CN114358318A - 基于机器学习框架的分类方法及相关装置 - Google Patents

基于机器学习框架的分类方法及相关装置 Download PDF

Info

Publication number
CN114358318A
CN114358318A CN202210282564.3A CN202210282564A CN114358318A CN 114358318 A CN114358318 A CN 114358318A CN 202210282564 A CN202210282564 A CN 202210282564A CN 114358318 A CN114358318 A CN 114358318A
Authority
CN
China
Prior art keywords
quantum
gate
data
machine learning
bit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210282564.3A
Other languages
English (en)
Other versions
CN114358318B (zh
Inventor
窦猛汉
方圆
王伟
王汉超
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Origin Quantum Computing Technology Co Ltd
Original Assignee
Origin Quantum Computing Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Origin Quantum Computing Technology Co Ltd filed Critical Origin Quantum Computing Technology Co Ltd
Priority to CN202210282564.3A priority Critical patent/CN114358318B/zh
Publication of CN114358318A publication Critical patent/CN114358318A/zh
Application granted granted Critical
Publication of CN114358318B publication Critical patent/CN114358318B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Logic Circuits (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

本发明公开了一种基于机器学习框架的分类方法及相关装置,本发明通过调用机器学习框架包括的量子模块构建量子机器学习分类模型,量子机器学习分类模型包括级联的数据编码量子线路、Ansatz量子线路和测量量子线路,数据编码量子线路用于将输入数据编码至量子比特的量子态,Ansatz量子线路用于将量子比特的量子态演化至目标态,测量量子线路用于测量所述量子比特得到测量数据;然后将待分类数据作为输入数据输入至机器学习分类模型得到测量数据,以及基于测量数据对待分类数据进行分类;整个分类完全通过量子线路实现,利用量子计算中量子叠加的性质,可以减少比特等资源的占用,提高计算效率。

Description

基于机器学习框架的分类方法及相关装置
技术领域
本发明属于量子计算技术领域,特别是涉及一种基于机器学习框架的分类方法及相关装置。
背景技术
经典的机器学习彻底改变了人工智能的许多子领域,并取得了重大成功。近年来,随着信息时代的到来,机器学习得到了迅速的发展。电子数据量的快速增长导致了机器学习模型的训练数据的大量增加。与此同时,电子计算机计算能力的迅速发展,特别是以图形处理单元(Graphics Processing Unit,GPU)为代表的一系列新型电子计算设备的出现,使得机器学习模型的大规模训练成为现实。因此,机器学习已经大大超越了之前的传统算法,并在许多领域得到了广泛的应用。机器学习在数字图像分类、手写字符识别、视频分析等领域的表现已经达到或超过了人类。
然而,随着样本数量和特征数量的增大,经典机器学习分类模型会非常占用计算资源,一定程度上限制了其应用范围。量子计算的发展为解决该问题带来了曙光,如能将量子计算与大数据时代快速发展的机器学习算法相结合,利用量子计算机远超经典计算机的效率,将进一步提高了大数据的处理能力。因此,如何实现量子分类机器学习模型是一个需要解决的技术问题。
发明内容
本发明的目的是提供一种基于机器学习框架的分类方法及相关装置,旨在减少机器学习模型分类时计算资源的占用率。
本申请的一个实施例提供了一种基于机器学习框架的分类方法,所述机器学习框架包括量子模块,所述方法包括:
调用所述量子模块构建量子机器学习分类模型,所述量子机器学习分类模型包括级联的数据编码量子线路、Ansatz量子线路和测量量子线路,所述数据编码量子线路用于将输入数据编码至量子比特的量子态,所述Ansatz量子线路用于将所述量子比特的量子态演化至目标态,所述测量量子线路用于测量所述量子比特得到测量数据;
将待分类数据作为所述输入数据输入至所述机器学习分类模型得到所述测量数据,以及基于所述测量数据对所述待分类数据进行分类。
可选的,所述量子模块包括量子态编码逻辑门单元,所述调用所述量子模块构建量子机器学习分类模型,包括:
调用所述量子态编码逻辑门单元获取H门、RZ门、包括CNOT门与RZ门的第一组合逻辑门,以及将所述H门、所述RZ门、所述第一组合逻辑门依次作用在所述量子比特上,得到所述数据编码量子线路。
可选的,所述方法还包括:
调用所述量子态编码逻辑门单元获取两个CNOT门和一个RZ门,以及将其中一个所述CNOT门的其中一个输出项作为所述RZ门的输入项,将所述RZ门的输出项作为另外一个所述CNOT门的其中一个输入项,得到所述第一组合逻辑门,两个所述CNOT门的被控比特相同且均为所述RZ门作用的量子比特。
可选的,所述量子模块还包括量子态演化逻辑门单元,所述调用所述量子模块构建量子机器学习分类模型,还包括:
调用所述量子态演化逻辑门单元获取RX门、包括CNOT门与RZ门的第二组合逻辑门,以及将所述RX门、所述第二组合逻辑门依次作用在所述量子比特上,得到Ansatz线路。
可选的,所述方法还包括:
调用所述量子态演化逻辑门单元获取CNOT门与RZ门,以及将所述CNOT门的其中一个输出项作为所述RZ门的输入项,得到所述第二组合逻辑门,所述CNOT门的控制比特与所述RZ门作用的量子比特相同。
可选的,所述量子模块还包括量子测量子模块,所述调用所述量子模块构建量子机器学习分类模型,还包括:
确定所述量子机器学习分类模型对应的哈密顿量;
调用所述量子测量子模块构建所述哈密顿量对应的测量量子线路。
可选的,所述哈密顿量为
Figure 853913DEST_PATH_IMAGE001
,所述
Figure 649699DEST_PATH_IMAGE002
Figure DEST_PATH_IMAGE003
分别为第a和第b个所述量子比特对应的泡利算符。
本申请的又一实施例提供了一种基于机器学习框架的分类装置,所述机器学习框架包括量子模块,所述装置包括:
模型构建单元,用于调用所述量子模块构建量子机器学习分类模型,所述量子机器学习分类模型包括级联的数据编码量子线路、Ansatz量子线路和测量量子线路,所述数据编码量子线路用于将输入数据编码至量子比特的量子态,所述Ansatz量子线路用于将所述量子比特的量子态演化至目标态,所述测量量子线路用于测量所述量子比特得到测量数据;
模型运行单元,用于将待分类数据作为所述输入数据输入至所述机器学习分类模型得到所述测量数据,以及基于所述测量数据对所述待分类数据进行分类。
可选的,所述量子模块包括量子态编码逻辑门单元,在所述调用所述量子模块构建量子机器学习分类模型发明,所述模型构建单元具体用于:
调用所述量子态编码逻辑门单元获取H门、RZ门、包括CNOT门与RZ门的第一组合逻辑门,以及将所述H门、所述RZ门、所述第一组合逻辑门依次作用在所述量子比特上,得到所述数据编码量子线路。
可选的,所述模型构建单元还用于:
调用所述量子态编码逻辑门单元获取两个CNOT门和一个RZ门,以及将其中一个所述CNOT门的其中一个输出项作为所述RZ门的输入项,将所述RZ门的输出项作为另外一个所述CNOT门的其中一个输入项,得到所述第一组合逻辑门,两个所述CNOT门的被控比特相同且均为所述RZ门作用的量子比特。
可选的,所述量子模块还包括量子态演化逻辑门单元,在所述调用所述量子模块构建量子机器学习分类模型方面,所述模型构建单元还用于:
调用所述量子态演化逻辑门单元获取RX门、包括CNOT门与RZ门的第二组合逻辑门,以及将所述RX门、所述第二组合逻辑门依次作用在所述量子比特上,得到Ansatz线路。
可选的,所述模型构建单元还用于:
调用所述量子态演化逻辑门单元获取CNOT门与RZ门,以及将所述CNOT门的其中一个输出项作为所述RZ门的输入项,得到所述第二组合逻辑门,所述CNOT门的控制比特与所述RZ门作用的量子比特相同。
可选的,所述量子模块还包括量子测量子模块,在所述调用所述量子模块构建量子机器学习分类模型方面,所述模型构建单元还用于:
确定所述量子机器学习分类模型对应的哈密顿量;
调用所述量子测量子模块构建所述哈密顿量对应的测量量子线路。
可选的,所述哈密顿量为
Figure 823192DEST_PATH_IMAGE001
,所述
Figure 771556DEST_PATH_IMAGE002
Figure 739512DEST_PATH_IMAGE003
分别为第a和第b个所述量子比特对应的泡利算符。
本申请的又一实施例提供了一种存储介质,所述存储介质中存储有计算机程序,其中,所述计算机程序被设置为运行时执行上述任一项中所述的方法。
本申请的又一实施例提供了一种电子装置,包括存储器和处理器,所述存储器中存储有计算机程序,所述处理器被设置为运行所述计算机程序以执行上述任一项中所述的方法。
与现有技术相比,本发明通过调用机器学习框架包括的量子模块构建量子机器学习分类模型,量子机器学习分类模型包括级联的数据编码量子线路、Ansatz量子线路和测量量子线路,数据编码量子线路用于将输入数据编码至量子比特的量子态,Ansatz量子线路用于将量子比特的量子态演化至目标态,测量量子线路用于测量所述量子比特得到测量数据;然后将待分类数据作为输入数据输入至机器学习分类模型得到测量数据,以及基于测量数据对待分类数据进行分类;整个分类完全通过量子线路实现,利用量子计算中量子叠加的性质,可以减少比特等资源的占用,提高计算效率。
附图说明
图1为本发明实施例提供的一种基于机器学习框架的分类方法的计算机终端的硬件结构框图;
图2为本发明实施例提供的一种基于机器学习框架的分类方法的流程示意图;
图3是本发明实施例提供的一种第一组合逻辑门的结构示意图;
图4是本发明实施例提供的一种数据编码量子线路的结构示意图;
图5是本发明实施例提供的一种第二组合逻辑门的结构示意图;
图6是本发明实施例提供的一种Ansatz线路的结构示意图;
图7是本发明实施例提供的一种基于机器学习框架的分类装置的结构示意图。
附图标记说明:
102-处理器,104-存储器,106-传输装置,108-输入输出设备。
具体实施方式
下面通过参考附图描述的实施例是示例性的,仅用于解释本发明,而不能解释为对本发明的限制。
本发明实施例首先提供了一种基于机器学习框架的分类方法,该方法可以应用于电子设备,如计算机终端,具体如普通电脑、量子计算机等。
下面以运行在计算机终端上为例对其进行详细说明。图1为本发明实施例提供的一种基于机器学习框架的分类方法的计算机终端的硬件结构框图。如图1所示,计算机终端可以包括一个或多个(图1中仅示出一个)处理器102(处理器102可以包括但不限于微处理器MCU或可编程逻辑器件FPGA等的处理装置)和用于存储基于机器学习框架的分类方法的存储器104,可选地,上述计算机终端还可以包括用于通信功能的传输装置106以及输入输出设备108。本领域普通技术人员可以理解,图1所示的结构仅为示意,其并不对上述计算机终端的结构造成限定。例如,计算机终端还可包括比图1中所示更多或者更少的组件,或者具有与图1所示不同的配置。
存储器104可用于存储应用软件的软件程序以及模块,如本申请实施例中的基于机器学习框架的分类方法对应的程序指令/模块,处理器102通过运行存储在存储器104内的软件程序以及模块,从而执行各种功能应用以及数据处理,即实现上述的方法。存储器104可包括高速随机存储器,还可包括非易失性存储器,如一个或者多个磁性存储装置、闪存、或者其他非易失性固态存储器。在一些实例中,存储器104可进一步包括相对于处理器102远程设置的存储器,这些远程存储器可以通过网络连接至计算机终端。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
传输装置106用于经由一个网络接收或者发送数据。上述的网络具体实例可包括计算机终端的通信供应商提供的无线网络。在一个实例中,传输装置106包括一个网络适配器(Network Interface Controller,NIC),其可通过基站与其他网络设备相连从而可与互联网进行通讯。在一个实例中,传输装置106可以为射频(Radio Frequency,RF)模块,其用于通过无线方式与互联网进行通讯。
需要说明的是,真正的量子计算机是混合结构的,它包含两大部分:一部分是经典计算机,负责执行经典计算与控制;另一部分是量子设备,负责运行量子程序进而实现量子计算。而量子程序是由量子语言如QRunes语言编写的一串能够在量子计算机上运行的指令序列,实现了对量子逻辑门操作的支持,并最终实现量子计算。具体的说,量子程序就是一系列按照一定时序操作量子逻辑门的指令序列。
在实际应用中,因受限于量子设备硬件的发展,通常需要进行量子计算模拟以验证量子算法、量子应用等等。量子计算模拟即借助普通计算机的资源搭建的虚拟架构(即量子虚拟机)实现特定问题对应的量子程序的模拟运行的过程。通常,需要构建特定问题对应的量子程序。本发明实施例所指量子程序,即是经典语言编写的表征量子比特及其演化的程序,其中与量子计算相关的量子比特、量子逻辑门等等均有相应的经典代码表示。
量子线路作为量子程序的一种体现方式,也称量子逻辑电路,是最常用的通用量子计算模型,表示在抽象概念下对于量子比特进行操作的线路,其组成包括量子比特、线路(时间线)、以及各种量子逻辑门,最后常需要通过量子测量操作将结果读取出来。
不同于传统电路是用金属线所连接以传递电压信号或电流信号,在量子线路中,线路可看成是由时间所连接,亦即量子比特的状态随着时间自然演化,在这过程中按照哈密顿运算符的指示,一直到遇上逻辑门而被操作。
一个量子程序整体上对应有一条总的量子线路,本发明所述量子程序即指该条总的量子线路,其中,该总的量子线路中的量子比特总数与量子程序的量子比特总数相同。可以理解为:一个量子程序可以由量子线路、针对量子线路中量子比特的测量操作、保存测量结果的寄存器及控制流节点(跳转指令)组成,一条量子线路可以包含几十上百个甚至成千上万个量子逻辑门操作。量子程序的执行过程,就是对所有的量子逻辑门按照一定时序执行的过程。需要说明的是,时序即单个量子逻辑门被执行的时间顺序。
需要说明的是,经典计算中,最基本的单元是比特,而最基本的控制模式是逻辑门,可以通过逻辑门的组合来达到控制电路的目的。类似地,处理量子比特的方式就是量子逻辑门。使用量子逻辑门,能够使量子态发生演化,量子逻辑门是构成量子线路的基础,量子逻辑门包括单比特量子逻辑门,如Hadamard门(H门,阿达马门)、泡利-X门(X门)、泡利-Y门(Y门)、泡利-Z门(Z门)、RX门、RY门、RZ门等等;多比特量子逻辑门,如CNOT门、CR门、iSWAP门、Toffoli门等等。量子逻辑门一般使用酉矩阵表示,而酉矩阵不仅是矩阵形式,也是一种操作和变换。一般量子逻辑门在量子态上的作用是通过酉矩阵左乘以量子态右矢对应的矩阵进行计算。
参见图2,图2为本发明实施例提供的一种基于机器学习框架的分类方法的流程示意图。所述机器学习框架包括量子模块,所述方法包括:
步骤201:调用所述量子模块构建量子机器学习分类模型,所述量子机器学习分类模型包括级联的数据编码量子线路、Ansatz量子线路和测量量子线路,所述数据编码量子线路用于将输入数据编码至量子比特的量子态,所述Ansatz量子线路用于将所述量子比特的量子态演化至目标态,所述测量量子线路用于测量所述量子比特得到测量数据;
其中,机器学习框架集成了众多用于创建和训练机器学习模型的函数集,通过其定义的接口可以方便的调用函数集中的函数实现对机器学习模型的相关操作。机器学习框架包括的上述量子模块可以被配置为创建机器学习模型中的量子计算层,量子计算层为包含量子程序的程序模块,可以用于实现对应量子程序的量子计算,通过对量子程序按照一定的标准进行封装得到量子计算层,便于在创建和训练机器学习模型时进行使用。量子程序为实现量子计算的程序,可以通过调用量子模块创建按特定顺序作用于量子比特的量子逻辑门得到量子程序,并对量子程序进行封装得到量子计算层。所述量子计算层包括所述数据编码量子线路、Ansatz量子线路和测量量子线路。
其中,Ansatz量子线路中的Ansatz是量子线路的基本架构,即作用于特定子系统的一组逻辑门。该架构定义了变分量子线路可以通过固定可训练参数来实现量子算法。Ansatz量子线路类似于神经网络架构。
其中,级联的数据编码量子线路、Ansatz量子线路和测量量子线路即将数据编码量子线路的输入作为量子机器学习分类模型的输入,将数据编码量子线路的输出作为Ansatz量子线路的输入,将Ansatz量子线路的输出作为测量量子线路的输入,将测量量子线路的输出作为量子机器学习分类模型的输出。
进一步地,所述量子模块包括量子逻辑门子模块和量子测量子模块,量子逻辑门子模块包括量子态编码逻辑门单元和量子态演化逻辑门单元,所述调用所述量子模块构建量子机器学习分类模型,包括:
调用所述量子态编码逻辑门单元创建所述数据编码量子线路;
调用所述量子态演化逻辑门单元创建所述Ansatz量子线路;
调用所述量子测量子模块创建所述测量量子线路。
其中,所述数据编码量子线路可以为以下其中一种:基态编码量子线路、幅度编码量子线路、角度编码量子线路、瞬时量子多项式IQP(Instantaneous Quantum Polynomial)编码线路。
具体来讲,基态相对于任意量子态,相当于基向量相对于任意向量。例如,对于量子态
Figure 835644DEST_PATH_IMAGE004
,其中
Figure 734199DEST_PATH_IMAGE005
Figure 599387DEST_PATH_IMAGE006
为基态,对于量子态
Figure 738244DEST_PATH_IMAGE007
,其中
Figure 524934DEST_PATH_IMAGE008
为基态。基态编码量子线路用于将输入数据编码至量子比特的量子态中的基态。例如对于输入数据5,其二进制码为101,进而可以将其编码至量子比特的量子态中的基态
Figure 774650DEST_PATH_IMAGE009
具体来讲,对于量子态
Figure 759924DEST_PATH_IMAGE010
,其中a和b为振幅;对于量子态
Figure 256633DEST_PATH_IMAGE007
,其中c、d、e、f为振幅。例如,对于输入数据[1,3],对其归一化后1对应于0.25,3对应于0.75,进而可以令量子态
Figure 327357DEST_PATH_IMAGE010
中的振幅的
Figure 380764DEST_PATH_IMAGE011
来对其进行编码。
具体来讲,角度编码量子线路中包括含参量子逻辑门,例如可以为RX旋转门、RY旋转门和RZ旋转门中的任意一者。对输入数据进行反三角函数变换,将变换得到的角度作为旋转门的旋转角度参数,从而实现对输入数据的编码。
具体来讲,IQP编码指的是通过创建IQP编码线路的逻辑门作用于指定量子比特得到IQP编码线路,并将输入数据作为该IQP编码线路的参数,运行该IQP编码线路可以将输入数据x编码至量子态
Figure 158227DEST_PATH_IMAGE012
,其中,x为张量数据,H为上述H门,n为指定量子比特的数量,
Figure 638887DEST_PATH_IMAGE013
表示n个指定量子比特的初始量子态均为
Figure 931328DEST_PATH_IMAGE014
,r表示
Figure 978306DEST_PATH_IMAGE015
的重复次数,
Figure 672592DEST_PATH_IMAGE016
如下:
Figure 324154DEST_PATH_IMAGE017
其中,
Figure 307153DEST_PATH_IMAGE018
表示RZZ门,
Figure 702362DEST_PATH_IMAGE019
表示RZ门,S表示被该
Figure 251155DEST_PATH_IMAGE020
逻辑门作用的量子比特的集合。
步骤202:将待分类数据作为所述输入数据输入至所述机器学习分类模型得到所述测量数据,以及基于所述测量数据对所述待分类数据进行分类。
其中,测量数据可以包括每一类标签对应的类别的概率。基于所述测量数据对所述待分类数据进行分类,则可以为判断每一类标签对应的类别的概率是否大于或等于设置的概率阈值来确定属于哪一类别,或者将从每一类标签对应的类别的概率中确定最大的概率,将最大的概率对应的类别确定为待分类数据的类别。
与现有技术相比,本发明通过调用机器学习框架包括的量子模块构建量子机器学习分类模型,量子机器学习分类模型包括级联的数据编码量子线路、Ansatz量子线路和测量量子线路,数据编码量子线路用于将输入数据编码至量子比特的量子态,Ansatz量子线路用于将量子比特的量子态演化至目标态,测量量子线路用于测量所述量子比特得到测量数据;然后将待分类数据作为输入数据输入至机器学习分类模型得到测量数据,以及基于测量数据对待分类数据进行分类;整个分类完全通过量子线路实现,利用量子计算中量子叠加的性质,可以减少比特等资源的占用,提高计算效率。
可选的,所述量子模块包括量子态编码逻辑门单元,所述调用所述量子模块构建量子机器学习分类模型,包括:
调用所述量子态编码逻辑门单元获取H门、RZ门、包括CNOT门与RZ门的第一组合逻辑门,以及将所述H门、所述RZ门、所述第一组合逻辑门依次作用在所述量子比特上,得到所述数据编码量子线路。
需要说明的是,上述发明实施例中提供的数据编码线路为IOP编码线路,该IOP编码线路包括H门、RZ门、CZ门与RZ门的组合逻辑门,该IOP编码线路还可以包括其他的逻辑门,在此不作限定。
还需要说明的是,H门、RZ门、第一组合逻辑门在量子比特上的作用顺序,以及第一组合逻辑门的构成和其构成的连接关系,在此均不做限定。
可选的,所述方法还包括:
调用所述量子态编码逻辑门单元获取两个CNOT门和一个RZ门,以及将其中一个所述CNOT门的其中一个输出项作为所述RZ门的输入项,将所述RZ门的输出项作为另外一个所述CNOT门的其中一个输入项,得到所述第一组合逻辑门,两个所述CNOT门的被控比特相同且均为所述RZ门作用的量子比特。
进一步地,所述方法还包括:
将其中一个所述CNOT门的另外一个输出项作为另外一个所述CNOT门的另外一个输入项;
进一步地,所述方法还包括:
将其中一个所述CNOT门的两个输入项作为所述第一组合逻辑门的输入项,将另外一个CNOT门的两个输出项作为所述第一组合逻辑门的输出项。
参见图3,图3是本发明实施例提供的一种第一组合逻辑门的结构示意图。参见图4,图4是本发明实施例提供的一种数据编码量子线路的结构示意图。如图4所示,数据编码量子线路包括4个量子比特:
Figure 526148DEST_PATH_IMAGE021
。先将4个H门和4个RZ门分别作用在4个量子比特上,然后再将3个第一组合逻辑门依次作用在
Figure 793181DEST_PATH_IMAGE022
Figure 992081DEST_PATH_IMAGE023
Figure 333064DEST_PATH_IMAGE024
上。
可选的,所述量子模块还包括量子态演化逻辑门单元,所述调用所述量子模块构建量子机器学习分类模型,还包括:
调用所述量子态演化逻辑门单元获取RX门、包括CNOT门与RZ门的第二组合逻辑门,以及将所述RX门、所述第二组合逻辑门依次作用在所述量子比特上,得到Ansatz线路。
需要说明的是,上述发明实施例中提供的Ansatz线路为其中一种具体实现方式,该Ansatz线路包括RX门、CNOT门与RZ门的组合逻辑门,该Ansatz线路还可以包括其他的逻辑门或者有其他的具体实现方式,在此不一一举例说明。
还需要说明的是,RX门、第二组合逻辑门的数量以及在量子比特上的作用顺序,以及第二组合逻辑门的构成和其构成的连接关系,在此均不做限定。
可选的,所述方法还包括:
调用所述量子态演化逻辑门单元获取CNOT门与RZ门,以及将所述CNOT门的其中一个输出项作为所述RZ门的输入项,得到所述第二组合逻辑门,所述CNOT门的控制比特与所述RZ门作用的量子比特相同。
进一步地,所述方法还包括:
将所述CNOT门的两个输入项作为所述第二组合逻辑门的输入,将所述CNOT门的另外一个输出项和所述RZ门的输出项作为所述第二组合逻辑门的输出项。
参见图5,图5是本发明实施例提供的一种第二组合逻辑门的结构示意图。参见图6,图6是本发明实施例提供的一种Ansatz线路的结构示意图。如图6所示,Ansatz线路包括4个量子比特
Figure 592007DEST_PATH_IMAGE025
。先将4个RX门分别作用在4个量子比特上,然后将3个第二组合逻辑门依次作用在
Figure 346336DEST_PATH_IMAGE026
Figure 270299DEST_PATH_IMAGE027
Figure 793684DEST_PATH_IMAGE028
上,再将RZ门作用在
Figure 223528DEST_PATH_IMAGE029
上,将上述两个步骤重复三遍,得到Ansatz线路。
可选的,所述量子模块还包括量子测量子模块,所述调用所述量子模块构建量子机器学习分类模型,还包括:
确定所述量子机器学习分类模型对应的哈密顿量;
调用所述量子测量子模块构建所述哈密顿量对应的测量量子线路。
其中,所述测量量子线路由所述哈密顿量对应的逻辑门和测量操作作用于对应的量子比特构成。
可选的,所述哈密顿量为
Figure 137258DEST_PATH_IMAGE001
,所述
Figure 677960DEST_PATH_IMAGE002
Figure 321431DEST_PATH_IMAGE003
分别为第a和第b个所述量子比特对应的泡利算符。第a和第b个所述量子比特可以为相邻量子比特,也可以不为相邻量子比特,在此不做限定。
Figure 843548DEST_PATH_IMAGE002
Figure 572470DEST_PATH_IMAGE003
对应的矩阵为:
Figure 651284DEST_PATH_IMAGE030
举例说明,如图4或图6所示,
Figure 86945DEST_PATH_IMAGE031
可以为
Figure 593013DEST_PATH_IMAGE026
对应的
Figure 809230DEST_PATH_IMAGE032
,也可以为
Figure 881616DEST_PATH_IMAGE027
对应的
Figure 234100DEST_PATH_IMAGE033
,也可以为
Figure 176648DEST_PATH_IMAGE028
对应的
Figure 552266DEST_PATH_IMAGE034
,还可以为
Figure 972883DEST_PATH_IMAGE035
对应的
Figure 445453DEST_PATH_IMAGE036
,还可以为
Figure 480274DEST_PATH_IMAGE037
对应的
Figure 405504DEST_PATH_IMAGE038
等等。在测量时,若第a个哈密顿量更大,则会将此待分类数据归类到标签为“0”的类,同理,若第b个哈密顿量更大,则会将此待分类数据归类到标签为“1”的类。通过对量子机器学习分类模型的训练,量子线路的参数会不断更新,使得训练集上更多的样本被预测正确。
参见图7,图7是本发明实施例提供的一种基于机器学习框架的分类装置的结构示意图。所述机器学习框架包括量子模块,所述装置包括:
模型构建单元701,用于调用所述量子模块构建量子机器学习分类模型,所述量子机器学习分类模型包括级联的数据编码量子线路、Ansatz量子线路和测量量子线路,所述数据编码量子线路用于将输入数据编码至量子比特的量子态,所述Ansatz量子线路用于将所述量子比特的量子态演化至目标态,所述测量量子线路用于测量所述量子比特得到测量数据;
模型运行单元702,用于将待分类数据作为所述输入数据输入至所述机器学习分类模型得到所述测量数据,以及基于所述测量数据对所述待分类数据进行分类。
可选的,所述量子模块包括量子态编码逻辑门单元,在所述调用所述量子模块构建量子机器学习分类模型发明,所述模型构建单元701具体用于:
调用所述量子态编码逻辑门单元获取H门、RZ门、包括CNOT门与RZ门的第一组合逻辑门,以及将所述H门、所述RZ门、所述第一组合逻辑门依次作用在所述量子比特上,得到所述数据编码量子线路。
可选的,所述模型构建单元701还用于:
调用所述量子态编码逻辑门单元获取两个CNOT门和一个RZ门,以及将其中一个所述CNOT门的其中一个输出项作为所述RZ门的输入项,将所述RZ门的输出项作为另外一个所述CNOT门的其中一个输入项,得到所述第一组合逻辑门,两个所述CNOT门的被控比特相同且均为所述RZ门作用的量子比特。
可选的,所述量子模块还包括量子态演化逻辑门单元,在所述调用所述量子模块构建量子机器学习分类模型方面,所述模型构建单元701还用于:
调用所述量子态演化逻辑门单元获取RX门、包括CNOT门与RZ门的第二组合逻辑门,以及将所述RX门、所述第二组合逻辑门依次作用在所述量子比特上,得到Ansatz线路。
可选的,所述模型构建单元701还用于:
调用所述量子态演化逻辑门单元获取CNOT门与RZ门,以及将所述CNOT门的其中一个输出项作为所述RZ门的输入项,得到所述第二组合逻辑门,所述CNOT门的控制比特与所述RZ门作用的量子比特相同。
可选的,所述量子模块还包括量子测量子模块,在所述调用所述量子模块构建量子机器学习分类模型方面,所述模型构建单元701还用于:
确定所述量子机器学习分类模型对应的哈密顿量;
调用所述量子测量子模块构建所述哈密顿量对应的测量量子线路。
可选的,所述哈密顿量为
Figure 629812DEST_PATH_IMAGE001
,所述
Figure 894571DEST_PATH_IMAGE002
Figure 178922DEST_PATH_IMAGE003
分别为第a和第b个所述量子比特对应的泡利算符。
与现有技术相比,本发明通过调用机器学习框架包括的量子模块构建量子机器学习分类模型,量子机器学习分类模型包括级联的数据编码量子线路、Ansatz量子线路和测量量子线路,数据编码量子线路用于将输入数据编码至量子比特的量子态,Ansatz量子线路用于将量子比特的量子态演化至目标态,测量量子线路用于测量所述量子比特得到测量数据;然后将待分类数据作为输入数据输入至机器学习分类模型得到测量数据,以及基于测量数据对待分类数据进行分类;整个分类完全通过量子线路实现,利用量子计算中量子叠加的性质,可以减少比特等资源的占用,提高计算效率。
本发明实施例还提供了一种存储介质,所述存储介质中存储有计算机程序,其中,所述计算机程序被设置为运行时执行上述任一项方法实施例中的步骤。
具体的,在本实施例中,上述存储介质可以被设置为存储用于执行以下步骤的计算机程序:
调用所述量子模块构建量子机器学习分类模型,所述量子机器学习分类模型包括级联的数据编码量子线路、Ansatz量子线路和测量量子线路,所述数据编码量子线路用于将输入数据编码至量子比特的量子态,所述Ansatz量子线路用于将所述量子比特的量子态演化至目标态,所述测量量子线路用于测量所述量子比特得到测量数据;
将待分类数据作为所述输入数据输入至所述机器学习分类模型得到所述测量数据,以及基于所述测量数据对所述待分类数据进行分类。
具体的,在本实施例中,上述存储介质可以包括但不限于:U盘、只读存储器(Read-Only Memory,简称为ROM)、随机存取存储器(Random Access Memory,简称为RAM)、移动硬盘、磁碟或者光盘等各种可以存储计算机程序的介质。
本发明的再一实施例还提供了一种电子装置,包括存储器和处理器,所述存储器中存储有计算机程序,所述处理器被设置为运行所述计算机程序以执行上述任一项中方法实施例中的步骤。
具体的,上述电子装置还可以包括传输设备以及输入输出设备,其中,该传输设备和上述处理器连接,该输入输出设备和上述处理器连接。
具体的,在本实施例中,上述处理器可以被设置为通过计算机程序执行以下步骤:
调用所述量子模块构建量子机器学习分类模型,所述量子机器学习分类模型包括级联的数据编码量子线路、Ansatz量子线路和测量量子线路,所述数据编码量子线路用于将输入数据编码至量子比特的量子态,所述Ansatz量子线路用于将所述量子比特的量子态演化至目标态,所述测量量子线路用于测量所述量子比特得到测量数据;
将待分类数据作为所述输入数据输入至所述机器学习分类模型得到所述测量数据,以及基于所述测量数据对所述待分类数据进行分类。
以上依据图式所示的实施例详细说明了本发明的构造、特征及作用效果,以上所述仅为本发明的较佳实施例,但本发明不以图面所示限定实施范围,凡是依照本发明的构想所作的改变,或修改为等同变化的等效实施例,仍未超出说明书与图示所涵盖的精神时,均应在本发明的保护范围内。

Claims (10)

1.一种基于机器学习框架的分类方法,其特征在于,所述机器学习框架包括量子模块,所述方法包括:
调用所述量子模块构建量子机器学习分类模型,所述量子机器学习分类模型包括级联的数据编码量子线路、Ansatz量子线路和测量量子线路,所述数据编码量子线路用于将输入数据编码至量子比特的量子态,所述Ansatz量子线路用于将所述量子比特的量子态演化至目标态,所述测量量子线路用于测量所述量子比特得到测量数据;
将待分类数据作为所述输入数据输入至所述机器学习分类模型得到所述测量数据,以及基于所述测量数据对所述待分类数据进行分类。
2.如权利要求1所述的方法,其特征在于,所述量子模块包括量子态编码逻辑门单元,所述调用所述量子模块构建量子机器学习分类模型,包括:
调用所述量子态编码逻辑门单元获取H门、RZ门、包括CNOT门与RZ门的第一组合逻辑门,以及将所述H门、所述RZ门、所述第一组合逻辑门依次作用在所述量子比特上,得到所述数据编码量子线路。
3.如权利要求2所述的方法,其特征在于,所述方法还包括:
调用所述量子态编码逻辑门单元获取两个CNOT门和一个RZ门,以及将其中一个所述CNOT门的其中一个输出项作为所述RZ门的输入项,将所述RZ门的输出项作为另外一个所述CNOT门的其中一个输入项,得到所述第一组合逻辑门,两个所述CNOT门的被控比特相同且均为所述RZ门作用的量子比特。
4.如权利要求2或3所述的方法,其特征在于,所述量子模块还包括量子态演化逻辑门单元,所述调用所述量子模块构建量子机器学习分类模型,还包括:
调用所述量子态演化逻辑门单元获取RX门、包括CNOT门与RZ门的第二组合逻辑门,以及将所述RX门、所述第二组合逻辑门依次作用在所述量子比特上,得到Ansatz线路。
5.如权利要求4所述的方法,其特征在于,所述方法还包括:
调用所述量子态演化逻辑门单元获取CNOT门与RZ门,以及将所述CNOT门的其中一个输出项作为所述RZ门的输入项,得到所述第二组合逻辑门,所述CNOT门的控制比特与所述RZ门作用的量子比特相同。
6.如权利要求2或3所述的方法,其特征在于,所述量子模块还包括量子测量子模块,所述调用所述量子模块构建量子机器学习分类模型,还包括:
确定所述量子机器学习分类模型对应的哈密顿量;
调用所述量子测量子模块构建所述哈密顿量对应的测量量子线路。
7.如权利要求6所述的方法,其特征在于,所述哈密顿量为
Figure 167143DEST_PATH_IMAGE001
,所述
Figure 989474DEST_PATH_IMAGE002
Figure 145649DEST_PATH_IMAGE003
分别为第a和第b个所述量子比特对应的泡利算符。
8.一种基于机器学习框架的分类装置,其特征在于,所述机器学习框架包括量子模块,所述装置包括:
模型构建单元,用于调用所述量子模块构建量子机器学习分类模型,所述量子机器学习分类模型包括级联的数据编码量子线路、Ansatz量子线路和测量量子线路,所述数据编码量子线路用于将输入数据编码至量子比特的量子态,所述Ansatz量子线路用于将所述量子比特的量子态演化至目标态,所述测量量子线路用于测量所述量子比特得到测量数据;
模型运行单元,用于将待分类数据作为所述输入数据输入至所述机器学习分类模型得到所述测量数据,以及基于所述测量数据对所述待分类数据进行分类。
9.一种存储介质,其特征在于,所述存储介质中存储有计算机程序,其中,所述计算机程序被设置为运行时执行所述权利要求1至7任一项中所述的方法。
10.一种电子装置,包括存储器和处理器,其特征在于,所述存储器中存储有计算机程序,所述处理器被设置为运行所述计算机程序以执行所述权利要求1至7任一项中所述的方法。
CN202210282564.3A 2022-03-22 2022-03-22 基于机器学习框架的分类方法及相关装置 Active CN114358318B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210282564.3A CN114358318B (zh) 2022-03-22 2022-03-22 基于机器学习框架的分类方法及相关装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210282564.3A CN114358318B (zh) 2022-03-22 2022-03-22 基于机器学习框架的分类方法及相关装置

Publications (2)

Publication Number Publication Date
CN114358318A true CN114358318A (zh) 2022-04-15
CN114358318B CN114358318B (zh) 2022-06-21

Family

ID=81094446

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210282564.3A Active CN114358318B (zh) 2022-03-22 2022-03-22 基于机器学习框架的分类方法及相关装置

Country Status (1)

Country Link
CN (1) CN114358318B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115144934A (zh) * 2022-06-29 2022-10-04 合肥本源量子计算科技有限责任公司 基于变分量子线路的气象预测方法及相关设备
CN115293254A (zh) * 2022-07-29 2022-11-04 合肥本源量子计算科技有限责任公司 基于量子多层感知器的分类方法及相关设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108734299A (zh) * 2017-04-19 2018-11-02 埃森哲环球解决方案有限公司 量子计算机器学习模块
CN109800883A (zh) * 2019-01-25 2019-05-24 合肥本源量子计算科技有限责任公司 量子机器学习框架构建方法、装置及量子计算机
CN110692067A (zh) * 2017-06-02 2020-01-14 谷歌有限责任公司 量子神经网络
CN112580725A (zh) * 2020-12-21 2021-03-30 北京工业大学 基于有向无环图的量子支持向量机的图像多分类方法
CN113222155A (zh) * 2020-01-21 2021-08-06 合肥本源量子计算科技有限责任公司 一种量子线路的构建方法、装置、电子装置和存储介质
CN113379060A (zh) * 2021-07-09 2021-09-10 深圳华中科技大学研究院 一种基于量子熵的量子特征选择的量子线路构造方法
CN113544709A (zh) * 2018-12-07 2021-10-22 爱奥尼克公司 用于量子化学电路合成的经典优化器

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108734299A (zh) * 2017-04-19 2018-11-02 埃森哲环球解决方案有限公司 量子计算机器学习模块
CN110692067A (zh) * 2017-06-02 2020-01-14 谷歌有限责任公司 量子神经网络
CN113544709A (zh) * 2018-12-07 2021-10-22 爱奥尼克公司 用于量子化学电路合成的经典优化器
CN109800883A (zh) * 2019-01-25 2019-05-24 合肥本源量子计算科技有限责任公司 量子机器学习框架构建方法、装置及量子计算机
CN113222155A (zh) * 2020-01-21 2021-08-06 合肥本源量子计算科技有限责任公司 一种量子线路的构建方法、装置、电子装置和存储介质
CN112580725A (zh) * 2020-12-21 2021-03-30 北京工业大学 基于有向无环图的量子支持向量机的图像多分类方法
CN113379060A (zh) * 2021-07-09 2021-09-10 深圳华中科技大学研究院 一种基于量子熵的量子特征选择的量子线路构造方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115144934A (zh) * 2022-06-29 2022-10-04 合肥本源量子计算科技有限责任公司 基于变分量子线路的气象预测方法及相关设备
CN115144934B (zh) * 2022-06-29 2023-11-03 合肥本源量子计算科技有限责任公司 基于变分量子线路的气象预测方法及相关设备
CN115293254A (zh) * 2022-07-29 2022-11-04 合肥本源量子计算科技有限责任公司 基于量子多层感知器的分类方法及相关设备

Also Published As

Publication number Publication date
CN114358318B (zh) 2022-06-21

Similar Documents

Publication Publication Date Title
CN114358319B (zh) 基于机器学习框架的分类方法及相关装置
US20240095563A1 (en) Quantum convolution operator
CN114358318B (zh) 基于机器学习框架的分类方法及相关装置
CN111563599A (zh) 一种量子线路的分解方法、装置、存储介质及电子装置
CN112232513A (zh) 一种量子态的制备方法及装置
CN114792378B (zh) 一种量子图像识别方法及装置
CN114358216B (zh) 基于机器学习框架的量子聚类方法及相关装置
CN114358317B (zh) 基于机器学习框架的数据分类方法及相关设备
CN114821217A (zh) 一种基于量子经典混合神经网络的图像识别方法及装置
CN115293254A (zh) 基于量子多层感知器的分类方法及相关设备
CN115311515A (zh) 混合量子经典的生成对抗网络的训练方法及相关设备
CN116403019A (zh) 遥感图像量子识别方法、装置、存储介质及电子装置
CN113222153A (zh) 一种量子态的模拟方法、装置、存储介质和电子装置
CN114819163A (zh) 量子生成对抗网络的训练方法、装置、介质及电子装置
CN114358295B (zh) 基于机器学习框架的二分类方法及相关装置
CN114372539B (zh) 基于机器学习框架的分类方法及相关设备
CN113222151A (zh) 一种量子态的变换方法及装置
CN114764620B (zh) 一种量子卷积操作器
CN114764619B (zh) 一种基于量子线路的卷积操作方法及装置
CN115346080A (zh) 基于量子计算的图像处理方法及相关设备
CN115983392A (zh) 量子程序映射关系的确定方法、装置、介质及电子装置
CN114372584B (zh) 基于机器学习框架的迁移学习方法及相关装置
CN114372582B (zh) 基于机器学习框架的量子自动编码方法及相关装置
CN116432710B (zh) 机器学习模型构建方法、机器学习框架及相关设备
CN114819171B (zh) 一种量子卷积操作的实现方法及装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant