CN114368787A - 一种高导电性、高稳定性的锰酸锂材料及其应用 - Google Patents

一种高导电性、高稳定性的锰酸锂材料及其应用 Download PDF

Info

Publication number
CN114368787A
CN114368787A CN202210020705.4A CN202210020705A CN114368787A CN 114368787 A CN114368787 A CN 114368787A CN 202210020705 A CN202210020705 A CN 202210020705A CN 114368787 A CN114368787 A CN 114368787A
Authority
CN
China
Prior art keywords
lithium manganate
lithium
carbon nano
preparation
manganate material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210020705.4A
Other languages
English (en)
Other versions
CN114368787B (zh
Inventor
刘建允
商晓红
胡彬
聂鹏飞
张柏爽
王怡文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Donghua University
Original Assignee
Donghua University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Donghua University filed Critical Donghua University
Priority to CN202210020705.4A priority Critical patent/CN114368787B/zh
Publication of CN114368787A publication Critical patent/CN114368787A/zh
Application granted granted Critical
Publication of CN114368787B publication Critical patent/CN114368787B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • C01G45/12Manganates manganites or permanganates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • B01J20/0222Compounds of Mn, Re
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • B01J20/205Carbon nanostructures, e.g. nanotubes, nanohorns, nanocones, nanoballs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/168After-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/46Metal oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/41Particle morphology extending in three dimensions octahedron-like
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

本发明公开了一种高导电性、高稳定性的锰酸锂材料及其制备方法与其在离子吸附、电池或电容器储能材料中的应用。制备方法为:将锰盐、碳纳米管、水合肼和聚乙烯吡咯烷酮分散到二甲基亚砜和无水乙醇中,得到碳纳米管穿插四氧化三锰材料;然后将碳纳米管穿插四氧化三锰材料分散到氢氧化锂溶液中进行水热反应,得到碳纳米管穿插锰酸锂材料。所述碳纳米管穿插锰酸锂材料为碳纳米管穿过八面体尖晶石锰酸锂颗粒并且将锰酸锂颗粒有效连接起来而形成的导电网形貌。本发明提供的方法简单,所制备的碳纳米管穿插锰酸锂材料具有高导电性、高容量和优异的循环稳定性,可广泛应用于离子吸附、电池和电容器储能等领域。

Description

一种高导电性、高稳定性的锰酸锂材料及其应用
技术领域
本发明涉及一种高导电性、高稳定性的锰酸锂材料及其制备方法与应用,本发明制备的材料可用于离子吸附和电池或电容器储能领域。
背景技术
随着全球对可持续,清洁能源的需求增加,锂离子电池在新能源领域所占市场份额逐年增加。据统计,在2019年,锂离子电池所消耗的锂源已占全球锂总消耗量的65%。这种持续快速的锂需求增长趋势将会引起锂供应不足的危机。据报道,全球约三分之二的锂源储存在盐湖卤水中,而这些盐湖卤水中同时包含大量的钠离子、钾离子、镁离子和钙离子等。尤其是在我国西部富锂盐湖(如西台吉乃尔盐湖)具有镁锂比高的特点,并且镁离子和锂离子具有相似的离子半径和物理化学性质给盐湖卤水选择性提锂工作带来了很大的挑战。因此,开发高效的液相选择性提锂材料具有重要的意义。
锰酸锂具有成本低、理论吸附容量高、选择性好,环境友好等优点使其成为卤水提锂的理想材料。但是,锰酸锂的导电性和循环稳定性较差,限制了其大规模的电化学提锂应用。通常,科研工作者通过将锰酸锂与导电剂(如石墨烯,碳纳米管,炭黑以及碳纳米纤维)进行复合来改善锰酸锂的电化学性能。其中,碳纳米管因其优异的导电性、良好的化学稳定性和较强的机械强度而成为最常用的添加剂之一。然而,传统的碳纳米管与锰酸锂的机械混合往往导致复合材料中锰酸锂颗粒与碳纳米管接触不够充分,相互作用较弱致使碳纳米管的导电性不能充分发挥。因此,亟需设计一种制备方法简单、电极导电性好、循环稳定性高的电极材料用于盐湖卤水选择性提锂。
发明内容
本发明所要解决的技术问题是:锰酸锂导电性和循环稳定性差的技术问题。
为了解决上述问题,本发明提供了一种高导电性、高稳定性的锰酸锂材料的制备方法,其特征在于,包括以下步骤:
步骤1):将锰盐、碳纳米管、水合肼和聚乙烯吡咯烷酮分散到二甲基亚砜和无水乙醇中,搅拌,回流,洗涤,干燥,得到碳纳米管穿插四氧化三锰材料;
步骤2):将步骤1)制得的碳纳米管穿插四氧化三锰材料分散到氢氧化锂溶液中进行水热反应,得到碳纳米管穿插锰酸锂材料。
优选地,所述步骤1)中的锰盐为乙酸锰、硫酸锰、硝酸锰、氯化锰中的任意一种或几种。
优选地,所述步骤1)中锰盐、水合肼、聚乙烯吡咯烷酮、二甲基亚砜、无水乙醇的比例为:1~1.8g:3~7mL:1.5~2.5g:100~200mL:10~30mL。
优选地,所述步骤1)中碳纳米管的质量百分含量为0.05%~20%。
优选地,所述步骤1)中回流的时间为6~48h。
优选地,所述步骤2)中碳纳米管穿插四氧化三锰和氢氧化锂的摩尔比为0.5~1:1。
优选地,所述步骤2)中水热反应的温度为200~260℃,反应时间为6~48h。
本发明还提供了一种通过上述制备方法制备的高导电性、高稳定性的锰酸锂材料,其特征在于,所述材料为碳纳米管穿过锰酸锂颗粒并且将锰酸锂颗粒有效连接起来而形成的导电网形貌,具有高的导电性,容量和循环稳定性。
优选地,所述的锰酸锂颗粒为八面体状,颗粒范围在100~1000nm。
优选地,所述锰酸锂材料中碳纳米管的质量百分含量为0.05%~20%。
本发明还提供了上述高导电性、高稳定性的锰酸锂材料在离子吸附材料、电池或电容器储能材料中的应用。
与现有技术相比,本发明的有益效果在于:
(1)本发明通过回流~水热两步法制备了碳纳米管穿插锰酸锂材料。并且,研究发现,成功制备此碳纳米管穿插锰酸锂材料的关键是首先要制备出碳纳米管穿插四氧化三锰材料。该制备方法较为简单,可重复性强。
(2)本发明制备的碳纳米管穿插锰酸锂材料,呈现出碳纳米管穿插过八面体尖晶石锰酸锂颗粒并且将锰酸锂颗粒有效连接起来而形成的导电网形貌。这种结构可以使电子沿着碳纳米管一维导电通道快速地进行转移,缩短电子传输距离,提升导电性和倍率性能。
(3)本发明制备的这种特殊的穿插结构提高了锰酸锂的活性位点,缓解锂离子在多次嵌入/脱出过程中造成的锰酸锂结构形变,从而提升锰酸锂的容量和循环稳定性,使其在离子吸附和电池或电容器储能领域展现出优异的性能。
附图说明
图1为实施例1制备的碳纳米管穿插四氧化三锰材料和碳纳米管穿插锰酸锂材料的扫描电镜(SEM)图;
图2为对比例1制备的四氧化三锰和锰酸锂的扫描电镜(SEM)图;
图3为对比例2制备的碳纳米管/四氧化三锰混合物和碳纳米管/锰酸锂混合物的扫描电镜(SEM)图;
图4为实施例1制备的碳纳米管穿插锰酸锂材料和对比例1制备的锰酸锂材料的交流阻抗图;
图5为实施例1制备的碳纳米管穿插锰酸锂材料和活性炭组装成的电容器在10mMLiCl溶液中的电压和电导率变化曲线图;
图6为实施例1制备的碳纳米管穿插锰酸锂材料和对比例1制备的锰酸锂材料在10mM LiCl中进行100次吸脱附锂过程中的吸附容量和锰溶损率图。
具体实施方式
为使本发明更明显易懂,兹以优选实施例,并配合附图作详细说明如下。
实施例1
本实施例提供了一种碳纳米管穿插锰酸锂材料的制备方法,具体如下:
(1)将1.4g乙酸锰,2g聚乙烯吡咯烷酮和0.02g碳纳米管分散于150mL二甲基亚砜溶剂中,得到溶液1;将25mL体积比为1:4的水合肼~无水乙醇混合溶液逐滴滴加到溶液1中得到混合溶液,然后将此混合溶液进行回流24h。待其冷却至室温后,用乙醇和水反复洗剂多次,离心,干燥得到碳纳米管穿插四氧化三锰材料,记为CNT-s-Mn3O4,其扫描电镜(SEM)图如图1(A)所示,材料为碳纳米管穿过四氧化三锰颗粒并且将四氧化三锰颗粒有效连接起来而形成的导电网形貌,其中四氧化三锰颗粒呈块状形貌。
(2)将物质的量比为0.6:1的CNT-s-Mn3O4和氢氧化锂分散到水中,然后将此分散液置于240℃烘箱中水热反应24h,得到碳纳米管穿插锰酸锂材料,记为CNT-s-LMO,其SEM图如图1(B)所示,材料为碳纳米管穿过锰酸锂颗粒并且将锰酸锂颗粒有效连接起来而形成的导电网形貌,其中锰酸锂颗粒呈八面体状。
如图4所示,本实施例制备的碳纳米管穿插锰酸锂材料(CNT-s-LMO)展现出较小的电子传递电阻(仅有12Ω),电极导电性很好,非常利于离子的吸附和储能。将CNT-s-LMO制成电容器的阳极,其中活性材料、导电剂和粘结剂质量比为8:1:1,阴极为活性炭(AC)电极,该电容器(CNT-s-LMO‖AC)在10mM LiCl中电压和电导率随时间的变化曲线展示在图5中。图6表明该材料在第一次吸脱附锂时其吸附容量为1.6mmol g-1,经过100次循环后,该材料依然可以保持90%的吸附容量,且仅有0.1%的锰溶损率,说明该碳纳米管穿插锰酸锂材料具有高的吸附容量和循环稳定性。
对比例1
本对比例提供了一种锰酸锂材料的制备方法,具体如下:
(1)将1.4g乙酸锰和2g聚乙烯吡咯烷酮溶解于150mL二甲基亚砜溶剂中,得到溶液1;然后将25mL体积比为1:4的水合肼~无水乙醇混合溶液逐滴滴加到溶液1中得到混合溶液,然后将此混合溶液进行回流24h。待其冷却至室温后,用乙醇和水反复洗剂多次,离心,干燥得到四氧化三锰材料,记为Mn3O4,其扫描电镜(SEM)图如图2(A)所示,材料呈块状形貌。
(2)将物质的量比为0.6:1的Mn3O4和氢氧化锂分散到水中,然后将此分散液置于240℃烘箱中水热反应24h,得到锰酸锂材料,记为LMO,其SEM图如图2(B)所示,材料为八面体状。
如图4所示,相比于实施例1制备的碳纳米管穿插锰酸锂材料(CNT-s-LMO),此本对比例制备的锰酸锂(LMO)材料展现出较大的电子传递电阻(约49Ω),不利于离子吸附和储能。将LMO材料制成电容器的阳极,其中活性材料、导电剂和粘结剂质量比为8:1:1,阴极为活性炭(AC)电极。如图6所示,相比于CNT-s-LMO,该材料具有较低的初始吸附容量(1.38mmol g-1),经过100次循环后,该材料只有65%的吸附容量保持率并且锰溶损率高达3%,说明碳纳米管穿插锰酸锂结构提升了锰酸锂的导电性,容量和循环稳定性。
对比例2
本对比例提供了一种碳纳米管/锰酸锂混合材料的制备方法,具体如下:
(1)将1.4g乙酸锰和2g聚乙烯吡咯烷酮溶解于150mL二甲基亚砜溶剂中,得到溶液1;然后将25mL体积比为1:4的水合肼~无水乙醇混合溶液逐滴滴加到溶液1中得到混合溶液,然后将此混合溶液进行回流24h。待其冷却至室温后,用乙醇和水反复洗剂多次,离心,干燥得到四氧化三锰材料,记为Mn3O4。将此过程得到的四氧化三锰和碳纳米管进行研磨得到四氧化三锰和碳纳米管的混合物,记为Mn3O4/CNT-m,其扫描电镜(SEM)图如图3(A)所示,明显地,四氧化三锰和碳纳米管呈现出分离状态,四氧化三锰呈块状形貌。
(2)将物质的量比为0.6:1的Mn3O4/CNT-m和氢氧化锂分散到水中,然后将此分散液置于240℃烘箱中水热反应24h,得到锰酸锂与碳纳米管混合材料,记为LMO/CNT-m,其SEM图如图3(B)所示,明显地,碳纳米管和锰酸锂呈现为分离状态,锰酸锂为八面体状。与实施例1做对比结果说明,成功制备碳纳米管穿插锰酸锂材料的关键是首先要制备出碳纳米管穿插四氧化三锰材料。

Claims (9)

1.一种高导电性、高稳定性的锰酸锂材料的制备方法,其特征在于,包括以下步骤:
步骤1):将锰盐、碳纳米管、水合肼和聚乙烯吡咯烷酮分散到二甲基亚砜和无水乙醇中,搅拌,回流,洗涤,干燥,得到碳纳米管穿插四氧化三锰材料;
步骤2):将步骤1)制得的碳纳米管穿插四氧化三锰材料分散到氢氧化锂溶液中进行水热得到碳纳米管穿插锰酸锂材料。
2.如权利要求1所述的制备方法,其特征在于,所述步骤1)中的锰盐为乙酸锰、硫酸锰、硝酸锰、氯化锰中的任意一种或几种。
3.如权利要求1所述的制备方法,其特征在于,所述步骤1)中锰盐、水合肼、聚乙烯吡咯烷酮、二甲基亚砜、无水乙醇的比例为:1~1.8g:3~7mL:1.5~2.5g:100~200mL:10~30mL。
4.如权利要求1所述的制备方法,其特征在于,所述步骤1)中回流的时间为6~48h。
5.如权利要求1所述的制备方法,其特征在于,所述步骤2)中碳纳米管穿插四氧化三锰和氢氧化锂的摩尔比为0.5~1:1。
6.如权利要求1所述的制备方法,其特征在于,所述步骤2)中水热反应的温度为200~260℃,反应时间为6~48h。
7.一种权利要求1-6任一项所述的制备方法制备的锰酸锂材料为碳纳米管穿过锰酸锂颗粒并且将锰酸锂颗粒有效连接起来而形成的导电网形貌;其中,锰酸锂颗粒呈现为八面体状,颗粒范围在100~1000nm。
8.如权利要求7所述的锰酸锂材料,其特征在于,所述锰酸锂材料中碳纳米管的质量百分含量为0.05%~20%。
9.一种权利要求7-8所述的锰酸锂材料在离子吸附材料、电池或电容器储能材料中的应用。
CN202210020705.4A 2022-01-10 2022-01-10 一种高导电性、高稳定性的锰酸锂材料及其应用 Active CN114368787B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210020705.4A CN114368787B (zh) 2022-01-10 2022-01-10 一种高导电性、高稳定性的锰酸锂材料及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210020705.4A CN114368787B (zh) 2022-01-10 2022-01-10 一种高导电性、高稳定性的锰酸锂材料及其应用

Publications (2)

Publication Number Publication Date
CN114368787A true CN114368787A (zh) 2022-04-19
CN114368787B CN114368787B (zh) 2023-10-27

Family

ID=81143501

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210020705.4A Active CN114368787B (zh) 2022-01-10 2022-01-10 一种高导电性、高稳定性的锰酸锂材料及其应用

Country Status (1)

Country Link
CN (1) CN114368787B (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102593446A (zh) * 2012-02-22 2012-07-18 清华大学 一种锂离子电池活性电极材料的制备方法
CN105958029A (zh) * 2016-06-24 2016-09-21 合肥国轩高科动力能源有限公司 一种锂离子电池负极复合材料钒酸锂/碳纳米管/碳的制备方法
CN106602008A (zh) * 2016-12-06 2017-04-26 广州汽车集团股份有限公司 磷酸锰锂正极材料的自组装制备方法以及磷酸锰锂正极材料
CN108470901A (zh) * 2018-05-29 2018-08-31 山东大学 一种碳纳米管锰酸锂纳米复合材料及制备方法与应用
CN109659560A (zh) * 2018-12-26 2019-04-19 赵宏伟 一种用于锂离子电池的磷酸钴锂正极材料及制备方法
CN110299516A (zh) * 2019-06-10 2019-10-01 天津大学 碳纳米管阵列负载钛酸锂柔性电极材料的制备方法
CN113896244A (zh) * 2021-09-09 2022-01-07 江苏大学 用于盐湖提锂的多孔圆片状锰酸锂电极、及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102593446A (zh) * 2012-02-22 2012-07-18 清华大学 一种锂离子电池活性电极材料的制备方法
CN105958029A (zh) * 2016-06-24 2016-09-21 合肥国轩高科动力能源有限公司 一种锂离子电池负极复合材料钒酸锂/碳纳米管/碳的制备方法
CN106602008A (zh) * 2016-12-06 2017-04-26 广州汽车集团股份有限公司 磷酸锰锂正极材料的自组装制备方法以及磷酸锰锂正极材料
CN108470901A (zh) * 2018-05-29 2018-08-31 山东大学 一种碳纳米管锰酸锂纳米复合材料及制备方法与应用
CN109659560A (zh) * 2018-12-26 2019-04-19 赵宏伟 一种用于锂离子电池的磷酸钴锂正极材料及制备方法
CN110299516A (zh) * 2019-06-10 2019-10-01 天津大学 碳纳米管阵列负载钛酸锂柔性电极材料的制备方法
CN113896244A (zh) * 2021-09-09 2022-01-07 江苏大学 用于盐湖提锂的多孔圆片状锰酸锂电极、及其制备方法

Also Published As

Publication number Publication date
CN114368787B (zh) 2023-10-27

Similar Documents

Publication Publication Date Title
Acharya et al. Leaf-like integrated hierarchical NiCo2O4 nanorods@ Ni-Co-LDH nanosheets electrodes for high-rate asymmetric supercapacitors
Zhang et al. Enhanced electrochemical performance of MnO nanowire/graphene composite during cycling as the anode material for lithium-ion batteries
Wang et al. MOF-derived binary mixed metal/metal oxide@ carbon nanoporous materials and their novel supercapacitive performances
CN109354137A (zh) 碳纳米管/mof衍生多孔碳复合电极材料的制备及应用
CN108390014B (zh) 泡沫镍负载不同形貌一氧化钴纳米材料的制备方法
Zhang et al. MgFe2O4/reduced graphene oxide composites as high-performance anode materials for sodium ion batteries
Weng et al. Enhanced capacity and significant rate capability of Mn3O4/reduced graphene oxide nanocomposite as high performance anode material in lithium-ion batteries
Yuan et al. Hybrid Mg2+/Li+ batteries with Cu2Se cathode based on displacement reaction
CN113410443B (zh) 一种高稳定性铜插层二氧化锰电极材料的制备方法和应用
Ye et al. One-pot synthesis of Fe2O3/graphene and its lithium-storage performance
Wei et al. Inherently porous Co3O4@ NiO core–shell hierarchical material for excellent electrochemical performance of supercapacitors
Fang et al. Establishment of PPy-derived carbon encapsulated LiMn2O4 film electrode and its performance for efficient Li+ electrosorption
CN106486646A (zh) 锂离子电池负极材料及其制备方法和锂离子电池
WO2015010437A1 (zh) 一种纳米硅/石墨烯锂离子电池负极材料及其制备方法
Yang et al. Hierarchically nanostructured ZnCo2O4 particles in 3D graphene networks for high-rate and long-life lithium ion batteries
CN115084489B (zh) 超声波辅助插层钒基氧化物复合材料的制备方法及应用
Rahman et al. Fabrication of Ag-doped MnO2 nanosheets@ carbon cloth for energy storage device
Li et al. Controlled synthesis of Ni (OH) 2/graphene composites and their transformation to NiO/graphene for energy storage
Sun et al. Inverse-spinel Mg2MnO4 material as cathode for high-performance aqueous magnesium-ion battery
CN112786865A (zh) 一种MoS2准量子点/氮硫共掺杂生物质碳复合纳米材料的制备方法和应用
CN105244503A (zh) 一种分级石墨烯修饰的球形钠离子电池电极材料的制备方法
CN107275100B (zh) 一种超级电容器及其制备方法
CN111146017B (zh) 一种耐高压石墨烯/活性炭电极材料及其制备方法及其应用
Yang et al. Controllable preparation of hierarchical NiO hollow microspheres with high pseudo-capacitance
Dang et al. ZnNi‐MnCo2O4@ CNT porous double heterojunction cage‐like structure with three‐dimensional network for superior lithium‐ion batteries and capacitors

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant