CN114360250A - 一种信号路口机动车排队车辆轨迹重构方法 - Google Patents

一种信号路口机动车排队车辆轨迹重构方法 Download PDF

Info

Publication number
CN114360250A
CN114360250A CN202210029886.7A CN202210029886A CN114360250A CN 114360250 A CN114360250 A CN 114360250A CN 202210029886 A CN202210029886 A CN 202210029886A CN 114360250 A CN114360250 A CN 114360250A
Authority
CN
China
Prior art keywords
vehicle
sample
state
time
track
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210029886.7A
Other languages
English (en)
Other versions
CN114360250B (zh
Inventor
孙湛博
何虹雨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southwest Jiaotong University
Original Assignee
Southwest Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southwest Jiaotong University filed Critical Southwest Jiaotong University
Priority to CN202210029886.7A priority Critical patent/CN114360250B/zh
Publication of CN114360250A publication Critical patent/CN114360250A/zh
Application granted granted Critical
Publication of CN114360250B publication Critical patent/CN114360250B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/0104Measuring and analyzing of parameters relative to traffic conditions
    • G08G1/0125Traffic data processing
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/0104Measuring and analyzing of parameters relative to traffic conditions
    • G08G1/0108Measuring and analyzing of parameters relative to traffic conditions based on the source of data
    • G08G1/0112Measuring and analyzing of parameters relative to traffic conditions based on the source of data from the vehicle, e.g. floating car data [FCD]
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/0104Measuring and analyzing of parameters relative to traffic conditions
    • G08G1/0137Measuring and analyzing of parameters relative to traffic conditions for specific applications
    • G08G1/0145Measuring and analyzing of parameters relative to traffic conditions for specific applications for active traffic flow control

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Traffic Control Systems (AREA)

Abstract

本发明公开一种信号路口机动车排队车辆轨迹重构方法,包括:规定信号干道上排队车辆依次经历的驾驶状态包括巡航、减速、空转、加速、再巡航,并且所有排队车辆均在一个交通信号周期内通过下游真实停止线;从任一交通信号周期中红灯结束绿灯开始时刻,排队车辆以交通流消散波的速率开始消散;重构任一交通信号周期内样本车辆的轨迹,包括根据样本车辆时间戳数据信息确定该交通信号周期内的交通流冲击波边界;重构该交通信号周期内非样本车辆的轨迹。该方法所要求的数据源结构简单,易于获取,可直接适用于多种常见交通信息采集技术,且计算求解难度小;同时,该方法能够满足对车辆轨迹微观层面的重构研究,所重构的车辆轨迹接近于地面真实轨迹。

Description

一种信号路口机动车排队车辆轨迹重构方法
技术领域
本发明提供一种信号路口机动车排队车辆轨迹重构方法,属于交通工程领域。
背景技术
在以往的交通流分析领域,通常使用完善的宏观交通流模型,例如使用最为广泛的美国公路局开发的BPR函数,该方法以车辆通过路段的自由流行驶时间以及该路段的通行能力、交通流量为输入。但对于信号干道,由于交通信号和行人对交通流带来的巨大干扰,宏观模型可能不再适用。
随着智能交通系统(ITS)的发展,车辆GPS定位技术及卡口系统发展迅速,针对个体车辆完整轨迹数据的重构研究大量涌现。因此,针对交通流的分析也从宏观层面逐渐过渡到微观层面。卡口系统可以从彩色、黑白或红外摄像机拍摄的图像中识别车辆的车牌号、通过该设备的瞬时时间戳、信号周期内交通流量等大量的交通流信息,凭借上述信息,国内外研究者开发了基于多种不同数据源类型的车辆轨迹重构方法;除了固定位置的卡口系统外,移动交通传感器能够跟随车辆一起移动,它们包括探测车、GPS设备和手机定位等,通过数据融合,再结合特定的轨迹重构算法,可以还原出车辆的详细运动轨迹。重构个体车辆轨迹信息有相当大的后续应用价值,例如:将车辆轨迹与驾驶员数据进行匹配,可为居民出行模式识别、城市内部车辆限行政策影响分析提供理论参考;将车辆轨迹与精细化的排放模型相结合,可以准确估算出机动车尾气排放等。
车辆的轨迹数据具有非常丰富的时空信息,但实际中往往完整的车辆轨迹很难获得,因此在过去20年中,研究者对基于线圈、浮动车、卡口系统等数据重构出车辆轨迹信息的问题进行了大量研究。大致共分为三类:插值法、速度递推法,以及基于交通流模型的方法。其中,插值法和速度递推法原理简单、计算量小,但同时精度不高,无法较好地反映车辆真实轨迹;而基于交通流模型的方法在轨迹重构中结合了交通流运行规律的影响,相比简单的滤波、插值法和速度递推法,能重构出更为精确的车辆轨迹,同时对于交通拥堵和过渡状态具有较好的鲁棒性。交通流模型最早发展于运动波(Kinematic Wave)模型,也称为LWR模型。在此模型基础上,Coifman基于三角形基本图(Triangular Fundamental Diagram)的LWR模型提出了一种新型的轨迹重构方法,该方法利用路段上游或下游位置检测到的车速与车头时距信息估计路段上所有车辆的轨迹以及对应的旅行时间,该模型在速度递推的过程中考虑了交通波传播速度的影响,将路段时空图分为多个等速三角形及梯形区域,使得时空特征更接近高速公路瓶颈处的真实状态,在复杂交通状况下可以表现出更佳的重构特性。Coifman模型的应用场景主要是高速公路,对于城市道路路段并不适用,对此不少学者尝试利用数据融合手段和更复杂的交通流模型来解决该类问题。Mehran等基于三维运动波模型和变分理论(VF theory)提出了一种新的数据融合框架,通过对出租车和断面检测等数据的融合实现城市主干道上车辆轨迹的重构。三维运动波模型是结合运动波模型和累积曲线原则提出的一种能够有效估计激波状态的交通流模型,而变分理论是针对该模型提出的一种在离散时空中根据边界状态求取未知节点累积通过车辆数目的方法。Sun等基于变分理论通过融合浮动车和信号配时数据对车辆轨迹进行重构。
但是目前基于交通流模型的轨迹重构方法,大多针对单一数据源类型,且所需输入信息种类较多,例如样本车辆的车速、时间戳,特定时间段内的车流量、平均车头时距等信息。又由于针对目前常见的交通信息采集技术(如:环形感应线圈、视频检测器、基于GPS动态信息采集技术、基于车牌识别采集技术等),各项技术的采集功能略有不同,上述车辆轨迹重构方法无法直接满足应用于所有数据源类型,通常需先进行数据融合与数据匹配,工作量大、计算难度大、耗时长。另外,近几年来,基于交通流模型提出的车辆轨迹重构方法,多为优化问题,在寻找最优解时,用到的启发式算法(如:粒子群算法、模拟退火算法、遗传算法等),需经过多次迭代求解,再次增加了计算求解的难度。
因此,本发明提出了一种可直接适用于多种常见交通信息采集技术且计算求解难度小的轨迹重构方法。
发明内容
为解决目前车辆轨迹重构算法适用范围小、对数据源结构要求高的问题,本发明提出了一种适用于大部分交通信息源数据的信号路口机动车排队车辆轨迹重构方法。
本发明为实现其发明目的所采取的技术方案:一种信号路口机动车排队车辆轨迹重构方法,所述方法包括步骤:
S1、规定信号干道上排队车辆依次经历的驾驶状态包括:巡航、减速、空转、加速、再巡航,并且所有排队车辆均在一个交通信号周期内通过下游真实停止线(即不考虑车辆过饱和的情况);从任一交通信号周期中红灯结束绿灯开始时刻,排队车辆以交通流消散波的速率开始消散,即:所有排队车辆不在同一时刻由空转状态转变为加速状态,所有排队车辆开始消散的时刻分布在车辆轨迹的位置-时间关系图象中的交通流消散波上;将上游虚拟停止线及下游真实停止线的位置分别记为xup、xdown,所述上游虚拟停止线是指所要重构的排队车辆轨迹的起始位置,所述下游真实停止线是指所要重构的排队车辆轨迹的结束位置;将排队车辆分为样本车辆和非样本车辆,所述样本车辆是指有被采集到车辆时间戳数据信息的排队车辆,所述非样本车辆是指没有被采集到车辆时间戳数据信息但真实存在的排队车辆;
(补充说明:交通流消散波指的是绿灯开始后,车辆消散的波;交通流冲击波指的是红灯开始后,车辆开始排队的冲击波。两者都是由同一交通信号周期内第一辆排队车辆传递到下一辆排队车辆直至最后一辆排队车辆。由于交通流的消散波速率与冲击波速率相比,消散波速率通常非常稳定,因此本发明中将消散波速率视作恒定值,而冲击波速率由相邻两辆样本车辆所决定。交通信号周期时长信息已知,包括红灯时长、绿灯时长。)
S2、重构任一交通信号周期内样本车辆的轨迹,包括根据样本车辆时间戳数据信息确定该交通信号周期内的交通流冲击波边界,具体为:
S2-1、获取样本车辆i通过上游虚拟停止线及下游真实停止线的时间戳,分别记为
Figure BDA0003465906650000031
S2-2、规定一时间调整量Tad,记样本车辆i经调整后通过下游真实停止线的时间为
Figure BDA0003465906650000032
且满足
Figure BDA0003465906650000033
(每个样本车辆对应的时间调整量Tad可能不同。)
S2-3、已知样本车辆i经调整后通过下游真实停止线的时间为
Figure BDA0003465906650000034
并且假设在红灯结束绿灯开始后样本车辆i以全巡航状态通过下游真实停止线(真实情况应该是先加速再达到巡航,由此造成的时间误差已考虑进时间调整量Tad中),根据车辆轨迹的位置-时间关系图象中的几何关系,将交通流消散波与样本车辆i的巡航轨迹(再巡航轨迹)的交点确定为样本车辆i结束空转状态开始加速状态的时空信息,记为
Figure BDA0003465906650000035
其中,
Figure BDA0003465906650000036
为样本车辆i结束空转状态开始加速状态的时刻,
Figure BDA0003465906650000037
为样本车辆i结束空转状态开始加速状态的位置;(即:从该交通信号周期中红灯结束绿灯开始的时刻点出发,画一条以交通流消散波的速率(记为vd)为斜率的直线,则交通流消散波在该直线上;从
Figure BDA0003465906650000038
点出发,画一条以巡航速率(记为vf)为斜率的直线,与交通流消散波相交于点
Figure BDA0003465906650000039
该点的物理意义即为样本车辆i结束空转状态开始加速状态的时空信息。)
(补充说明:由于该轨迹重构方法的步骤为先假设排队车辆在上游虚拟停止线和下游真实停止线之间的行驶状态为“巡航-空转-再巡航”,以确定“空转”状态结束的时空信息,再分别添加“空转”状态开始前的“减速”状态、“空转”状态结束后的“加速”状态,所以步骤S2-3中的“巡航轨迹”是指“再巡航轨迹”。)
S2-4、已知样本车辆i通过上游虚拟停止线时的时间戳
Figure BDA00034659066500000310
位置xup和结束空转状态开始加速状态时所处的位置
Figure BDA00034659066500000311
根据距离差,即
Figure BDA00034659066500000312
并且假设车辆减速速度为已知量dc,车辆的巡航速率为已知量vf,由此计算出样本车辆i在减速状态前经历的巡航位移
Figure BDA00034659066500000313
和时长
Figure BDA00034659066500000314
以及经历减速状态的时长
Figure BDA00034659066500000315
进而获得样本车辆i结束减速状态开始空转状态的时空信息,记为
Figure BDA00034659066500000316
其中,
Figure BDA00034659066500000318
为样本车辆i结束减速状态开始空转状态的时刻,
Figure BDA00034659066500000319
为样本车辆i结束减速状态开始空转状态的位置;
S2-5、引入点A以区分排队车辆与自由流车辆(非排队车辆);(由于样本车辆的渗透率通常无法达到100%,所以通常无法直接确定一个周期内的最后一辆样本车辆是否就是一个周期内所有排队车辆中的最后一辆,因此引入点A以区分排队车辆与自由流车辆。)
S2-6、在车辆轨迹的位置-时间关系图象中,将
Figure BDA0003465906650000041
与点A用直线连接,即可得到该交通信号周期内的交通流冲击波边界;
S3、重构该交通信号周期内非样本车辆的轨迹,具体包括:
S3-1、假设两个连续样本车辆之间的非样本车辆在开始加速时所处的位置坐标均匀分布在此两个连续样本车辆之间,即均匀分布在所述交通流消散波上,由此确定出非样本车辆j结束空转状态开始加速状态的时空信息,记为
Figure BDA0003465906650000042
其中,
Figure BDA0003465906650000043
为非样本车辆j结束空转状态开始加速状态的时刻,
Figure BDA0003465906650000044
为非样本车辆j结束空转状态开始加速状态的位置;假设两个连续样本车辆之间的非样本车辆在开始空转时所处的位置坐标均匀分布在此两个连续样本车辆之间,即均匀分布在所述该交通信号周期内的交通流冲击波边界上,由此确定出非样本车辆j结束减速状态开始空转状态的时空信息,记为
Figure BDA0003465906650000045
其中,
Figure BDA0003465906650000046
为非样本车辆j结束减速状态开始空转状态的时刻,
Figure BDA0003465906650000047
为非样本车辆j结束减速状态开始空转状态的位置;
S3-2、记两个连续样本车辆为样本车辆i和样本车辆i+1,估计此两个连续样本车辆之间的非样本车辆数Nl,具体为:
Figure BDA0003465906650000048
其中,ql代表流率,不同的相邻样本车辆之间的流率可能不同;(即:两个连续样本车辆间的非样本车辆以ql为到达率通过上游虚拟停止线。)
S3-3、确定
Figure BDA0003465906650000049
Figure BDA00034659066500000410
的具体时空信息,具体为:
Figure BDA00034659066500000411
Figure BDA00034659066500000412
构成的冲击波边界线段与消散波线段分别进行(Nl+1)等分,得:
Figure BDA00034659066500000413
其中,
Figure BDA00034659066500000414
为样本车辆i结束空转状态开始加速状态的时空信息,
Figure BDA00034659066500000415
为样本车辆i+1结束空转状态开始加速状态的时空信息,
Figure BDA00034659066500000416
为样本车辆i结束减速状态开始空转状态的时空信息,
Figure BDA00034659066500000417
为样本车辆i+1结束减速状态开始空转状态的时空信息;
S3-4、根据步骤S2的方法逆推得到非样本车辆j通过上游虚拟停止线及下游真实停止线的时间戳,分别记为
Figure BDA00034659066500000418
与现有技术相比,本发明的有益效果:
(1)本发明方法只需要收集到排队样本车辆通过上游虚拟线及通过下游真实停止线的时间戳即可对所有排队车辆进行某一交通信号周期内、某一信号干道上的轨迹重构,该方法所要求的数据源结构简单,可直接适用于多种现有交通信息采集技术,模型输入易于获取,并且计算求解难度小。
(2)本发明方法考虑了车辆不同的行驶状态(巡航、减速、空转、加速、再巡航);同时,考虑到车辆经过路口时,面对行人、车辆汇流等复杂情况,而引入时间调整量Tad,并且不将其视为恒定常数值,以减少车辆重构轨迹与地面真实轨迹之间的误差。因此,本发明方法能够满足对车辆轨迹微观层面的重构研究,并且采用本发明方法重构的车辆轨迹更接近于地面真实轨迹。
进一步地,所述时间调整量Tad的确定方法包括步骤:
S2-2-1、获取样本车辆i中各个轨迹点之间的加速度:通过先计算两个轨迹点的速度,再确定此两个轨迹点之间的加速度的方法来获取样本车辆i中各个轨迹点之间的加速度;计算所涉及的基本公式如下:
基本公式1:x=h(v)N+z;
基本公式2:
Figure BDA0003465906650000051
基本公式3:
Figure BDA0003465906650000052
上述基本公式1、基本公式2和基本公式3中,N表示从某个参考车辆通过开始,到时间t之前通过某个位置x的车辆累计数量;dv取定值;h(v)、h′(v)均为与速度v相关的已知量,z是已知量;N与x是线性相关的,用基本公式1表示;由基本公式1求导得出基本公式2,这意味着位置的变化量dx与N也是线性相关的;因此,在给出车辆某时刻的速度v和位置x后,可以先由基本公式1计算出N的值,再将N的值代入基本公式2得出dx,最后通过基本公式3计算出两个轨迹点之间的加速度am
S2-2-2、计算样本车辆i在通过下游真实停止线之前完整经历了多少个轨迹点:通过对位置关系的限制来确定轨迹点的个数p。
考虑到加速度对车辆尾气排放影响较大,本发明方法摒弃了恒定加速度的假设,基于Newell关键交通流基本理论,对加速阶段进行细分,更加精确地估算了不同车辆在不同加速阶段的加速度大小,使加速度更加贴近于真实情况。
进一步地,所述步骤S2-4,已知样本车辆i通过上游虚拟停止线时的时间戳
Figure BDA0003465906650000053
位置xup和结束空转状态开始加速状态时所处的位置
Figure BDA0003465906650000054
根据距离差,即
Figure BDA0003465906650000055
并且假设车辆减速速度为已知量dc,车辆的巡航速率为已知量vf,由此计算出样本车辆i在减速状态前经历的巡航位移
Figure BDA0003465906650000056
和时长
Figure BDA0003465906650000057
以及经历减速状态的时长
Figure BDA0003465906650000058
进而获得样本车辆i结束减速状态开始空转状态的时空信息,记为
Figure BDA0003465906650000059
其中,
Figure BDA00034659066500000510
为样本车辆i结束减速状态开始空转状态的时刻,
Figure BDA00034659066500000511
为样本车辆i结束减速状态开始空转状态的位置;具体计算公式如下:
Figure BDA0003465906650000061
Figure BDA0003465906650000062
Figure BDA0003465906650000063
Figure BDA0003465906650000064
本发明方法假设所有车辆巡航速率(vf)为已知常数,获取方式包括但不限于高德交通态势数据、该周期内巡航车辆的平均速度、宏观交通流模型计算平均巡航速度等。
进一步地,所述时间调整量Tad的确定方法具体包括步骤:
S2-2-1、获取样本车辆i中各个轨迹点之间的加速度:通过先计算两个轨迹点的速度,再确定此两个轨迹点之间的加速度的方法来获取样本车辆i中各个轨迹点之间的加速度;具体为:
已知下游真实停止线的位置xdown,简记为D;再基于样本车辆时间戳数据信息,将任一样本车辆通过下游真实停止线的时间戳记为tarr(这里的tarr与样本车辆i通过下游真实停止线的时间戳
Figure BDA0003465906650000065
的区别与联系:二者同义,但tarr泛指所有样本车辆,
Figure BDA0003465906650000066
带有编号i,特指某一样本车辆),则在车辆轨迹的位置-时间关系图象中该样本车辆通过下游真实停止线的坐标记为(tarr,D);现假设该样本车辆经过的时间调整量Tad是一个未知参数τ,显然经调整后该样本车辆到达下游真实停止线的时空信息表示为(tarr-τ,D);然后过点(tarr-τ,D)且以巡航速率vf为斜率画一条直线,所画直线与交通流消散波相交于第一个轨迹点,即为该样本车辆结束空转状态开始加速状态的时空信息,记为[t1(τ),D1(τ)],且交通流消散波的速率为vd,则有:
Figure BDA0003465906650000067
Figure BDA0003465906650000068
当该样本车辆处于第一个轨迹点[t1(τ),D1(τ)]时,显然此时该样本车辆的瞬时速度为0,将其代入与速度v相关的已知量h(v)、h′(v)中可得到h(v=0)、h′(v=0),结合已知量z,则可以得到该样本车辆从第一个轨迹点至第二个轨迹点的车辆位移dx1(τ),满足关系式:
Figure BDA0003465906650000069
因此,该样本车辆从第一个轨迹点至第二个轨迹点之间的加速度a1(τ),满足关系式:
Figure BDA00034659066500000610
该样本车辆在第二个轨迹点的坐标可记为[t2(τ),D2(τ)],满足关系式:
Figure BDA00034659066500000611
D2(τ)=D1(τ)+dxi(τ);
该样本车辆从第二个轨迹点至第三个轨迹点之间的车辆位移dx2(τ)和加速度a2(τ)可表示为:
Figure BDA0003465906650000071
Figure BDA0003465906650000072
该样本车辆在第三个轨迹点的坐标可记为[t3(τ),D3(τ)],满足关系式:
Figure BDA0003465906650000073
D3(τ)=D2(τ)+dx2(τ);
该样本车辆从第三个轨迹点至第四个轨迹点之间的车辆位移dx3(τ)和加速度a3(τ)可表示为:
Figure BDA0003465906650000074
Figure BDA0003465906650000075
以此类推,对于该样本车辆的轨迹点k=2,3,…,p,满足递归方程:
Figure BDA0003465906650000076
Dk(τ)=Dk-1(τ)+dxk-1(τ),
Figure BDA0003465906650000077
Figure BDA0003465906650000078
S2-2-2、计算样本车辆i在通过下游真实停止线之前完整经历了多少个轨迹点:通过对位置关系的限制来确定轨迹点的个数p;具体为:
Figure BDA0003465906650000079
对于每个p的可行解,如果相应解得的τ为非负集合,则说明此解可能是该样本车辆的轨迹点个数,只当此解同时满足以下两个公式时才能保证τ有唯一可行解;所述两个公式如下:
Figure BDA00034659066500000710
Figure BDA00034659066500000711
当满足τ有唯一可行解时,认为此时τ的解就是时间调整量Tad的值;
但是,若代入p的所有整数值都不可行或者不存在τ的可行解,则可能是该样本车辆在经过第二个轨迹点之前已经通过了下游真实停止线,记为情况一;也可能是该样本车辆在通过下游真实停止线之前已经进入了再巡航状态,记为情况二;针对情况一,很显然轨迹点个数为1;针对情况二,判别式切换到方程式,得:
Figure BDA00034659066500000712
由于时间调整量Tad会影响样本车辆开始加速的时间和位置,进而影响冲击波边界的估计。因此,本发明方法针对时间调整量Tad进行解析计算,具体车辆具体分析,不再采用某一统一参数作为时间调整量,采用该方法能够使重构的样本车辆轨迹尽可能地接近真实情况,即能够使车辆通过下游真实停止线的时间更接近真实时间戳
Figure BDA0003465906650000081
进一步地,所述步骤S3-4,根据步骤S2的方法逆推得到非样本车辆j通过上游虚拟停止线及下游真实停止线的时间戳,分别记为
Figure BDA0003465906650000082
具体包括:
S3-4-1、在确定了非样本车辆j结束空转状态开始加速状态的时空信息
Figure BDA0003465906650000083
与结束减速状态开始空转状态的时空信息
Figure BDA0003465906650000084
后,通过上游虚拟停止线的位置xup和非样本车辆j结束空转状态开始加速状态时所处的位置
Figure BDA0003465906650000085
根据距离差, 即
Figure BDA0003465906650000086
以及假设车辆的减速速度为已知量dc、巡航速率为已知量vf,由此计算出非样本车辆j在减速状态前经历的巡航位移
Figure BDA00034659066500000819
和时长
Figure BDA0003465906650000087
以及经历减速状态的时长
Figure BDA0003465906650000088
进而获得非样本车辆j通过上游虚拟停止线的时间戳,记为
Figure BDA0003465906650000089
其中,
Figure BDA00034659066500000810
为非样本车辆j结束空转状态开始加速状态的时刻,
Figure BDA00034659066500000811
为非样本车辆j结束空转状态开始加速状态的位置,
Figure BDA00034659066500000812
为非样本车辆j结束减速状态开始空转状态的时刻,
Figure BDA00034659066500000813
为非样本车辆j结束减速状态开始空转状态的位置;具体计算公式如下:
Figure BDA00034659066500000814
Figure BDA00034659066500000815
S3-4-2、获取非样本车辆j中各个轨迹点之间的加速度:通过先计算两个轨迹点的速度,再确定此两个轨迹点之间的加速度的方法来获取非样本车辆j中各个轨迹点之间的加速度;具体为:
根据非样本车辆j结束空转状态开始加速状态的时空信息为
Figure BDA00034659066500000816
这里可将任一非样本车辆结束空转状态开始加速状态的时空信息作为该非样本车辆的第一个轨迹点,记为[t1,D1];
当该非样本车辆处于第一个轨迹点[t1,D1]时,显然此时该非样本车辆的瞬时速度为0,将其代入与速度v相关的已知量h(v)、h′(v)中可得到h(v=0)、h′(v=0),结合已知量z,则可以得到该非样本车辆从第一个轨迹点至第二个轨迹点的车辆位移dx1,满足关系式:
Figure BDA00034659066500000817
因此,该非样本车辆从第一个轨迹点至第二个轨迹点之间的加速度a1,满足关系式:
Figure BDA00034659066500000818
该非样本车辆在第二个轨迹点的坐标可记为[t2,D2],满足关系式:
Figure BDA0003465906650000091
D2=D1+dxi
该非样本车辆从第二个轨迹点至第三个轨迹点之间的车辆位移dx2和加速度a2可表示为:
Figure BDA0003465906650000092
Figure BDA0003465906650000099
该非样本车辆在第三个轨迹点的坐标可记为[t3,D3],满足关系式:
Figure BDA0003465906650000093
D3=D2+dx2
该非样本车辆从第三个轨迹点至第四个轨迹点之间的车辆位移dx3和加速度a3可表示为:
Figure BDA0003465906650000094
Figure BDA0003465906650000095
以此类推,对于该非样本车辆的轨迹点k=2,3,…,p,满足递归方程:
Figure BDA0003465906650000096
Dk=Dk-1+dxk-1
Figure BDA0003465906650000097
Figure BDA0003465906650000098
多数研究表明,车辆尾气排放不受减速度的影响或只受到轻微影响。因此,本发明假设所有车辆减速速度(dc)为已知常数,简化计算。获取方法包括但不限于由地面真实值取平均值校准产生。
进一步地,所述样本车辆时间戳数据信息的获取可以从一种或多种混合交通数据源中获取,所述交通数据源包括车辆GPS定位数据、线圈数据、交通卡口数据。
进一步地,所述流率ql的取值获取方法包括从历史车辆轨迹数据中校准获取。
进一步地,所述点A的时空信息的获取方法包括从车辆GPS定位数据或交通卡口数据中提取出一天中该信号干道上多个交通信号周期内的最大排队车辆长度及最后一辆排队车辆结束减速状态开始空转状态的时间戳,并计算其相应的平均值作为点A的输入值。
进一步地,所述dv取定值为1.2m/s;所述h(v)、h′(v)、z这三个量的获取方法包括从历史车辆轨迹数据中校准获取。
根据研究表明,dv取定值为1.2m/s时重构加速度最为贴近于地面真实值。
下面通过具体实施方式及附图对本发明作进一步详细说明,但并不意味着对本发明保护范围的限制。
附图说明
图1是本发明实施例中信号路口机动车排队车辆轨迹重构示意图。
具体实施方式
下面结合附图,通过对实施例的描述,对本发明的具体实施方式作进一步的说明。
实施例
本例给出的一种信号路口机动车排队车辆轨迹重构方法,其示意图如图1所示,该方法包括步骤:
S1、规定信号干道上,排队车辆依次经历的驾驶状态包括:巡航、减速、空转、加速、再巡航,并且所有排队车辆均在一个交通信号周期内通过下游真实停止线(即不考虑车辆过饱和的情况);从任一交通信号周期中红灯结束绿灯开始时刻,排队车辆以交通流消散波的速率开始消散,即:所有排队车辆不在同一时刻由空转状态转变为加速状态,所有排队车辆开始消散的时刻分布在车辆轨迹的位置-时间关系图象中的交通流消散波上;将上游虚拟停止线及下游真实停止线的位置分别记为xup、xdown,所述上游虚拟停止线是指所要重构的排队车辆轨迹的起始位置,所述下游真实停止线是指所要重构的排队车辆轨迹的结束位置;将排队车辆分为样本车辆和非样本车辆,所述样本车辆是指有被采集到车辆时间戳数据信息的排队车辆,所述非样本车辆是指没有被采集到车辆时间戳数据信息但真实存在的排队车辆;
(补充说明:交通流消散波指的是绿灯开始后,车辆消散的波;交通流冲击波指的是红灯开始后,车辆开始排队的冲击波。两者都是由周期内第一辆排队车辆传递到下一辆排队车辆直至最后一辆排队车辆,由于交通流的消散波速率与冲击波速率相比通常非常稳定,因此本发明中将消散波速率视作恒定值,而冲击波速率由相邻两辆样本车辆所决定。交通信号周期时长信息已知,包括红灯时长、绿灯时长。)
S2、重构任一交通信号周期内样本车辆的轨迹,包括根据样本车辆时间戳数据信息确定该交通信号周期内的交通流冲击波边界,具体为:
S2-1、获取样本车辆i通过上游虚拟停止线及下游真实停止线的时间戳,分别记为
Figure BDA0003465906650000101
S2-2、规定一时间调整量Tad,记样本车辆i经调整后通过下游真实停止线的时间为
Figure BDA0003465906650000102
且满足
Figure BDA0003465906650000103
(每个样本车辆对应的时间调整量Tad可能不同。)
S2-3、已知样本车辆i经调整后通过下游真实停止线的时间为
Figure BDA0003465906650000104
并且假设在红灯结束绿灯开始后样本车辆i以全巡航状态通过下游真实停止线(真实情况应该是先加速再达到巡航,由此造成的时间误差已考虑进时间调整量Tad中),根据车辆轨迹的位置-时间关系图象中的几何关系,将交通流消散波与样本车辆i的巡航轨迹(再巡航轨迹)的交点确定为样本车辆i结束空转状态开始加速状态的时空信息,记为
Figure BDA0003465906650000111
其中,
Figure BDA0003465906650000112
为样本车辆i结束空转状态开始加速状态的时刻,
Figure BDA0003465906650000113
为样本车辆i结束空转状态开始加速状态的位置;(即:从该交通信号周期中红灯结束绿灯开始的时刻点出发,画一条以交通流消散波的速率(记为vd)为斜率的直线,则交通流消散波在该直线上;从
Figure BDA0003465906650000114
点出发,画一条以巡航速率(记为vf)为斜率的直线,与交通流消散波相交于点
Figure BDA0003465906650000115
该点的物理意义即为样本车辆i结束空转状态开始加速状态的时空信息。)
(补充说明:由于该轨迹重构方法的步骤为先假设排队车辆在上游虚拟停止线和下游真实停止线之间的行驶状态为“巡航-空转-再巡航”,以确定“空转”状态结束的时空信息,再分别添加“空转”状态开始前的“减速”状态、“空转”状态结束后的“加速”状态,所以步骤S2-3中的“巡航轨迹”是指“再巡航轨迹”。)
S2-4、已知样本车辆i通过上游虚拟停止线时的时间戳
Figure BDA0003465906650000116
位置xup和结束空转状态开始加速状态时所处的位置
Figure BDA0003465906650000117
根据距离差,即
Figure BDA0003465906650000118
并且假设车辆减速速度为已知量dc,车辆的巡航速率为已知量vf,由此计算出样本车辆i在减速状态前经历的巡航位移
Figure BDA0003465906650000119
和时长
Figure BDA00034659066500001110
以及经历减速状态的时长
Figure BDA00034659066500001111
进而获得样本车辆i结束减速状态开始空转状态的时空信息,记为
Figure BDA00034659066500001112
其中,
Figure BDA00034659066500001113
为样本车辆i结束减速状态开始空转状态的时刻,
Figure BDA00034659066500001114
为样本车辆i结束减速状态开始空转状态的位置;
S2-5、引入点A以区分排队车辆与自由流车辆(非排队车辆);(由于样本车辆的渗透率通常无法达到100%,所以通常无法直接确定一个周期内的最后一辆样本车辆是否就是一个周期内所有排队车辆中的最后一辆,因此引入点A以区分排队车辆与自由流车辆。)
S2-6、在车辆轨迹的位置-时间关系图象中,将
Figure BDA00034659066500001115
与点A用直线连接,即可得到该交通信号周期内的交通流冲击波边界;
S3、重构该交通信号周期内非样本车辆的轨迹,具体包括:
S3-1、假设两个连续样本车辆之间的非样本车辆在开始加速时所处的位置坐标均匀分布在此两个连续样本车辆之间,即均匀分布在所述交通流消散波上,由此确定出非样本车辆j结束空转状态开始加速状态的时空信息,记为
Figure BDA00034659066500001116
其中,
Figure BDA00034659066500001117
为非样本车辆j结束空转状态开始加速状态的时刻,
Figure BDA00034659066500001118
为非样本车辆j结束空转状态开始加速状态的位置;假设两个连续样本车辆之间的非样本车辆在开始空转时所处的位置坐标均匀分布在此两个连续样本车辆之间,即均匀分布在所述该交通信号周期内的交通流冲击波边界上,由此确定出非样本车辆j结束减速状态开始空转状态的时空信息,记为
Figure BDA00034659066500001119
其中,
Figure BDA00034659066500001120
为非样本车辆j结束减速状态开始空转状态的时刻,
Figure BDA00034659066500001121
为非样本车辆j结束减速状态开始空转状态的位置;
S3-2、记两个连续样本车辆为样本车辆i和样本车辆i+1,估计此两个连续样本车辆之间的非样本车辆数Nl,具体为:
Figure BDA0003465906650000121
其中,ql代表流率,不同的相邻样本车辆之间的流率可能不同;(即:两个连续样本车辆间的非样本车辆以ql为到达率通过上游虚拟停止线。)
S3-3、确定
Figure BDA0003465906650000122
Figure BDA0003465906650000123
的具体时空信息,具体为:
Figure BDA0003465906650000124
Figure BDA0003465906650000125
构成的冲击波边界线段与消散波线段分别进行(Nl+1)等分,得:
Figure BDA0003465906650000126
其中,
Figure BDA0003465906650000127
为样本车辆i结束空转状态开始加速状态的时空信息,
Figure BDA0003465906650000128
为样本车辆i+1结束空转状态开始加速状态的时空信息,
Figure BDA0003465906650000129
为样本车辆i结束减速状态开始空转状态的时空信息,
Figure BDA00034659066500001210
为样本车辆i+1结束减速状态开始空转状态的时空信息;
S3-4、根据步骤S2的方法逆推得到非样本车辆j通过上游虚拟停止线及下游真实停止线的时间戳,分别记为
Figure BDA00034659066500001211
本例所述时间调整量Tad的确定方法包括步骤:
S2-2-1、获取样本车辆i中各个轨迹点之间的加速度:通过先计算两个轨迹点的速度,再确定此两个轨迹点之间的加速度的方法来获取样本车辆i中各个轨迹点之间的加速度;计算所涉及的基本公式如下:
基本公式1:x=h(v)N+z;
基本公式2:
Figure BDA00034659066500001212
基本公式3:
Figure BDA00034659066500001213
上述基本公式1、基本公式2和基本公式3中,N表示从某个参考车辆通过开始,到时间t之前通过某个位置x的车辆累计数量;dv取定值;h(v)、h′(v)均为与速度v相关的已知量,z是已知量;N与x是线性相关的,用基本公式1表示;由基本公式1求导得出基本公式2,这意味着位置的变化量dx与N也是线性相关的;因此,在给出车辆某时刻的速度v和位置x后,可以先由基本公式1计算出N的值,再将N的值代入基本公式2得出dx,最后通过基本公式3计算出两个轨迹点之间的加速度am
具体为:
已知下游真实停止线的位置xdown,简记为D;再基于样本车辆时间戳数据信息,将任一样本车辆通过下游真实停止线的时间戳记为tarr(这里的tarr与样本车辆i通过下游真实停止线的时间戳
Figure BDA0003465906650000131
的区别与联系:二者同义,但tarr泛指所有样本车辆,
Figure BDA0003465906650000132
带有编号i,特指某一样本车辆),则在车辆轨迹的位置-时间关系图象中该样本车辆通过下游真实停止线的坐标记为(tarr,D);现假设该样本车辆经过的时间调整量Tad是一个未知参数τ,显然经调整后该样本车辆到达下游真实停止线的时空信息表示为(tarr-τ,D);然后过点(tarr-τ,D)且以巡航速率vf为斜率画一条直线,所画直线与交通流消散波相交于第一个轨迹点,即为该样本车辆结束空转状态开始加速状态的时空信息,记为[t1(τ),D1(τ)],且交通流消散波的速率为vd,则有:
Figure BDA0003465906650000133
Figure BDA0003465906650000134
当该样本车辆处于第一个轨迹点[t1(τ),D1(τ)]时,显然此时该样本车辆的瞬时速度为0,将其代入与速度v相关的已知量h(v)、h′(v)中可得到h(v=0)、h′(v=0),结合已知量z,则可以得到该样本车辆从第一个轨迹点至第二个轨迹点的车辆位移dx1(τ),满足关系式:
Figure BDA0003465906650000135
因此,该样本车辆从第一个轨迹点至第二个轨迹点之间的加速度a1(τ),满足关系式:
Figure BDA0003465906650000136
该样本车辆在第二个轨迹点的坐标可记为[t2(τ),D2(τ)],满足关系式:
Figure BDA0003465906650000137
D2(τ)=D1(τ)+dxi(τ);
该样本车辆从第二个轨迹点至第三个轨迹点之间的车辆位移dx2(τ)和加速度a2(τ)可表示为:
Figure BDA0003465906650000138
Figure BDA0003465906650000139
该样本车辆在第三个轨迹点的坐标可记为[t3(τ),D3(τ)],满足关系式:
Figure BDA00034659066500001310
D3(τ)=D2(τ)+dx2(τ);
该样本车辆从第三个轨迹点至第四个轨迹点之间的车辆位移dx3(τ)和加速度a3(τ)可表示为:
Figure BDA00034659066500001311
Figure BDA00034659066500001312
以此类推,对于该样本车辆的轨迹点k=2,3,…,p,满足递归方程:
Figure BDA0003465906650000141
Dk(τ)=Dk-1(τ)+dxk-1(τ),
Figure BDA0003465906650000142
Figure BDA0003465906650000143
S2-2-2、计算样本车辆i在通过下游真实停止线之前完整经历了多少个轨迹点:通过对位置关系的限制来确定轨迹点的个数p;具体为:
Figure BDA0003465906650000144
对于每个p的可行解,如果相应解得的τ为非负集合,则说明此解可能是该样本车辆的轨迹点个数,只当此解同时满足以下两个公式时才能保证τ有唯一可行解;所述两个公式如下:
Figure BDA0003465906650000145
Figure BDA0003465906650000146
当满足τ有唯一可行解时,认为此时τ的解就是时间调整量Tad的值;
但是,若代入p的所有整数值都不可行或者不存在τ的可行解,则可能是该样本车辆在经过第二个轨迹点之前已经通过了下游真实停止线,记为情况一;也可能是该样本车辆在通过下游真实停止线之前已经进入了再巡航状态,记为情况二;针对情况一,很显然轨迹点个数为1;针对情况二,判别式切换到方程式,得:
Figure BDA0003465906650000147
本例所述步骤S2-4,已知样本车辆i通过上游虚拟停止线时的时间戳
Figure BDA0003465906650000148
位置xup和结束空转状态开始加速状态时所处的位置
Figure BDA0003465906650000149
根据距离差,即
Figure BDA00034659066500001410
并且假设车辆减速速度为已知量dc,车辆的巡航速率为已知量vf,由此计算出样本车辆i在减速状态前经历的巡航位移
Figure BDA00034659066500001411
和时长
Figure BDA00034659066500001412
以及经历减速状态的时长
Figure BDA00034659066500001413
进而获得样本车辆i结束减速状态开始空转状态的时空信息,记为
Figure BDA00034659066500001414
其中,
Figure BDA00034659066500001415
为样本车辆i结束减速状态开始空转状态的时刻,
Figure BDA00034659066500001416
为样本车辆i结束减速状态开始空转状态的位置;具体计算公式如下:
Figure BDA00034659066500001417
Figure BDA00034659066500001418
Figure BDA00034659066500001419
Figure BDA00034659066500001420
本例假设所有车辆巡航速率(vf)为已知常数,获取方式包括但不限于高德交通态势数据、该周期内巡航车辆的平均速度、宏观交通流模型计算平均巡航速度等。
本例所述步骤S3-4,根据步骤S2的方法逆推得到非样本车辆j通过上游虚拟停止线及下游真实停止线的时间戳,分别记为
Figure BDA0003465906650000151
具体包括:
S3-4-1、在确定了非样本车辆j结束空转状态开始加速状态的时空信息
Figure BDA0003465906650000152
与结束减速状态开始空转状态的时空信息
Figure BDA0003465906650000153
后,通过上游虚拟停止线的位置xup和非样本车辆j结束空转状态开始加速状态时所处的位置
Figure BDA0003465906650000154
根据距离差,即
Figure BDA0003465906650000155
以及假设车辆的减速速度为已知量dc、巡航速率为已知量vf,由此计算出非样本车辆j在减速状态前经历的巡航位移
Figure BDA0003465906650000156
和时长
Figure BDA0003465906650000157
以及经历减速状态的时长
Figure BDA0003465906650000158
进而获得非样本车辆j通过上游虚拟停止线的时间戳,记为
Figure BDA0003465906650000159
其中,
Figure BDA00034659066500001510
为非样本车辆j结束空转状态开始加速状态的时刻,
Figure BDA00034659066500001511
为非样本车辆j结束空转状态开始加速状态的位置,
Figure BDA00034659066500001512
为非样本车辆j结束减速状态开始空转状态的时刻,
Figure BDA00034659066500001513
为非样本车辆j结束减速状态开始空转状态的位置;具体计算公式如下:
Figure BDA00034659066500001514
Figure BDA00034659066500001515
Figure BDA00034659066500001516
S3-4-2、获取非样本车辆j中各个轨迹点之间的加速度:通过先计算两个轨迹点的速度,再确定此两个轨迹点之间的加速度的方法来获取非样本车辆j中各个轨迹点之间的加速度;具体为:
根据非样本车辆j结束空转状态开始加速状态的时空信息为
Figure BDA00034659066500001517
这里可将任一非样本车辆结束空转状态开始加速状态的时空信息作为该非样本车辆的第一个轨迹点,记为[t1,D1];
当该非样本车辆处于第一个轨迹点[t1,D1]时,显然此时该非样本车辆的瞬时速度为0,将其代入与速度v相关的已知量h(v)、h′(v)中可得到h(v=0)、h′(v=0),结合已知量z,则可以得到该非样本车辆从第一个轨迹点至第二个轨迹点的车辆位移dx1,满足关系式:
Figure BDA00034659066500001518
因此,该非样本车辆从第一个轨迹点至第二个轨迹点之间的加速度a1,满足关系式:
Figure BDA00034659066500001519
该非样本车辆在第二个轨迹点的坐标可记为[t2,D2],满足关系式:
Figure BDA00034659066500001520
D2=D1+dxi
该非样本车辆从第二个轨迹点至第三个轨迹点之间的车辆位移dx2和加速度a2可表示为:
Figure BDA0003465906650000161
Figure BDA0003465906650000162
该非样本车辆在第三个轨迹点的坐标可记为[t3,D3],满足关系式:
Figure BDA0003465906650000163
D3=D2+dx2
该非样本车辆从第三个轨迹点至第四个轨迹点之间的车辆位移dx3和加速度a3可表示为:
Figure BDA0003465906650000164
Figure BDA0003465906650000165
以此类推,对于该非样本车辆的轨迹点k=2,3,…,p,满足递归方程:
Figure BDA0003465906650000166
Dk=Dk-1+dxk-1
Figure BDA0003465906650000167
Figure BDA0003465906650000168
多数研究表明,车辆尾气排放不受减速度的影响或只受到轻微影响。因此,本发明假设所有车辆减速速度(dc)为已知常数,简化计算。获取方法包括但不限于由地面真实值取平均值校准产生。
本例所述样本车辆时间戳数据信息的获取可以从一种或多种混合交通数据源中获取,所述交通数据源包括车辆GPS定位数据、线圈数据、交通卡口数据。
本例所述流率ql的取值获取方法包括从历史车辆轨迹数据中校准获取。
本例所述点A的时空信息的获取方法包括从车辆GPS定位数据或交通卡口数据中提取出一天中该信号干道上多个交通信号周期内的最大排队车辆长度及最后一辆排队车辆结束减速状态开始空转状态的时间戳,并计算其相应的平均值作为点A的输入值。
本例所述dv取定值为1.2m/s;所述h(v)、h′(v)、z这三个量的获取方法包括从历史车辆轨迹数据中校准获取。根据研究表明,dv取定值为1.2m/s时重构加速度最为贴近于地面真实值。
上述结合附图对本发明进行了示例性描述,显然本发明的具体实现并不受本文所示的实施例限制。

Claims (9)

1.一种信号路口机动车排队车辆轨迹重构方法,其特征在于,所述方法包括步骤:
S1、规定信号干道上排队车辆依次经历的驾驶状态包括:巡航、减速、空转、加速、再巡航,并且所有排队车辆均在一个交通信号周期内通过下游真实停止线;从任一交通信号周期中红灯结束绿灯开始时刻,排队车辆以交通流消散波的速率开始消散,即:所有排队车辆不在同一时刻由空转状态转变为加速状态,所有排队车辆开始消散的时刻分布在车辆轨迹的位置-时间关系图象中的交通流消散波上;将上游虚拟停止线及下游真实停止线的位置分别记为xup、xdown,所述上游虚拟停止线是指所要重构的排队车辆轨迹的起始位置,所述下游真实停止线是指所要重构的排队车辆轨迹的结束位置;将排队车辆分为样本车辆和非样本车辆,所述样本车辆是指有被采集到车辆时间戳数据信息的排队车辆,所述非样本车辆是指没有被采集到车辆时间戳数据信息但真实存在的排队车辆;
S2、重构任一交通信号周期内样本车辆的轨迹,包括根据样本车辆时间戳数据信息确定该交通信号周期内的交通流冲击波边界,具体为:
S2-1、获取样本车辆i通过上游虚拟停止线及下游真实停止线的时间戳,分别记为
Figure FDA0003465906640000011
S2-2、规定一时间调整量Tad,记样本车辆i经调整后通过下游真实停止线的时间为
Figure FDA0003465906640000012
且满足
Figure FDA0003465906640000013
S2-3、已知样本车辆i经调整后通过下游真实停止线的时间为
Figure FDA0003465906640000014
并且假设在红灯结束绿灯开始后样本车辆i以全巡航状态通过下游真实停止线,根据车辆轨迹的位置-时间关系图象中的几何关系,将交通流消散波与样本车辆i的巡航轨迹的交点确定为样本车辆i结束空转状态开始加速状态的时空信息,记为
Figure FDA0003465906640000015
其中,
Figure FDA0003465906640000016
为样本车辆i结束空转状态开始加速状态的时刻,
Figure FDA0003465906640000017
为样本车辆i结束空转状态开始加速状态的位置;
S2-4、已知样本车辆i通过上游虚拟停止线时的时间戳
Figure FDA0003465906640000018
位置xup和结束空转状态开始加速状态时所处的位置
Figure FDA0003465906640000019
根据距离差,即
Figure FDA00034659066400000110
并且假设车辆减速速度为已知量dc,车辆的巡航速率为已知量vf,由此计算出样本车辆i在减速状态前经历的巡航位移
Figure FDA00034659066400000111
和时长
Figure FDA00034659066400000112
以及经历减速状态的时长
Figure FDA00034659066400000113
进而获得样本车辆i结束减速状态开始空转状态的时空信息,记为
Figure FDA00034659066400000114
其中,
Figure FDA00034659066400000115
为样本车辆i结束减速状态开始空转状态的时刻,
Figure FDA00034659066400000116
为样本车辆i结束减速状态开始空转状态的位置;
S2-5、引入点A以区分排队车辆与自由流车辆;
S2-6、在车辆轨迹的位置-时间关系图象中,将
Figure FDA00034659066400000117
与点A用直线连接,即可得到该交通信号周期内的交通流冲击波边界;
S3、重构该交通信号周期内非样本车辆的轨迹,具体包括:
S3-1、假设两个连续样本车辆之间的非样本车辆在开始加速时所处的位置坐标均匀分布在此两个连续样本车辆之间,即均匀分布在所述交通流消散波上,由此确定出非样本车辆j结束空转状态开始加速状态的时空信息,记为
Figure FDA0003465906640000021
其中,
Figure FDA0003465906640000022
为非样本车辆j结束空转状态开始加速状态的时刻,
Figure FDA0003465906640000023
为非样本车辆j结束空转状态开始加速状态的位置;假设两个连续样本车辆之间的非样本车辆在开始空转时所处的位置坐标均匀分布在此两个连续样本车辆之间,即均匀分布在所述该交通信号周期内的交通流冲击波边界上,由此确定出非样本车辆j结束减速状态开始空转状态的时空信息,记为
Figure FDA0003465906640000024
其中,
Figure FDA0003465906640000025
为非样本车辆j结束减速状态开始空转状态的时刻,
Figure FDA0003465906640000026
为非样本车辆j结束减速状态开始空转状态的位置;
S3-2、记两个连续样本车辆为样本车辆i和样本车辆i+1,估计此两个连续样本车辆之间的非样本车辆数Nl,具体为:
Figure FDA0003465906640000027
其中,ql代表流率,不同的相邻样本车辆之间的流率可能不同;
S3-3、确定
Figure FDA0003465906640000028
Figure FDA0003465906640000029
的具体时空信息,具体为:
Figure FDA00034659066400000210
Figure FDA00034659066400000211
构成的冲击波边界线段与消散波线段分别进行(Nl+1)等分,得:
Figure FDA00034659066400000212
Figure FDA00034659066400000213
n=1,2;j=1,2,…,Nl
其中,
Figure FDA00034659066400000214
为样本车辆i结束空转状态开始加速状态的时空信息,
Figure FDA00034659066400000215
为样本车辆i+1结束空转状态开始加速状态的时空信息,
Figure FDA00034659066400000216
为样本车辆i结束减速状态开始空转状态的时空信息,
Figure FDA00034659066400000217
为样本车辆i+1结束减速状态开始空转状态的时空信息;
S3-4、根据步骤S2的方法逆推得到非样本车辆j通过上游虚拟停止线及下游真实停止线的时间戳,分别记为
Figure FDA00034659066400000218
2.根据权利要求1所述的一种信号路口机动车排队车辆轨迹重构方法,其特征在于,所述时间调整量Tad的确定方法包括步骤:
S2-2-1、获取样本车辆i中各个轨迹点之间的加速度:通过先计算两个轨迹点的速度,再确定此两个轨迹点之间的加速度的方法来获取样本车辆i中各个轨迹点之间的加速度;计算所涉及的基本公式如下:
基本公式1:x=h(v)N+z;
基本公式2:
Figure FDA00034659066400000219
基本公式3:
Figure FDA0003465906640000031
上述基本公式1、基本公式2和基本公式3中,N表示从某个参考车辆通过开始,到时间t之前通过某个位置x的车辆累计数量;dv取定值;h(v)、h′(v)均为与速度v相关的已知量,z是已知量;N与x是线性相关的,用基本公式1表示;由基本公式1求导得出基本公式2,这意味着位置的变化量dx与N也是线性相关的;因此,在给出车辆某时刻的速度v和位置x后,可以先由基本公式1计算出N的值,再将N的值代入基本公式2得出dx,最后通过基本公式3计算出两个轨迹点之间的加速度am
S2-2-2、计算样本车辆i在通过下游真实停止线之前完整经历了多少个轨迹点:通过对位置关系的限制来确定轨迹点的个数p。
3.根据权利要求1所述的一种信号路口机动车排队车辆轨迹重构方法,其特征在于,所述步骤S2-4,已知样本车辆i通过上游虚拟停止线时的时间戳
Figure FDA0003465906640000032
位置xup和结束空转状态开始加速状态时所处的位置
Figure FDA0003465906640000033
根据距离差,即
Figure FDA0003465906640000034
并且假设车辆减速速度为已知量dc,车辆的巡航速率为已知量vf,由此计算出样本车辆i在减速状态前经历的巡航位移
Figure FDA0003465906640000035
和时长
Figure FDA0003465906640000036
以及经历减速状态的时长
Figure FDA0003465906640000037
进而获得样本车辆i结束减速状态开始空转状态的时空信息,记为
Figure FDA0003465906640000038
其中,
Figure FDA0003465906640000039
为样本车辆i结束减速状态开始空转状态的时刻,
Figure FDA00034659066400000310
为样本车辆i结束减速状态开始空转状态的位置;具体计算公式如下:
Figure FDA00034659066400000311
Figure FDA00034659066400000312
Figure FDA00034659066400000313
Figure FDA00034659066400000314
4.根据权利要求2所述的一种信号路口机动车排队车辆轨迹重构方法,其特征在于,所述时间调整量Tad的确定方法具体包括步骤:
S2-2-1、获取样本车辆i中各个轨迹点之间的加速度:通过先计算两个轨迹点的速度,再确定此两个轨迹点之间的加速度的方法来获取样本车辆i中各个轨迹点之间的加速度;具体为:
已知下游真实停止线的位置xdown,简记为D;再基于样本车辆时间戳数据信息,将任一样本车辆通过下游真实停止线的时间戳记为tarr,则在车辆轨迹的位置-时间关系图象中该样本车辆通过下游真实停止线的坐标记为(tarr,D);现假设该样本车辆经过的时间调整量Tad是一个未知参数τ,显然经调整后该样本车辆到达下游真实停止线的时空信息表示为(tarr-τ,D);然后过点(tarr-τ,D)且以巡航速率vf为斜率画一条直线,所画直线与交通流消散波相交于第一个轨迹点,即为该样本车辆结束空转状态开始加速状态的时空信息,记为[t1(τ),D1(τ)],且交通流消散波的速率为vd,则有:
Figure FDA0003465906640000041
Figure FDA0003465906640000042
当该样本车辆处于第一个轨迹点[t1(τ),D1(τ)]时,显然此时该样本车辆的瞬时速度为0,将其代入与速度v相关的已知量h(v)、h′(v)中可得到h(v=0)、h′(v=0),结合已知量z,则可以得到该样本车辆从第一个轨迹点至第二个轨迹点的车辆位移dx1(τ),满足关系式:
Figure FDA0003465906640000043
因此,该样本车辆从第一个轨迹点至第二个轨迹点之间的加速度a1(τ),满足关系式:
Figure FDA0003465906640000044
该样本车辆在第二个轨迹点的坐标可记为[t2(τ),D2(τ)],满足关系式:
Figure FDA0003465906640000045
D2(τ)=D1(τ)+dx1(τ);
该样本车辆从第二个轨迹点至第三个轨迹点之间的车辆位移dx2(τ)和加速度a2(τ)可表示为:
Figure FDA0003465906640000046
Figure FDA0003465906640000047
该样本车辆在第三个轨迹点的坐标可记为[t3(τ),D3(τ)],满足关系式:
Figure FDA0003465906640000048
D3(τ)=D2(τ)+dx2(τ);
该样本车辆从第三个轨迹点至第四个轨迹点之间的车辆位移dx3(τ)和加速度a3(τ)可表示为:
Figure FDA0003465906640000049
Figure FDA00034659066400000410
以此类推,对于该样本车辆的轨迹点k=2,3,…,p,满足递归方程:
Figure FDA00034659066400000411
Dk(τ)=Dk-1(τ)+dxk-1(τ),
Figure FDA00034659066400000412
Figure FDA00034659066400000413
S2-2-2、计算样本车辆i在通过下游真实停止线之前完整经历了多少个轨迹点:通过对位置关系的限制来确定轨迹点的个数p;具体为:
Figure FDA0003465906640000051
对于每个p的可行解,如果相应解得的τ为非负集合,则说明此解可能是该样本车辆的轨迹点个数,只当此解同时满足以下两个公式时才能保证τ有唯一可行解;所述两个公式如下:
Figure FDA0003465906640000052
Figure FDA0003465906640000053
当满足τ有唯一可行解时,认为此时τ的解就是时间调整量Tad的值;
但是,若代入p的所有整数值都不可行或者不存在τ的可行解,则可能是该样本车辆在经过第二个轨迹点之前已经通过了下游真实停止线,记为情况一;也可能是该样本车辆在通过下游真实停止线之前已经进入了再巡航状态,记为情况二;针对情况一,很显然轨迹点个数为1;针对情况二,判别式切换到方程式,得:
Figure FDA0003465906640000054
5.根据权利要求1所述的一种信号路口机动车排队车辆轨迹重构方法,其特征在于,所述步骤S3-4,根据步骤S2的方法逆推得到非样本车辆j通过上游虚拟停止线及下游真实停止线的时间戳,分别记为
Figure FDA0003465906640000055
具体包括:
S3-4-1、在确定了非样本车辆j结束空转状态开始加速状态的时空信息
Figure FDA0003465906640000056
与结束减速状态开始空转状态的时空信息
Figure FDA0003465906640000057
后,通过上游虚拟停止线的位置xup和非样本车辆j结束空转状态开始加速状态时所处的位置
Figure FDA0003465906640000058
根据距离差,即
Figure FDA0003465906640000059
以及假设车辆的减速速度为已知量dc、巡航速率为已知量vf,由此计算出非样本车辆j在减速状态前经历的巡航位移
Figure FDA00034659066400000510
和时长
Figure FDA00034659066400000511
以及经历减速状态的时长
Figure FDA00034659066400000512
进而获得非样本车辆j通过上游虚拟停止线的时间戳,记为
Figure FDA00034659066400000513
其中,
Figure FDA00034659066400000514
为非样本车辆j结束空转状态开始加速状态的时刻,
Figure FDA00034659066400000515
为非样本车辆j结束空转状态开始加速状态的位置,
Figure FDA00034659066400000516
为非样本车辆j结束减速状态开始空转状态的时刻,
Figure FDA00034659066400000517
为非样本车辆j结束减速状态开始空转状态的位置;具体计算公式如下:
Figure FDA00034659066400000518
Figure FDA00034659066400000519
Figure FDA00034659066400000520
Figure FDA00034659066400000521
S3-4-2、获取非样本车辆j中各个轨迹点之间的加速度:通过先计算两个轨迹点的速度,再确定此两个轨迹点之间的加速度的方法来获取非样本车辆j中各个轨迹点之间的加速度;具体为:
根据非样本车辆j结束空转状态开始加速状态的时空信息为
Figure FDA0003465906640000061
这里可将任一非样本车辆结束空转状态开始加速状态的时空信息作为该非样本车辆的第一个轨迹点,记为[t1,D1];
当该非样本车辆处于第一个轨迹点[t1,D1]时,显然此时该非样本车辆的瞬时速度为0,将其代入与速度v相关的已知量h(v)、h′(v)中可得到h(v=0)、h′(v=0),结合已知量z,则可以得到该非样本车辆从第一个轨迹点至第二个轨迹点的车辆位移dx1,满足关系式:
Figure FDA0003465906640000062
因此,该非样本车辆从第一个轨迹点至第二个轨迹点之间的加速度a1,满足关系式:
Figure FDA0003465906640000063
该非样本车辆在第二个轨迹点的坐标可记为[t2,D2],满足关系式:
Figure FDA0003465906640000064
D2=D1+dx1
该非样本车辆从第二个轨迹点至第三个轨迹点之间的车辆位移dx2和加速度a2可表示为:
Figure FDA0003465906640000065
Figure FDA0003465906640000066
该非样本车辆在第三个轨迹点的坐标可记为[t3,D3],满足关系式:
Figure FDA0003465906640000067
D3=D2+dx2
该非样本车辆从第三个轨迹点至第四个轨迹点之间的车辆位移dx3和加速度a3可表示为:
Figure FDA0003465906640000068
Figure FDA0003465906640000069
以此类推,对于该非样本车辆的轨迹点k=2,3,…,p,满足递归方程:
Figure FDA00034659066400000610
Dk=Dk-1+dxk-1
Figure FDA00034659066400000611
Figure FDA00034659066400000612
6.根据权利要求1所述的一种信号路口机动车排队车辆轨迹重构方法,其特征在于,所述样本车辆时间戳数据信息的获取可以从一种或多种混合交通数据源中获取,所述交通数据源包括车辆GPS定位数据、线圈数据、交通卡口数据。
7.根据权利要求1所述的一种信号路口机动车排队车辆轨迹重构方法,其特征在于,所述流率ql的取值获取方法包括从历史车辆轨迹数据中校准获取。
8.根据权利要求1所述的一种信号路口机动车排队车辆轨迹重构方法,其特征在于,所述点A的时空信息的获取方法包括从车辆GPS定位数据或交通卡口数据中提取出一天中该信号干道上多个交通信号周期内的最大排队车辆长度及最后一辆排队车辆结束减速状态开始空转状态的时间戳,并计算其相应的平均值作为点A的输入值。
9.根据权利要求2或4或5所述的一种信号路口机动车排队车辆轨迹重构方法,其特征在于,所述dv取定值为1.2m/s;所述h(v)、h′(v)、z这三个量的获取方法包括从历史车辆轨迹数据中校准获取。
CN202210029886.7A 2022-01-12 2022-01-12 一种信号路口机动车排队车辆轨迹重构方法 Active CN114360250B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210029886.7A CN114360250B (zh) 2022-01-12 2022-01-12 一种信号路口机动车排队车辆轨迹重构方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210029886.7A CN114360250B (zh) 2022-01-12 2022-01-12 一种信号路口机动车排队车辆轨迹重构方法

Publications (2)

Publication Number Publication Date
CN114360250A true CN114360250A (zh) 2022-04-15
CN114360250B CN114360250B (zh) 2022-11-11

Family

ID=81109946

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210029886.7A Active CN114360250B (zh) 2022-01-12 2022-01-12 一种信号路口机动车排队车辆轨迹重构方法

Country Status (1)

Country Link
CN (1) CN114360250B (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007241429A (ja) * 2006-03-06 2007-09-20 Sumitomo Electric Ind Ltd 交通流パラメータ算出システム、方法及びプログラム
CN105788252A (zh) * 2016-03-22 2016-07-20 连云港杰瑞电子有限公司 基于定点检测器和信号配时数据融合的城市干道车辆轨迹重构方法
CN106652458A (zh) * 2017-02-20 2017-05-10 东南大学 基于虚拟车辆轨迹重构的在线城市道路路径行程时间估计方法
CN108447256A (zh) * 2018-03-22 2018-08-24 连云港杰瑞电子有限公司 基于电警和定点检测器数据融合的干道车辆轨迹重构方法
CN108492562A (zh) * 2018-04-12 2018-09-04 连云港杰瑞电子有限公司 基于定点检测与电警数据融合的交叉口车辆轨迹重构方法
CN109064741A (zh) * 2018-08-01 2018-12-21 北京航空航天大学 基于多源数据融合的干道车辆运行轨迹重构的方法
CN113012430A (zh) * 2021-02-23 2021-06-22 西南交通大学 一种车辆排队长度检测方法、装置、设备及可读存储介质

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007241429A (ja) * 2006-03-06 2007-09-20 Sumitomo Electric Ind Ltd 交通流パラメータ算出システム、方法及びプログラム
CN105788252A (zh) * 2016-03-22 2016-07-20 连云港杰瑞电子有限公司 基于定点检测器和信号配时数据融合的城市干道车辆轨迹重构方法
CN106652458A (zh) * 2017-02-20 2017-05-10 东南大学 基于虚拟车辆轨迹重构的在线城市道路路径行程时间估计方法
CN108447256A (zh) * 2018-03-22 2018-08-24 连云港杰瑞电子有限公司 基于电警和定点检测器数据融合的干道车辆轨迹重构方法
CN108492562A (zh) * 2018-04-12 2018-09-04 连云港杰瑞电子有限公司 基于定点检测与电警数据融合的交叉口车辆轨迹重构方法
CN109064741A (zh) * 2018-08-01 2018-12-21 北京航空航天大学 基于多源数据融合的干道车辆运行轨迹重构的方法
CN113012430A (zh) * 2021-02-23 2021-06-22 西南交通大学 一种车辆排队长度检测方法、装置、设备及可读存储介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZIYAN GAO 等: "Modeling spatio-temporal interactions for vehicle trajectory prediction based on graph representation learning", 《2021 IEEE INTERNATIONAL INTELLIGENT TRANSPORTATION SYSTEMS CONFERENCE (ITSC)》 *

Also Published As

Publication number Publication date
CN114360250B (zh) 2022-11-11

Similar Documents

Publication Publication Date Title
CN106355907B (zh) 基于车辆轨迹的信号控制交叉口排队长度实时估计方法
CN108492562B (zh) 基于定点检测与电警数据融合的交叉口车辆轨迹重构方法
CN108399740B (zh) 一种信号控制交叉口机动车冲突概率预测方法
CN109348423B (zh) 一种基于抽样轨迹数据的干道协调控制优化方法
CN108470461B (zh) 一种交通信号控制器控制效果在线评价方法及系统
US20140277986A1 (en) Systems and Methods for Predicting Traffic Signal Information
CN106652458A (zh) 基于虚拟车辆轨迹重构的在线城市道路路径行程时间估计方法
CN111915887A (zh) 一种基于多源异构交通数据的集成与处理系统及其方法
WO2021073526A1 (zh) 一种基于轨迹数据的信号控制时段划分方法
CN105006147A (zh) 一种基于道路时空关联关系的路段行程时间推断方法
CN110992676B (zh) 一种道路通行能力与网联自动驾驶车当量系数估计方法
CN106971546B (zh) 基于公交车gps数据的路段公交车渗透率估计方法
CN108922193B (zh) 一种基于浮动车轨迹数据的交叉口信号周期估计方法
CN111680377A (zh) 一种交通态势仿真方法、系统和电子设备
CN113516854B (zh) 一种基于卡警、视频检测器的多路口协调自适应控制方法
CN102855755B (zh) 一种基于运行车速预测的城市干道车队离散模型的建模方法
CN114333364B (zh) 一种自动驾驶车辆通过信号交叉口生态驾驶方法
CN106960189A (zh) 一种基于隐含马尔可夫模型的驾驶意图判定方法
CN111862602A (zh) 基于轨迹数据的单交叉口信号配时优化方法
CN113436448B (zh) 一种信号交叉口借道左转车道设计方法及系统
JP2002163749A (ja) 交通流シミュレーション装置
CN114360250B (zh) 一种信号路口机动车排队车辆轨迹重构方法
Wen-juan et al. Application of vision sensing technology in urban intelligent traffic control system
CN108873696B (zh) 基于车载数据的城市道路过饱和预防控制建模方法
Zhang et al. Asymmetric behaviour and traffic flow characteristics of expressway merging area in China

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant