CN114367319A - 一种基于低频振动探针的颗粒操控装置和方法 - Google Patents

一种基于低频振动探针的颗粒操控装置和方法 Download PDF

Info

Publication number
CN114367319A
CN114367319A CN202111652272.6A CN202111652272A CN114367319A CN 114367319 A CN114367319 A CN 114367319A CN 202111652272 A CN202111652272 A CN 202111652272A CN 114367319 A CN114367319 A CN 114367319A
Authority
CN
China
Prior art keywords
container
probe
microscope
metal probe
particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202111652272.6A
Other languages
English (en)
Other versions
CN114367319B (zh
Inventor
黄�俊
刘家铭
龚佳群
王璐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu University
Original Assignee
Jiangsu University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu University filed Critical Jiangsu University
Priority to CN202111652272.6A priority Critical patent/CN114367319B/zh
Publication of CN114367319A publication Critical patent/CN114367319A/zh
Application granted granted Critical
Publication of CN114367319B publication Critical patent/CN114367319B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502761Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip specially adapted for handling suspended solids or molecules independently from the bulk fluid flow, e.g. for trapping or sorting beads, for physically stretching molecules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0403Moving fluids with specific forces or mechanical means specific forces
    • B01L2400/0463Hydrodynamic forces, venturi nozzles

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Dispersion Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Hematology (AREA)
  • Clinical Laboratory Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Microscoopes, Condenser (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

本发明提供一种基于低频振动探针的颗粒操控装置和方法,包括至少一个压电悬臂梁振子、至少一个金属探针、容器、显微镜、计算机和信号发生器;所述压电悬臂梁振子与信号发生器连接;所述金属探针的一端与压电悬臂梁振子连接,另一端插入容器的颗粒流体中,所述显微镜位于容器的下方,所述容器的底部为透明材质制成的,显微镜与计算机连接,显微镜用于观察和采集金属探针对颗粒的操控信息,并传送给计算机。本发明利用低频振动进行微颗粒操控,基于流体的低速涡流对被控颗粒进行驱动,可实现对微纳米级微颗粒的捕捉、移动、转移和释放,具有结构简单、操作方便、对被操控颗粒无选择性,对于活性颗粒或细胞的无伤操控等优点。

Description

一种基于低频振动探针的颗粒操控装置和方法
技术领域
本发明属于压电作动器操控领域,尤其涉及一种基于低频振动探针的颗粒操控装置和方法。
背景技术
随着现代科技的进步,生物医学工程、微纳米器件制造、3D打印等领域都对微纳米尺度物体的操纵技术提出了迫切的需求。近几年在纳米制造、生物传感、微电子器件制造等多个领域中,对于纳米物质的操控吸引了诸多研究者关注。纳米物质由于其特有的纳米效应,在运动控制方面有很大的难度。传统的操控方法有介电泳技术、电磁场场技术、激光光镊技术、超声技术、膜分离技术等。这些方法通常对工作环境和被操控颗粒都有比较苛刻的要求,如被控微颗粒需要带电、控制方式需高电压作为驱动或者需要磁性微粒作为载体等。并且,有的操控方法效率较低,如激光光镊一般只能对少量微颗粒进行操控,并对微颗粒的光学性质有一定的要求,对所捕获粒子的透明度和折射率有较严格的要求。有的操控方法成本高,如膜分离技术,且膜分离技术容易产生膜堵塞。同时,利用这些方法操控活性颗粒或细胞时,都会造成一定程度的损伤。
发明内容
针对上述技术问题,本发明提出了一种基于低频振动探针的颗粒操控装置,该装置利用低频振动进行微纳米颗粒操控,基于流体的低速涡流对被控微纳米颗粒进行驱动,可对大量的活体颗粒或细胞进行有效的无损操控,本发明操作简单、成本低廉、操纵过程持续稳定、可靠性高、对操纵物体无选择性、操控颗粒量大、对活体颗粒或细胞的操控过程无损害。
本发明通过以下技术方案实现的,所述基于低频振动探针的颗粒操控装置,包括至少一个压电悬臂梁振子、至少一个金属探针、容器、显微镜、计算机和信号发生器;
所述压电悬臂梁振子与信号发生器连接;所述金属探针的一端与压电悬臂梁振子连接,另一端插入容器内混合有微纳米颗粒的流体中,所述显微镜位于容器的下方,所述容器的底部为透明材质制成的,显微镜与计算机连接,显微镜用于观察和采集金属探针颗粒的操控信息,并传送给计算机。
上述方案中,还包括XYZ三维可调节载物台;所述压电悬臂梁振子置于XYZ三维可调节载物台上。
上述方案中,还包括支架;所述容器和显微镜从上之下依次安装在支架上。
上述方案中,所述压电悬臂梁振子包括铜基底和压电材料;所述压电材料位于铜基底的上部。
上述方案中,还包括功率放大器;所述信号发生器通过功率放大器与压电悬臂梁振子连接。
进一步的,所述信号发生器输出电压幅值低于100V,输出频率低于500Hz,功率放大器的输出电压为100V~200V。
上述方案中,所述金属探针呈弯折的杆状,所述金属探针弯折的一端插入容器的流体中,弯折的角度为10°~90°;所述金属探针的直径为0.2~0.8mm;所述金属探针的自由端与容器底部不接触、且距离容器底部最大距离为20mm。
上述方案中,所述流体在容器中的液面高度为5mm—200mm。
上述方案中,还包括万向灯;所述万向灯位于容器的上方。
上述方案中,所述显微镜为倒置高速显微镜,镜头放大倍数为500~1000,显微镜与容器底部的距离为1.5mm~2mm,最高扫描速度为30帧/秒。
一种根据所述基于低频振动探针的颗粒操控装置的操控方法,包括以下步骤:
调节所述金属探针的针头位置,金属探针的下部浸没于容器中的含有微纳米颗粒的流体中,信号发生器发出信号对压电悬臂梁振子的端部进行激励,使其振动,通过压电悬臂梁振子对金属探针根部励振,使金属探针跟随压电悬臂梁振子作振动,振动的金属探针在其周围产生低速涡流,利用该涡流对流体底部的微纳米颗粒进行操控,所述显微镜位于容器的下方,显微镜与计算机连接,通过显微镜观察和采集金属探针对颗粒的操控信息,并传送给计算机。
与现有技术相比,本发明的有益效果是:
本发明利用低频振动进行微颗粒操控,基于流体的低速涡流对被控颗粒进行驱动,可实现对微纳米微颗粒的捕捉、移动、转移和释放,具有结构简单、操作方便、对被操控颗粒无选择性,对于活性颗粒或细胞的无伤操控等优点。
附图说明
图1是本发明一实施方式的基于低频振动探针的颗粒操控装置结构示意图。
图2是本发明一实施方式的聚集散落的聚苯乙烯颗粒实验过程图,其中,图2a为t=0s时刻金属探针开始工作实验图,图2b~2g分别为每隔5s金属探针聚集过程实验图,过程中聚苯乙烯颗粒渐渐向探针下方移动、聚集,图2h为t=35s时刻探针停止工作,聚集过程结束实验图。
图3是本发明一实施方式的活性酵母菌颗粒实验过程图。
图中,1、压电悬臂梁振子;2、压电材料;3、铜基底;4、金属探针;5、容器;6、显微镜;7、支架;8、计算机;9、XYZ三维可调节载物台;10、信号发生器;11、功率放大器;12、万向灯。
具体实施方式
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本发明,而不能理解为对本发明的限制。
在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“轴向”、“径向”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本发明的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
在本发明中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
图1所示为所述基于低频振动探针的颗粒操控装置的一种较佳实施方式,所述基于低频振动探针的颗粒操控装置包括至少一个压电悬臂梁振子1、至少一个金属探针4、容器5、显微镜6、计算机8和信号发生器10;所述压电悬臂梁振子1与信号发生器10连接;所述金属探针4的一端与压电悬臂梁振子1连接,另一端插入容器5内混合有微纳米颗粒的流体中,所述容器5的底部为透明材质制成的,所述显微镜6位于容器5的下方,显微镜6与计算机8连接,显微镜6用于观察和采集金属探针4对颗粒的操控信息,并将金属探针对颗粒的操控图像传送给计算机8。
根据本实施例,优选的,还包括XYZ三维可调节载物台9;所述压电悬臂梁振子1置于XYZ三维可调节载物台9上。
优选的,还包括支架7;所述容器5和显微镜6从上之下依次安装在支架7上。
优选的,所述压电悬臂梁振子1包括铜基底3和压电材料2;所述压电材料2位于铜基底3的上部。
优选的,还包括功率放大器11;所述信号发生器10通过功率放大器11与压电悬臂梁振子1连接。
优选的,所述信号发生器10输出电压幅值低于100V,输出频率低于500Hz,功率放大器11的输出电压为100V~200V。优选的,所述金属探针4呈弯折的杆状。优选的,所述金属探针4弯折的一端插入容器5的流体中,弯折的角度为10°~90°。优选的,所述金属探针4的直径为0.2~0.8mm。所述金属探针的自由端与容器底部不接触、且距离容器底部最大距离为20mm。所述流体在容器中的液面高度为5mm—200mm。基于上述参数,可以实现颗粒操控。
优选的,还包括万向灯12;所述万向灯12位于容器5的上方,万向灯12的斜向照射增大了被操控粒子与流体透光性的差异,提升了粒子对比度与区分度。
优选的,所述显微镜6为倒置高速显微镜,镜头放大倍数为500~1000,显微镜6与容器5底部的距离为1.5mm~2mm,最高扫描速度为30帧/秒。由于所述容器5中的被操控颗粒观察方式采用倒置高倍显微镜,避免了液面波动以及操控探头的遮挡造成的负面影响。
一种根据所述基于低频振动探针的颗粒操控装置的操控,包括以下步骤:
调节所述金属探针4的针头位置,金属探针4的下部浸没于容器5中的含有微纳米颗粒的流体中,信号发生器10发出信号对压电悬臂梁振子1的端部进行激励,使其振动,通过压电悬臂梁振子1对金属探针4根部励振,使金属探针4跟随压电悬臂梁振子1作振动,振动的金属探针4在其周围产生低速涡流,利用该涡流对流体底部的微纳米颗粒进行操控,所述显微镜6位于容器5的下方,显微镜6与计算机8连接,通过显微镜6观察和采集金属探针4对颗粒的操控信息,并传送给计算机8。
本发明优选的,利用XYZ三维可调节载物台9调节金属探针4的针头位置,利用功率放大器11对信号发生器10的输出信号进行放大处理,对压电悬臂梁振子1的端部进行激励,使其振动,通过压电悬臂梁振子1对粘连在另一端的金属探针4根部励振,使其跟随压电悬臂梁振子1作振动。金属探针4的下部浸没于容器5中的含有微纳米颗粒的流体中,振动的金属探针4在其周围产生低速涡流,利用该涡流对流体底部的微纳米颗粒进行聚集和移动,以及转移和释放,所述转移是指还未达到聚集的状态下从探针的一侧转移到另外一侧。为了便于对金属探针4进行实时操控,用XYZ三维可调节载物台9搭载压电悬臂梁振子1,通过XYZ三维可调节载物台9来确保金属探针4端部在显微镜6的视野范围内,调整XYZ三维可调节载物台9在Z方向运动来控制微纳米颗粒的操控效果,调整XYZ三维可调节载物台9在XY方向运动以实现对微纳米颗粒移动的控制,使得操控的效率更高。
本次用于对金属探针4进行机械励振机构的压电悬臂梁振子1由两块压电材料2压电陶瓷片夹持铜基底3所制成。用于操控的为一根均匀直径的金属探针4,优选的,探针总长90mm,分为前后两段,第一段为水平方向,连接压电悬臂梁振子1,长度为50mm,第二段长度为40mm,与水平方向夹角为45°,第二段的末端浸没于容器5中的含有微纳米颗粒的流体中。弯曲方向与压电悬臂梁振子1的能量辐射面相垂直。金属探针4直径为0.39mm,金属探针4的自由端与容器5底部不接触、且距离容器5底部距离为10mm。微纳米流体选择聚苯乙烯悬浊液用水按1:200稀释,流体在容器5中的液面高度为40mm。容器5为培养皿,直径为100mm。聚苯乙烯颗粒直径为20μm。操控颗粒时,信号发生器10的电压为5V,频率为200Hz的交流电压被功率放大器11放大到200V施加到压电悬臂梁振子1上,如图2所示,图2中a~h为操控聚苯乙烯粒子过程中利用倒置高速显微镜拍摄的微颗粒聚集试验图片。粒子从探针延伸线向探针下方聚集,金属探针4自由端的位移幅度为300μm时,聚苯乙烯颗粒在35s内被移动了7mm,并在金属探针4下方聚集堆叠区聚集。
本发明采用压电悬臂梁振子1带动金属探针4在容器5内的流体中进行低频振动,进而对容器5内的悬浮颗粒进行操控。由于本发明具有低频低压的特点,探针振动驱使流场内部产生微涡流,从而通过流体的粘滞力间接带动悬浮颗粒运动。相比于其他方式的微颗粒操控方法,本发明可大大降低被控颗粒的受损程度。
图3为操控酵母菌粒子的试验图,酵母菌粒子从金属探针4延伸线方向向探针下方聚集堆叠区聚集,已聚集的粒子在低速区停留、堆叠和旋转,正在聚集的粒子在聚集过程区向聚集堆叠区移动。
应当理解,虽然本说明书是按照各个实施例描述的,但并非每个实施例仅包含一个独立的技术方案,说明书的这种叙述方式仅仅是为清楚起见,本领域技术人员应当将说明书作为一个整体,各实施例中的技术方案也可以经适当组合,形成本领域技术人员可以理解的其他实施方式。
上文所列出的一系列的详细说明仅仅是针对本发明的可行性实施例的具体说明,它们并非用以限制本发明的保护范围,凡未脱离本发明技艺精神所作的等效实施例或变更均应包含在本发明的保护范围之内。

Claims (10)

1.一种基于低频振动探针的颗粒操控装置,其特征在于,包括至少一个压电悬臂梁振子(1)、至少一个金属探针(4)、容器(5)、显微镜(6)、计算机(8)和信号发生器(10);
所述压电悬臂梁振子(1)与信号发生器(10)连接;所述金属探针(4)的一端与压电悬臂梁振子(1)连接,另一端插入容器(5)内混合有微纳米颗粒的流体中,所述容器(5)的底部为透明材质制成的,所述显微镜(6)位于容器(5)的下方,显微镜(6)与计算机(8)连接,显微镜(6)用于观察和采集金属探针(4)对颗粒的操控信息,并传送给计算机(8)。
2.根据权利要求1所述的基于低频振动探针的颗粒操控装置,其特征在于,还包括XYZ三维可调节载物台(9);所述压电悬臂梁振子(1)置于XYZ三维可调节载物台(9)上。
3.根据权利要求1所述的基于低频振动探针的颗粒操控装置,其特征在于,还包括支架(7);所述容器(5)和显微镜(6)从上之下依次安装在支架(7)上。
4.根据权利要求1所述的基于低频振动探针的颗粒操控装置,其特征在于,所述压电悬臂梁振子(1)包括铜基底(3)和压电材料(2);所述压电材料(2)位于铜基底(3)的上部。
5.根据权利要求1所述的基于低频振动探针的颗粒操控装置,其特征在于,还包括功率放大器(11);所述信号发生器(10)通过功率放大器(11)与压电悬臂梁振子(1)连接;所述信号发生器(10)输出电压幅值低于100V,输出频率低于500Hz,功率放大器(11)的输出电压为100V~200V。
6.根据权利要求1所述的基于低频振动探针的颗粒操控装置,其特征在于,所述金属探针(4)呈弯折的杆状,所述金属探针(4)弯折的一端插入容器(5)的流体中,弯折的角度为10°~90°;所述金属探针(4)的直径为0.2~0.8mm;所述金属探针(4)的自由端与容器(5)底部不接触、且距离容器(5)底部最大距离为20mm。
7.根据权利要求1所述的基于低频振动探针的颗粒操控装置,其特征在于,所述流体在容器(5)中的液面高度为5mm—200mm。
8.根据权利要求1所述的基于低频振动探针的颗粒操控装置,其特征在于,还包括万向灯(12);所述万向灯(12)位于容器(5)的上方。
9.根据权利要求1所述的基于低频振动探针的颗粒操控装置,其特征在于,所述显微镜(6)为倒置高速显微镜,镜头放大倍数为500~1000,显微镜(6)与容器(5)底部的距离为1.5mm~2mm,最高扫描速度为30帧/秒。
10.一种根据权利要求1-9任意一项所述基于低频振动探针的颗粒操控装置的操控方法,其特征在于,包括以下步骤:
调节所述金属探针(4)的针头位置,金属探针(4)的下部浸没于容器(5)中的含有微纳米颗粒的流体中,信号发生器(10)发出信号对压电悬臂梁振子(1)的端部进行激励,使其振动,通过压电悬臂梁振子(1)对金属探针(4)根部励振,使金属探针(4)跟随压电悬臂梁振子(1)作振动,振动的金属探针(4)在其周围产生低速涡流,利用该涡流对流体底部的微纳米颗粒进行操控,所述显微镜(6)位于容器(5)的下方,显微镜(6)与计算机(8)连接,通过显微镜(6)观察和采集金属探针(4)对颗粒的操控信息,并传送给计算机(8)。
CN202111652272.6A 2021-12-30 2021-12-30 一种基于低频振动探针的颗粒操控装置和方法 Active CN114367319B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111652272.6A CN114367319B (zh) 2021-12-30 2021-12-30 一种基于低频振动探针的颗粒操控装置和方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111652272.6A CN114367319B (zh) 2021-12-30 2021-12-30 一种基于低频振动探针的颗粒操控装置和方法

Publications (2)

Publication Number Publication Date
CN114367319A true CN114367319A (zh) 2022-04-19
CN114367319B CN114367319B (zh) 2023-10-10

Family

ID=81142374

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111652272.6A Active CN114367319B (zh) 2021-12-30 2021-12-30 一种基于低频振动探针的颗粒操控装置和方法

Country Status (1)

Country Link
CN (1) CN114367319B (zh)

Citations (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001157999A (ja) * 1999-12-02 2001-06-12 Fuji Xerox Co Ltd 非接触マイクロマニュピレーション装置および方法
JP2004181538A (ja) * 2002-11-29 2004-07-02 National Institute Of Advanced Industrial & Technology 微小構造物形成方法及びその装置
JP2005190228A (ja) * 2003-12-25 2005-07-14 Kanazawa Univ アクチュエータ制御方法及びその装置並びに走査型プローブ顕微鏡
US20050223785A1 (en) * 2004-04-09 2005-10-13 Naoya Watanabe Scanning probe device and processing method by scanning probe
JP2005349496A (ja) * 2004-06-08 2005-12-22 National Univ Corp Shizuoka Univ 基板上に微小物質を堆積させる方法
JP2006205080A (ja) * 2005-01-28 2006-08-10 Moritex Corp マイクロミキサー
US20070196920A1 (en) * 2005-12-02 2007-08-23 Kabushiki Kaisha Toshiba Method and device of metamorphosing cells, and treatment apparatus using the same
US20070215804A1 (en) * 2004-04-21 2007-09-20 Japan Science And Technology Agency Quantum Beam Aided Atomic Force Microscopy and Quantum Beam Aided Atomic Force Microscope
JP2008306460A (ja) * 2007-06-07 2008-12-18 Japan Aerospace Exploration Agency 小型発振子
RU2007145732A (ru) * 2007-12-11 2009-06-20 ЗАО "Нанотехнология-МДТ" (RU) Блок управления для сканирующих зондовых микроскопов
CN101715483A (zh) * 2007-02-05 2010-05-26 微芯片生物工艺学股份有限公司 微流体和纳米流体装置、系统和应用
JP2011064060A (ja) * 2010-07-21 2011-03-31 Taruno Kazuo 日本の弱者国民救済の地震対応型の多機能発電ハウスシステム
CN102698679A (zh) * 2012-06-26 2012-10-03 南京航空航天大学 纳米物质操控方法
JP2012244349A (ja) * 2011-05-18 2012-12-10 Nippon Telegr & Teleph Corp <Ntt> 微小機械振動子とその製造方法
KR101225614B1 (ko) * 2011-08-03 2013-01-24 한전케이피에스 주식회사 진동 흡수체를 구비한 비접촉식 와전류 변위 측정기
CN102923646A (zh) * 2012-11-01 2013-02-13 南京航空航天大学 微纳米尺度物体的超声操控系统
CN102976267A (zh) * 2012-11-01 2013-03-20 南京航空航天大学 单根纳米线或纳米管低速驱动方法及其装置
CN103502424A (zh) * 2011-03-03 2014-01-08 加利福尼亚大学董事会 用于操作细胞的纳米吸管装置
US20140099240A1 (en) * 2012-10-09 2014-04-10 Kunio Misono Stirring devices
JP2014134523A (ja) * 2013-01-11 2014-07-24 Akita Univ 磁性微粒子の磁気特性評価装置および磁気特性評価方法
US20150068309A1 (en) * 2013-09-11 2015-03-12 Purdue Research Foundation System for weighing individual micro- and nano- sized particles
CN107262172A (zh) * 2017-08-03 2017-10-20 江苏大学 一种润滑油微粒分离装置的设计及制作方法
CN107694475A (zh) * 2017-09-25 2018-02-16 南京航空航天大学 一种微纳物质的环状聚集物成形装置
CN207446165U (zh) * 2017-09-25 2018-06-05 南京航空航天大学 一种微纳物质的环状聚集物成形装置
CN109469533A (zh) * 2018-11-28 2019-03-15 江苏大学 一种控制微纳米级颗粒数量的可变电压凝并装置
US20190176161A1 (en) * 2017-12-12 2019-06-13 Super Fine Ltd. Vortex mill and method of vortex milling for obtaining powder with customizable particle size distribution
JP2019151891A (ja) * 2018-03-02 2019-09-12 本多電子株式会社 金属ナノ粒子の粒径制御方法、粒径分散値制御方法、粒子形状制御方法、金属ナノ粒子の製造方法
CN110501811A (zh) * 2019-07-05 2019-11-26 江苏大学 一种压电驱动三维微定位平台
CN110961031A (zh) * 2019-11-29 2020-04-07 淮阴工学院 一种非接触式微/纳颗粒操控方法
CN111013464A (zh) * 2019-11-29 2020-04-17 淮阴工学院 一种接触式超声针快速搅拌及高效雾化方法
CN111979110A (zh) * 2020-07-08 2020-11-24 北京理工大学 一种基于多针阵列振动激励流体的微目标筛选装置

Patent Citations (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001157999A (ja) * 1999-12-02 2001-06-12 Fuji Xerox Co Ltd 非接触マイクロマニュピレーション装置および方法
JP2004181538A (ja) * 2002-11-29 2004-07-02 National Institute Of Advanced Industrial & Technology 微小構造物形成方法及びその装置
JP2005190228A (ja) * 2003-12-25 2005-07-14 Kanazawa Univ アクチュエータ制御方法及びその装置並びに走査型プローブ顕微鏡
US20050223785A1 (en) * 2004-04-09 2005-10-13 Naoya Watanabe Scanning probe device and processing method by scanning probe
US20070215804A1 (en) * 2004-04-21 2007-09-20 Japan Science And Technology Agency Quantum Beam Aided Atomic Force Microscopy and Quantum Beam Aided Atomic Force Microscope
JP2005349496A (ja) * 2004-06-08 2005-12-22 National Univ Corp Shizuoka Univ 基板上に微小物質を堆積させる方法
JP2006205080A (ja) * 2005-01-28 2006-08-10 Moritex Corp マイクロミキサー
US20070196920A1 (en) * 2005-12-02 2007-08-23 Kabushiki Kaisha Toshiba Method and device of metamorphosing cells, and treatment apparatus using the same
CN101715483A (zh) * 2007-02-05 2010-05-26 微芯片生物工艺学股份有限公司 微流体和纳米流体装置、系统和应用
JP2008306460A (ja) * 2007-06-07 2008-12-18 Japan Aerospace Exploration Agency 小型発振子
RU2007145732A (ru) * 2007-12-11 2009-06-20 ЗАО "Нанотехнология-МДТ" (RU) Блок управления для сканирующих зондовых микроскопов
JP2011064060A (ja) * 2010-07-21 2011-03-31 Taruno Kazuo 日本の弱者国民救済の地震対応型の多機能発電ハウスシステム
CN103502424A (zh) * 2011-03-03 2014-01-08 加利福尼亚大学董事会 用于操作细胞的纳米吸管装置
JP2012244349A (ja) * 2011-05-18 2012-12-10 Nippon Telegr & Teleph Corp <Ntt> 微小機械振動子とその製造方法
KR101225614B1 (ko) * 2011-08-03 2013-01-24 한전케이피에스 주식회사 진동 흡수체를 구비한 비접촉식 와전류 변위 측정기
CN102698679A (zh) * 2012-06-26 2012-10-03 南京航空航天大学 纳米物质操控方法
US20140099240A1 (en) * 2012-10-09 2014-04-10 Kunio Misono Stirring devices
CN102923646A (zh) * 2012-11-01 2013-02-13 南京航空航天大学 微纳米尺度物体的超声操控系统
CN102976267A (zh) * 2012-11-01 2013-03-20 南京航空航天大学 单根纳米线或纳米管低速驱动方法及其装置
JP2014134523A (ja) * 2013-01-11 2014-07-24 Akita Univ 磁性微粒子の磁気特性評価装置および磁気特性評価方法
US20150068309A1 (en) * 2013-09-11 2015-03-12 Purdue Research Foundation System for weighing individual micro- and nano- sized particles
CN107262172A (zh) * 2017-08-03 2017-10-20 江苏大学 一种润滑油微粒分离装置的设计及制作方法
CN207446165U (zh) * 2017-09-25 2018-06-05 南京航空航天大学 一种微纳物质的环状聚集物成形装置
CN107694475A (zh) * 2017-09-25 2018-02-16 南京航空航天大学 一种微纳物质的环状聚集物成形装置
US20190176161A1 (en) * 2017-12-12 2019-06-13 Super Fine Ltd. Vortex mill and method of vortex milling for obtaining powder with customizable particle size distribution
JP2019151891A (ja) * 2018-03-02 2019-09-12 本多電子株式会社 金属ナノ粒子の粒径制御方法、粒径分散値制御方法、粒子形状制御方法、金属ナノ粒子の製造方法
CN109469533A (zh) * 2018-11-28 2019-03-15 江苏大学 一种控制微纳米级颗粒数量的可变电压凝并装置
CN110501811A (zh) * 2019-07-05 2019-11-26 江苏大学 一种压电驱动三维微定位平台
CN110961031A (zh) * 2019-11-29 2020-04-07 淮阴工学院 一种非接触式微/纳颗粒操控方法
CN111013464A (zh) * 2019-11-29 2020-04-17 淮阴工学院 一种接触式超声针快速搅拌及高效雾化方法
CN111979110A (zh) * 2020-07-08 2020-11-24 北京理工大学 一种基于多针阵列振动激励流体的微目标筛选装置

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
HUANG JUN; YANG JINLAN; LIU JIAMING; ZHANG QUAN; WANG YUAN: "Vortex-based aggregation of micron particles in liquid using low-frequency vibration of a piezoelectric actuator", 《SMART MATERIALS AND STRUCTURES》, vol. 31, no. 10, XP020430730, DOI: 10.1088/1361-665X/ac8a2e *
SHIFANG GUO,XUYAN GUO: "Maniplation of nanodroplets via a nonuniform focused acoustic vortex", 《PHYSICAL REVIEW APPLIED》 *
刘家铭: "基于流场涡旋的压电探针操控系统研究", 《中国优秀硕士学位论文全文数据库 (工程科技Ⅱ辑)》, pages 209 - 272 *
张晓宇;王润孝;王战玺;张顺琦;秦现生;谭小群;: "基于双重积分模型抗扰控制的压电薄壁结构振动控制", 西北工业大学学报, no. 01 *
梁森等: "智能微位移主动隔振模糊PID控制系统", 《振动.测试与诊断》 *
梁森等: "智能微位移主动隔振模糊PID控制系统", 《振动.测试与诊断》, no. 01, 15 February 2017 (2017-02-15) *
王晓飞: "用于微纳物质操控的压电超声装置及分析", 《电子世界》 *
王晓飞: "用于微纳物质操控的压电超声装置及分析", 《电子世界》, no. 08, 23 April 2018 (2018-04-23) *

Also Published As

Publication number Publication date
CN114367319B (zh) 2023-10-10

Similar Documents

Publication Publication Date Title
JP5705800B2 (ja) 超音波による分析対象の凝集及びフローサイトメトリの応用
WO2019096070A1 (zh) 单个微粒包裹液滴在微流控芯片中形成并分别导出的方法
JP6892486B2 (ja) 培養方法
Castillo et al. Manipulation of biological samples using micro and nano techniques
Hammarström et al. Non-contact acoustic cell trapping in disposable glass capillaries
CN113766970B (zh) 微小物体的集聚方法以及微小物体的集聚系统
CN110961031B (zh) 一种非接触式微/纳颗粒操控方法
Araz et al. Ultrasonic separation in microfluidic capillaries
JP7220366B2 (ja) 運動制御機構、液体吐出ピペットチップ、微小液滴生成装置及び生成方法、流体駆動機構及び流体駆動方法、微小液滴生成方法並びに液体吐出ピペットチップの表面処理方法
JP2007229557A (ja) 浮遊微粒子の連続的分離方法及び装置
CN1886684A (zh) 使用全息光学俘获操纵和处理材料的系统和方法
CN114367319A (zh) 一种基于低频振动探针的颗粒操控装置和方法
Fuchiwaki et al. Multi-axial non-contact in situ micromanipulation by steady streaming around two oscillating cylinders on holonomic miniature robots
CN102976267A (zh) 单根纳米线或纳米管低速驱动方法及其装置
CN111013464B (zh) 一种接触式超声针快速搅拌及高效雾化方法
CN108998001A (zh) 一种利用光镊装置捕获磁性粒子及其制备方法
CN210111879U (zh) 一种复合型纳米马达及其制备装置
CN102923646A (zh) 微纳米尺度物体的超声操控系统
CN114193428B (zh) 基于气泡推进型的微纳超声机器人、制备方法、驱动方法
CN109706053B (zh) 一种拉曼激活液滴分选系统和方法
CN107694475B (zh) 一种微纳物质的环状聚集物成形装置
CN214439162U (zh) 一种基于声流体力学的血液分离装置
CN115624994A (zh) 一种非接触式颗粒抖动装置及方法
Iwata et al. A single-cell scraper based on an atomic force microscope for detaching a living cell from a substrate
CN103030108A (zh) 一种单根纳米线或纳米管的超声操控方法及其装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant