CN114363262B - 一种空天地一体化网络下的混沌动态拥塞预测系统及方法 - Google Patents

一种空天地一体化网络下的混沌动态拥塞预测系统及方法 Download PDF

Info

Publication number
CN114363262B
CN114363262B CN202210010889.6A CN202210010889A CN114363262B CN 114363262 B CN114363262 B CN 114363262B CN 202210010889 A CN202210010889 A CN 202210010889A CN 114363262 B CN114363262 B CN 114363262B
Authority
CN
China
Prior art keywords
sequence
congestion
prediction
neural network
data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210010889.6A
Other languages
English (en)
Other versions
CN114363262A (zh
Inventor
曲桦
赵季红
魏常钰
孟颖
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian Jiaotong University
Original Assignee
Xian Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Jiaotong University filed Critical Xian Jiaotong University
Priority to CN202210010889.6A priority Critical patent/CN114363262B/zh
Publication of CN114363262A publication Critical patent/CN114363262A/zh
Application granted granted Critical
Publication of CN114363262B publication Critical patent/CN114363262B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

本发明属于网络流量预测技术领域,涉及一种空天地一体化网络下的混沌动态拥塞预测方法,包括以下步骤:获取链路与节点的状态数据,作为原始序列数据;对原始序列数据进行归一化处理,得到处理后的拥塞序列;将拥塞序列通过小波分析分解为若干低频序列和若干高频序列;利用粒子群算法对GRU神经网络预测模型进行优化,得到最优GRU神经网络参数;使用优化后的GRU神经网络预测模型对各个低频序列和高频序列进行拥塞预测,得到各序列的拥塞预测结果;将各序列的拥塞预测结果重构得到完整的拥塞预测序列,作为最终的预测结果。将小波分析与流量预测方法相结合,采用混沌动态拥塞预测方法,收敛速度快,能快速迭代,提高了拥塞预测的精度。

Description

一种空天地一体化网络下的混沌动态拥塞预测系统及方法
技术领域
本发明属于网络流量预测技术领域,特别涉及一种空天地一体化网络下的混沌动态拥塞预测系统及方法。
背景技术
与传统网络环境相比,空天地一体化网络环境存在着较大的差异。空天地一体化网络的动态性及异构性给网络拥塞预测带来了挑战。
网络拥塞预测的本质是对其时间序列进行预测,空天地一体化网络的拥塞预测满足时间序列的趋势性、周期性和不规则性。
传统的时间序列模型有移动平均模型(Moving Average,MA)、自回归模型(AutoRegressive,AR)、自回归移动平均模型(Auto Regressive Moving Average,ARMA)。ARMA模型适用于平稳时间序列,在ARMA模型中加入差分方法形成ARIMA模型使其适用于非平稳的时间序列。Chen[1]利用ARIMA方法建立预测模型。然而,传统的时间序列预测方法依赖于参数的选择,人工参数设定对预测模型的精度有很大的影响,因此将机器学习方法引入时间序列预测领域。
时间序列数据预测工作本质上与机器学习方法分类中的回归分析之间存在着紧密的联系。经典的支持向量机SVM、贝叶斯网络BN等在时间序列预测方面均取得了不错的效果。早期的人工神经网络ANN也被用来获取时间序列中长期的趋势。随着深度学习的崛起,其也成为了实现时间序列预测的有效工具。Mellit使用支持向量机SVM建立时间序列预测模型对气象领域的时间序列数据进行预测。使用深度学习中的CNN与RNN建立时间序列预测模型。分别建立卷积神经网络时间序列预测架构与循环神经网络的时间序列预测架构,由于RNN经常在训练中出现梯度消失问题,因此采用LSTM来解决梯度消失问题,设计出基于LSTM的时间序列预测框架。
在网络通信领域,深度学习也是目前对时间序列进行预测的有效方法。在地面网络中,将深度学习应用于移动通信技术中业务的预测,设计了基于LSTM的时间序列预测模型,并对其进行仿真实验,证明其可行性。在卫星网络中,基于LSTM神经网络设计LEO卫星网络的网络拥塞预测模型,预测网络拥塞程度。综合分析LEO低轨卫星网络TCP协议的时效性及计算资源有限等方面,采用单层LSTM网络结构。在保证在基预测结果的前提下,尽可能的减少参数寻优和网络训练的时间。LSTM神经网络能较好地处理大时间尺度数据,但收敛速度慢,参数无法直接确定,容易陷入局部最优。
综上所述,现有的神经网络模型均难以满足实际的网络拥塞预测需求。
发明内容
本发明的目的在于提供一种空天地一体化网络下的混沌动态拥塞预测系统及方法,解决了传统神经网络模型均难以满足实际的网络拥塞预测需求的问题。
本发明是通过以下技术方案来实现:
一种空天地一体化网络下的混沌动态拥塞预测方法,包括以下步骤:
步骤一、获取链路与节点的状态数据,作为原始序列数据;
步骤二、对原始序列数据进行归一化处理,得到处理后的拥塞序列;
步骤三、将处理后的拥塞序列通过小波分析分解为若干低频序列和若干高频序列;
步骤四、利用粒子群算法对GRU神经网络预测模型进行优化,得到最优GRU神经网络参数;
步骤五、使用优化后的GRU神经网络预测模型对各个低频序列和高频序列进行拥塞预测,得到各序列的拥塞预测结果;
步骤六、将各序列的拥塞预测结果重构得到完整的拥塞预测序列,作为最终的预测结果。
进一步,步骤二中,数据归一化的计算公式为:
其中,zi表示归一化后的数据,xi表示待归一化的数据,xmin表示原始序列数据的最小值,xmax表示原始序列数据的最大值。
进一步,将处理后的拥塞序列视为信号,对序列进行db3小波分析,具体为:
令拥塞时间序列X分解为近似序列a3和细节序列d1、d2、d3,则针对拥塞时间序列信号,f(X)可分解为:
f(X)=a3+d3+d2+d1
进一步,步骤四中,使用粒子群算法优化GRU神经网络预测模型,具体包括以下步骤:
S4.1、设置粒子群算法参数,初始化GRU神经网络预测模型参数,初始化各个粒子的适应度;
S4.2、采用适应度函数对粒子位置的优劣进行评价,将每个粒子的位置与当前个体最优位置和粒子群最优位置分别进行比较,如果粒子当前位置优于个体最优位置,就用粒子位置替换当前个体最优位置和粒子群最优位置,使得粒子群朝着参数最优组合方向搜索;
若当前粒子位置没有达到最优,则再一次进行迭代;
如果迭代次数超过最初设置的最大迭代次数,则根据粒子群的最优位置向量得到GRU神经网络的最优参数,否则继续迭代,寻找最优的粒子位置。
进一步,S4.2中,所述适应度函数如下:
其中,表示样本预测值,yi表示样本实际值,N表示样本数量。
进一步,粒子群算法的基本迭代式为:
vi,k=pvi,k+c1r1(xbest,i,k-xi,k)+c2r2(pbest,i,k-xi,k);
xi,k+1=xi,k+vi,k
其中,vi,k为第k次迭代时第i个粒子的速度;p为惯性权重;c1,c2为学习因子;r1、r2为0到1之间的随机数;xbest,i,k为第k次迭代时第i个粒子经历过的最优位置;xi,k为第k次迭代时第i个粒子的位置;pbest,i,k为第k次迭代时全部粒子经历过的最优位置。
进一步,第四步中的GRU神经网络预测模型为:
y=σ(wyht);
其中,y为网络的输出,wy为隐含层到输入层的权值,ht为GRU神经网络中当前时刻隐含层状态;
当前时刻隐含层状态为上一时刻隐含层状态与当前隐含层激活状态的和,表达式为:
其中,zt为更新门,ht-1为上一时刻隐含层状态,为当前隐含层激活状态。
进一步,重置门rt和更新门zt为当前时刻输入数据与上一时刻隐含层状态的组合,表达式为:
rt=σ(wrxt+urht-1);
zt=σ(wzxt+uzht-1);
其中,σ为sigmoid函数,将rt和zt限制在0和1之间;wr、ur、wz、uz为神经网络权值;xt为当前时刻输入数据;
当前时刻隐含层的激活状态的计算过程为:上一时刻隐含层数据经过重置门处理以后与当前的输入xt相结合并通过Tanh激活函数可以得到当前时刻隐含层的激活状态,即:
nz=wxt+u(rt⊙ht-1);
其中,⊙表示Hadmard积运算;w、u为GRU神经网络权值。
本发明还公开了一种空天地一体化网络下的混沌动态拥塞预测系统,包括:
数据获取模块,用于获取链路与节点的状态数据,作为原始序列数据;
数据预处理模块,用于对原始序列数据进行归一化处理,得到处理后的拥塞序列;
小波分解模块,用于将处理后的拥塞序列通过小波分析分解为若干低频序列和若干高频序列;
粒子群优化模块,用于利用粒子群算法对GRU神经网络预测模型进行优化,得到最优GRU神经网络参数;
预测模块,用于使用优化后的GRU神经网络预测模型对各个低频序列和高频序列进行拥塞预测,得到各序列的拥塞预测结果;
重构模块,用于将各序列的拥塞预测结果重构得到完整的拥塞预测序列,作为最终的预测结果。
与现有技术相比,本发明具有以下有益的技术效果:
本发明公开了一种空天地一体网络下的混沌动态拥塞预测方法,首先通过控制器获得链路与节点的拥塞时间序列作为原始数据,对数据进行归一化预处理;将原始序列进行小波分析得到高频序列与低频序列;对各序列采用粒子群算法优化的GRU神经网络预测模型得到各子序列的拥塞预测结果;最终将各子序列重构得到整体序列的预测结果,即拥塞预测结果。将小波分析与流量预测方法相结合,采用混沌动态拥塞预测方法,收敛速度快,能快速迭代,提高了拥塞预测的精度;设计了基于小波分析的粒子群算法优化的GRU神经网络预测模型,满足了空天地一体化网络动态性的需求。该方法中的小波分析部分可以对非线性信号进行多层次分解,能够更好地描述非线性信号的变化特性。经实验,基于小波分析的神经网络预测模型的预测精度明显高于单一的神经网络。本发明的混沌动态拥塞预测方法提高了拥塞预测的精度,且收敛速度快,可以快速迭代。
附图说明
图1为本发明的小波分析过程示意图;
图2为GRU神经网络结构;
图3为基于PSO算法优化的GRU神经网络的具体流程;
图4为混沌动态拥塞预测模型框架图。
具体实施方式
下面结合具体的实施例对本发明做进一步的详细说明,所述是对本发明的解释而不是限定。
门控循环单元网络GRU作为LSTM的变体适用于大规模动态空间的网络拥塞预测,其收敛速度快,可以快速迭代,考虑空天地一体化网络低时延的要求选择GRU神经网络作为空天地一体化网络拥塞预测的方法。本发明采用具有较强全局优化能力的粒子群算法对GRU神经网络参数进行优化,有效提高模型的预测精度。小波分析可以对非线性信号进行多层次分解,能够更好地描述非线性信号的变化特性,实验表明经小波分析的神经网络的预测精度明显高于单一的神经网络,因此采用小波分析对改进粒子群算法对GRU神经网络进行优化。
如图4所示,本发明公开了一种空天地一体化网络下的混沌动态拥塞预测方法,包括以下步骤:
步骤一、获取链路与节点的状态数据,作为原始序列数据;
步骤二、对原始序列数据进行归一化处理,得到处理后的拥塞序列;
步骤三、将处理后的拥塞序列通过小波分析分解为若干低频序列和若干高频序列;
步骤四、利用粒子群算法对GRU神经网络预测模型进行优化,得到最优GRU神经网络参数;
步骤五、使用优化后的GRU神经网络预测模型对各个低频序列和高频序列进行拥塞预测,得到各序列的拥塞预测结果;
步骤六、将各序列的拥塞预测结果重构得到完整的拥塞预测序列,作为最终的预测结果。
步骤二中,为减小错误数据点对预测结果的影响,采用加权平均来替换错误的数据点,采用下式对其进行归一化处理。
其中,zi表示归一化后的数据,xi表示待归一化的数据,xmin表示样本数据的最小值,xmax表示样本数据的最大值。
将处理后的拥塞序列视为信号,对序列进行如图1所示的小波分析。将原始小波信号分解为近似序列(低频系数)以及细节序列(高频系数)。在此选择对信号进行db3小波分解,a1和d1是小波分解后的低频系数和高频系数,a2和d2是a1小波分解后获得的低频系数和高频系数,经2尺度小波分解后,最终获得近似序列a3和细节序列d1、d2、d3
令拥塞时间序列X分解为近似序列a3和细节序列d1、d2、d3。则针对拥塞时间序列信号,f(X)可分解为:
f(X)=a3+d3+d2+d1
步骤四具体为:初始化神经网络权值以及各粒子速度,计算得出各个粒子的初始适应度,通过粒子群算法对粒子的个体最优和全局最优位置进行迭代更新,取得最优解之后,按照所得权值利用GRU神经网络对拥塞进行预测。
如图3所示,采用粒子群算法对GRU神经网络的参数进行优化,具体包括以下步骤:
S4.1、设置粒子群算法参数,如粒子的数量、最大迭代次数、常数c1,c2等。初始化神经网络参数wr、ur、wz、uz、w、u、wy。初始化各个粒子的适应度。
S4.2、通过适应度函数评估粒子位置的优劣。将每一个粒子位置与当前个体最优位置和粒子群最优位置进行比较,如果粒子位置优于它们的位置,就用粒子位置替换当前个体最优位置和粒子群最优位置,这就使得粒子群朝着参数最优组合方向搜索。
所述适应度函数如下:
其中,表示样本预测值,yi表示样本实际值,N表示样本数量。
粒子群算法的基本迭代式为:
vi,k=pvi,k+c1r1(xbest,i,k-xi,k)+c2r2(pbest,i,k-xi,k)
xi,k+1=xi,k+vi,k
其中,vi,k为第k次迭代时第i个粒子的速度;p为惯性权重;c1,c2为学习因子;r1、r2为0到1之间的随机数;xbest,i,k为第k次迭代时第i个粒子经历过的最优位置;xi,k为第k次迭代时第i个粒子的位置;pbest,i,k为第k次迭代时全部粒子经历过的最优位置。
若当前粒子位置没有达到最优,则再一次进行迭代。如果迭代次数超过最初设置的最大迭代次数,那么根据粒子群的最优位置向量得到GRU神经网络的最优参数,否则就继续迭代,寻找最优的粒子位置。
通过粒子群算法可以得到的最优GRU神经网络参数wr、ur、wz、uz、w、u、wy
GRU神经网络的具体结构如图2所示。
步骤五,具体包括:
将参数带入到GRU神经网络的输出中,即:y=σ(wyht),其中,y为网络的输出;wy为隐含层到输入层的权值。ht为GRU神经网络中当前时刻隐含层状态。
当前时刻隐含层状态为上一时刻隐含层状态与当前隐含层激活状态的和:
重置门rt和更新门zt为当前时刻输入数据与上一时刻隐含层状态的组合,即:
rt=σ(wrxt+urht-1);
zt=σ(wzxt+uzht-1);
其中,σ为sigmoid函数,可以将rt和zt限制在0和1之间;wr、ur、wz、uz为神经网络权值。
为上一时刻隐含层数据经过重置门处理以后与当前的输入xt相结合并通过Tanh激活函数可以得到当前时刻隐含层的激活状态,即:
nz=wxt+u(rt⊙ht-1)
其中,n表示Hadmard积运算;w、u为GRU神经网络权值。
最终,将各子序列的预测结果进行重构得到一个完整的拥塞预测序列,即最终的预测结果。
通过重构的方式将原始信号不同时频的信息构成新的时间序列组。与一维原始序列相比,新的时间序列组能够更加准确地表征拥塞时间序列的潜在信息,以提升模型预测的精度。
对于任意信号f(x),其小波分解公式为(重构公式即逆变换):
其中,a为尺度因子,b为平移因子,ψa,b为小波基函数。

Claims (4)

1.一种空天地一体化网络下的混沌动态拥塞预测方法,其特征在于,包括以下步骤:
步骤一、获取链路与节点的状态数据,作为原始序列数据;
步骤二、对原始序列数据进行归一化处理,得到处理后的拥塞序列;
步骤三、将处理后的拥塞序列通过小波分析分解为若干低频序列和若干高频序列;
步骤四、利用粒子群算法对GRU神经网络预测模型进行优化,得到最优GRU神经网络参数;
步骤五、使用优化后的GRU神经网络预测模型对各个低频序列和高频序列进行拥塞预测,得到各序列的拥塞预测结果;
步骤六、将各序列的拥塞预测结果重构得到完整的拥塞预测序列,作为最终的预测结果;
步骤四中,使用粒子群算法优化GRU神经网络预测模型,具体包括以下步骤:
S4.1、设置粒子群算法参数,初始化GRU神经网络预测模型参数,初始化各个粒子的适应度;
S4.2、采用适应度函数对粒子位置的优劣进行评价,将每个粒子的位置与当前个体最优位置和粒子群最优位置分别进行比较,如果粒子当前位置优于个体最优位置,就用粒子位置替换当前个体最优位置和粒子群最优位置,使得粒子群朝着参数最优组合方向搜索;
若当前粒子位置没有达到最优,则再一次进行迭代;
如果迭代次数超过最初设置的最大迭代次数,则根据粒子群的最优位置向量得到GRU神经网络的最优参数,否则继续迭代,寻找最优的粒子位置;
S4.2中,所述适应度函数如下:
其中,表示样本预测值,yi表示样本实际值,N表示样本数量;
粒子群算法的基本迭代式为:
vi,k=pvi,k+c1r1(xbest,i,k-xi,k)+c2r2(pbest,i,k-xi,k);
xi,k+1=xi,k+vi,k
其中,vi,k为第k次迭代时第i个粒子的速度;p为惯性权重;c1,c2为学习因子;r1、r2为0到1之间的随机数;xbest,i,k为第k次迭代时第i个粒子经历过的最优位置;xi,k为第k次迭代时第i个粒子的位置;pbest,i,k为第k次迭代时全部粒子经历过的最优位置;
第四步中的GRU神经网络预测模型为:
y=σ(wyht);
其中,y为网络的输出,wy为隐含层到输入层的权值,ht为GRU神经网络中当前时刻隐含层状态;
当前时刻隐含层状态为上一时刻隐含层状态与当前隐含层激活状态的和,表达式为:
其中,zt为更新门,ht-1为上一时刻隐含层状态,为当前隐含层激活状态;
重置门rt和更新门zt为当前时刻输入数据与上一时刻隐含层状态的组合,表达式为:
rt=σ(wrxt+urht-1);
zt=σ(wzxt+uzht-1);
其中,σ为sigmoid函数,将rt和zt限制在0和1之间;wr、ur、wz、uz为神经网络权值;xt为当前时刻输入数据;
当前时刻隐含层的激活状态的计算过程为:上一时刻隐含层数据经过重置门处理以后与当前的输入xt相结合并通过Tanh激活函数可以得到当前时刻隐含层的激活状态,即:
nz=wxt+u(rt⊙)ht-1);
其中,⊙表示Hadmard积运算;w、u为GRU神经网络权值。
2.根据权利要求1所述的空天地一体化网络下的混沌动态拥塞预测方法,其特征在于,步骤二中,数据归一化的计算公式为:
其中,zi表示归一化后的数据,xi表示待归一化的数据,xmin表示原始序列数据的最小值,xmax表示原始序列数据的最大值。
3.根据权利要求1所述的空天地一体化网络下的混沌动态拥塞预测方法,其特征在于,将处理后的拥塞序列视为信号,对序列进行db3小波分析,具体为:
令拥塞时间序列X分解为近似序列a3和细节序列d1、d2、d3,则针对拥塞时间序列信号,f(X)可分解为:
f(X)=a3+d3+d2+d1
4.基于权利要求1-3任意一项所述方法的一种空天地一体化网络下的混沌动态拥塞预测系统,其特征在于,包括:
数据获取模块,用于获取链路与节点的状态数据,作为原始序列数据;
数据预处理模块,用于对原始序列数据进行归一化处理,得到处理后的拥塞序列;
小波分解模块,用于将处理后的拥塞序列通过小波分析分解为若干低频序列和若干高频序列;
粒子群优化模块,用于利用粒子群算法对GRU神经网络预测模型进行优化,得到最优GRU神经网络参数;
预测模块,用于使用优化后的GRU神经网络预测模型对各个低频序列和高频序列进行拥塞预测,得到各序列的拥塞预测结果;
重构模块,用于将各序列的拥塞预测结果重构得到完整的拥塞预测序列,作为最终的预测结果。
CN202210010889.6A 2022-01-05 2022-01-05 一种空天地一体化网络下的混沌动态拥塞预测系统及方法 Active CN114363262B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210010889.6A CN114363262B (zh) 2022-01-05 2022-01-05 一种空天地一体化网络下的混沌动态拥塞预测系统及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210010889.6A CN114363262B (zh) 2022-01-05 2022-01-05 一种空天地一体化网络下的混沌动态拥塞预测系统及方法

Publications (2)

Publication Number Publication Date
CN114363262A CN114363262A (zh) 2022-04-15
CN114363262B true CN114363262B (zh) 2023-08-22

Family

ID=81108167

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210010889.6A Active CN114363262B (zh) 2022-01-05 2022-01-05 一种空天地一体化网络下的混沌动态拥塞预测系统及方法

Country Status (1)

Country Link
CN (1) CN114363262B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114866481A (zh) * 2022-04-29 2022-08-05 西安交通大学 空天地一体化网络的基于混沌动态拥塞预测的时变重路由方法和系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107194460A (zh) * 2017-05-22 2017-09-22 厦门大学 金融时间序列预测的量子粒子群优化递归神经网络方法
CN111127888A (zh) * 2019-12-23 2020-05-08 广东工业大学 一种基于多源数据融合的城市交通流预测方法
CN111222706A (zh) * 2020-01-13 2020-06-02 大连理工大学 一种基于粒子群优化与自编码器的混沌时间序列预测方法
CN113365299A (zh) * 2021-04-29 2021-09-07 西安交通大学 空天地一体网络下基于自回归的多维资源预测方法及系统

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9053426B2 (en) * 2013-01-30 2015-06-09 Harris Corporation Distributed multi-layer particle swarm optimization based cognitive network

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107194460A (zh) * 2017-05-22 2017-09-22 厦门大学 金融时间序列预测的量子粒子群优化递归神经网络方法
CN111127888A (zh) * 2019-12-23 2020-05-08 广东工业大学 一种基于多源数据融合的城市交通流预测方法
CN111222706A (zh) * 2020-01-13 2020-06-02 大连理工大学 一种基于粒子群优化与自编码器的混沌时间序列预测方法
CN113365299A (zh) * 2021-04-29 2021-09-07 西安交通大学 空天地一体网络下基于自回归的多维资源预测方法及系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Identification and Analysis of Tool Wear Signal in CNC Machine Tool Based on Chaos Method";Fu Haiyan等;《2021 IEEE International Conference on Prognostics and Health Management (ICPHM)》;全文 *

Also Published As

Publication number Publication date
CN114363262A (zh) 2022-04-15

Similar Documents

Publication Publication Date Title
CN108900346B (zh) 基于lstm网络的无线网络流量预测方法
CN110059878B (zh) 基于cnn lstm光伏发电功率预测模型及其构建方法
CN110851782A (zh) 一种基于轻量级时空深度学习模型的网络流量预测方法
CN110909926A (zh) 基于tcn-lstm的太阳能光伏发电预测方法
CN110648017A (zh) 一种基于二层分解技术的短期冲击负荷预测方法
CN111260124A (zh) 一种基于注意力机制深度学习的混沌时间序列预测方法
CN116523079A (zh) 一种基于强化学习联邦学习优化方法及系统
CN111355633A (zh) 一种基于pso-delm算法的比赛场馆内手机上网流量预测方法
CN113240105B (zh) 一种基于图神经网络池化的电网稳态判别方法
CN114363262B (zh) 一种空天地一体化网络下的混沌动态拥塞预测系统及方法
CN112257847A (zh) 一种基于CNN和LSTM预测地磁Kp指数的方法
CN113052373A (zh) 一种基于改进elm模型的月径流变化趋势预测方法
CN115561005A (zh) 基于eemd分解和轻量化神经网络的化工过程故障诊断方法
CN112018755A (zh) 基于循环神经网络的光伏配电网无功电压预测方法及系统
CN113836823A (zh) 一种基于负荷分解和优化双向长短期记忆网络的负荷组合预测方法
CN117154690A (zh) 一种基于神经网络的光伏发电功率预测方法及系统
Ma et al. Temporal pyramid recurrent neural network
CN116663745A (zh) 一种基于pca_ dwt的lstm流域水流量预测方法
CN116976405A (zh) 基于免疫优化算法的变分阴影量子神经网络
Olmez et al. Deep FPF: Gain function approximation in high-dimensional setting
Li et al. Transformer-based radio modulation mode recognition
CN115907000A (zh) 一种用于电力系统最优潮流预测的小样本学习方法
Qu et al. A Chaotic Dynamic Congestion Prediction Method under the Space-Terrestrial Integrated Network
EP4372622A1 (en) Method for training a hybrid classical-quantum approximation system
Rad et al. Reservoir optimization in recurrent neural networks using properties of Kronecker product

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant