CN114371677A - 基于谱半径-区间主成分分析的工业过程状态监测方法 - Google Patents

基于谱半径-区间主成分分析的工业过程状态监测方法 Download PDF

Info

Publication number
CN114371677A
CN114371677A CN202210009608.5A CN202210009608A CN114371677A CN 114371677 A CN114371677 A CN 114371677A CN 202210009608 A CN202210009608 A CN 202210009608A CN 114371677 A CN114371677 A CN 114371677A
Authority
CN
China
Prior art keywords
interval
data
monitoring
matrix
industrial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210009608.5A
Other languages
English (en)
Other versions
CN114371677B (zh
Inventor
张淑美
王思佳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin University
Original Assignee
Tianjin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin University filed Critical Tianjin University
Priority to CN202210009608.5A priority Critical patent/CN114371677B/zh
Publication of CN114371677A publication Critical patent/CN114371677A/zh
Application granted granted Critical
Publication of CN114371677B publication Critical patent/CN114371677B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/418Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM]
    • G05B19/41885Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM] characterised by modeling, simulation of the manufacturing system
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/32Operator till task planning
    • G05B2219/32339Object oriented modeling, design, analysis, implementation, simulation language
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • General Engineering & Computer Science (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Testing Or Calibration Of Command Recording Devices (AREA)
  • Testing And Monitoring For Control Systems (AREA)

Abstract

本发明涉及一种基于谱半径‑区间主成分分析的工业过程状态监测方法,包括下列步骤:针对工业过程所采集到的含有测量噪声、测量误差以及不确定性的数据,基于核密度估计的数据转化方法,将工业过程所采集到的过程数据转化为区间数据;基于得到的区间数据,建立谱半径‑区间主成分分析模型,对含有不准确过程数据的复杂工业过程进行特征提取,将高维区间数据投影到低维空间;引入离线监测统计量,并基于核密度估计方法确定统计量的控制限;基于所求得的四个监测统计量的控制限,分析在线监测统计量与控制限之间的关系,实现过程状态的在线监测。

Description

基于谱半径-区间主成分分析的工业过程状态监测方法
技术领域
本发明涉及到工业过程状态监测技术领域,具体地说是一种面向含有不准确测量数据的复杂工业过程状态监测方法。
背景技术
自二十一世纪以来,随着科学技术和全球经济的快速发展以及新一轮产业革命和全球产业竞争范式的重大转变,智能制造的脚步不断加快。在全球经济快速发展的浪潮中,产品质量和生产安全成为了企业立足和发展的重中之重。采用正确的过程状态监测方法可以提高工业设备运行的安全性,防止灾难性事故的发生,同时还可以减少产品质量的波动,进而提高企业的竞争力。随着科技水平的提高、网络仪表和传感器技术的普及,现代工业过程的数据得以被采集、储存。基于数据驱动的多元统计过程状态监测方法快速发展,受到了工业界和学术界的密切关注,其已广泛应用于化工、半导体生产、航空航天等生产过程中。
目前,虽然上述方法已广泛应用于工业过程的监测领域,但是其监测结果高度依赖于数据的准确性,例如主成分分析方法[1]。然而,实际工业过程因为噪声干扰或者传感器测量问题的影响,通常会出现数据测量不准确的现象,基于不准确的过程数据建立的状态监测模型的故障检测性能较差[2]。此外,受到复杂工况、恶劣的操作环境等因素的影响,一些关键的过程变量更是难以测量,例如能反映浓密机中矿石含量的搅拌机运行声音。这些变量通常由专家或有经验的工程师采用语义信息描述,并以区间数的形式表示[3]。上述噪声、误差和不确定性的加入往往会导致常用的数据驱动状态监测方法误报、漏报增加,严重情况下,甚至完全区分不出正常工况和异常工况[4]。针对含有不准确测量数据的复杂工业过程状态监测方面的研究,国内外学者已进行了一些探索,但仍存在以下方面的不足:(1)目前基于数据驱动的多元统计过程状态监测方法大多是依据含有测量噪声、测量误差的单值过程数据进行状态监测[5],或者是使用原始数据形式为区间形式的过程数据进行状态监测[6],而并没有考虑当工业过程中既存在单值数据又存在区间数据的情况;(2)在当前基于区间数据进行过程状态监测的研究中,存在计算量大、计算复杂,且没有充分挖掘区间内部信息的问题,如Cazes等人提出的顶点主成分分析方法[7];(3)现有的将单值数据转化为区间数据的方法多是基于“打包”思想[8][9],简单地将相邻时间点的单值数据用区间域的形式表示出来,忽略了原始单值数据的重要信息以及原始数据属性的内在关系。因此,如何在不准确的工业数据中挖掘过程异常工况信息,并保持监测方法在高噪声、大测量误差下的鲁棒性,是亟待解决的问题,相关该方面的研究具有重要的理论意义及工程价值。
参考文献:
[1]J.X.Zhang,D.H.Zhou,M.Y.Chen.Monitoring multimode processes:Amodified PCA algorithm with continual learning ability[J].Journal of ProcessControl,2021,103:76-86.
[2]C.Chakour,A.Benyounes,M.Boudiaf.Diagnosis of uncertain nonlinearsystems using interval kernel principal components analysis:Application to aweather station[J].ISA Transactions,2018,83:126-141.
[3]J.Yuan,S.Wang,F.L.Wang,S.M.Zhang.Abnormal Condition Identificationvia OVR-IRBF-NN for the Process Industry with Imprecise Data and SemanticInformation[J].Industrial&Engineering Chemistry Research,2020,59(11):5072-5086.
[4]L.F.Cai,X.M.Tian.A new fault detection method for non-Gaussianprocess based on robust independent component analysis[J].Process Safety andEnvironmental Protection,2014,92(6):645-658.
[5]X.M.Tian,L.F.Cai,S.Chen.Noise-resistant joint diagonalizationindependent component analysis based process fault detection[J].Neurocomputing,2015,149:652-666.
[6]T.Ait-Izem,M.F.Harkat,W.BOUGHELOUM,M.Djeghaba.Fault Detection andIsolation Using Interval Principal Component Analysis Methods[J].IFAC-PapersOnLine,2015,48(21):1402-1407.
[7]P.Cazes,A.Chouakria,E.Diday,Y.Schektman.Extension de l’analyse encomposantes principalesàdes données de type intervalley[J].Revue deStatistique Appliquée,1997,45(3):5-24.
[8]郭均鹏,高成菊,赵昊昊.一种基于符号数据的群体推荐算法[J].系统工程学报,2015,30(1):127-134.
[9]胡艳,王惠文.一种海量数据的分析技术——符号数据分析及应用[J].北京航空航天大学(社会科学报),2004,17(2):40-44.
[10]冷慧男.估计区间特征值问题特征值界的一种新方法[J].应用力学学报,2007,24(4):615-618.
发明内容
本发明提出了一种基于谱半径-区间主成分分析算法的过程状态监测方法。首先,在保留原始数据重要信息、把握数据属性内在关系的前提下,建立基于核密度估计的数据转化模型;其次,针对所获得的区间数据,设计基于谱半径-区间主成分分析算法,并引入四个监测统计量,以实现离线监测模型的建立;最后,针对实时采集到的过程数据,计算其在线监测统计量值,通过分析在线值与其控制限之间的关系进一步判断过程状态。技术方案如下:
一种基于谱半径-区间主成分分析的工业过程状态监测方法,包括下列步骤:
(1)针对工业过程所采集到的含有测量噪声、测量误差以及不确定性的数据,基于核密度估计的数据转化方法,将工业过程所采集到的过程数据转化为区间数据,方法如下:
(1.1)采集正常工况下的过程数据,将所采集到的过程数据记为
Figure BDA0003456842740000031
(n代表样本个数,m代表过程变量个数),xj=[x1j,x2j,...,xnj]T为第j个过程变量,其可以转化为区间数据
Figure BDA0003456842740000032
需考虑以下两种情况,
(1.2)第一种情况:若第j个过程变量xj的真实值无法获得,则该过程变量测量误差上限δj通过专家估计或者相应传感器铭牌信息获得,第j个过程变量的第i,i=1,2,...,n,个样本数据由如下所示的区间数据表示:
x ij=xijj
Figure BDA0003456842740000033
式中,x ij
Figure BDA0003456842740000034
分别为第j个过程变量的第i个样本数据的区间下界和区间上界;
(1.3)第二种情况:若第j个过程变量xj的真实值能通过离线实验检测或者其他方法获得,将该过程变量的真实值记为
Figure BDA0003456842740000035
计算工业现场传感器测量值与变量真实值之间的相对误差γj,并基于核密度估计方法在显著性水平为α下估计相对误差γj的上限
Figure BDA0003456842740000036
和下限γ j,进而得到第j个过程变量的第i,i=1,2,...,n,个样本数据的区间表示:
Figure BDA0003456842740000037
Figure BDA0003456842740000038
式中,x ij
Figure BDA0003456842740000041
分别为第j个过程变量的第i个样本数据的区间下界和区间上界;
(1.4)基于上述步骤(1.1-1.3)的核密度估计的数据转化方法,将工业过程所采集到的过程数据转化为由如下矩阵表征的区间数据:
Figure BDA0003456842740000042
(2)基于步骤(1)所得到的区间数据,建立谱半径-区间主成分分析模型,对含有不准确过程数据的复杂工业过程进行特征提取,将高维区间数据投影到低维空间,方法如下:
(2.1)对所获得的区间数据进行标准化处理,标准化后的数据仍记为[X];
(2.2)区间数据的主成分通过对其协方差矩阵进行特征分解来提取,区间数据[X]的协方差矩阵计算式如下:
Figure BDA0003456842740000043
式中,i,j=1,2,...,m,m为过程变量个数,n为区间样本数,={Σ ij}和
Figure BDA0003456842740000044
分别为协方差矩阵[Σ]={[Σij]}的下界和上界,且有:
Figure BDA0003456842740000045
式中,E(x i)和
Figure BDA0003456842740000049
分别表示第i个过程变量区间下界的均值和区间上界的均值,E(x j)和
Figure BDA0003456842740000046
分别表示第j个过程变量区间下界的均值和区间上界的均值,x ki
Figure BDA0003456842740000047
分别表示第i个过程变量的第k个样本数据的区间下界和区间上界,x kj
Figure BDA0003456842740000048
分别表示第j个过程变量的第k个样本数据的区间下界和区间上界;
(2.3)对协方差矩阵[Σ]进行特征分解,协方差矩阵[Σ]的特征分解描述为:
[Σ]=PΛPT
式中,Λ为对角矩阵,其对角元素为协方差矩阵[Σ]的特征值;P为特征向量矩阵,包含与协方差矩阵[Σ]特征值相对应的特征向量;
利用基于谱半径的区间矩阵特征分解方法,求得协方差矩阵[Σ]的特征值
Figure BDA0003456842740000051
及其对应的特征向量
Figure BDA0003456842740000052
其中,i=1,2,...,m,且特征值按照降序排列,即λ 1λ 2≥...≥λ m
Figure BDA0003456842740000053
两个特征向量矩阵P=[p 1,...,p m]和
Figure BDA0003456842740000054
分别由与特征值λ i
Figure BDA0003456842740000055
对应的特征向量组成;其中,p i
Figure BDA0003456842740000056
分别表示由区间特征向量[pi]的下界和上界所组成的特征向量;
(2.4)分别考虑特征向量矩阵P
Figure BDA0003456842740000057
的前l列和其余列,则矩阵P
Figure BDA0003456842740000058
被划分为P=[P 1:l P l+1:m]和
Figure BDA0003456842740000059
其中,l是保留的区间主成分的个数,负荷矩阵
Figure BDA00034568427400000510
Figure BDA00034568427400000511
是通过分别选择协方差矩阵
Figure BDA00034568427400000512
的前l个特征值对应的特征向量生成的;保留的区间主成分个数l是根据累积百分比方差标准确定的,其中,前k个区间主成分下界和上界对应的累积方差贡献率计算式为:
Figure BDA00034568427400000513
Figure BDA00034568427400000514
式中,CPV(k)和
Figure BDA00034568427400000515
分别为前k个区间主成分下界和上界对应的累积方差贡献率;
当且仅当以下不等式成立时,区间主成分的个数l=k:
Figure BDA00034568427400000516
式中,ω表示累积方差贡献率的下限;
(2.5)基于上述步骤(2.1-2.4)求取的负荷矩阵P
Figure BDA00034568427400000517
可提取标准化处理后高维区间数据的特征信息,将其投影至线性低维空间:
Figure BDA0003456842740000061
式中,
Figure BDA0003456842740000062
Figure BDA0003456842740000063
分别表示区间数据矩阵[X]下界的估计和上界的估计;
上述过程完成谱半径-区间主成分分析模型的建立;
(3)引入离线监测统计量,并基于核密度估计方法确定统计量的控制限,具体实现过程如下:
(3.1)对于经过标准化处理的训练集[X],计算第i个样本观测值
Figure BDA0003456842740000064
的T2统计量和SPE统计量:
Figure BDA0003456842740000065
式中,i=1,2,...n,
Figure BDA0003456842740000066
Figure BDA0003456842740000067
分别为第i个样本观测值区间下界和区间上界的T2统计量,SPE i
Figure BDA0003456842740000068
分别为第i个样本观测值区间下界和区间上界的SPE统计量,
Figure BDA0003456842740000069
为单位矩阵;
(3.2)给定显著性水平β,基于核密度估计的方法确定四个监测统计量的控制限
Figure BDA00034568427400000610
Figure BDA00034568427400000611
SPE UCL
Figure BDA00034568427400000612
(4)基于所求得的四个监测统计量的控制限,分析在线监测统计量与控制限之间的关系,实现过程状态的在线监测。
进一步地,步骤(4)按以下子步骤实现:
(1)从工业过程中实时采集过程数据
Figure BDA00034568427400000613
基于核密度估计的数据转化方法,将采集到的工业数据
Figure BDA00034568427400000614
统一转化为区间形式[xnew];
(2)针对所获得的区间数据进行标准化处理,标准化后的数据仍记为[xnew];
(3)将标准化后的区间数据[xnew]代入已经建立好的谱半径-区间主成分分析模型中,将其投影至低维空间:
Figure BDA00034568427400000615
Figure BDA00034568427400000616
式中,
Figure BDA0003456842740000071
Figure BDA0003456842740000072
分别表示区间数据[xnew]下界x new的估计值和上界
Figure BDA0003456842740000073
的估计值,P 1:l
Figure BDA0003456842740000074
为负荷矩阵;
(4)计算区间数据[xnew]的四个监测统计量的在线值:
Figure BDA0003456842740000075
式中,
Figure BDA0003456842740000076
Figure BDA0003456842740000077
分别为实时采集到的工业数据区间下界和区间上界的T2统计量,SPE new
Figure BDA0003456842740000078
分别为实时采集到的工业数据区间下界和区间上界的SPE统计量;
(5)分析监测统计量在线计算值与其相应控制限之间的关系,判断工况中是否出现故障,若存在任一监测统计量超出其控制限,则认为当前时刻过程中出现故障。
本发明提出的基于核密度估计的数据转化方法使用核密度估计相对误差的概率分布函数,从而采用科学的方法将不准确的单值数据转化为区间形式,实现了对含有测量噪声、测量误差的过程数据的有效表示。同时,相比于现有的区间主成分分析算法,本发明设计的基于谱半径-区间主成分分析算法能够更加可靠地解决区间矩阵的特征分解问题,并能够更加高效地提取了区间数据的特征信息,大大降低了运算的复杂性以及运算量。此外,定义的四个过程状态监测统计量可以更全面地描述工业过程的运行状态,使得所提出的基于谱半径-区间主成分分析算法的复杂过程状态监测方法故障检测的鲁棒性大大提高。
附图说明
图1基于谱半径-区间主成分分析算法的复杂工业过程状态监测流程图
图2引入不同故障时的过程数据图
图3引入故障1时数值仿真过程的状态监测图
图4引入故障2时数值仿真过程的状态监测图
图5不同状态监测算法在数值仿真过程的性能表现(%)
图6引入阶跃故障4时TE过程的状态监测图
图7引入随机变量故障8时TE过程的状态监测图
图8引入慢偏移故障13时TE过程的状态监测图
图9引入粘住故障14时TE过程的状态监测图
图10不同状态监测算法在TE过程的性能表现(%)
具体实施方式
本发明涉及一种面向含有不准确过程数据的复杂工业过程的状态监测技术。具体来说,首先提出了基于核密度估计的数据转化方法,将工业过程所采集到的数据统一转化为了区间形式;其次提出了基于谱半径-区间主成分分析算法的过程状态监测方法,实现了对区间过程数据进行特征提取,并依据提取出的特征建立过程状态监测模型,实现工业过程的实时在线监测。所提出的基于谱半径-区间主成分分析算法的复杂工业过程状态监测方法总体流程图如图1所示,整个监测系统主要包括以下三部分:建立基于核密度估计的数据转化模型、建立基于谱半径-区间主成分分析算法的离线监测模型和过程状态的实时在线监测,以下为具体实施步骤:
步骤1:建立基于核密度估计的数据转化模型
在实际工业过程中,因为噪声干扰或者传感器测量问题的影响,所采集到的过程数据通常是不准确的。同时,受到复杂工况、恶劣的操作环境等因素的影响,一些关键的过程变量更是难以测量,这些变量通常由专家或有经验的工程师采用语义信息描述,并以区间数的形式表示。因此,本发明将由传感器采集到的不准确过程数据以及由专家或有经验的工程师所提供的数据信息统一转化为区间形式。
假设在正常工况下所采集到的过程数据为
Figure BDA0003456842740000081
(n代表样本个数,m代表过程变量个数),xj=[x1j,x2j,...,xnj]T为第j个过程变量,其可以转化为如下所示的区间数据:
Figure BDA0003456842740000082
为了将过程变量xj转化为区间形式,需考虑两种情况。(1)如果第j个过程变量xj的真实值无法获得,则该变量测量误差上限δj可通过专家估计或者相应传感器铭牌信息获得,因此第j个过程变量的第i个样本数据可由如下所示的区间数据表示:
Figure BDA0003456842740000083
其中,i=1,2,...,n。
(2)如果第j个过程变量xj的真实值可通过离线实验检测或者其他方法获得,将该变量的真实值记为
Figure BDA0003456842740000091
传感器测量值与变量真实值之间的相对误差γj可定义为:
Figure BDA0003456842740000092
在本发明中,基于核密度估计方法估计相对误差γj的上限和下限,所选择的核函数为如下所示的径向基函数:
Figure BDA0003456842740000093
相对误差γj的概率密度分布函数的核估计为:
Figure BDA0003456842740000094
其中,h为带宽,充当光滑系数。
那么,相对误差γj的概率分布函数可由下式计算:
Figure BDA0003456842740000095
随后,基于核密度估计确定在显著性水平为α下,计算相对误差γj的上限和下限。
Figure BDA0003456842740000096
一旦得到相对误差γj的上下限,第j个过程变量的第i个样本数据可由如下所示的区间数据表示:
Figure BDA0003456842740000097
其中,i=1,2,...,n。
通过基于核密度估计的数据转化方法,可以将工业过程所采集到的过程数据转化为如下的区间值数据矩阵。
Figure BDA0003456842740000101
步骤2:建立基于谱半径-区间主成分分析算法的离线监测模型
将过程数据统一转化为区间形式后,本发明基于谱半径-区间主成分分析算法对含有不准确过程数据的复杂工业过程进行特征提取,将高维区间数据投影到低维空间,在最小维度下保留了原始空间的最大方差。同时,引入离线监测统计量,并基于核密度估计方法确定了统计量的控制限,完成离线监测模型的建立。具体建模过程如下:
(1)区间数据标准化处理。为了消除不同量纲对数据的影响,需对所获得的区间数据进行标准化处理。为了方便起见,标准化后的数据仍记为[X]。与单值数据进行标准化处理方法相似,区间数据的标准化处理为:
Figure BDA0003456842740000102
其中,E(xj),
Figure BDA0003456842740000103
分别表示训练集第j个区间过程变量的均值和标准差。
对于区间变量[xj],其均值的计算式为:
Figure BDA0003456842740000104
其中,
Figure BDA0003456842740000109
为经验密度函数,μij为区间变量[xij]的均值。在实际计算中,如果μij不易获得,则可以通过样本均值进行估计。
若区间过程变量[xj]服从正态分布,其方差的计算公式为:
Figure BDA0003456842740000105
其中,
Figure BDA0003456842740000106
为区间数据[xij]的方差。在实际计算中,如果
Figure BDA0003456842740000107
不易获得,则可以通过样本方差进行估计。
(2)基于谱半径-区间主成分分析算法的设计。对于经过标准化处理的区间数据矩阵
Figure BDA0003456842740000108
基于谱半径-区间主成分分析算法通过线性空间变换的方法可将高维区间数据投影到低维空间。与传统的主成分分析算法类似,高维区间数据的主成分可以通过对其协方差矩阵进行特征分解来提取。其中,区间数据[X]的协方差矩阵定义如下:
Figure BDA0003456842740000111
其中,i,j=1,2,...,m,m代表过程变量个数,n代表区间样本数,={Σ ij},
Figure BDA0003456842740000112
分别表示协方差矩阵[Σ]的上界和下界,且有:
Figure BDA0003456842740000113
协方差矩阵[Σ]的特征分解可以描述为:
[Σ]=PΛPT (15)
其中,Λ为对角矩阵,其对角元素为协方差矩阵[Σ]的特征值;P为特征向量矩阵,包含与协方差矩阵[Σ]特征值相对应的特征向量。
目前,区间矩阵的特征分解比较常用的方法主要有Deif法、摄动法以及谱半径法等,然而Deif法存在计算量大的问题,摄动法虽然解决了Deif法计算量大的缺点,但其结果往往不可靠。因此,为了降低运算量,较为可靠地实现式(15)中区间矩阵的特征分解,本发明参考文献[10],并基于对称矩阵的性质以及谱半径的单调性,采用了一种基于谱半径的区间矩阵特征分解方法,其分解过程如下所示:
假设存在矩阵
Figure BDA0003456842740000114
该矩阵的谱半径定义如下:
ρ(A)=max{|λ|:λ∈λ(A)} (16)
其中,λ(A)表示矩阵A的所有特征值。
给定对称的区间矩阵[AI]=[AC-ΔA,AC+ΔA],存在矩阵A∈[AI]。这里,AC和ΔA分别表示区间矩阵[AI]的中点矩阵和半径矩阵。如果λ1≥λ2≥...≥λm是矩阵A按照降序排列的特征值,η1≥η2≥...≥ηm是矩阵AC按照降序排列的特征值,ρ是矩阵ΔA的谱半径,则有以下不等式成立:
ii|≤ρ (17)
其中,i=1,2,...,m。
因此,基于上述谱半径-区间矩阵特征分解方法,可求得协方差矩阵[Σ]的特征值[λi]及其对应的特征向量[pi],即有:
Figure BDA0003456842740000121
Figure BDA0003456842740000122
其中,i=1,2,...,m,且特征值按照降序排列,即λ 1λ 2≥...≥λ m
Figure BDA0003456842740000123
两个特征向量矩阵P=[p 1,…,p m]和
Figure BDA0003456842740000124
分别由与特征值λ i
Figure BDA0003456842740000125
对应的特征向量组成。其中,p i
Figure BDA0003456842740000126
分别表示由式(19)中区间特征向量[pi]的下界和上界所组成的特征向量。
分别考虑特征向量矩阵P
Figure BDA0003456842740000127
的前l列和其余列,则矩阵P
Figure BDA0003456842740000128
可被划分为以下形式:
Figure BDA0003456842740000129
然后,基于下式,计算得分矩阵T
Figure BDA00034568427400001210
Figure BDA00034568427400001211
其中,l是保留的区间主成分的个数。特别需要注意的是,负荷矩阵
Figure BDA00034568427400001212
Figure BDA00034568427400001213
是通过分别选择协方差矩阵
Figure BDA00034568427400001214
的前l个特征值对应的特征向量生成的。接下来,可对标准化处理后的区间数据矩阵[X]进行估计:
Figure BDA00034568427400001215
其中,
Figure BDA0003456842740000131
Figure BDA0003456842740000132
分别表示区间数据矩阵[X]下界的估计和上界的估计。
随后,可计算由区间数据矩阵[X]及其估计值
Figure BDA0003456842740000133
生成的残差[E]:
Figure BDA0003456842740000134
其中,矩阵E
Figure BDA0003456842740000135
分别表示区间残差矩阵[E]的下界和上界。
综合以上内容可知,本发明所设计的基于谱半径-区间主成分分析算法可将原始高维数据空间划分为两个子空间,即主元子空间和残差子空间。
在这里,保留的区间主成分个数l是根据累积百分比方差标准确定的。其中,前k个区间主成分下界和上界对应的累积方差贡献率计算式为:
Figure BDA0003456842740000136
当且仅当以下不等式成立时,区间主成分的个数l=k:
Figure BDA0003456842740000137
其中,ω表示累积方差贡献率的下限。
(3)确定监测统计量及其控制限。综合上述内容可知,用于离线建模的训练集数据[X]被投影到了两个子空间,即主元子空间和残差子空间。因此在本发明中,通过分析主元子空间中的T2统计量和残差子空间中的SPE统计量的在线计算值与统计量控制限的关系,进而判断该过程运行状态是否出现异常。对于经过标准化处理的训练集[X],第i个样本观测值
Figure BDA0003456842740000138
的T2统计量采用如下数学表达式计算:
Figure BDA0003456842740000139
SPE统计量,亦称为预测误差平方和指标,表示实际测量值与模型估计值之间的欧式距离,其计算公式如下所示:
Figure BDA0003456842740000141
其中,
Figure BDA0003456842740000142
表示单位矩阵。
在本发明中,上述四个监测统计量的控制上限基于核密度估计的方法来确定,当显著性水平取β时,有:
Figure BDA0003456842740000143
因此,基于上述步骤,便建立了基于谱半径-区间主成分分析算法的离线监测模型,下面将介绍监测系统的最后一部分——过程状态的实时在线监测。
步骤3:过程状态的实时在线监测
步骤2所求得的监测统计量的控制限是正常工况和异常工程的阈值,实时的、合理的分析在线监测统计量与控制限之间的关系,可实现过程状态的在线监测。针对从工业过程中实时采集到的过程数据
Figure BDA0003456842740000144
其在线监测过程如下所示:
(1)将采集到的数据统一转化为区间形式。基于核密度估计的数据转化方法,从工业过程中采集到的数据
Figure BDA0003456842740000145
可统一转化为如下所示的区间形式:
Figure BDA0003456842740000146
其中,j=1,2,…,m,xj,new
Figure BDA0003456842740000147
可通过式(2)或式(8)求得。
(2)区间数据标准化处理。随后,针对式(29)所获得的区间数据进行标准化处理:
Figure BDA0003456842740000148
其中,E(xj)和D(xj)分别表示第j个区间过程变量的均值和方差,由式(11)和式(12)计算得。
(3)将区间数据投影至低维空间。接下来,将标准化后的区间数据[xnew]代入已经建立好的基于谱半径-区间主成分分析模型中,将其投影至低维空间:
Figure BDA0003456842740000151
其中,
Figure BDA0003456842740000152
Figure BDA0003456842740000153
分别表示区间数据[xnew]下界x new的估计值和上界
Figure BDA0003456842740000154
的估计值,负荷矩阵P 1:l
Figure BDA0003456842740000155
由式(20)获得。
(4)计算监测统计量的在线值。下面,计算区间数据[xnew]的四个监测统计量的在线值,如下所示:
Figure BDA0003456842740000156
(5)判断工况中是否出现故障。接下来,分析监测统计量在线计算值与其相应控制限之间的关系,若存在任一监测统计量超出其控制限,则认为当前时刻过程中出现了故障;反之,系统正常。
为了验证本发明提出的基于谱半径-区间主成分分析算法(SR-IPCA)的复杂工业过程状态监测方法的可行性及有效性,利用MATLAB软件分别在数值仿真过程和田纳西-伊斯曼标准测试过程中进行了仿真实验。同时,与传统的主成分分析算法(PCA)、中点主成分分析算法(C-PCA)以及顶点主成分分析算法(V-PCA)进行了对比。主要仿真过程如下:
(1)参数设置
1)数值仿真过程参数设置:首先,设计了一个简单的六变量合成数据集
Figure BDA0003456842740000157
来模拟正常工况下准确的过程数据,如下所示:
Figure BDA0003456842740000158
其中,ei(i=1,2,...,6)是标准偏差为0.01的独立高斯白噪声;信号源si(i=1,2,3,4)服从以下高斯分布:
Figure BDA0003456842740000161
将工业过程传感器所采集到的测量数据记为X=[x1,x2,x3,x4,x5,x6],其中
Figure BDA0003456842740000162
测量误差wj(j=1,2,...,6)的构造如下所示:
Figure BDA0003456842740000163
其中,i=1,2,...,n,fi(i=1,2,...,6)服从均值为0,标准差为0.3的高斯分布,函数random(-|υ|,|υ|)表示从区间[-|υ|,|υ|]任意的取值。
随后,对上述所构建的六变量系统进行仿真,进而获得正常工况下传感器所采集到的过程数据
Figure BDA0003456842740000164
接下来,设显著性水平α为90%,建立基于核密度估计的数据转化模型,将不准确的过程数据X转化为区间数据[X],并利用所获得的区间数据建立基于谱半径-区间主成分分析算法的离线监测模型,此时参数ω设置为95%。
为了验证本发明所提出的过程状态监测算法的可行性及有效性,在这里模拟了两种不同类型的故障,分别是阶跃故障和指数形式的缓变信号故障,具体设置如下:
·故障1:在变量1的第51个样本引入幅值为2.8的阶跃故障,如图2(a)所示。
·故障2:在变量3的第51个样本引入指数形式的缓变信号exp[0.1(k-50)]故障,如图2(b)所示,其中k=51,52,...,100。
2)田纳西-伊斯曼过程参数设置:田纳西-伊斯曼过程(Tennessee Eastman,TE)是一个由美国Eastman化学公司的过程控制小组J.J Downs和E.F Vogel提出的化工生产过程。该过程的提出为评价过程控制和监测技术提供了一个真实的生产过程,目前已为学术界广泛使用。在此发明中,所使用的田纳西-伊斯曼过程的数据集为Russel等人公开的数据集。其中,每个数据集包含960个观测样本,均是准确、可靠的。记在正常工况下TE过程的准确观测数据为
Figure BDA0003456842740000165
传感器所测得的含有测量噪声、测量误差的过程数据为X。在仿真实验中,将测量误差加入到准确的过程数据
Figure BDA0003456842740000171
上,进而得到不准确的测量数据X,具体如下所示:
Figure BDA0003456842740000172
其中,j=1,2,...52,xj
Figure BDA0003456842740000173
分别表示第j个过程变量的测量值以及真实值,wj为第j个过程变量的测量误差,其在第i个观测样本的具体取值为:
Figure BDA0003456842740000174
其中,i=1,2,...960,αj(j=1,2,...,52)服从均值为0、标准差为0.0012的高斯分布。随后,对上述所构建的系统进行仿真,进而获得正常工况下传感器所采集到的过程数据X。设置显著性水平α为90%,建立基于核密度估计的数据转化模型,将不准确的过程数据X转化为区间形式[X],并利用所获得的区间数据建立基于谱半径-区间主成分分析算法的离线监测模型,此时参数ω设置为95%。
TE过程预设了21个故障,主要包括阶跃故障、随机变量故障、慢偏移故障、粘住故障等类型的故障。接下来,为了验证本发明所提出的过程状态监测算法的可行性及有效性,试验在分别引入阶跃故障4、随机变量故障8、慢偏移故障13以及粘住故障14时,基于谱半径-区间主成分分析算法的过程状态监测方法的故障检测能力。
(2)结果分析
为说明本发明的可行性及有效性,在以下两个过程中进行仿真实验:
过程1:数值仿真过程;过程2:田纳西-伊斯曼标准测试过程。
数值仿真过程的仿真实验结果如图2-图5所示。其中,图2为向数值仿真过程分别引入不同故障时相应变量的变化情况,由图2(a)可知,阶跃故障1是一个变化幅度较小的故障,而图2(b)所示的指数形式的缓时变信号故障2是一个初期变化幅度小,随着时间的推移,变化幅度越来越大的故障。图3为不同故障检测算法在监测含有故障1的数值仿真过程时的在线监测图,如图3(a)所示,PCA监测方法的统计量值T2和SPE都在控制限内,因此,其故障漏报率高达100%;如图3(b)所示,在过程发生故障后,C-PCA监测方法未能检测出异常采样点,漏报率同样高达100%;由图3(c)可知,V-PCA监测方法在过程发生故障之前,就触发了10次误报;图3(d)为本发明所提方法的在线监测图,由该图可知在阶跃故障发生前,SR-IPCA监测方法的统计量T2和SPE大部分都在控制限以内,且当故障发生后,SPE统计量迅速超出控制限,说明过程出现异常。图4为不同故障检测算法在监测含有故障2的数值仿真过程时的在线监测图,观察图4(a)和图4(b)可知,PCA监测方法和C-PCA监测方法均是在故障发生后的第18个采样点方才检测到过程出现异常;而V-PCA监测方法在故障发生后,立即做出响应,其漏报率低至0%,但是在故障发生前,触发了11次误报;相比之下,SR-IPCA监测方法仅触发了2次误报,且当故障发生后,立即检测到了异常状况。图5引入误报率(FAR)、漏报率(MDR)以及准确率(ACC)三个状态监测模型评价指标,总结了不同状态监测算法在数值仿真过程的性能表现。由图5易知,PCA监测方法和C-PCA监测方法的故障检测性能很差,只能检测出幅度值较高的故障,导致其漏报率很大。上述实验结果进一步证明了,传统的PCA监测方法的故障检测性能高度依赖于过程数据的质量,当传感器所采集到的数据夹杂高噪声、大测量误差时,其故障检测性能较差。同时,C-PCA算法的实验结果表明,只选取区间内的中点来代表整个区间,会造成严重的信息丢失,使得过程监测性能变差。而与其他三种监测方法相比,V-PCA监测方法对过程中出现的异常数据极其敏感,使得将一些含有高噪声、大测量误差的采样点误认为故障点,导致误报率升高。相比之下,本发明所提出的SR-IPCA算法在高噪声、大测量误差情况下仍能保证状态监测的鲁棒性,当过程出现异常时,能快速地做出响应,同时误报率较低。综合上述分析可知,SR-IPCA算法的故障检测性能明显优于PCA算法、C-PCA算法以及V-PCA算法。
田纳西-伊斯曼标准测试过程的仿真实验如图6-图10所示。由于TE过程较为复杂,其采集到的数据包含52个过程变量以及960个观测值,若基于上述数据建立V-PCA监测算法模型,则会产生一个960·252×52维的超矩阵,针对该超矩阵进行建模工作量极大、计算机所需运行的时间极长。因此在TE过程中,仅将本发明所提监测算法与PCA算法以及C-PCA算法进行对比分析。图6为不同故障检测算法在监测含有阶跃故障4时的在线监测图,由图6(a)和图6(b)可知,在故障发生前,PCA算法和C-PCA算法触发了很多次误报,其误报率超过了50%,而图6(c)所示结果显示,在故障发生前,本发明所提出的SR-IPCA算法监测统计量大部分位于控制限以下,因此其误报率非常低。图7为不同故障检测算法在监测含有随机变量故障8时的在线监测图,由图7易知,三种监测算法故障检测的能力均较好,即当故障发生后,均能及时地检测出故障,同时保证了在故障发生之前,触发的误报较少。图8为不同故障检测算法在监测含有慢偏移故障13时的在线监测图,观察图8(a)和图8(b)易知,在此情况下,PCA算法与C-PCA算法已经完全区分不出正常工况和异常工况,其误报率高达100%;相比之下,SR-IPCA算法表现较佳,其能较为准确地识别出故障,且误报率较低,即本发明所提算法在高噪声、大测量误差存在的情况下,也能分区出正常工况和异常工况。图9为不同故障检测算法在监测含有粘住故障14时的在线监测图,对于图9(a)、图9(b)以及图9(c)可知,三种方法检测故障的能力均达到了最佳,即当故障发生后能立即检测出,其漏报率低至0%,然而在故障发生前PCA算法和C-PCA算法触发了较多的误报,特别是C-PCA算法,其误报率超过了10%。图10引入误报率(FAR)、漏报率(MDR)以及准确率(ACC)三个状态监测模型评价指标,总结了不同状态监测算法在TE过程的性能表现。由图10可知,PCA算法和C-PCA算法在监测含有阶跃故障4、慢偏移故障13时的误报率非常高,很难区分出正常工况和异常工况。相比之下,SR-IPCA算法误报率较低,过程中的高噪声、大测量误差对其过程状态监测能力影响较小。针对其他两种类型的故障,三种方法状态监测能力均较好,然而仔细观察,仍能发现SR-IPCA算法过程监测的可靠性较高,其误报率、漏报率低,状态监测能力强。综合仿真实验结果可知,本发明所提出的SR-IPCA算法可以在含有高噪声、大测量误差的数据中可靠地提取过程特征,提高了过程状态监测的鲁棒性。

Claims (2)

1.一种基于谱半径-区间主成分分析的工业过程状态监测方法,包括下列步骤:
(1)针对工业过程所采集到的含有测量噪声、测量误差以及不确定性的数据,基于核密度估计的数据转化方法,将工业过程所采集到的过程数据转化为区间数据,方法如下:
(1.1)采集正常工况下的过程数据,将所采集到的过程数据记为
Figure FDA0003456842730000011
(n代表样本个数,m代表过程变量个数),xj=[x1j,x2j,…,xnj]T为第j个过程变量,其可以转化为区间数据
Figure FDA0003456842730000012
需考虑以下两种情况,
(1.2)第一种情况:若第j个过程变量xj的真实值无法获得,则该过程变量测量误差上限δj通过专家估计或者相应传感器铭牌信息获得,第j个过程变量的第i,i=1,2,...,n,个样本数据由如下所示的区间数据表示:
x ij=xijj
Figure FDA0003456842730000013
式中,x ij
Figure FDA0003456842730000014
分别为第j个过程变量的第i个样本数据的区间下界和区间上界;
(1.3)第二种情况:若第j个过程变量xj的真实值能通过离线实验检测或者其他方法获得,将该过程变量的真实值记为
Figure FDA0003456842730000015
计算工业现场传感器测量值与变量真实值之间的相对误差γj,并基于核密度估计方法在显著性水平为α下估计相对误差γj的上限
Figure FDA0003456842730000016
和下限γ j,进而得到第j个过程变量的第i,i=1,2,...,n,个样本数据的区间表示:
Figure FDA0003456842730000017
Figure FDA0003456842730000018
式中,x ij
Figure FDA0003456842730000019
分别为第j个过程变量的第i个样本数据的区间下界和区间上界;
(1.4)基于上述步骤(1.1-1.3)的核密度估计的数据转化方法,将工业过程所采集到的过程数据转化为由如下矩阵表征的区间数据:
Figure FDA00034568427300000110
(2)基于步骤(1)所得到的区间数据,建立谱半径-区间主成分分析模型,对含有不准确过程数据的复杂工业过程进行特征提取,将高维区间数据投影到低维空间,方法如下:
(2.1)对所获得的区间数据进行标准化处理,标准化后的数据仍记为[X];
(2.2)区间数据的主成分通过对其协方差矩阵进行特征分解来提取,区间数据[X]的协方差矩阵计算式如下:
Figure FDA0003456842730000021
式中,i,j=1,2,...,m,m为过程变量个数,n为区间样本数,={Σ ij}和
Figure FDA0003456842730000022
分别为协方差矩阵[Σ]={[Σij]}的下界和上界,且有:
Figure FDA0003456842730000023
式中,E(x i)和
Figure FDA0003456842730000024
分别表示第i个过程变量区间下界的均值和区间上界的均值,E(x j)和
Figure FDA0003456842730000025
分别表示第j个过程变量区间下界的均值和区间上界的均值,x ki
Figure FDA0003456842730000026
分别表示第i个过程变量的第k个样本数据的区间下界和区间上界,x kj
Figure FDA0003456842730000027
分别表示第j个过程变量的第k个样本数据的区间下界和区间上界;
(2.3)对协方差矩阵[Σ]进行特征分解,协方差矩阵[Σ]的特征分解描述为:
[Σ]=PΛPT
式中,Λ为对角矩阵,其对角元素为协方差矩阵[Σ]的特征值;P为特征向量矩阵,包含与协方差矩阵[Σ]特征值相对应的特征向量;
利用基于谱半径的区间矩阵特征分解方法,求得协方差矩阵[Σ]的特征值
Figure FDA0003456842730000028
及其对应的特征向量
Figure FDA0003456842730000029
其中,
Figure FDA00034568427300000216
且特征值按照降序排列,即λ 1λ 2≥...≥λm
Figure FDA00034568427300000210
两个特征向量矩阵P=[p 1,...,p m]和
Figure FDA00034568427300000211
分别由与特征值λ i
Figure FDA00034568427300000212
对应的特征向量组成;其中,p i
Figure FDA00034568427300000213
分别表示由区间特征向量[pi]的下界和上界所组成的特征向量;
(2.4)分别考虑特征向量矩阵P
Figure FDA00034568427300000214
的前l列和其余列,则矩阵P
Figure FDA00034568427300000215
被划分为P=[P 1: l P l+1:m]和
Figure FDA0003456842730000031
其中,l是保留的区间主成分的个数,负荷矩阵
Figure FDA0003456842730000032
Figure FDA0003456842730000033
是通过分别选择协方差矩阵
Figure FDA0003456842730000034
的前l个特征值对应的特征向量生成的;保留的区间主成分个数l是根据累积百分比方差标准确定的,其中,前k个区间主成分下界和上界对应的累积方差贡献率计算式为:
Figure FDA0003456842730000035
Figure FDA0003456842730000036
式中,CPV(k)和
Figure FDA0003456842730000037
分别为前k个区间主成分下界和上界对应的累积方差贡献率;
当且仅当以下不等式成立时,区间主成分的个数l=k:
Figure FDA0003456842730000038
式中,ω表示累积方差贡献率的下限;
(2.5)基于上述步骤(2.1-2.4)求取的负荷矩阵P
Figure FDA0003456842730000039
可提取标准化处理后高维区间数据的特征信息,将其投影至线性低维空间:
Figure FDA00034568427300000310
式中,
Figure FDA00034568427300000311
Figure FDA00034568427300000312
分别表示区间数据矩阵[X]下界的估计和上界的估计;
上述过程完成谱半径-区间主成分分析模型的建立;
(3)引入离线监测统计量,并基于核密度估计方法确定统计量的控制限,具体实现过程如下:
(3.1)对于经过标准化处理的训练集[X],计算第i个样本观测值
Figure FDA00034568427300000313
的T2统计量和SPE统计量:
Figure FDA00034568427300000314
式中,i=1,2,…n,
Figure FDA00034568427300000315
Figure FDA00034568427300000316
分别为第i个样本观测值区间下界和区间上界的T2统计量,SPE i
Figure FDA00034568427300000317
分别为第i个样本观测值区间下界和区间上界的SPE统计量,
Figure FDA00034568427300000318
为单位矩阵;
(3.2)给定显著性水平β,基于核密度估计的方法确定四个监测统计量的控制限
Figure FDA0003456842730000041
SPE UCL
Figure FDA0003456842730000042
(4)基于所求得的四个监测统计量的控制限,分析在线监测统计量与控制限之间的关系,实现过程状态的在线监测。
2.根据权利要求1所述的基于谱半径-区间主成分分析的工业过程状态监测方法,其特征在于,步骤(4)按以下子步骤实现:
(1)从工业过程中实时采集过程数据
Figure FDA0003456842730000043
基于核密度估计的数据转化方法,将采集到的工业数据
Figure FDA0003456842730000044
统一转化为区间形式[xnew];
(2)针对所获得的区间数据进行标准化处理,标准化后的数据仍记为[xnew];
(3)将标准化后的区间数据[xnew]代入已经建立好的谱半径-区间主成分分析模型中,将其投影至低维空间:
Figure FDA0003456842730000045
Figure FDA0003456842730000046
式中,
Figure FDA0003456842730000047
Figure FDA0003456842730000048
分别表示区间数据[xnew]下界x new的估计值和上界
Figure FDA0003456842730000049
的估计值,P 1:l
Figure FDA00034568427300000410
为负荷矩阵;
(4)计算区间数据[xnew]的四个监测统计量的在线值:
Figure FDA00034568427300000411
式中,
Figure FDA00034568427300000412
Figure FDA00034568427300000413
分别为实时采集到的工业数据区间下界和区间上界的T2统计量,SPE new
Figure FDA00034568427300000414
分别为实时采集到的工业数据区间下界和区间上界的SPE统计量;
(5)分析监测统计量在线计算值与其相应控制限之间的关系,判断工况中是否出现故障,若存在任一监测统计量超出其控制限,则认为当前时刻过程中出现故障。
CN202210009608.5A 2022-01-05 2022-01-05 基于谱半径-区间主成分分析的工业过程状态监测方法 Active CN114371677B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210009608.5A CN114371677B (zh) 2022-01-05 2022-01-05 基于谱半径-区间主成分分析的工业过程状态监测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210009608.5A CN114371677B (zh) 2022-01-05 2022-01-05 基于谱半径-区间主成分分析的工业过程状态监测方法

Publications (2)

Publication Number Publication Date
CN114371677A true CN114371677A (zh) 2022-04-19
CN114371677B CN114371677B (zh) 2023-04-28

Family

ID=81141957

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210009608.5A Active CN114371677B (zh) 2022-01-05 2022-01-05 基于谱半径-区间主成分分析的工业过程状态监测方法

Country Status (1)

Country Link
CN (1) CN114371677B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116383754A (zh) * 2023-06-05 2023-07-04 丹纳威奥贯通道系统(青岛)有限公司 一种机车车辆配件生产在线监测系统及方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106202823A (zh) * 2016-07-28 2016-12-07 北京航空航天大学 一种基于高阶区间摄动理论的飞行器不确定气动载荷上下界评估方法
WO2017167064A1 (zh) * 2016-03-30 2017-10-05 阿里巴巴集团控股有限公司 一种数据管控的方法及系统
CN110442833A (zh) * 2019-06-10 2019-11-12 内蒙古工业大学 一种基于多维度scada数据评估风电机组健康状态评估方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017167064A1 (zh) * 2016-03-30 2017-10-05 阿里巴巴集团控股有限公司 一种数据管控的方法及系统
CN106202823A (zh) * 2016-07-28 2016-12-07 北京航空航天大学 一种基于高阶区间摄动理论的飞行器不确定气动载荷上下界评估方法
CN110442833A (zh) * 2019-06-10 2019-11-12 内蒙古工业大学 一种基于多维度scada数据评估风电机组健康状态评估方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
M.-F. HARKAT 等: "Fault detection of uncertain nonlinear process using interval-valued data-driven approach", 《CHEMICAL ENGINEERING SCIENCE》 *
刘清贤: "区间型符号数据主成分分析及有效性研究", 《中国优秀硕士学位论文全文数据库 基础科学辑》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116383754A (zh) * 2023-06-05 2023-07-04 丹纳威奥贯通道系统(青岛)有限公司 一种机车车辆配件生产在线监测系统及方法
CN116383754B (zh) * 2023-06-05 2023-08-18 丹纳威奥贯通道系统(青岛)有限公司 一种机车车辆配件生产在线监测系统及方法

Also Published As

Publication number Publication date
CN114371677B (zh) 2023-04-28

Similar Documents

Publication Publication Date Title
CN108062565B (zh) 基于化工te过程的双主元-动态核主元分析故障诊断方法
CN108549908B (zh) 基于多采样概率核主成分模型的化工过程故障检测方法
CN105700518A (zh) 一种工业过程故障诊断方法
CN109739214B (zh) 工业过程间歇故障的检测方法
CN111680725B (zh) 基于重构贡献的气体传感器阵列多故障隔离算法
CN109917777B (zh) 基于混合多采样率概率主成分分析模型的故障检测方法
CN112000081B (zh) 基于多块信息提取和马氏距离的故障监测方法及系统
CN109298633A (zh) 基于自适应分块非负矩阵分解的化工生产过程故障监测方法
CN112395684A (zh) 一种高速列车走行部系统智能故障诊断方法
CN106907927A (zh) 一种核灵活流形嵌入电熔镁炉故障监测方法
CN114371677B (zh) 基于谱半径-区间主成分分析的工业过程状态监测方法
CN117150283A (zh) 一种基于大数据分析的突发环境事件安全预警方法
CN110220885B (zh) 一种机械设备磨损状态综合判断方法
CN112904810B (zh) 基于有效特征选择的流程工业非线性过程监测方法
CN116627116B (zh) 一种流程工业故障定位方法、系统及电子设备
CN109840386B (zh) 基于因子分析的损伤识别方法
Zhang et al. Improved incipient fault detection using Jensen-Shannon divergence and KPCA
CN115047853B (zh) 基于递推规范变量残差和核主元分析的微小故障检测方法
CN114200914A (zh) 一种基于mw-occa的质量相关早期故障检测方法
CN115167364A (zh) 一种基于概率变换与统计特性分析的早期故障检测方法
CN112069621B (zh) 基于线性可靠度指标的滚动轴承剩余使用寿命的预测方法
CN114112390A (zh) 一种非线性复杂系统早期故障诊断方法
CN111983994B (zh) 一种基于复杂工业化工过程的v-pca故障诊断方法
He et al. Fault detection and health assessment of equipment based on fuzzy DPCA spatial eigenvalue similarity
Eklund Using synthetic data to train an accurate real-world fault detection system

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant