CN114366852A - 一种植入器械纳米涂层及其制备方法和应用 - Google Patents

一种植入器械纳米涂层及其制备方法和应用 Download PDF

Info

Publication number
CN114366852A
CN114366852A CN202210038871.7A CN202210038871A CN114366852A CN 114366852 A CN114366852 A CN 114366852A CN 202210038871 A CN202210038871 A CN 202210038871A CN 114366852 A CN114366852 A CN 114366852A
Authority
CN
China
Prior art keywords
solution
preparation
coating
nano
nanoparticle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210038871.7A
Other languages
English (en)
Other versions
CN114366852B (zh
Inventor
姜新义
张盛昌
柴啟浩
张元凯
唐春伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong University
Original Assignee
Shandong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong University filed Critical Shandong University
Priority to CN202210038871.7A priority Critical patent/CN114366852B/zh
Publication of CN114366852A publication Critical patent/CN114366852A/zh
Application granted granted Critical
Publication of CN114366852B publication Critical patent/CN114366852B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/28Materials for coating prostheses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/28Materials for coating prostheses
    • A61L27/30Inorganic materials
    • A61L27/306Other specific inorganic materials not covered by A61L27/303 - A61L27/32
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/54Biologically active materials, e.g. therapeutic substances
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/10Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices containing or releasing inorganic materials
    • A61L2300/11Peroxy compounds, peroxides, e.g. hydrogen peroxide
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/40Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a specific therapeutic activity or mode of action
    • A61L2300/404Biocides, antimicrobial agents, antiseptic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/60Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a special physical form
    • A61L2300/606Coatings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2400/00Materials characterised by their function or physical properties
    • A61L2400/12Nanosized materials, e.g. nanofibres, nanoparticles, nanowires, nanotubes; Nanostructured surfaces
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2420/00Materials or methods for coatings medical devices
    • A61L2420/02Methods for coating medical devices
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2420/00Materials or methods for coatings medical devices
    • A61L2420/04Coatings containing a composite material such as inorganic/organic, i.e. material comprising different phases
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2420/00Materials or methods for coatings medical devices
    • A61L2420/06Coatings containing a mixture of two or more compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2430/00Materials or treatment for tissue regeneration
    • A61L2430/02Materials or treatment for tissue regeneration for reconstruction of bones; weight-bearing implants

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Dermatology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • Epidemiology (AREA)
  • Public Health (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Inorganic Chemistry (AREA)
  • Materials For Medical Uses (AREA)
  • Prostheses (AREA)

Abstract

本发明涉及一种多酚表面功能化纳米粒、植入器械纳米涂层及其制备方法和应用,所述纳米涂层由多酚表面功能化纳米粒与金属离子配位所得,所述纳米粒为单宁酸表面包裹CaO2,所述纳米涂层能够响应裂解于感染衍生的酸性环境,避免了CaO2过早的遇水反应,该纳米涂层能够以非抗生素的方式杀菌,促进骨分化。

Description

一种植入器械纳米涂层及其制备方法和应用
技术领域
本发明涉及骨科人工假体技术领域,具体涉及一种多酚表面功能化纳米粒、植入器械纳米涂层及其制备方法和应用。
背景技术
公开该背景技术部分的信息仅仅旨在增加对本发明的总体背景的理解,而不必然被视为承认或以任何形式暗示该信息构成已经成为本领域一般技术人员所公知的现有技术。
假体周围感染是人工关节置换术后的严重并发症,可导致手术失败、患者残疾甚至死亡。同时细菌(主要由金黄色葡萄球菌引起,尤其是耐甲氧西林金黄色葡萄球菌)所产生的微环境也会抑制假体表面的骨整合。目前,抗生素是预防假体周围感染的首选治疗方法,但由于抗生素的广泛使用,耐药菌的发生率逐年上升。过氧化钙(CaO2)遇水可产生活性氧(ROS)和钙离子,可作为一种非抗生素预防方案,是一种抗菌和成骨的理想材料,但其存在过早遇水反应的问题,这一点是其早期预防假体周围感染的主要障碍。
因此,研究一种能够避免过早遇水反应,且能够有效解决假体周围感染的非抗生素物质具有意义。
发明内容
为了克服上述问题,本发明设计了一种多酚表面功能化纳米粒,其制备的骨科植入器械表面纳米涂层能够响应裂解于感染衍生的酸性环境,避免了CaO2过早的遇水反应,该纳米涂层能够以非抗生素的方式杀菌,促进骨分化。
基于上述研究成果,本公开提供以下技术方案:
本公开第一方面,提供一种多酚表面功能化纳米粒,所述纳米粒为单宁酸(TA)表面包裹CaO2
本公开第二方面,提供一种多酚表面功能化纳米粒(CaO2-TA)的制备方法,将TA和CaO2纳米粒在溶液中混合均匀后离心得到。
本公开第三方面,提供一种植入器械纳米涂层,所述植入器械纳米涂层为植入器械表面负载CaO2-TA纳米粒与金属离子。
本公开第四方面,提供一种植入器械纳米涂层的制备方法,包括:将植入器械浸泡在CaO2-TA纳米粒溶液中,随后加入金属离子溶液反应。
本公开第五方面,提供上述多酚表面功能化纳米粒或植入器械纳米涂层在制备人工植入器械中的应用。
本公开第六方面,提供上述多酚表面功能化纳米粒或植入器械纳米涂层在制备骨科假体中的应用。
本公开一个或多个具体实施方式至少取得了以下技术效果:
(1)本发明所述多酚表面功能化纳米粒,由天然多酚单宁酸表面包裹过氧化钙纳米粒形成,其具有强大黏附功能,为后续指导在植入器械表面形成纳米涂层奠定了良好基础。具体为,可通过界面分子相互作用和金属离子的颗粒锁定作用指导形成纳米涂层,该涂层在正常环境中稳定,在酸性环境中裂解,具有pH响应特性,因此可避免CaO2过早的遇水反应。
本发明所述单宁酸具有两个作用:一是可避免CaO2纳米粒过早的遇水分解,二是可以利用多酚的黏附功能,作为制备植入器械表面纳米涂层的手段之一。
(2)本发明以多酚表面功能化纳米粒为基础,提出了一种全新的植入器械表面涂层,抗菌实验、促成骨分化实验结果表明该纳米涂层不仅能够有效地自产生活性氧,以非抗生素的方式杀菌,具有较好的体内杀菌能力,还能促进成骨分化,为构建兼具抗感染及促进骨整合功能的假体提供了新的方法,解决目前骨科假体植入体内面临的感染问题,在医学生物技术领域有广阔的应用价值。
(3)本发明所述材料安全易得,适用性强。
附图说明
构成本公开的一部分的说明书附图用来提供对本公开的进一步理解,本公开的示意性实施例及其说明用于解释本公开,并不构成对本公开的不当限定。
图1为实施例1制备的多酚表面功能化的纳米粒(CaO2-TA)的TEM图像;
图2为实施例2制备的植入器械纳米涂层(MPN@Ti)的SEM图像和主要元素定位图;
图3为实施例2制备的植入器械纳米涂层(MPN@Ti)的XPS图谱;
图4为实施例3中植入器械纳米涂层(MPN@Ti)的体外抑菌性能检测;
图5为实施例3中DCFH-DA染色的MRSA的CLSM图像,表征ROS的产生;
图6为实施例4中植入器械纳米涂层(MPN@Ti)的体外促成骨分化实验,BMSC细胞成骨相关基因表达的RT-qPCR分析示意图;
图7为实施例5中植入器械纳米涂层(MPN@Ti)的体内抗菌的骨组织学分析;
图8为实施例6中植入器械纳米涂层(MPN@Ti)的体内成骨实验Micro-CT结果。
具体实施方式
应该指出,以下详细说明都是例示性的,旨在对本公开提供进一步的说明。除非另有指明,本文使用的所有技术和科学术语具有与本公开所属技术领域的普通技术人员通常理解的相同含义。
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本公开的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作、器件、组件和/或它们的组合。
正如背景技术所介绍的,现有技术中的非抗生素物质无法在保证假体周围感染的同时,有效避免过早遇水反应,不利于早期预防假体周围感染。因此,本公开提出了一种多酚表面功能化纳米粒,其制备的纳米涂层能够响应裂解于感染衍生的酸性环境,避免了CaO2过早的遇水反应,该纳米涂层能够以非抗生素的方式杀菌,促进骨分化。
本公开第一方面,提供一种多酚表面功能化纳米粒,所述纳米粒为单宁酸(TA)表面包裹CaO2,所述纳米粒的粒径为150nm-170nm。
本公开第二方面,提供一种多酚表面功能化纳米粒(CaO2-TA)的制备方法,将TA和CaO2纳米粒在溶液中混合均匀后离心得到,所述溶液优选为乙醇溶液。
在一种典型实施方式中,所述制备过程具体包括:在氯化钙和聚乙烯吡咯烷酮的溶液中加入氨水和过氧化氢溶液,得到淡蓝色乳白色溶液,随后将单宁酸溶液加入上述溶液中,得到浅棕色溶液,离心、洗涤后得到多酚表面功能化纳米粒。
在一种典型实施方式中,所述氯化钙和聚乙烯吡咯烷酮的质量比为1:(2-4),所述氨水和过氧化氢的浓度比为1:(1-2),体积比为1:(0.15-0.2),所述单宁酸的浓度为20-26mM,体积为8-12μL,优选为浓度为24mM,体积为10μL。
进一步,所述氯化钙和聚乙烯吡咯烷酮溶液中,溶剂为无水乙醇,其溶解效果好;优选的,在磁力搅拌状态下加入氨水和过氧化氢溶液;优选的,所述搅拌时间为5~20min,优选为10min;所述离心转速为8000rpm~12000rpm,离心时间为5~10min;优选的,所述洗涤过程为用无水乙醇洗涤2~5次。
进一步,加入氨水中利用注射器泵加入过氧化氢,加入速率为0.02-0.06mL/min,以稳定控制CaO2纳米粒的生成以及其大小于130nm-150nm。
进一步,所述制备得到的多酚表面功能化纳米粒在3-6℃下保存,优选为4℃,有利于保持良好的黏附性,进而可以与金属离子具有高结合亲和力及配位性。
本公开第三方面,提供一种植入器械纳米涂层,所述植入器械纳米涂层为植入器械表面负载CaO2-TA纳米粒与金属离子。优选的,所述植入器械的材质为钛、钛合金、铌、铌合金或者不锈钢,优选为钛植入器械,其纯度高、耐腐蚀性好、人体亲和性优良,进一步,所述金属离子为铜离子、铁离子或锌离子,优选为铜离子。
本公开第四方面,提供一种植入器械纳米涂层的制备方法,包括:将植入器械浸泡在CaO2-TA纳米粒溶液中,随后加入金属离子溶液反应。
优选的,所述溶液为无水乙醇,在搅拌后加入金属离子,反应时间为10-14小时;搅拌时间为8~16小时,优选为12小时;
优选的,所述金属离子溶液为铜离子溶液,优选为CuCl2;所述金属离子溶液的浓度为0.02mol/L-0.03mol/L,所述CaO2-TA纳米粒溶液浓度为0.03mol/L-0.04mol/L。
优选的,所述制备方法还包括反应完成后取出植入器械,洗涤干燥的过程;进一步,乙醇清洗次数为2~5次,优选为3次;
优选的,植入器械在浸泡之前需要进行净化处理,具体为先在丙酮、乙二醇和超纯水的超声作用下进行清洗,随后在乙醇溶液中浸泡。
本公开第五方面,提供上述多酚表面功能化纳米粒或植入器械纳米涂层在制备人工植入器械中的应用,优选为在制备抗菌、促骨整合人工植入器械中的应用。
本公开第六方面,提供上述多酚表面功能化纳米粒或植入器械纳米涂层在制备骨科假体中的应用,优选为在制备抗菌、促骨整合骨科假体中的应用。
为了使得本领域技术人员能够更加清楚地了解本公开的技术方案,以下将结合具体的实施例与对比例详细说明本公开的技术方案。
实施例1:多酚表面功能化纳米粒的合成
将0.1g CaCl2和0.35g PVP通过超声溶解于15mL无水乙醇中,加入1mL NH4OH(0.8M),并用注射器泵以0.05mL/min的速度加入0.2mL H2O2(1M)溶液,搅拌10分钟,得到淡蓝色乳白色溶液。随后,将10μL TA溶液(24mM)加入到上述分散体系中。通过离心(10000rpm×5min)收集获得的多酚表面功能化的纳米粒,并用无水乙醇洗涤3次。将制备的多酚表面功能化的纳米粒在4℃下保存。通过TEM检测多酚表面功能化的纳米粒的形态,如图1所示,从中可以看出,制备得到的纳米粒形貌规整,呈球形,粒径大约为200nm。
实施例2:植入器械纳米涂层的合成
首先将购自江苏拜尔斯公司的钛片(Ti,Φ10×2mm)和钛螺钉(Ti,Φ2×6mm)依次经丙酮(≥99.5%)、乙二醇(≥99.5%)、超纯水在超声作用下清洗15min。然后,将净化后的钛片和钛螺钉在浓度为35mM的CaO2-TA纳米粒乙醇溶液中浸泡,并加入浓度为24mM的Cu2+搅拌12h制备金属多酚网络MPN涂层(MPN@Ti),用乙醇洗涤3次后,放入烘箱烘干备用。通过SEM获得MPN@Ti的表面形貌和表面元素分布(图2),通过XPS分析MPN@Ti与Ti的元素变化情况(图3)。
从图2和图3中可以看出,制备得到的MPN@Ti涂层具有均匀分布的形貌结构,其负载在钛植入器械表面,元素含有C、Ca、Cu和O元素,说明实现了MPN@Ti涂层的成功制备。
实施例3:植入器械纳米涂层(MPN@Ti)的体外抑菌实验
采用耐甲氧西林金黄色葡萄球菌(MRSA,ATCC43300)作为实验细菌,将耐甲氧西林金黄色葡萄球菌(MRSA,ATCC43300)菌液(约1×106CFU/mL)按每孔100μL分别接种于Ti/TA@Ti/CaO2-TA@Ti/MPN@Ti四组样品上,放置于37℃,恒湿的环境下静态培养8h,采用平板法评价各样品的抑菌能力,如图4所示,MPN@Ti组细菌菌落最少,说明MPN@Ti具有较好的抗菌能力。另外,取2mL菌悬液(1×106CFU/mL)分别与Ti/TA@Ti/CaO2-TA@Ti/MPN@Ti四组样品共孵育1h。然后,用ROS敏感探针2’,7’-二氯荧光素二乙酸酯(DCFH-DA,10μM)对4个样品进行染色30分钟,通过CLSM观察ROS的各组生成情况,如图5所示,MPN@Ti组ROS绿色荧光强度明显强于其他组,说明MPN@Ti组具有较好的ROS生成能力,进而能够消灭植入器械周围的耐甲氧西林金黄色葡萄球菌感染。
实施例4:植入器械纳米涂层(MPN@Ti)的体外促成骨分化实验
本研究应用骨髓间充质干细胞(BMSC)作为实验细胞,但不仅限于BMSC,其他种属的各类细胞均适用于本研究。
将Ti/TA@Ti/CaO2-TA@Ti/MPN@Ti四组样品置于24孔板中,每孔分别加入0.5mLBMSCs细胞悬液(5×104cells cm–2)共培养7天。随后,用RNA提取试剂盒提取总RNA,用PrimeScript RT Master Mix反转录至互补DNA。RT-PCR检测采用Bio-Rad RT-PCR系统。检测BMSCs中OCN、RUNX2、ALP、COL-I成骨相关基因表达水平。引物序列见表1,以Actin作为内部参考系。如图6所示,MPN@Ti组各项成骨基因均高表达于其他组,说明MPN@Ti具有较好的促成骨分化能力。
表1
Figure BDA0003469397960000061
实施例5:植入器械纳米涂层(MPN@Ti)的体内抗菌实验
选取250-300g的成年雄性SD大鼠,腹腔注射戊巴比妥[30mg/kg,1%(w/w)]麻醉,并随机分为四组。备皮,暴露股骨,使用直径2mm的钻头穿过骨髓腔准备螺钉孔。将10μL金黄色葡萄球菌(1×105CFU/mL)小心缓慢地注入孔内,建立感染模型。为防止细菌悬浮液从注射轨迹泄漏,30s后将注射器取出。最后放置Ti/TA@Ti/CaO2-TA@Ti/MPN@Ti四组螺钉,尽快逐层缝合组织。术后2周对大鼠实施安乐死,标本进行HE和Gram染色,如图7所示,HE染色显示MPN@Ti组炎性细胞浸润较其他组明显减少,Gram染色显示MPN@Ti组几乎没有残存细菌,说明MPN@Ti组具有较好的体内抗菌能力。
实施例6:植入器械纳米涂层(MPN@Ti)的体内成骨实验
动物手术过程同实施例5。术后4周对大鼠实施安乐死,标本进行Micro-CT检测。如图8所示,MPN@Ti组螺钉周围新生骨组织明显多于其他组,说明MPN@Ti组具有较好的体内促骨整合能力。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,尽管参照前述实施例对本发明进行了详细的说明,对于本领域的技术人员来说,其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

1.一种多酚表面功能化纳米粒,其特征在于,所述纳米粒为单宁酸表面包裹CaO2,进一步,所述纳米粒的粒径为150nm-170nm。
2.一种多酚表面功能化纳米粒的制备方法,其特征在于,将单宁酸和CaO2纳米粒在溶液中混合均匀后离心得到,所述溶液优选为乙醇溶液。
3.根据权利要求2所述的制备方法,其特征在于,所述制备过程具体包括:在氯化钙和聚乙烯吡咯烷酮的溶液中加入氨水和过氧化氢溶液,得到淡蓝色乳白色溶液,随后将单宁酸溶液加入上述溶液中,得到浅棕色溶液,离心、洗涤后得到多酚表面功能化纳米粒。
4.根据权利要求3所述的制备方法,其特征在于,所述氯化钙和聚乙烯吡咯烷酮溶液中,溶剂为无水乙醇;优选的,在磁力搅拌状态下加入氨水和过氧化氢溶液;优选的,所述搅拌时间为5~20min,优选为10min;所述离心转速为8000rpm~12000rpm,离心时间为5~10min;优选的,所述洗涤过程为用无水乙醇洗涤2~5次;进一步,加入氨水中利用注射器泵加入过氧化氢,加入速率为0.02-0.06mL/min,进一步,所述制备得到的多酚表面功能化纳米粒在3-6℃下保存,优选为4℃。
5.一种植入器械纳米涂层,其特征在于,所述植入器械纳米涂层为植入器械表面负载CaO2-TA纳米粒与金属离子;优选的,所述植入器械的材质为钛、钛合金、铌、铌合金或者不锈钢,优选为钛植入器械;进一步,所述金属离子为铜离子、铁离子或镁离子,优选为铜离子。
6.一种植入器械纳米涂层的制备方法,其特征在于,包括:将植入器械浸泡在CaO2-TA纳米粒溶液中,随后加入金属离子溶液反应。
7.根据权利要求6所述的制备方法,其特征在于,所述溶液为无水乙醇,在搅拌后加入金属离子,反应时间为10-14小时;搅拌时间为8~16小时,优选为12小时;优选的,所述金属离子溶液为铜离子溶液,优选为CuCl2;优选的,所述制备方法还包括反应完成后取出植入器械,洗涤干燥的过程。
8.根据权利要求6所述的制备方法,其特征在于,植入器械在浸泡之前需要进行净化处理,具体为先在丙酮、乙二醇和超纯水的超声作用下进行清洗,随后在乙醇溶液中浸泡。
9.权利要求1所述多酚表面功能化纳米粒或权利要求5所述植入器械纳米涂层在制备人工植入器械中的应用,优选为在制备抗菌、促骨整合人工植入器械中的应用。
10.权利要求1所述多酚表面功能化纳米粒或权利要求5所述植入器械纳米涂层在制备骨科假体中的应用,优选为在制备抗菌、促骨整合骨科假体中的应用。
CN202210038871.7A 2022-01-13 2022-01-13 一种植入器械纳米涂层及其制备方法和应用 Active CN114366852B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210038871.7A CN114366852B (zh) 2022-01-13 2022-01-13 一种植入器械纳米涂层及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210038871.7A CN114366852B (zh) 2022-01-13 2022-01-13 一种植入器械纳米涂层及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN114366852A true CN114366852A (zh) 2022-04-19
CN114366852B CN114366852B (zh) 2023-03-03

Family

ID=81144473

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210038871.7A Active CN114366852B (zh) 2022-01-13 2022-01-13 一种植入器械纳米涂层及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN114366852B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115957385A (zh) * 2022-12-12 2023-04-14 西北工业大学 一种金属多酚网络偶联抗菌肽的多功能涂层的制备方法及其应用

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2695600A1 (en) * 2007-08-08 2009-02-12 Coll Partners Ltd. Reshapable device for fixation at a dental site
WO2010018418A1 (en) * 2008-08-12 2010-02-18 Novatech D.O.O. Formulation based on micronized clinoptilolite as therapeutic agent providing highly bioavailable silicon
WO2010056899A1 (en) * 2008-11-12 2010-05-20 The Trustees Of The University Of Pennsylvania Biomaterials for tissue replacement
US8512762B2 (en) * 2008-12-18 2013-08-20 Heraeus Gmbh Sporicidal compositions and use thereof
JP2014114291A (ja) * 2013-12-13 2014-06-26 Showa Denko Kk 化粧料または皮膚外用剤
WO2015054125A1 (en) * 2013-10-08 2015-04-16 Trustees Of Tufts College Tunable covalently crosslinked hydrogels and methods of making the same
WO2015127063A1 (en) * 2014-02-19 2015-08-27 Wikifoods, Inc. Encapsulated soft food compositions and methods of making
JP2016222612A (ja) * 2015-06-01 2016-12-28 昭和電工株式会社 化粧料または皮膚外用剤
CN110343352A (zh) * 2019-07-24 2019-10-18 天津大学 基于过氧化钙/聚合物产氧粒子的双交联水凝胶及其制备方法
US11124897B1 (en) * 2020-09-17 2021-09-21 King Abdulaziz University Biodegradable core-shell fibrous scaffolds for controlled oxygen and drug release
CN113577276A (zh) * 2021-08-02 2021-11-02 浙江理工大学 一种离子掺杂聚多巴胺包覆过氧化钙复合纳米粒子及其制备方法与应用
CN113736102A (zh) * 2021-09-07 2021-12-03 西南交通大学 适用于高原医学诊疗的一体化水凝胶的制备及其应用
CN113908332A (zh) * 2021-11-15 2022-01-11 中国科学院深圳先进技术研究院 金属过氧化物复合可注射水凝胶及其制备方法和应用

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2695600A1 (en) * 2007-08-08 2009-02-12 Coll Partners Ltd. Reshapable device for fixation at a dental site
WO2010018418A1 (en) * 2008-08-12 2010-02-18 Novatech D.O.O. Formulation based on micronized clinoptilolite as therapeutic agent providing highly bioavailable silicon
WO2010056899A1 (en) * 2008-11-12 2010-05-20 The Trustees Of The University Of Pennsylvania Biomaterials for tissue replacement
US8512762B2 (en) * 2008-12-18 2013-08-20 Heraeus Gmbh Sporicidal compositions and use thereof
WO2015054125A1 (en) * 2013-10-08 2015-04-16 Trustees Of Tufts College Tunable covalently crosslinked hydrogels and methods of making the same
JP2014114291A (ja) * 2013-12-13 2014-06-26 Showa Denko Kk 化粧料または皮膚外用剤
WO2015127063A1 (en) * 2014-02-19 2015-08-27 Wikifoods, Inc. Encapsulated soft food compositions and methods of making
JP2016222612A (ja) * 2015-06-01 2016-12-28 昭和電工株式会社 化粧料または皮膚外用剤
CN110343352A (zh) * 2019-07-24 2019-10-18 天津大学 基于过氧化钙/聚合物产氧粒子的双交联水凝胶及其制备方法
US11124897B1 (en) * 2020-09-17 2021-09-21 King Abdulaziz University Biodegradable core-shell fibrous scaffolds for controlled oxygen and drug release
CN113577276A (zh) * 2021-08-02 2021-11-02 浙江理工大学 一种离子掺杂聚多巴胺包覆过氧化钙复合纳米粒子及其制备方法与应用
CN113736102A (zh) * 2021-09-07 2021-12-03 西南交通大学 适用于高原医学诊疗的一体化水凝胶的制备及其应用
CN113908332A (zh) * 2021-11-15 2022-01-11 中国科学院深圳先进技术研究院 金属过氧化物复合可注射水凝胶及其制备方法和应用

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
FEI CHEN等: "A CaO2@Tannic Acid-FeIII Nanoconjugate for Enhanced Chemodynamic Tumor Therapy", 《CHEMMEDCHEM》 *
HE, Y等: "Calcium PeroxideNanoparticles-Embedded Coatings on Anti-Inflammatory TiO2 Nanotubes for Bacteria Elimination and Inflammatory Environment Amelioration", 《SMALL》 *
JIA, CY等: ""Chemodynamic Therapy via Fenton and Fenton-Like Nanomaterials: Strategies and Recent Advances"", 《SMALL》 *
LEE, JY: "Design of a 3D BMP-2-Delivering Tannylated PCL Scaffold and Its Anti-Oxidant, Anti-Inflammatory, and Osteogenic Effects In Vitro", 《 INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES》 *
PARK, JS等: "Facile Fabrication of Oxygen-Releasing Tannylated Calcium Peroxide Nanoparticles", 《 MATERIALS 》 *
XU, K等: ""Metal-phenolic networks as a promising platform for pH-controlled release of bioactive divalent metal ions"", 《 APPLIED SURFACE SCIENCE》 *
ZHANG, SC 等: "Bioinspired nano-painting on orthopedic implants orchestrates periprosthetic anti-infection and osseointegration in a rat model of arthroplasty", 《CHEMICAL ENGINEERING JOURNAL》 *
殷雪妍等: "过氧化钙去除水中糖皮质激素的响应面分析", 《中国环境科学》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115957385A (zh) * 2022-12-12 2023-04-14 西北工业大学 一种金属多酚网络偶联抗菌肽的多功能涂层的制备方法及其应用

Also Published As

Publication number Publication date
CN114366852B (zh) 2023-03-03

Similar Documents

Publication Publication Date Title
Tao et al. Surface modification of titanium implants by ZIF-8@ Levo/LBL coating for inhibition of bacterial-associated infection and enhancement of in vivo osseointegration
Yan et al. pH-responsive silk fibroin-based CuO/Ag micro/nano coating endows polyetheretherketone with synergistic antibacterial ability, osteogenesis, and angiogenesis
Yang et al. Covalent grafting of hyperbranched poly-L-lysine on Ti-based implants achieves dual functions of antibacteria and promoted osteointegration in vivo
CN113318272B (zh) 基于纳米酶药物修饰的骨植入材料及其制备方法和应用
Li et al. Enhanced osseointegration and antibacterial action of zinc‐loaded titania‐nanotube‐coated titanium substrates: In vitro and in vivo studies
Liu et al. Selenium nanoparticles incorporated into titania nanotubes inhibit bacterial growth and macrophage proliferation
Brooks et al. Magnesium alloy AZ91 exhibits antimicrobial properties in vitro but not in vivo
US20210220520A1 (en) Preparation method of biomedical titanium implant with function of eliminating surface biomembrane
Wu et al. Facile polyphenol–europium assembly enabled functional poly (l‐lactic acid) nanofiber mats with enhanced antioxidation and angiogenesis for accelerated wound healing
CN113827771B (zh) 医用金属表面负载银多酚纳米复合抗菌颗粒的制备方法
Zhou et al. Based on the synergistic effect of Mg 2+ and antibacterial peptides to improve the corrosion resistance, antibacterial ability and osteogenic activity of magnesium-based degradable metals
CN106606801B (zh) 一种Zn-ZnO系锌合金及其制备方法与应用
CN114366852B (zh) 一种植入器械纳米涂层及其制备方法和应用
Tan et al. Tailoring time-varying alkaline microenvironment on titanium for sequential anti-infection and osseointegration
Piarali et al. Activated polyhydroxyalkanoate meshes prevent bacterial adhesion and biofilm development in regenerative medicine applications
Yan et al. Polyetheretherketone with citrate potentiated influx of copper boosts osteogenesis, angiogenesis, and bacteria-triggered antibacterial abilities
Xu et al. Near-infrared light triggered multi-mode synergetic therapy for improving antibacterial and osteogenic activity of titanium implants
CN107198794B (zh) 具有活性离子释放功能的天然高分子生物活性创伤修复材料及其制备方法
Yang et al. Graphene oxide/gallium nanoderivative as a multifunctional modulator of osteoblastogenesis and osteoclastogenesis for the synergistic therapy of implant-related bone infection
Wang et al. Multifunctionalized carbon-fiber-reinforced polyetheretherketone implant for rapid osseointegration under infected environment
Zhou et al. Surface configuration of microarc oxidized Ti with regionally loaded chitosan hydrogel containing ciprofloxacin for improving biological performance
Xu et al. Copper Ion‐Modified germanium phosphorus nanosheets integrated with an electroactive and biodegradable hydrogel for Neuro‐Vascularized bone regeneration
Xue et al. BSA-lysozyme coated NaCa2HSi3O9 nanorods on titanium for cytocompatibility and antibacterial activity
Zhang et al. Copper-containing chitosan-based hydrogels enabled 3D-printed scaffolds to accelerate bone repair and eliminate MRSA-related infection
Dong et al. Bioactive mesoporous silica nanoparticle-functionalized titanium implants with controllable antimicrobial peptide release potentiate the regulation of inflammation and osseointegration

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant