X=0.4,y=0.8;
n型肖特基金属电极为Ni/Au合金层,其厚度为50/100nm,形状为圆形;低掺杂浓度的n型AlxGa1-xN光吸收层的厚度为600nm;重掺杂的n型AlyGa1-yN欧姆接触层的厚度为300nm;i型AlGaN过渡层的厚度为300nm;i型AlN缓冲层的厚度为250μm。
低掺杂浓度的n型AlxGa1-xN光吸收层的平均掺杂浓度为5×1014cm-3,重掺杂的n型AlyGa1-yN欧姆接触层的掺杂浓度为2×1018cm-3
如图2所示,上述器件制备流程如下:
步骤101,在蓝宝石衬底上依次生长各外延层;
步骤102,采用PECVD在AlGaN基日盲探测器外延片沉积厚度为300nm的SiO2
步骤103,采用光刻和ICP/RIE刻蚀或湿法腐蚀结合技术,将AlGaN日盲探测器有源区台面外的SiO2去除;
步骤104,采用ICP刻蚀技术,刻蚀出AlGaN日盲探测器有源区台面,台面刻蚀深度至重掺杂的n型AlyGa1-yN欧姆接触层;
步骤105,采用湿法腐蚀去除SiO2刻蚀掩膜,利用化学修饰的方式,修复台面刻蚀损伤,并在表面沉积厚度为300nm的SiO2钝化层;
步骤106,采用光刻和湿法腐蚀技术,去除n型欧姆接触电极窗口钝化层;利用电子束蒸发的方式,在台面表面依次沉积Ti/Al/Ni/Au合金层,其厚度为30/90/50/100nm,金属剥离后,在氮气氛围中800℃的温度下快速热退火2分钟;
步骤107,采用光刻和湿法腐蚀技术,去除n型肖接触电极窗口钝化层;利用电子束蒸发的方式,在台面表面依次沉积Ni/Au合金层,其厚度为50/100nm(Ni层厚度为50nm,Au层厚度为100nm),金属剥离后,在氮气氛围中300℃的温度下快速热退火1分钟;
步骤108,采用光刻和电子束蒸发的方式,在n型肖特基金属和n型欧姆接触金属表面蒸发厚度为500/1000nm的Ti/Au复合结构金属pad;
步骤109,采用化学机械抛光的方式,将蓝宝石衬底减薄至200nm;
步骤110,采用真空镀膜的方式,在蓝宝石衬底背面蒸镀厚度为3μm的氧化铪/氧化硅UVC滤光膜多层复合结构,氧化铪的单层厚度为3nm,氧化硅的单层厚度为5nm,氧化铪和氧化硅依次交替蒸镀、直至总厚度为3μm;
步骤111,采用激光划片的方式,对芯片进行切割,并进行倒装封装。
对比例1
与实施例1所不同的是:不设UVC滤光膜。
实施例1中的UVC滤光膜截止波长范围为280nm-400nm,在UVC波段的透过率高于80%,在UVA和UVB波段的透过率低于0.1%。图3所示为实施例1所提供的高抑制比背入射AlGaN基日盲探测器与对比例1中AlGaN基日盲探测器的光谱响应曲线,由图3可见,本发明高抑制比背入射AlGaN基日盲探测器具有明显更高的日盲/UV抑制比,对UVA和UVB波段具有显著更好的抑制性。

Claims (9)

1.一种高抑制比背入射AlGaN基日盲探测器,其特征在于:在蓝宝石衬底背面镀有UVC滤光膜,UVC滤光膜截止波长范围为280nm-400nm。
2.如权利要求1所述的高抑制比背入射AlGaN基日盲探测器,其特征在于:UVC滤光膜在UVC波段的透过率高于80%,UVC滤光膜在UVA和UVB波段的透过率低于0.1%。
3.如权利要求1或2所述的高抑制比背入射AlGaN基日盲探测器,其特征在于:UVC滤光膜材料为氧化铪、氧化锆、氧化硅或氧化钇中的两种及以上的复合结构。
4.如权利要求3所述的高抑制比背入射AlGaN基日盲探测器,其特征在于:UVC滤光膜材料为氧化铪和氧化硅交替蒸镀的复合结构,氧化铪的单层厚度为2~10nm,氧化硅的单层厚度为5~15nm。
5.如权利要求1或2所述的高抑制比背入射AlGaN基日盲探测器,其特征在于:UVC滤光膜的厚度为0.5-10μm。
6.如权利要求1或2所述的高抑制比背入射AlGaN基日盲探测器,其特征在于:包括从上到下依依次相接的金属pad、肖特基金属电极、低掺杂浓度的n型AlxGa1-xN光吸收层、重掺杂的n型AlyGa1-yN欧姆接触层、i型AlGaN过渡层、i型AlN缓冲层、蓝宝石衬底和UVC滤光膜;i型AlGaN过渡层的顶部周边超出重掺杂的n型AlyGa1-yN欧姆接触层的底部周边、形成环形电极区,n型欧姆接触电极设在环形电极区上,金属pad、肖特基金属电极、低掺杂浓度的n型AlxGa1-xN光吸收层和重掺杂的n型AlyGa1-yN欧姆接触层的外围设有钝化层;x、y满足0.72<y,0.37<x<0.6。
7.如权利要求1或2所述的高抑制比背入射AlGaN基日盲探测器,其特征在于:低掺杂浓度的n型AlxGa1-xN光吸收层的平均掺杂浓度介于1×1014-1×1017cm-3之间,重掺杂的n型AlyGa1-yN欧姆接触层的掺杂浓度介于1×1018-2×1019cm-3之间;钝化层所采用的材质为二氧化硅、氮化硅、氮化铝、氧化铝或氧化铪中的至少一种。
8.如权利要求1或2所述的高抑制比背入射AlGaN基日盲探测器,其特征在于:钝化层的厚度为50-1000nm;金属Pad的厚度为1-3μm;肖特基金属电极的厚度为5-300nm;低掺杂浓度的n型AlxGa1-xN光吸收层的厚度为100-600nm;重掺杂的n型AlyGa1-yN欧姆接触层的厚度为300-800nm;i型AlGaN过渡层的厚度为200-800nm;i型AlN缓冲层的厚度为0.25-5μm;蓝宝石衬底的厚度为100-500nm;n型欧姆接触电极的厚度为100-500nm。
9.如权利要求1或2所述的高抑制比背入射AlGaN基日盲探测器,其特征在于:肖特基金属电极为Ni、Au或Pt的单层金属或两层以上的复合结构,形状为圆形或方形;n型欧姆接触电极为Ti、Al、Ni、Au或Pt的单层或两层以上的复合结构,形状为环形;金属Pad为Ti、Al、Ni、Au或Pt的单层或两层以上的复合结构,形状为圆形或方形,覆盖部分或全部n型肖特基金属电极。
CN202210021438.2A 2022-01-10 2022-01-10 一种高抑制比背入射AlGaN基日盲探测器 Pending CN114373809A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210021438.2A CN114373809A (zh) 2022-01-10 2022-01-10 一种高抑制比背入射AlGaN基日盲探测器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210021438.2A CN114373809A (zh) 2022-01-10 2022-01-10 一种高抑制比背入射AlGaN基日盲探测器

Publications (1)

Publication Number Publication Date
CN114373809A true CN114373809A (zh) 2022-04-19

Family

ID=81143361

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210021438.2A Pending CN114373809A (zh) 2022-01-10 2022-01-10 一种高抑制比背入射AlGaN基日盲探测器

Country Status (1)

Country Link
CN (1) CN114373809A (zh)

Similar Documents

Publication Publication Date Title
CN106847933B (zh) 单片集成紫外-红外双色雪崩光电二极管及其制备方法
Osinsky et al. Visible-blind GaN Schottky barrier detectors grown on Si (111)
CN106409968B (zh) AlGaN基超晶格雪崩型紫外探测器及其制备方法
CN100438083C (zh) δ掺杂4H-SiC PIN结构紫外光电探测器及其制备方法
KR101639779B1 (ko) 반도체 광 검출 소자
KR101826951B1 (ko) 광 검출 소자
CN102386269B (zh) GaN基p-i-p-i-n结构紫外探测器及其制备方法
CN110571301B (zh) 氧化镓基日盲探测器及其制备方法
CN109119508B (zh) 一种背入射日盲紫外探测器及其制备方法
CN111739960B (zh) 一种增益型异质结紫外光电探测器
CN109980040A (zh) 一种氧化镓mis结构紫外探测器
CN109285914B (zh) 一种AlGaN基紫外异质结光电晶体管探测器及其制备方法
CN109698250B (zh) 栅极调控AlGaN基金属-半导体-金属紫外探测器及制备方法
KR20060112428A (ko) 자외선 감지 반도체 소자
KR100788834B1 (ko) 가시광 및 자외선 감지용 센서
CN107393983B (zh) 含极化调控层的氮化物量子阱红外探测器及其制备方法
CN114267747A (zh) 具有金属栅结构的Ga2O3/AlGaN/GaN日盲紫外探测器及其制备方法
CN114373809A (zh) 一种高抑制比背入射AlGaN基日盲探测器
KR102473352B1 (ko) 광 검출 소자
CN108615782B (zh) 一种紫外探测器及其制造方法
CN108550652B (zh) 雪崩光电二极管的制备方法
KR102702882B1 (ko) 자외선 검출소자
KR100642161B1 (ko) 자외선 감지용 반도체 소자 및 이의 제조방법
AU2006201240A1 (en) Photovoltaic ultraviolet sensor
KR100734407B1 (ko) 자외선 감지용 반도체 소자

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination