CN114350631A - Glufosinate-ammonium dehydrogenase mutant, engineering bacteria, immobilized cell and application - Google Patents

Glufosinate-ammonium dehydrogenase mutant, engineering bacteria, immobilized cell and application Download PDF

Info

Publication number
CN114350631A
CN114350631A CN202111646663.7A CN202111646663A CN114350631A CN 114350631 A CN114350631 A CN 114350631A CN 202111646663 A CN202111646663 A CN 202111646663A CN 114350631 A CN114350631 A CN 114350631A
Authority
CN
China
Prior art keywords
glufosinate
ammonium
dehydrogenase
mutant
mutated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202111646663.7A
Other languages
Chinese (zh)
Other versions
CN114350631B (en
Inventor
薛亚平
张嘉敏
程峰
郑裕国
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University of Technology ZJUT
Original Assignee
Zhejiang University of Technology ZJUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University of Technology ZJUT filed Critical Zhejiang University of Technology ZJUT
Priority to CN202111646663.7A priority Critical patent/CN114350631B/en
Publication of CN114350631A publication Critical patent/CN114350631A/en
Application granted granted Critical
Publication of CN114350631B publication Critical patent/CN114350631B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Enzymes And Modification Thereof (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

The invention discloses a glufosinate-ammonium dehydrogenase mutant, engineering bacteria, immobilized cells and application, wherein the mutant is obtained by performing single mutation or multiple mutation on 145 th, 384 th, 348 th, 292 th, 202 th, 70 th and 78 th positions of a glufosinate-ammonium dehydrogenase amino acid sequence shown in SEQ ID No. 2. The glufosinate-ammonium dehydrogenase mutant and formate dehydrogenase co-expression engineering bacteria immobilized cell is subjected to catalytic reduction to obtain L-glufosinate-ammonium by using a 2-carbonyl-4- (hydroxymethyl phosphonyl) -butyric acid substrate, so that asymmetric synthesis of L-glufosinate-ammonium is realized, an expensive chemical resolution reagent is not needed, the thermal stability and the operation stability of the glufosinate-ammonium dehydrogenase mutant are improved, and the glufosinate-ammonium dehydrogenase mutant and formate dehydrogenase co-expression engineering bacteria immobilized cell is reused. The immobilized cell has the enzyme activity of 162.5U/g, the recovery rate of the enzyme activity is 78.1 percent, the immobilized cell can be recovered by filtration and can be repeatedly used for more than 20 batches to keep 100 percent of conversion rate, and the production cost is greatly reduced.

Description

草铵膦脱氢酶突变体、工程菌、固定化细胞及应用Glufosinate-ammonium dehydrogenase mutants, engineered bacteria, immobilized cells and applications

(一)技术领域(1) Technical field

本发明涉及一种NADH依赖型草铵膦脱氢酶突变体、工程菌、固定化细胞及其应用。The present invention relates to an NADH-dependent glufosinate-ammonium dehydrogenase mutant, engineering bacteria, immobilized cells and applications thereof.

(二)背景技术(2) Background technology

草铵膦(phosphinothricin,也叫glufosinate,简称PPT)的化学名称为2-氨基-4-[羟基(甲基)膦酰基]-丁酸,是世界第二大转基因作物耐受除草剂,由赫斯特公司(几经合并后现归属拜耳公司)开发生产,又称草铵膦铵盐、Basta、Buster等,属膦酸类除草剂,非选择性(灭生性)触杀型除草剂是谷氨酰胺合成酶抑制剂。The chemical name of phosphinothricin (also called glufosinate, PPT) is 2-amino-4-[hydroxy(methyl)phosphono]-butyric acid, which is the world's second largest genetically modified crop tolerant to herbicides. It is developed and produced by Sterling Company (now owned by Bayer Company after several mergers), also known as glufosinate ammonium salt, Basta, Buster, etc. It is a phosphonic acid herbicide. The non-selective (killing) contact herbicide is glutamine. Synthetase inhibitors.

草铵膦有两种光学异构体,为L-草铵膦和D-草铵膦。但只有L-型具有生理活性,且在土壤中易分解,对人类和动物的毒性较小,除草谱广,对环境的破坏力小。Glufosinate has two optical isomers, L-Glufosinate and D-Glufosinate. However, only the L-type has physiological activity, is easily decomposed in the soil, is less toxic to humans and animals, has a broad herbicidal spectrum, and is less destructive to the environment.

目前,市场上销售的草铵膦一般都是外消旋混合物。若草铵膦产品能以L-构型的纯光学异构体形式使用,可显著降低草铵膦的使用量,这对于提高原子经济性、降低使用成本、减轻环境压力具有重要意义。At present, glufosinate-ammonium sold on the market is generally a racemic mixture. If the glufosinate-ammonium product can be used in the form of pure optical isomer of L-configuration, the usage amount of glufosinate-ammonium can be significantly reduced, which is of great significance for improving atom economy, reducing use cost and reducing environmental pressure.

手性纯L-草铵膦的制备方法主要有三种:手性拆分法,化学合成法和生物催化法。生物催化法生产草铵膦则具有立体选择性严格、反应条件温和、收率高等优点,是生产L-草铵膦的优势方法。主要包括以下三类:There are three main methods for the preparation of chiral pure L-glufosinate: chiral resolution, chemical synthesis and biocatalysis. Biocatalytic production of glufosinate has the advantages of strict stereoselectivity, mild reaction conditions and high yield, and is an advantageous method for the production of L-glufosinate. It mainly includes the following three categories:

1)以L-草铵膦的衍生物为底物,通过酶法直接水解获得,主要的优点转化率高,产物e.e.值较高,但需要昂贵且不易获得的手性原料作为前体,成本加高,不利于工业化生产。例如生物法制备L-草铵膦最简单的方法就是利用蛋白酶直接水解双丙氨膦。双丙氨膦是一种天然的三肽化合物,在蛋白酶的催化下,双丙氨膦脱去2分子L-丙氨酸,生成L-草铵膦。1) Using the derivative of L-glufosinate as a substrate, it is obtained by direct hydrolysis by enzymatic method. The main advantages are high conversion rate and high product e.e. value, but expensive and difficult to obtain chiral raw materials as precursors, cost Increasing the height is not conducive to industrial production. For example, the easiest way to prepare L-glufosinate by biological method is to directly hydrolyze bialaphos with protease. Bialaphos is a natural tripeptide compound. Under the catalysis of protease, bialaphos removes 2 molecules of L-alanine to generate L-glufosinate.

2)以外消旋草铵膦的前体为底物,通过酶的选择性拆分获得。主要优点为原料相对易得,催化剂活力高,但其理论收率只能达到50%,会造成原料的浪费。例如Cao等人(CaoC-H,Cheng F,Xue Y-P,Zheng Y-G(2020)Efficient synthPseis of L-phosphinothricinusing a novel aminoacylase mined from Stenotrophomonas maltophilia.Enzyme andMicrobial Technology 135doi:10.1016/j.enzmictec.2019.109493)采用一种来源于Stenotrophomonas maltophilia的新型的氨基酰化酶手性拆分N-乙酰-PPT,得到L-草铵膦。用全细胞进行催化,在4小时内转化率>49%,获得了光学纯的L-PPT(>99.9%e.e.)。2) The precursor of racemic glufosinate-ammonium is used as the substrate, and it is obtained by selective resolution of the enzyme. The main advantages are that the raw materials are relatively easy to obtain and the catalyst activity is high, but the theoretical yield can only reach 50%, which will cause waste of raw materials. For example, Cao et al. (CaoC-H, Cheng F, Xue Y-P, Zheng Y-G (2020) Efficient synthPseis of L-phosphinothricinusing a novel aminoacylase mined from Stenotrophomonas maltophilia. Enzyme and Microbial Technology 135doi:10.1016/j.enzmictec.2019.109493) adopted a A novel aminoacylase derived from Stenotrophomonas maltophilia chiral resolves N-acetyl-PPT to obtain L-glufosinate. Catalysis with whole cells yielded >49% conversion in 4 hours to obtain optically pure L-PPT (>99.9% e.e.).

3)以2-羰基-4-(羟基甲基膦酰基)-丁酸(PPO)为底物,通过酶的不对称合成获得,主要涉及的酶包括转氨酶与草铵膦脱氢酶。Bartsch(Bartsch K(2005)ProcPsPse for thepreparation of l-phosphinothrcine by enzymatic transamination withaspartate.US Patent no.US6936444B1)等利用PPO为底物,L-天冬氨酸为氨基供体,利用从土壤微生物中筛选分离出来的对PPO和L-天冬氨酸有特异性酶活的转氨酶进行催化,当底物浓度为552mM时,在非常高的温度(80℃)下反应4小时,转化率仍达到52%,时空产率为4.5g L-PPT/g·L-1·d-1。但利用转氨酶制备L-草铵膦有两大缺陷,其一是这是一个可逆反应,原料PPO不能完全转化为L-PPT,转化率无法达到100%;其二是要使可逆反应向生成L-PPT的方向进行,需要加入至少2倍以上的L-天冬氨酸作为氨基供体,过量的天冬氨酸给L-PPT的分离带来了很大的麻烦。3) Using 2-carbonyl-4-(hydroxymethylphosphono)-butyric acid (PPO) as a substrate, it is obtained by asymmetric synthesis of enzymes, and the enzymes mainly involved include transaminase and glufosinate dehydrogenase. Bartsch (Bartsch K (2005) ProcPsPse for the preparation of l-phosphinothrcine by enzymatic transamination with aspartate. US Patent no. US6936444B1) etc. used PPO as the substrate and L-aspartic acid as the amino donor. The transaminase with specific enzymatic activity to PPO and L-aspartate catalyzed, when the substrate concentration was 552mM, the reaction was carried out at a very high temperature (80°C) for 4 hours, and the conversion rate still reached 52%, The space-time yield was 4.5 g L-PPT/g·L −1 ·d −1 . However, the use of transaminase to prepare L-glufosinate has two major defects. One is that this is a reversible reaction, the raw material PPO cannot be completely converted into L-PPT, and the conversion rate cannot reach 100%; To proceed in the direction of -PPT, it is necessary to add at least 2 times more L-aspartic acid as an amino donor, and excess aspartic acid brings great trouble to the separation of L-PPT.

手性拆分法获得L-草铵膦,理论最高收率仅为50%;化学法不对称合成L-草铵膦可以突破该限制,然而已报道的化学合成法普遍效率差、立体选择性低。酶法不对称合成L-草铵膦通过不对称铵化酮酸中间体的酮羰基构建手性中心,该路线也因原料价廉易得,且可以避免使用剧毒氰化物,而成为适宜L-草铵膦工业化开发生产的路线。传统的酶合成方法依赖昂贵的NADP作为辅酶,成本高。The chiral resolution method obtained L-glufosinate-ammonium, and the theoretical maximum yield was only 50%; chemical asymmetric synthesis of L-glufosinate-ammonium can break through this limitation, but the reported chemical synthesis methods generally have poor efficiency and stereoselectivity. Low. The enzymatic asymmetric synthesis of L-glufosinate-ammonium builds a chiral center by asymmetric amination of the ketone carbonyl of the keto acid intermediate. This route is also suitable for L- - Route of industrial development and production of glufosinate-ammonium. Traditional enzymatic synthesis methods rely on expensive NADP as a coenzyme, which is costly.

氨基酸脱氢酶(EC 1.4.1.X,AADH)是一类能将氨基酸可逆的脱氨生成对应酮酸的氨基酸脱氢酶,其反应需要核苷类辅酶(NAD+)的参与,被广泛的应用于天然与非天然α-氨基酸的合成。根据其底物特异性,可分为谷氨酸脱氢酶、亮氨酸脱氢酶、丙氨酸脱氢酶、缬氨酸脱氢酶等。如果其表现出对草铵膦前体具有一定的活力,就可称之为“草铵膦脱氢酶(PPTDH)”。Amino acid dehydrogenase (EC 1.4.1.X, AADH) is a class of amino acid dehydrogenases that can reversibly deaminate amino acids to the corresponding keto acids. The reaction requires the participation of nucleoside coenzymes (NAD + ) and is widely used. for the synthesis of natural and unnatural α-amino acids. According to its substrate specificity, it can be divided into glutamate dehydrogenase, leucine dehydrogenase, alanine dehydrogenase, valine dehydrogenase and so on. If it shows a certain activity to glufosinate precursor, it can be called "glufosinate dehydrogenase (PPTDH)".

甲酸脱氢酶(EC1.1.1.47,FDH)是生物催化的重要辅助酶,用于氧化还原催化反应中辅酶NADH的再生循环。Formate dehydrogenase (EC1.1.1.47, FDH) is an important auxiliary enzyme in biocatalysis and is used in the regeneration cycle of coenzyme NADH in redox catalysis reactions.

目前NADPH依赖型草铵膦脱氢酶的酶活显著高于NADH依赖型草铵膦脱氢酶(大于50倍),而NADPH的价格是NADH的5倍,因此,开发一种NADH依赖型高活力草铵膦脱氢酶具有很好的应用前景。由于草铵膦脱氢酶的热稳定性较差,在实际应用中容易失活导致反应速率降低,需要通过合适的方法在分子水平提高酶的稳定性;此外,大肠杆菌E.coli BL21(DE3)表达的草铵膦脱氢酶是胞内酶,因此可以利用固定化细胞技术将包含草铵膦脱氢酶的大肠杆菌全细胞进行固定化,进一步提高其热稳定性和操作稳定性,并实现重复使用,降低生产成本。At present, the enzymatic activity of NADPH-dependent glufosinate dehydrogenase is significantly higher than that of NADH-dependent glufosinate dehydrogenase (more than 50 times), and the price of NADPH is 5 times that of NADH. Active glufosinate-ammonium dehydrogenase has good application prospects. Due to the poor thermal stability of glufosinate-ammonium dehydrogenase, it is easy to inactivate and reduce the reaction rate in practical applications. It is necessary to improve the stability of the enzyme at the molecular level by suitable methods; in addition, E. coli BL21 (DE3 ) expressed glufosinate dehydrogenase is an intracellular enzyme, so the whole cell of Escherichia coli containing glufosinate dehydrogenase can be immobilized by immobilized cell technology to further improve its thermal stability and operational stability, and Reuse and reduce production costs.

(三)发明内容(3) Contents of the invention

本发明目的是针对现有草铵膦脱氢酶对2-羰基-4-(羟基甲基膦酰基)-丁酸不对称胺化还原活性不高和稳定性较差的问题,提供了一种NADH依赖型草铵膦脱氢酶突变体、工程菌、固定化细胞及用于L-草铵膦手性生物合成的应用,解决了不对称胺化还原制备L-草铵膦成本过高、催化效率低下的问题。The purpose of the present invention is to solve the problems that the existing glufosinate-ammonium dehydrogenase has low activity and poor stability for asymmetric amination reduction of 2-carbonyl-4-(hydroxymethylphosphono)-butyric acid, and provides a NADH-dependent glufosinate-ammonium dehydrogenase mutants, engineering bacteria, immobilized cells and applications for chiral biosynthesis of L-glufosinate-ammonium solve the problem of high cost and high cost of preparing L-glufosinate-ammonium by asymmetric amination reduction. The problem of low catalytic efficiency.

本发明采用的技术方案是:The technical scheme adopted in the present invention is:

本发明提供一种NADH依赖型草铵膦脱氢酶突变体,所述突变体是将SEQ ID No.2所示草铵膦脱氢酶氨基酸序列的第145位、第384位、第348位、第292位、第202位、第70位、第78位进行单突变或多突变获得的。所述草铵膦脱氢酶编码基因KmGDH核苷酸序列如SEQ IDNo.1所示。The present invention provides a NADH-dependent glufosinate-ammonium dehydrogenase mutant, wherein the mutant is the 145th, 384th and 348th positions of the amino acid sequence of glufosinate-ammonium dehydrogenase shown in SEQ ID No.2 , 292, 202, 70, 78 by single mutation or multiple mutation. The nucleotide sequence of the glufosinate-ammonium dehydrogenase encoding gene KmGDH is shown in SEQ ID No.1.

优选的,所述突变体是将SEQ ID No.2所示氨基酸序列突变为下列之一:(1)第145位脯氨酸突变为甘氨酸(P145G)、或者第348位丝氨酸突变为丙氨酸(S348A);(2)第145位脯氨酸突变为甘氨酸、第384位缬氨酸突变为苯丙氨酸且第70位赖氨酸突变为丙氨酸(P145G-V384F-K70A);(3)第145位脯氨酸突变为甘氨酸、第384位缬氨酸突变为谷氨酰胺且第78位天冬酰胺突变为丝氨酸(P145G-V384Q-N78S);(4)第145位脯氨酸突变为甘氨酸、第384位缬氨酸突变为酪氨酸、第348位丝氨酸突变为丙氨酸,第292位丙氨酸突变为半胱氨酸且第202位丙氨酸突变为亮氨酸(P145G-V384Y-S348A-A292C-A202L)。Preferably, in the mutant, the amino acid sequence shown in SEQ ID No. 2 is mutated to one of the following: (1) Proline at position 145 is mutated into glycine (P145G), or serine at position 348 is mutated into alanine (S348A); (2) Proline 145 was mutated to glycine, valine 384 was mutated to phenylalanine and lysine 70 was mutated to alanine (P145G-V384F-K70A); ( 3) Proline 145 is mutated to glycine, valine 384 is glutamine, and asparagine 78 is mutated to serine (P145G-V384Q-N78S); (4) Proline 145 Mutation to glycine, valine 384 to tyrosine, serine 348 to alanine, alanine 292 to cysteine and alanine 202 to leucine (P145G-V384Y-S348A-A292C-A202L).

本发明还涉及所述NADH依赖型草铵膦脱氢酶突变体编码基因,编码基因构建的重组载体,以及重组载体与甲酸脱氢酶基因共表达转化制备的重组基因工程菌。The invention also relates to the encoding gene of the NADH-dependent glufosinate dehydrogenase mutant, a recombinant vector constructed from the encoding gene, and a recombinant genetic engineering bacterium prepared by co-expression and transformation of the recombinant vector and the formate dehydrogenase gene.

本发明所述重组载体以质粒pETDuet为基础载体,克隆到质粒pETDuet的MCS1(多克隆位点1)的NcoI上。The recombinant vector of the present invention is based on the plasmid pETDuet, and is cloned into NcoI of MCS1 (multiple cloning site 1) of the plasmid pETDuet.

本发明所述重组基因工程菌以E.coli BL21(DE3)为宿主菌,按如下步骤制备:将草铵膦脱氢酶KmGDH突变体基因,克隆到质粒pETDuet的MCS1(多克隆位点1)的NcoI上,构建重组表达载体,保留质粒本身的His-Tag基因;再将甲酸脱氢酶基因PseFDH(核苷酸序列如SEQ ID No.3所示),通过Vazyme公司的One Step Cloning Kit构建至重组表达载体的MCS2(多克隆位点2)的NdeI上,获得共表达载体,转化至大肠杆菌E.coli BL21(DE3),获得草铵膦脱氢酶突变体与甲酸脱氢酶共表达的重组基因工程菌。The recombinant genetic engineering bacteria of the present invention takes E.coli BL21 (DE3) as the host bacteria, and is prepared according to the following steps: clone the KmGDH mutant gene of glufosinate-ammonium dehydrogenase into MCS1 (multiple cloning site 1) of plasmid pETDuet On the NcoI, construct a recombinant expression vector to retain the His-Tag gene of the plasmid itself; and then construct the formate dehydrogenase gene PseFDH (nucleotide sequence as shown in SEQ ID No. 3) through the One Step Cloning Kit of Vazyme Company On the NdeI of MCS2 (multiple cloning site 2) of the recombinant expression vector, a co-expression vector was obtained, which was transformed into E. coli BL21 (DE3) to obtain a mutant of glufosinate dehydrogenase and formate dehydrogenase co-expression of recombinant genetically engineered bacteria.

本发明还提供一种草铵膦脱氢酶突变体在催化2-羰基-4-(羟基甲基膦酰基)-丁酸(PPO)制备L-草铵膦中的应用,所述的应用方法为:以含草铵膦脱氢酶突变体基因与甲酸脱氢酶基因的重组基因工程菌诱导培养获得的湿菌体或湿菌体制备的固定化细胞为催化剂,以2-羰基-4-(羟基甲基膦酰基)-丁酸为底物,以甲酸铵为辅酶再生底物,外源添加NAD+,以pH 7.4、100mM磷酸盐缓冲液为反应介质构成反应体系,在20-50℃(优选35℃)、200-800转/分钟(优选600转/分钟)进行转化反应,反应结束后,反应液抽滤,滤饼回收催化剂,滤液分离纯化,获得L-草铵膦。所述反应体系中,催化剂用量以反应介质体积计10-50g/L(优选10g/L),底物终浓度100-400mM(优选400mM),甲酸铵终浓度100-800mM(优选600mM),NAD+终浓度0.05-2mM(优选0.1mM)。The invention also provides the application of a glufosinate-ammonium dehydrogenase mutant in catalyzing 2-carbonyl-4-(hydroxymethylphosphono)-butyric acid (PPO) to prepare L-glufosinate-ammonium, and the application method The method is as follows: using the wet cells obtained by inducing and culturing the recombinant genetically engineered bacteria containing glufosinate-ammonium dehydrogenase mutant gene and formate dehydrogenase gene or immobilized cells prepared from wet cells as catalysts, using 2-carbonyl-4- (Hydroxymethylphosphono)-butyric acid was used as the substrate, ammonium formate was used as the coenzyme regeneration substrate, NAD + was added exogenously, and the reaction system was formed with pH 7.4 and 100mM phosphate buffer as the reaction medium. (preferably 35°C), 200-800 rev/min (preferably 600 rev/min) to carry out the conversion reaction, after the reaction, the reaction solution is suction filtered, the filter cake recovers the catalyst, and the filtrate is separated and purified to obtain L-glufosinate-ammonium. In the reaction system, the catalyst dosage is 10-50g/L (preferably 10g/L) based on the volume of the reaction medium, the final concentration of the substrate is 100-400mM (preferably 400mM), the final concentration of ammonium formate is 100-800mM (preferably 600mM), NAD + Final concentration 0.05-2 mM (preferably 0.1 mM).

所述湿菌体按如下方法制备:将含草铵膦脱氢酶突变体基因与甲酸脱氢酶基因的重组基因工程菌接种到含终浓度50μg/mL氨苄霉素的LB液体培养基中,37℃培养8小时,以体积浓度2%的接种量接种到新鲜的含终浓度50μg/mL氨苄霉素的LB液体培养基中,37℃、180转/分钟培养2小时,再向培养液中加入终浓度为0.1mM IPTG,18℃培养14小时后,4℃、8000转/分钟离心10分钟,获得相应的湿菌体。The wet cells were prepared as follows: the recombinant genetically engineered bacteria containing the mutant gene of glufosinate dehydrogenase and the gene of formate dehydrogenase were inoculated into the LB liquid medium containing the final concentration of 50 μg/mL ampicillin, Cultivated at 37°C for 8 hours, inoculated into a fresh LB liquid medium containing a final concentration of 50 μg/mL ampicillin with a volume concentration of 2%, cultured at 37°C and 180 rpm for 2 hours, and then added to the culture medium. Add the final concentration of 0.1mM IPTG, after culturing at 18°C for 14 hours, centrifuge at 4°C and 8000 rpm for 10 minutes to obtain the corresponding wet cells.

所述重组基因工程菌固定化细胞按如下方法制备:将所述重组基因工程菌经发酵培养获得的湿菌体加入pH6.0-8.0的磷酸缓冲液(优选pH 7.5的磷酸缓冲液)中,加入载体,充分搅拌20~30min,再加入聚乙烯亚胺,充分搅拌20~30min,然后加入交联剂,充分搅拌20~30min,减压抽滤,滤饼水洗,获得所述重组基因工程菌固定化细胞;所述磷酸缓冲液体积用量以湿菌体重量计为5-20mL/g(优选10mL/g);所述载体为活性炭、硅藻土、膨润土或蒙脱土(优选硅藻土),所述载体质量用量为菌体质量的2~10%(优选2-3%);所述聚乙烯亚胺分子量为600~70000(优选10000),用量以菌体质量计为1~10mL/100g(优选3mL/100g);所述交联剂为戊二醛、乙二醛或双醛淀粉,用量以菌体质量计为1~10mL/100g(优选3mL/100g)。The immobilized cells of the recombinant genetically engineered bacteria are prepared as follows: the wet cells obtained by the fermentation and culture of the recombinant genetically engineered bacteria are added to a phosphate buffer of pH 6.0-8.0 (preferably a phosphate buffer of pH 7.5), Add the carrier, stir well for 20-30min, then add polyethyleneimine, stir well for 20-30min, then add cross-linking agent, stir well for 20-30min, filter under reduced pressure, and wash the filter cake with water to obtain the recombinant genetically engineered bacteria Immobilized cells; the volumetric dosage of the phosphate buffer is 5-20 mL/g (preferably 10 mL/g) based on the weight of wet cells; the carrier is activated carbon, diatomaceous earth, bentonite or montmorillonite (preferably diatomaceous earth). ), the amount of the carrier mass is 2-10% (preferably 2-3%) of the mass of the thalli; the molecular weight of the polyethyleneimine is 600-70000 (preferably 10,000), and the dosage is 1 to 10 mL based on the mass of the thalli /100g (preferably 3mL/100g); the cross-linking agent is glutaraldehyde, glyoxal or dialdehyde starch, and the dosage is 1-10mL/100g (preferably 3mL/100g) in terms of bacterial mass.

与现有技术相比,本发明有益效果主要体现在:Compared with the prior art, the beneficial effects of the present invention are mainly reflected in:

(1)本发明通过筛选获得热稳定性提高的草铵膦脱氢酶突变体,其中突变体KmGDH-P145G-V384Y-S348A-A292C-A202L在35℃、50℃、65℃下的半衰期分别由突变前的18.4h提高到294.7h、11.2h提高到143.0h和6.9h提高到25.7h,热稳定性得到了显著提高。同时,草铵膦脱氢酶突变体在催化还原2-羰基-4-(羟基甲基膦酰基)-丁酸制备L-草铵膦时,采用价格较低的NADH作为辅酶替换价格昂贵的NADPH辅酶,显著降低了成本。(1) The present invention obtains a glufosinate-ammonium dehydrogenase mutant with improved thermal stability by screening, wherein the half-life of the mutant KmGDH-P145G-V384Y-S348A-A292C-A202L at 35°C, 50°C and 65°C is determined by 18.4h before mutation increased to 294.7h, 11.2h to 143.0h and 6.9h to 25.7h, the thermal stability was significantly improved. At the same time, when the glufosinate-ammonium dehydrogenase mutant catalyzes the reduction of 2-carbonyl-4-(hydroxymethylphosphono)-butyric acid to prepare L-glufosinate, the lower-priced NADH is used as a coenzyme to replace the expensive NADPH. Coenzyme, significantly reducing costs.

(2)本发明方法制备的草铵膦脱氢酶突变体与甲酸脱氢酶共表达工程菌的固定化细胞,进一步提高其热稳定性和操作稳定性,并实现重复使用。固定化细胞酶活为162.5U/g,酶活回收率为78.1%,可以通过过滤回收,并可重复使用20批次以上保持100%转化率,极大降低了生产成本。(2) The immobilized cells of the engineered bacteria co-expressing the glufosinate-ammonium dehydrogenase mutant and the formate dehydrogenase prepared by the method of the present invention further improve its thermal stability and operational stability, and realize repeated use. The enzyme activity of the immobilized cells is 162.5U/g, and the recovery rate of the enzyme activity is 78.1%, which can be recovered by filtration, and can be reused for more than 20 batches to maintain 100% conversion rate, which greatly reduces the production cost.

(3)本发明利用草铵膦脱氢酶突变体和辅酶循环系统,直接以2-羰基-4-(羟基甲基膦酰基)-丁酸底物催化还原为L-草铵膦,进而实现不对称合成L-草铵膦,无需昂贵的化学拆分试剂,也无需合成草铵膦衍生物。草铵膦脱氢酶突变体具有更好的催化效率和更高的稳定性,与野生型母本相比,酶活提高至3856%,35℃下的半衰期从18.4h延长至294.7h,以2-羰基-4-(羟基甲基膦酰基)-丁酸为底物进行催化反应时,转化率远高于野生型酶,草铵膦产率也大幅提升。(3) The present invention utilizes the glufosinate-ammonium dehydrogenase mutant and the coenzyme recycling system to directly catalyze the reduction of 2-carbonyl-4-(hydroxymethylphosphono)-butyric acid substrate to L-glufosinate-ammonium, thereby realizing Asymmetric synthesis of L-Glufosinate-ammonium does not require expensive chemical resolution reagents or synthesis of glufosinate-ammonium derivatives. The glufosinate-ammonium dehydrogenase mutant has better catalytic efficiency and higher stability. Compared with the wild-type parent, the enzyme activity is increased to 3856%, and the half-life at 35°C is extended from 18.4h to 294.7h. When 2-carbonyl-4-(hydroxymethylphosphono)-butyric acid was used as the substrate for the catalytic reaction, the conversion rate was much higher than that of the wild-type enzyme, and the yield of glufosinate-ammonium was also greatly improved.

(四)附图说明(4) Description of drawings

图1为草铵膦脱氢酶突变体偶联甲酸脱氢酶不对称胺化还原2-羰基-4-(羟基甲基膦酰基)-丁酸制备L-草铵膦的反应示意图。Figure 1 is a schematic diagram of the reaction of the asymmetric amination reduction of 2-carbonyl-4-(hydroxymethylphosphono)-butyric acid to L-glufosinate-ammonium dehydrogenase mutant coupled with formate dehydrogenase.

图2为实施例2中KmGDH和PseFDH双酶偶联SDS-PAGE图。其中泳道1:标准蛋白分子量;泳道2:草铵膦脱氢酶母本与甲酸脱氢酶出发共表达菌株细胞。泳道3:草铵膦脱氢酶母本工程菌细胞。FIG. 2 is a graph of KmGDH and PseFDH double-enzyme-coupled SDS-PAGE in Example 2. FIG. Among them, lane 1: standard protein molecular weight; lane 2: cells of strains co-expressing glufosinate-ammonium dehydrogenase parent and formate dehydrogenase. Lane 3: glufosinate dehydrogenase parent engineered bacteria cells.

图3为实施例3中2-羰基-4-(羟基甲基氧膦基)-丁酸标准曲线。Figure 3 is the standard curve of 2-carbonyl-4-(hydroxymethylphosphinyl)-butyric acid in Example 3.

图4为实施例3中L-草铵膦标准曲线。Figure 4 is the standard curve of L-glufosinate-ammonium in Example 3.

图5为实施例7中草铵膦脱氢酶母本纯酶在35℃、50℃、65℃下的半衰期曲线。5 is the half-life curve of the parent pure enzyme of glufosinate-ammonium dehydrogenase in Example 7 at 35°C, 50°C and 65°C.

图6为实施例7中草铵膦脱氢酶突变体KmGDH-P145G-V384Y-S348A-A292C-A202L纯酶在35℃、50℃、65℃下的半衰期曲线。6 is the half-life curve of the pure enzyme of glufosinate-ammonium dehydrogenase mutant KmGDH-P145G-V384Y-S348A-A292C-A202L in Example 7 at 35°C, 50°C and 65°C.

图7为实施例9中工程菌E.coli BL21(DE3)-KmGDH-P145G-V384Y-S348A-A292C-A202L-PseFDH固定化细胞催化400mM PPO的转换率曲线图。7 is a graph showing the conversion rate of 400 mM PPO catalyzed by immobilized cells of engineered bacteria E. coli BL21(DE3)-KmGDH-P145G-V384Y-S348A-A292C-A202L-PseFDH in Example 9.

图8为实施例9中工程菌E.coli BL21(DE3)-KmGDH-P145G-V384Y-S348A-A292C-A202L-PseFDH游离细胞和固定化细胞的反应批次转化率柱形图。FIG. 8 is a bar chart of the reaction batch conversion rate of free cells and immobilized cells of engineering bacteria E. coli BL21(DE3)-KmGDH-P145G-V384Y-S348A-A292C-A202L-PseFDH in Example 9. FIG.

(五)具体实施方式(5) Specific implementation methods

下面结合具体实施例对本发明进行进一步描述,但本发明的保护范围并不仅限于此:The present invention is further described below in conjunction with specific embodiment, but the protection scope of the present invention is not limited to this:

以下实施例中,硅藻土分子式为SiO2,分子量为60.08,中位粒径19.6μm,购自阿拉丁公司。膨润土分子式为Al2O3·4(SiO2)·H2O,分子量360.31,购自阿拉丁公司。活性炭分子式为C,分子量12.01,购自阿拉丁公司。蒙脱土成分为Al2O316.54%、MgO4 65%、SiO250.95%,购自阿拉丁公司。聚乙烯亚胺分子量分别为700、1800、10000、70000,购自阿拉丁公司。In the following examples, the molecular formula of diatomite is SiO 2 , the molecular weight is 60.08, and the median particle size is 19.6 μm, which was purchased from Aladdin Company. The molecular formula of bentonite is Al 2 O 3 ·4(SiO 2 )·H 2 O, the molecular weight is 360.31, and it was purchased from Aladdin Company. The molecular formula of activated carbon is C, the molecular weight is 12.01, and it was purchased from Aladdin Company. The composition of montmorillonite is Al 2 O 3 16.54%, MgO 4 65%, SiO 2 50.95%, purchased from Aladdin Company. The molecular weights of polyethyleneimine were 700, 1800, 10000 and 70000, respectively, and were purchased from Aladdin Company.

实施例1:草铵膦脱氢酶突变体文库的构建及筛选Example 1: Construction and screening of glufosinate-ammonium dehydrogenase mutant library

1、草铵膦脱氢酶母本工程菌1. Glufosinate-ammonium dehydrogenase parent engineering bacteria

将来源于马赛库特氏菌(Kurthia massiliensis)的野生型草铵膦脱氢酶KmGDH核苷酸序列(NCBI登录号WP_010290083.1)进行密码子优化,由杭州擎科生物技术有限公司进行基因合成,获得的KmGDH基因(核苷酸序列为SEQ ID No.1所示,编码蛋白的氨基酸序列如SEQ ID No.2所示),克隆到质粒pETDuet的MCS1(多克隆位点1)的NcoI上,构建重组表达载体pETDuet-KmGDH,保留质粒本身的His-Tag基因,转化至大肠杆菌E.coli BL21(DE3),送杭州擎科生物技术有限公司合成草铵膦脱氢酶母本工程菌E.coli BL21(DE3)/pETDuet-KmGDH。The wild-type glufosinate-ammonium dehydrogenase KmGDH nucleotide sequence (NCBI accession number WP_010290083.1) derived from Kurthia massiliensis was codon-optimized, and gene synthesis was performed by Hangzhou Qingke Biotechnology Co., Ltd. , the obtained KmGDH gene (the nucleotide sequence is shown in SEQ ID No.1, the amino acid sequence of the encoded protein is shown in SEQ ID No.2), cloned into the NcoI of MCS1 (multiple cloning site 1) of plasmid pETDuet , construct the recombinant expression vector pETDuet-KmGDH, retain the His-Tag gene of the plasmid itself, transform it into Escherichia coli E.coli BL21 (DE3), and send it to Hangzhou Qingke Biotechnology Co., Ltd. to synthesize glufosinate dehydrogenase parent engineering bacteria E .coli BL21(DE3)/pETDuet-KmGDH.

SEQ ID NO.1SEQ ID NO.1

atggcagaaaacctgaacttatttacgagcacccaggcgattattaaagaagcgctgcagaaactgggctacgatgaggcgatgtatgacttactgaaagaaccgctgcgtatgctgcaggttagaatcccggtccgtatggacgacggcaccgttaccgttttcacaggttatcgtgcccaacataatgatgcagttggcccgaccaagggtggcgtacgttttcatccgaatgttagtgaagaagaagttaaagcactgagcatgtggatgaccctgaaagcaggtattgttgatttaccatatgggggtggtaaaggcggcgtgatttgtgatcctcgtcagatgagcatgggtgaactggaaagattaagccgtggatatgttcgggcaacctcgcagattgttggtccgaccaaagatattccggcaccggatgtttttaccaatgcacaaattatggcatggatgatggatgaatatagccgtatggatgaatttaatagcccgggctttataacgggtaaacctattgtgttaggtggtagtcaggggcgtgatcgtgccacagcccagggcgtaacgattgttatagaacaggcagcaaaacggcggaatctgcaaatcgaaggtgcaagagtggtgattcagggatttggaaatgcaggtagctttctggctaaattcatgaatgatctgggcgcgaaagtggtgggtattagtgacgcaaatggcgcactgtacgatccggaaggactggatattgattatctgttagaccgtcgtgatagttttggtaccgttactaatctgtttgaaaataccattaccaacgaagaacttttagaattagagtgtgatatcctggttccggctgccattgaaaaccaaattacagcagaaaatgcacataatatcaaggccaacattgttgtggaagcagcaaacggaccgaccacccaggaagccacaaaaatactgaccgagcgtggagttctgctggtgccggacgttttagcaagcgcaggtggcgttacagtaagctactttgaatgggttcagaataatcagggctattactggagtgaagaagaggttaatgataaattatacaagaagatggtggaggcgtttgataatatttataatgtggcagaagcccgcaaaatagatatgagactggcggcatatatggtgggcgttagaaaaacagcagaagcaagccggtttagaggctgggtt。atggcagaaaacctgaacttatttacgagcacccaggcgattattaaagaagcgctgcagaaactgggctacgatgaggcgatgtatgacttactgaaagaaccgctgcgtatgctgcaggttagaatcccggtccgtatggacgacggcaccgttaccgttttcacaggttatcgtgcccaacataatgatgcagttggcccgaccaagggtggcgtacgttttcatccgaatgttagtgaagaagaagttaaagcactgagcatgtggatgaccctgaaagcaggtattgttgatttaccatatgggggtggtaaaggcggcgtgatttgtgatcctcgtcagatgagcatgggtgaactggaaagattaagccgtggatatgttcgggcaacctcgcagattgttggtccgaccaaagatattccggcaccggatgtttttaccaatgcacaaattatggcatggatgatggatgaatatagccgtatggatgaatttaatagcccgggctttataacgggtaaacctattgtgttaggtggtagtcaggggcgtgatcgtgccacagcccagggcgtaacgattgttatagaacaggcagcaaaacggcggaatctgcaaatcgaaggtgcaagagtggtgattcagggatttggaaatgcaggtagctttctggctaaattcatgaatgatctgggcgcgaaagtggtgggtattagtgacgcaaatggcgcactgtacgatccggaaggactggatattgattatctgttagaccgtcgtgatagttttggtaccgttactaatctgtttgaaaataccattaccaacgaagaacttttagaattagagtgtgatatcctggttccggctgccattgaaaaccaaattacagcagaaaatgcacataatatcaaggccaacattgttgtggaagcagcaaacggaccgaccacccaggaagccacaaaaatactgaccgagcgtggagttctgc tggtgccggacgttttagcaagcgcaggtggcgttacagtaagctactttgaatgggttcagaataatcagggctattactggagtgaagaagaggttaatgataaattatacaagaagaagatggtggaggcgtttgataatatttataatgtggcagaagcccgcaaaatagatatgagactggcggcatatatggtgggcgttagaaaaacagcagaagcaagccggtttagaggtggt.

SEQ ID NO.2SEQ ID NO.2

MAENLNLFTSTQAIIKEALQKLGYDEAMYDLLKEPLRMLQVRIPVRMDDGTVTVFTGYRAQHNDAVGPTKGGVRFHPNVSEEEVKALSMWMTLKAGIVDLPYGGGKGGVICDPRQMSMGELERLSRGYVRATSQIVGPTKDIPAPDVFTNAQIMAWMMDEYSRMDEFNSPGFITGKPIVLGGSQGRDRATAQGVTIVIEQAAKRRNLQIEGARVVIQGFGNAGSFLAKFMNDLGAKVVGISDANGALYDPEGLDIDYLLDRRDSFGTVTNLFENTITNEELLELECDILVPAAIENQITAENAHNIKANIVVEAANGPTTQEATKILTERGVLLVPDVLASAGGVTVSYFEWVQNNQGYYWSEEEVNDKLYKKMVEAFDNIYNVAEARKIDMRLAAYMVGVRKTAEASRFRGWV。MAENLNLFTSTQAIIKEALQKLGYDEAMYDLLKEPLRMLQVRIPVRMDDGTVTVFTGYRAQHNDAVGPTKGGVRFHPNVSEEEVKALSMWMTLKAGIVDLPYGGGKGGVICDPRQMSMGELERLSRGYVRATSQIVGPTKDIPAPDVFTNAQIMAWMMDEYSRMDEFNSPGFITGKPIVLGGSQGRDRATAQGVTIVIEQAAKRRNLQIEGARVVIQGFGNAGSFLAKFMNDLGAKVVGISDANGALYDPEGLDIDYLLDRRDSFGTVTNLFENTITNEELLELECDILVPAAIENQITAENAHNIKANIVVEAANGPTTQEATKILTERGVLLVPDVLASAGGVTVSYFEWVQNNQGYYWSEEEVNDKLYKKMVEAFDNIYNVAEARKIDMRLAAYMVGVRKTAEASRFRGWV。

2、出发共表达菌株2. Departure co-expression strains

再合成绿脓杆菌(Pseudomonas sp.)来源的甲酸脱氢酶基因PseFDH(PDB登录号为2GUG_A所示,核苷酸序列如SEQ ID No.3所示),通过Vazyme公司的One Step Cloning Kit构建至重组表达载体pETDuet-KmGDH的MCS2(多克隆位点2)的NdeI上,获得共表达载体pETDuet-KmGDH-PseFDH,转化至大肠杆菌E.coli BL21(DE3),获得草铵膦脱氢酶母本与甲酸脱氢酶出发共表达菌株E.coli BL21(DE3)/pETDuet-KmGDH-PseFDH。The formate dehydrogenase gene PseFDH derived from Pseudomonas sp. was then synthesized (PDB accession number is 2GUG_A, and the nucleotide sequence is shown in SEQ ID No. 3), which was constructed by Vazyme's One Step Cloning Kit To the NdeI of MCS2 (multiple cloning site 2) of the recombinant expression vector pETDuet-KmGDH, the co-expression vector pETDuet-KmGDH-PseFDH was obtained, and it was transformed into E. coli BL21 (DE3) to obtain the mother glufosinate dehydrogenase The strain E.coli BL21(DE3)/pETDuet-KmGDH-PseFDH was co-expressed with formate dehydrogenase.

SEQ ID NO.3SEQ ID NO.3

atggccaaagttctgtgtgtactgtatgacgacccggttgatggttaccctaaaacttacgcacgtgacgatctgccgaaaatcgaccactacccgggcggccagaccctgccgacgccgaaagcgatcgatttcactccgggccaactgctgggttctgtttctggtgaactgggcctgcgtaaatatctggaatccaacggccacaccctggtggtgaccagcgacaaagatggtccggactccgtgttcgaacgtgaactggttgatgctgacgttgtcattagccagccgttctggccggcgtatctgaccccggaacgcatcgccaaagctaaaaacctgaaactggcactgaccgcaggtattggttctgaccacgttgatctgcagtccgccatcgatcgtaacgttaccgttgccgaagtaacctactgtaactctatctccgtggctgaacatgtggttatgatgatcctgtctctggttcgcaactatctgccgtctcatgaatgggcgcgtaaaggcggctggaacatcgctgattgtgtcagccatgcgtatgacctggaagcaatgcatgtgggcactgttgcagctggtcgcatcggcctggctgtcctgcgtcgcctggcaccattcgacgtacacctgcactacactgaccgtcaccgtctgccagaaagcgtggagaaagaactgaacctgacctggcatgctactcgcgaagacatgtacccggtgtgcgacgttgttaccctgaactgtccactgcacccggagaccgaacacatgattaacgatgaaaccctgaagctgttcaaacgtggcgcgtacatcgtaaacacggctcgtggtaagctgtgcgatcgtgacgctgtggcacgtgcgctggaatctggtcgcctggccggttacgctggtgatgtatggtttccacagccggctccgaaagaccacccgtggcgcaccatgccttacaatggtatgaccccgcacatttctggtaccactctgaccgcacaggcgcgttacgcagcgggtacccgtgaaattctggagtgcttctttgaaggtcgcccgatccgtgatgaatacctgatcgttcagggtggtgcgctggctggcactggtgctcattcctactctaaaggtaacgcgaccggtggttctgaagaggcggcgaaattcaaaaaggccgtt。atggccaaagttctgtgtgtactgtatgacgacccggttgatggttaccctaaaacttacgcacgtgacgatctgccgaaaatcgaccactacccgggcggccagaccctgccgacgccgaaagcgatcgatttcactccgggccaactgctgggttctgtttctggtgaactgggcctgcgtaaatatctggaatccaacggccacaccctggtggtgaccagcgacaaagatggtccggactccgtgttcgaacgtgaactggttgatgctgacgttgtcattagccagccgttctggccggcgtatctgaccccggaacgcatcgccaaagctaaaaacctgaaactggcactgaccgcaggtattggttctgaccacgttgatctgcagtccgccatcgatcgtaacgttaccgttgccgaagtaacctactgtaactctatctccgtggctgaacatgtggttatgatgatcctgtctctggttcgcaactatctgccgtctcatgaatgggcgcgtaaaggcggctggaacatcgctgattgtgtcagccatgcgtatgacctggaagcaatgcatgtgggcactgttgcagctggtcgcatcggcctggctgtcctgcgtcgcctggcaccattcgacgtacacctgcactacactgaccgtcaccgtctgccagaaagcgtggagaaagaactgaacctgacctggcatgctactcgcgaagacatgtacccggtgtgcgacgttgttaccctgaactgtccactgcacccggagaccgaacacatgattaacgatgaaaccctgaagctgttcaaacgtggcgcgtacatcgtaaacacggctcgtggtaagctgtgcgatcgtgacgctgtggcacgtgcgctggaatctggtcgcctggccggttacgctggtgatgtatggtttccacagccggctccgaaagaccacccgtggcgcaccatgccttacaatggtatgaccccgcaca tttctggtaccactctgaccgcacaggcgcgttacgcagcgggtacccgtgaaattctggagtgcttctttgaaggtcgcccgatccgtgatgaatacctgatcgttcagggtggtgcgctggctggcactggtgctcattcctactctaaaggtaacgcgaccggtggttctgaagaggcggcgaaattcaaaaaggccgtt.

3、草铵膦脱氢酶突变体文库3. Glufosinate-ammonium dehydrogenase mutant library

草铵膦脱氢酶突变体文库的制备通过7轮定点饱和突变来实现,引物设计如表1,具体操作如下:The preparation of the glufosinate-ammonium dehydrogenase mutant library was achieved by seven rounds of site-directed saturation mutagenesis. The primers were designed as shown in Table 1, and the specific operations were as follows:

(1)以载体pETDuet-KmGDH-PseFDH为模板,以表1中序列(P145)为引物,进行PCR定点饱和突变,PCR结果进行DNA琼脂糖凝胶电泳阳性验证,将阳性PCR产物中加入DpnI酶用于消化模板,在37℃、220转/分钟下反应1小时后,65℃,1分钟灭活,获得消化后的PCR产物。将消化后的PCR产物热击转化至E.coli BL21(DE3)感受态细胞中,置于37℃、220转/分钟活化1小时,培养物再涂布于含50μg/mL氨苄霉素抗性的LB平板上,37℃倒置培养过夜,获得P145位点的饱和突变(SEQ ID No.2所示氨基酸序列第145位突变为其他19种氨基酸)的阳性克隆。(1) Using the vector pETDuet-KmGDH-PseFDH as the template and the sequence (P145) in Table 1 as the primer, PCR site-directed saturation mutation was performed, and the PCR result was verified by DNA agarose gel electrophoresis. DpnI enzyme was added to the positive PCR product It is used to digest the template, react at 37°C and 220 rpm for 1 hour, and then inactivate at 65°C for 1 minute to obtain the digested PCR product. The digested PCR product was heat-shock transformed into E.coli BL21(DE3) competent cells, placed at 37°C and activated at 220 rpm for 1 hour, and the culture was then coated with 50 μg/mL ampicillin-resistant On the LB plate, invert at 37°C overnight to obtain a positive clone with a saturation mutation at the P145 site (the 145th position of the amino acid sequence shown in SEQ ID No. 2 is mutated to other 19 amino acids).

(2)将步骤(1)中引物分别替换为表1所示,重复步骤(1)进行定点饱和突变,分别获得下列克隆:突变体S348(SEQ ID No.2所示氨基酸序列第348位丝氨酸突变为其他19种氨基酸)、V384(SEQ ID No.2所示氨基酸序列第384位缬氨酸突变为其他19种氨基酸)、K70(SEQ ID No.2所示氨基酸序列第70位赖氨酸突变为其他19种氨基酸)、A292(SEQ ID No.2所示氨基酸序列第292位丙氨酸突变为其他19种氨基酸)、A202(SEQ ID No.2所示氨基酸序列第202位丙氨酸突变为其他19种氨基酸)、N78(SEQ ID No.2所示氨基酸序列第78位天冬酰胺突变为其他19种氨基酸)、Q134(SEQ ID No.2所示氨基酸序列第134位谷氨酰胺突变为其他19种氨基酸)、D146(SEQ ID No.2所示氨基酸序列第146位天冬氨酸突变为其他19种氨基酸)、R74(SEQ ID No.2所示氨基酸序列第74位精氨酸突变为其他19种氨基酸)、K106(SEQID No.2所示氨基酸序列第106位赖氨酸突变为其他19种氨基酸)。(2) Replace the primers in step (1) with those shown in Table 1, and repeat step (1) for site-directed saturation mutation to obtain the following clones: mutant S348 (serine at position 348 of the amino acid sequence shown in SEQ ID No.2) mutated to other 19 amino acids), V384 (the 384th valine of the amino acid sequence shown in SEQ ID No.2 was mutated to other 19 amino acids), K70 (the 70th lysine of the amino acid sequence shown in SEQ ID No.2) Mutated to other 19 amino acids), A292 (Alanine at position 292 of the amino acid sequence shown in SEQ ID No. 2 was mutated to other 19 amino acids), A202 (Alanine at position 202 of the amino acid sequence shown in SEQ ID No. 2) mutated to other 19 amino acids), N78 (asparagine at position 78 of the amino acid sequence shown in SEQ ID No. 2 was mutated to other 19 amino acids), Q134 (glutamine at position 134 of the amino acid sequence shown in SEQ ID No. 2) mutated to other 19 amino acids), D146 (aspartic acid at position 146 of the amino acid sequence shown in SEQ ID No. 2 was mutated to other 19 amino acids), R74 (arginine at position 74 of the amino acid sequence shown in SEQ ID No. 2) Acid mutated to other 19 amino acids), K106 (the 106th lysine of the amino acid sequence shown in SEQ ID No. 2 was mutated to other 19 amino acids).

(3)多突变(3) Multiple mutations

以步骤(2)获得的单突变体质粒为模板,继续用表1所示的其他引物进行第二轮、第三轮、第四轮定点饱和突变,获得突变文库。具体的,以P145突变体为模板,用S348引物进行第二轮突变,获得P145-S348双位点的饱和突变;以P145突变体为模板,用V384引物进行第二轮突变,K70引物进行第三轮突变,获得P145-V384-K70三位点的饱和突变;以P145突变体为模板,用V384引物进行第二轮突变,N78引物进行第三轮突变,获得P145-V384-N70三位点的饱和突变;以P145突变体为模板,用V384引物进行第二轮突变,K70引物进行第三轮突变,A292引物进行第四轮突变,获得P145-V384-K70-A292四位点的饱和突变;以P145突变体为模板,用V384引物进行第二轮突变,S348引物进行第三轮突变,A292引物进行第四轮突变,A202引物进行第五轮突变,获得P145-V384-S348-A292-A202五位点的饱和突变。Using the single mutant plasmid obtained in step (2) as a template, the second, third and fourth rounds of site-directed saturation mutagenesis were continued with other primers shown in Table 1 to obtain a mutant library. Specifically, the P145 mutant was used as the template, and the S348 primer was used for the second round of mutation to obtain the P145-S348 double-site saturation mutation; the P145 mutant was used as the template, the V384 primer was used for the second round of mutation, and the K70 primer was used for the first round of mutation. Three rounds of mutation were performed to obtain the three-point saturation mutation of P145-V384-K70; the P145 mutant was used as the template, the V384 primer was used for the second round of mutation, and the N78 primer was used for the third round of mutation to obtain the three-point P145-V384-N70 three-point mutation Using the P145 mutant as the template, the V384 primer was used for the second round of mutation, the K70 primer was used for the third round of mutation, and the A292 primer was used for the fourth round of mutation to obtain the four-site saturation mutation of P145-V384-K70-A292 ; Take the P145 mutant as the template, use the V384 primer to carry out the second round of mutation, the S348 primer to carry out the third round of mutation, the A292 primer to carry out the fourth round of mutation, and the A202 primer to carry out the fifth round of mutation to obtain P145-V384-S348-A292- Saturation mutation at five-site A202.

突变PCR体系(100μL)为:2倍Phanta Max缓冲液25μL,dNTPs 1μL,突变上下引物各1μL,模板1μL,Phanta Super-Fidelity DNA聚合酶0.5μL,补ddH2O至50μL。PCR条件为:95℃预变性5分钟,经30个循环:90℃30秒,62℃30秒,72℃7分钟,最后72℃终延伸5分钟。Mutation PCR system (100 μL): 2 times Phanta Max buffer 25 μL, 1 μL dNTPs, 1 μL upper and lower primers for mutation, 1 μL template, 0.5 μL Phanta Super-Fidelity DNA polymerase, supplemented with ddH 2 O to 50 μL. PCR conditions were: pre-denaturation at 95°C for 5 minutes, followed by 30 cycles of: 90°C for 30 seconds, 62°C for 30 seconds, 72°C for 7 minutes, and a final extension at 72°C for 5 minutes.

将步骤(1)、(2)、(3)构建的突变共表达菌株按实施例2方法进行诱导表达,按实施例3方法进行优势突变体的筛选,将获得的优势菌株送杭州擎科生物技术有限公司进行测序确认,并保存。The mutant co-expression strains constructed in steps (1), (2) and (3) were induced and expressed according to the method of Example 2, and the dominant mutants were screened according to the method of Example 3, and the obtained dominant strains were sent to Hangzhou Qingke Biology Technology Co., Ltd. conducts sequencing confirmation and saves.

表1草铵膦脱氢酶定点饱和突变引物设计Table 1 Design of primers for site-directed saturation mutagenesis of glufosinate-ammonium dehydrogenase

Figure BDA0003445393380000091
Figure BDA0003445393380000091

表1中N代表A、T、G、C四种碱基任意一种,K代表G、T两种碱基的任意一种,NNK组合形成的密码子可覆盖所有20种氨基酸。In Table 1, N represents any one of the four bases of A, T, G, and C, and K represents any one of the two bases of G and T. The codons formed by the combination of NNK can cover all 20 amino acids.

实施例2:草铵膦脱氢酶突变体工程菌的诱导表达Example 2: Induction and expression of glufosinate-ammonium dehydrogenase mutant engineering bacteria

将实施例1中的草铵膦脱氢酶母本工程菌、草铵膦脱氢酶母本与甲酸脱氢酶出发共表达菌株和草铵膦脱氢酶突变体与甲酸脱氢酶共表达菌株分别接种到含终浓度50μg/mL氨苄霉素的LB液体培养基中,37℃培养8小时,以体积浓度2%的接种量接种到新鲜的含终浓度50μg/mL氨苄霉素的LB液体培养基中,37℃、180转/分钟培养2小时,再向培养液中加入终浓度为0.1mM IPTG,18℃培养14小时后,4℃、8000转/分钟离心10分钟,获得相应的湿菌体。LB液体培养基组成:10g/L蛋白胨、5g/L酵母粉、10g/L氯化钠,溶剂为水,pH值自然。The glufosinate-ammonium dehydrogenase parent engineering bacteria in Example 1, the glufosinate-ammonium dehydrogenase parent and formate dehydrogenase co-expression strain and the glufosinate-ammonium dehydrogenase mutant co-expressed with formate dehydrogenase The strains were respectively inoculated into the LB liquid medium containing the final concentration of 50 μg/mL ampicillin, cultivated at 37°C for 8 hours, and inoculated into fresh LB liquid containing the final concentration of 50 μg/mL ampicillin with the volume concentration of 2% of the inoculum. In the medium, culture at 37°C and 180 rpm for 2 hours, then add 0.1 mM IPTG to the culture medium, and after culturing at 18°C for 14 hours, centrifuge at 4°C and 8000 rpm for 10 minutes to obtain the corresponding wetness. Bacteria. The composition of LB liquid medium: 10g/L peptone, 5g/L yeast powder, 10g/L sodium chloride, the solvent is water, and the pH value is natural.

将草铵膦脱氢酶母本工程菌(泳道3)、草铵膦脱氢酶母本与甲酸脱氢酶出发共表达菌株(泳道2)的湿菌体进行SDS-PAGE检测,结果见图2所示。SDS-PAGE detection was performed on the wet cells of the glufosinate-ammonium dehydrogenase parent engineering bacteria (lane 3) and the co-expressing strains (lane 2) from the parent glufosinate dehydrogenase and formate dehydrogenase, and the results are shown in the figure 2 shown.

以上获得的细胞产有相应的蛋白,可用于蛋白纯酶液的制备,也可用于制备固定化细胞。The cells obtained above produce corresponding proteins, which can be used for the preparation of protein-pure enzyme solutions and also for the preparation of immobilized cells.

实施例3:突变文库筛选Example 3: Mutation Library Screening

以实施例2方法制备的草铵膦脱氢酶母本工程菌、草铵膦脱氢酶母本与甲酸脱氢酶出发共表达湿菌体或草铵膦脱氢酶突变体与甲酸脱氢酶共表达湿菌体为催化剂,以2-羰基-4-(羟基甲基膦酰基)-丁酸为底物,以甲酸铵为辅酶再生底物,外源添加微量NAD+,以pH7.4、100mM磷酸盐缓冲液为反应介质构成1mL反应体系,催化剂用量以湿菌体重量计终浓度10g/L,底物终浓度100mM,甲酸铵终浓度125mM,NAD+终浓度1mM,35℃、600转/分钟反应5min。取反应液50μL,加5μL盐酸(6mol/L)终止反应,反应液用蒸馏水稀释100倍,取200μl稀释后的反应液+400μL衍生化试剂(含15mM邻苯二甲醛、15mM N-乙酰-L-半胱氨酸的pH9.8的硼酸缓冲液)30℃衍生化5min,再加400μL超纯水补足至1mL,12000转/分钟离心1分钟,取上清,过0.22μM微滤膜,收集滤液作为液相样品,采用高效液相色谱检测2-羰基-4-(羟基甲基膦酰基)-丁酸、L-草铵膦、D-草铵膦峰面积,并根据各自标准曲线获得各自含量,计算e.e.值。以产物L-草铵膦和e.e.为指标,筛选优势突变体,实验结果示于表2。The glufosinate-ammonium dehydrogenase parent engineering bacteria prepared by the method of Example 2, the glufosinate-ammonium dehydrogenase parent and formate dehydrogenase co-express wet cells or the glufosinate-ammonium dehydrogenase mutant and formate dehydrogenase Enzyme co-expression Wet cells were used as catalysts, 2-carbonyl-4-(hydroxymethylphosphono)-butyric acid was used as substrate, ammonium formate was used as coenzyme regeneration substrate, and a small amount of NAD + was added exogenously to pH 7.4 , 100 mM phosphate buffer as the reaction medium to form a 1 mL reaction system, the final concentration of catalyst is 10 g/L based on the weight of wet cells, the final concentration of substrate is 100 mM, the final concentration of ammonium formate is 125 mM, and the final concentration of NAD + 1 mM, 35 ° C, 600 rev/min reaction for 5min. Take 50 μL of the reaction solution, add 5 μL hydrochloric acid (6mol/L) to stop the reaction, dilute the reaction solution 100 times with distilled water, take 200 μL of the diluted reaction solution + 400 μL derivatization reagent (containing 15mM o-phthalaldehyde, 15mM N-acetyl-L) - Cysteine boric acid buffer (pH 9.8) derivatized at 30°C for 5 min, add 400 μL ultrapure water to make up to 1 mL, centrifuge at 12,000 rpm for 1 minute, take the supernatant, pass through a 0.22 μM microfiltration membrane, and collect The filtrate was used as a liquid sample, and high performance liquid chromatography was used to detect the peak areas of 2-carbonyl-4-(hydroxymethylphosphono)-butyric acid, L-glufosinate-ammonium, and D-glufosinate-ammonium, and obtained the respective standard curves according to their respective standard curves. content, calculate the ee value. Using the products L-glufosinate-ammonium and ee as indicators, the dominant mutants were screened, and the experimental results are shown in Table 2.

2-羰基-4-(羟基甲基膦酰基)-丁酸液相检测条件:色谱柱

Figure BDA0003445393380000101
C18(4.6×250mm,Acchrom,China)柱,流动相乙腈:50mM磷酸二氢铵溶液(pH3.8,含10%四丁基氢氧化铵)体积比为12∶88。流速为1mL/min,检测波长为232nm,进样量10μL,柱温30℃,2-羰基-4-(羟基甲基膦酰基)-丁酸保留时间为:9.7分钟。2-Carbonyl-4-(hydroxymethylphosphono)-butyric acid Liquid phase detection conditions: chromatographic column
Figure BDA0003445393380000101
C18 (4.6×250 mm, Acchrom, China) column, mobile phase acetonitrile: 50 mM ammonium dihydrogen phosphate solution (pH 3.8, containing 10% tetrabutylammonium hydroxide) in a volume ratio of 12:88. The flow rate was 1 mL/min, the detection wavelength was 232 nm, the injection volume was 10 μL, the column temperature was 30°C, and the retention time of 2-carbonyl-4-(hydroxymethylphosphono)-butyric acid was 9.7 minutes.

草铵膦液相检测条件:色谱柱

Figure BDA0003445393380000111
C18(4.6×250mm,Acchrom,China)柱,流动相甲醇∶0.05M乙酸铵(pH 5.7)体积比为10∶90,流速1.0mL/min,检测波长Ex=340nm、Em=450nm,进样量10μL,柱温35℃。L-草铵膦、D-草铵膦保留时间分别为:10.6分钟,12.6分钟。Glufosinate-ammonium liquid detection conditions: chromatographic column
Figure BDA0003445393380000111
C18 (4.6×250mm, Acchrom, China) column, mobile phase methanol: 0.05M ammonium acetate (pH 5.7) volume ratio of 10:90, flow rate 1.0mL/min, detection wavelength Ex=340nm, Em=450nm, injection volume 10 μL, column temperature 35°C. The retention times of L-glufosinate-ammonium and D-glufosinate-ammonium were 10.6 minutes and 12.6 minutes, respectively.

利用2-羰基-4-(羟基甲基氧膦基)-丁酸和草铵膦标准品绘制浓度-峰面积标准曲线(分别为图3和图4),利用标准曲线计算样品浓度,根据产物生成量计算细胞活力。Concentration-peak area standard curves were drawn using 2-carbonyl-4-(hydroxymethylphosphinyl)-butyric acid and glufosinate-ammonium standards (Figure 3 and Figure 4, respectively), and the sample concentrations were calculated using the standard curves. Cell viability was calculated from the amount produced.

表2包含KmGDH及优势突变体的湿菌体催化性能和立体选择性Table 2 The catalytic performance and stereoselectivity of wet cells containing KmGDH and dominant mutants

突变位点Mutation site L-草铵膦(mM)L-Glufosinate-ammonium (mM) e.e(%)e.e(%) 野生型酶-PseFDHWild-type enzyme - PseFDH 0.3250.325 99.999.9 P145G-PseFDHP145G-PseFDH 14.22114.221 99.999.9 S348A-PseFDHS348A-PseFDH 9.2379.237 99.999.9 R74A-PseFDHR74A-PseFDH 1.2151.215 99.999.9 K106A-PseFDHK106A-PseFDH 2.0232.023 99.999.9 P145G-V384Q-N78S-PseFDHP145G-V384Q-N78S-PseFDH 20.26520.265 99.999.9 D134G-V384Q-A292C-PseFDHD134G-V384Q-A292C-PseFDH 5.2565.256 99.999.9 P145G-V384F-K70A-PseFDHP145G-V384F-K70A-PseFDH 25.26825.268 99.999.9 D146A-V384Q-K70A-PseFDHD146A-V384Q-K70A-PseFDH 4.0254.025 99.999.9 P145G-D134G-N78S-PseFDHP145G-D134G-N78S-PseFDH 1.5991.599 99.999.9 P145G-V384Y-S348A-A292C-A202L-PseFDHP145G-V384Y-S348A-A292C-A202L-PseFDH 38.25938.259 99.999.9

注:P145G-V384Q-N78S代表的是KmGDH的145位脯氨酸突变为甘氨酸、384位缬氨酸突变为谷氨酰胺、78位天冬酰胺突变为丝氨酸。Note: P145G-V384Q-N78S represents the mutation of proline 145 to glycine, valine 384 to glutamine, and asparagine 78 to serine in KmGDH.

筛选得到优势突变体的共表达菌株E.coli BL21(DE3)-KmGDH-P145G、The co-expression strains E.coli BL21(DE3)-KmGDH-P145G,

E.coli BL21(DE3)-KmGDH-S348A、E.coli BL21(DE3)-KmGDH-S348A,

E.coli BL21(DE3)-KmGDH-P145G-V384Q-N78S-PseFDH、E.coli BL21(DE3)-KmGDH-P145G-V384Q-N78S-PseFDH,

E.coli BL21(DE3)-KmGDH-P145G-V384F-K70A-PseFDH、E.coli BL21(DE3)-KmGDH-P145G-V384F-K70A-PseFDH,

E.coli BL21(DE3)-KmGDH-P145G-V384Y-S348A-A292C-A202L-PseFDH。E. coli BL21(DE3)-KmGDH-P145G-V384Y-S348A-A292C-A202L-PseFDH.

实施例4:草铵膦脱氢酶母本及其突变体的纯化Example 4: Purification of the parent glufosinate dehydrogenase and its mutants

将实施例1构建的草铵膦脱氢酶母本共表达工程菌及实施例3筛选的优势突变体共表达的工程菌按实施例2方法制备相应湿菌体。Corresponding wet cells were prepared according to the method of Example 2 by co-expressing the parent glufosinate dehydrogenase constructed in Example 1 and co-expressing the engineering bacteria with the dominant mutant screened in Example 3.

取草铵膦脱氢酶母本共表达工程菌及草铵膦脱氢酶突变体共表达工程菌的湿菌体各0.2g,分别用10ml结合缓冲液(含0.3M NaCl的pH 7.4、100mM磷酸钠缓冲液)悬浮,超声破碎15分钟(冰浴,功率400W,破碎1秒、暂停5秒),4℃、12000转/分钟离心20min,取上清,作为上样样品。使用Ni亲和柱(1.6×10cm,Bio-Rad公司,美国)纯化得到KmGDH单体蛋白,具体操作如下:①用5倍柱体积的结合缓冲液(含0.3M NaCl的pH 7.4、50mM磷酸钠缓冲液)平衡Ni柱,至基线稳定;②样品上样,流速1mL/min,上样量在2倍柱体积使目标蛋白吸附于Ni柱上;③用6倍柱体积的缓冲液A(含0.3M NaCl、30mM咪唑的pH7.4、50mM磷酸钠缓冲液)冲洗杂蛋白,流速1mL/min,至基线稳定;④用2倍柱体积的缓冲液B(含0.3M NaCl、500mM咪唑的pH7.4、50mM磷酸钠缓冲液)洗脱,流速1mL/min,收集目的蛋白。将目的蛋白置于pH 7.4、20mM磷酸盐缓冲液中透析过夜,收集截留液,分别获得草铵膦脱氢酶母本纯酶10ml和草铵膦脱氢酶突变体纯酶10ml;⑤5倍柱体积的结合缓冲液(含0.3M NaCl的pH 8.0、50mM磷酸钠缓冲液)冲洗Ni柱直至基线稳定,用5倍柱体积含20%乙醇的超纯水保存Ni柱。Take 0.2 g of the wet cells of the glufosinate-ammonium dehydrogenase parent co-expressing engineering bacteria and the glufosinate-ammonium dehydrogenase mutant co-expressing engineering bacteria, respectively, with 10 ml of binding buffer (pH 7.4, 100 mM containing 0.3 M NaCl) Sodium phosphate buffer), sonicated for 15 minutes (ice bath, power 400W, crushed for 1 second, paused for 5 seconds), centrifuged at 4°C, 12,000 rpm for 20 min, and the supernatant was taken as the loading sample. Use Ni affinity column (1.6×10cm, Bio-Rad Company, USA) to purify the KmGDH monomer protein. The specific operations are as follows: ①Use 5 times the column volume of binding buffer (pH 7.4 containing 0.3M NaCl, 50mM sodium phosphate) Buffer) to equilibrate the Ni column until the baseline is stable; ② Load the sample at a flow rate of 1 mL/min, and the loading volume is 2 times the column volume to adsorb the target protein on the Ni column; ③ Use 6 times the column volume of buffer A (containing 6 times the column volume) 0.3M NaCl, 30mM imidazole pH7.4, 50mM sodium phosphate buffer) to wash the impurity protein, the flow rate is 1mL/min, until the baseline is stable; ④ Use 2 column volumes of buffer B (containing 0.3M NaCl, 500mM imidazole pH7 .4, 50mM sodium phosphate buffer) elution, the flow rate is 1mL/min, and the target protein is collected. The target protein was dialyzed in pH 7.4 and 20 mM phosphate buffer overnight, and the retentate was collected to obtain 10 ml of the parental pure enzyme of glufosinate dehydrogenase and 10 ml of the mutant pure enzyme of glufosinate dehydrogenase; ⑤ 5 times column The Ni column was rinsed with a volume of binding buffer (pH 8.0, 50 mM sodium phosphate buffer containing 0.3 M NaCl) until the baseline stabilized, and the Ni column was stored with 5 column volumes of ultrapure water containing 20% ethanol.

纯酶的蛋白浓度用BCA蛋白测定试剂盒(南京凯基生物科技发展有限公司,南京)测定,如表3所示。The protein concentration of the pure enzyme was determined with a BCA protein assay kit (Nanjing Keygen Biotechnology Development Co., Ltd., Nanjing), as shown in Table 3.

实施例5:草铵膦脱氢酶母本及其突变体比酶活测定Example 5: Determination of specific enzyme activity of glufosinate-ammonium dehydrogenase parent and its mutants

酶活单位(U)定义为:在35℃、pH 7.4条件下,每分钟每生成1μmol的L-草铵膦所需的酶量定义为一个酶活单位,U。比酶活定义为每毫克酶蛋白所具有的活力单位数,U/mg。The unit of enzyme activity (U) is defined as: the amount of enzyme required to generate 1 μmol of L-glufosinate per minute at 35° C. and pH 7.4 is defined as one unit of enzyme activity, U. Specific enzyme activity is defined as the unit of activity per milligram of enzyme protein, U/mg.

酶活检测标准条件:100mM 2-羰基-4-(羟基甲基膦酰基)-丁酸,添加50mM NADH,含有200μg蛋白含量的纯酶液(实施例4方法制备),以pH7.4、50mM磷酸钠缓冲液为反应介质构成1mL的反应体系,30℃、pH 7.4,600转/分钟条件下反应10分钟,采用实施例3方法进行HPLC检测分析,相对酶活见表3。Standard conditions for enzyme activity detection: 100mM 2-carbonyl-4-(hydroxymethylphosphono)-butyric acid, add 50mM NADH, pure enzyme solution containing 200μg protein content (prepared by the method of Example 4), pH7.4, 50mM Sodium phosphate buffer was used as the reaction medium to form a 1 mL reaction system. The reaction was carried out at 30° C., pH 7.4, and 600 rpm for 10 minutes. The method of Example 3 was used for HPLC detection and analysis. The relative enzyme activity is shown in Table 3.

表3草铵膦脱氢酶母本及其突变体比酶活Table 3 Specific enzyme activity of glufosinate-ammonium dehydrogenase parent and its mutant

Figure BDA0003445393380000121
Figure BDA0003445393380000121

a:在标准条件下,每个草铵膦脱氢酶母本的初始酶活均指定为100%。 a : The initial enzymatic activity of each parent glufosinate dehydrogenase was assigned as 100% under standard conditions.

实施例6:草铵膦脱氢酶母本及其突变体的动力学参数测定Example 6: Determination of kinetic parameters of the parent glufosinate dehydrogenase and its mutants

考察草铵膦脱氢酶母本及其突变体的动力学参数,以2-羰基-4-(羟基甲基膦酰基)-丁酸作为底物,浓度设置为20-200mM(20、50、100、150、200mM),添加足量辅酶,加入适量的纯酶液(实施例4方法收集)。To investigate the kinetic parameters of the parent glufosinate dehydrogenase and its mutants, 2-carbonyl-4-(hydroxymethylphosphono)-butyric acid was used as the substrate, and the concentration was set to 20-200 mM (20, 50, 100, 150, 200 mM), add enough coenzyme, and add an appropriate amount of pure enzyme solution (collected by the method of Example 4).

反应体系选择为500μL:实施例4方法收集的母本及突变体纯酶液以pH7.4、100mM磷酸盐缓冲液稀释。取稀释后的纯酶液,加入底物和外源性辅酶NADH,pH7.4、100mM磷酸盐缓冲液为反应介质构成500μL反应体系,其中纯酶加入量以蛋白含量计为200mg/L,底物为20-200mM(20、50、100、150、200mM),NADH加入浓度为50mM,35℃、600转/分钟反应10min,取反应液采用实施例3方法检测L-草铵膦浓度。The reaction system was chosen to be 500 μL: the parent and mutant pure enzyme solutions collected by the method in Example 4 were diluted with pH 7.4 and 100 mM phosphate buffer. Take the diluted pure enzyme solution, add the substrate and exogenous coenzyme NADH, pH 7.4, 100mM phosphate buffer as the reaction medium to form a 500 μL reaction system, in which the amount of pure enzyme added is 200 mg/L in terms of protein content, and the bottom is 200 mg/L. The concentration of NADH was 20-200mM (20, 50, 100, 150, 200mM), the concentration of NADH was 50mM, and the reaction was performed at 35°C and 600 rpm for 10min.

通过双倒数作图可计算得出Kcat、vmax、Km,结果如表4所示,通过比较kcat和Km,可以发现,KmGDH对2-羰基-4-(羟基甲基膦酰基)-丁酸的Km值是8.56mM,其余突变体对2-羰基-4-(羟基甲基膦酰基)-丁酸亲和力有增加趋势。突变体KmGDH-P145G-V384Y-S348A-A292C-A202L对2-羰基-4-(羟基甲基膦酰基)-丁酸的催化效率kcat/Km达到396.8s-1*M-1,母本(kcat/Km=3.2s-1*M-1)提高124倍。K cat , v max , and K m can be calculated by double-reciprocal plotting, and the results are shown in Table 4. By comparing k cat and K m , it can be found that KmGDH has a significant effect on 2-carbonyl-4-(hydroxymethylphosphono )-butyric acid had a Km value of 8.56 mM, and the remaining mutants showed an increasing affinity for 2-carbonyl-4-(hydroxymethylphosphono)-butyric acid. The catalytic efficiency k cat /K m of mutant KmGDH-P145G-V384Y-S348A-A292C-A202L towards 2-carbonyl-4-(hydroxymethylphosphono)-butyric acid reached 396.8s -1 *M -1 , parent (k cat /K m =3.2s -1 *M -1 ) is improved by a factor of 124.

表4母本KmGDH及其突变体动力学参数比较Table 4 Comparison of kinetic parameters of parental KmGDH and its mutants

enzyme K<sub>cat</sub>(s<sup>-1</sup>)K<sub>cat</sub>(s<sup>-1</sup>) k<sub>m</sub>(M)k<sub>m</sub>(M) k<sub>cat</sub>/k<sub>m</sub>(s<sup>-1</sup>*M<sup>-1</sup>)k<sub>cat</sub>/k<sub>m</sub>(s<sup>-1</sup>*M<sup>-1</sup>) KmGDHKmGDH 1.30±0.11.30±0.1 0.41±0.020.41±0.02 3.23.2 KmGDH-P145GKmGDH-P145G 54.1±4.254.1±4.2 0.35±0.070.35±0.07 154.6154.6 KmGDH-S348AKmGDH-S348A 33.6±3.833.6±3.8 0.40±0.030.40±0.03 84.084.0 KmGDH-P145G-V384Q-N78SKmGDH-P145G-V384Q-N78S 71.4±3.171.4±3.1 0.32±0.010.32±0.01 223.1223.1 KmGDH-P145G-V384F-K70AKmGDH-P145G-V384F-K70A 72.4±2.872.4±2.8 0.22±0.050.22±0.05 329.1329.1 KmGDH-P145G-V384Y-S348A-A292C-A202LKmGDH-P145G-V384Y-S348A-A292C-A202L 75.4±1.275.4±1.2 0.19±0.010.19±0.01 396.8396.8

实施例7:草铵膦脱氢酶母本及其突变体的热稳定性的测定Example 7: Determination of thermostability of the parent glufosinate dehydrogenase and its mutants

考察草铵膦脱氢酶母本及其突变体共表达酶的热稳定性,将实施例4方法收集的母本和突变体KmGDH-P145G-V384Y-S348A-A292C-A202L纯酶液20ml分别放置于35℃、50℃、65℃的水浴下保温,每隔4h取出适量酶液用于活力测定(按实施例5进行)。连续测量24h后将获得的数据拟合后计算半衰期。草铵膦脱氢酶母本和突变体KmGDH-P145G-V384Y-S348A-A292C-A202L的热稳定性分别如图5和图6所示,拟合计算后,草铵膦脱氢酶母本在35℃、50℃、65℃下的半衰期分别为18.4h、11.2h和6.9h;突变体KmGDH-P145G-V384Y-S348A-A292C-A202L在35℃、50℃、65℃下的半衰期分别为294.7h、143.0h和25.7h。To investigate the thermal stability of the co-expressed enzyme of the parent and its mutants of glufosinate-ammonium dehydrogenase, 20 ml of the pure enzyme solution of the parent and mutant KmGDH-P145G-V384Y-S348A-A292C-A202L collected by the method in Example 4 were placed separately Incubate in a water bath at 35°C, 50°C, and 65°C, and take out an appropriate amount of enzyme solution every 4 h for activity determination (according to Example 5). The half-life was calculated after fitting the obtained data after 24 hours of continuous measurement. The thermal stability of the parent glufosinate dehydrogenase and mutant KmGDH-P145G-V384Y-S348A-A292C-A202L are shown in Figure 5 and Figure 6, respectively. The half-lives at 35℃, 50℃ and 65℃ were 18.4h, 11.2h and 6.9h, respectively; the half-lives of the mutant KmGDH-P145G-V384Y-S348A-A292C-A202L at 35℃, 50℃ and 65℃ were 294.7 h, 143.0h and 25.7h.

实施例8:草铵膦脱氢酶突变体工程菌的固定化细胞的制备Example 8: Preparation of immobilized cells of glufosinate-ammonium dehydrogenase mutant engineering bacteria

(1)按实施例2方法制备突变体共表达E.coli BL21(DE3)-KmGDH-P145G-V384Y-S348A-A292C-A202L-PseFDH工程菌的湿菌体100g,加入pH7.5的磷酸缓冲液1L,配制成100g/L的悬浮液,加入2.25g硅藻土,充分搅拌30min;(1) Prepare 100 g of wet cells of the mutant co-expressing E.coli BL21(DE3)-KmGDH-P145G-V384Y-S348A-A292C-A202L-PseFDH engineering bacteria according to the method of Example 2, add pH7.5 phosphate buffer 1L, prepare a suspension of 100g/L, add 2.25g of diatomaceous earth, and fully stir for 30min;

(2)向步骤(1)的混合液中加入聚乙烯亚胺(分子量10000)3mL(用盐酸预调pH至7.0),充分搅拌30min;(2) to the mixed solution of step (1), add polyethyleneimine (molecular weight 10000) 3mL (pre-adjust pH to 7.0 with hydrochloric acid), fully stir for 30min;

(3)向步骤(2)的混合液中加入戊二醛3mL,继续充分搅拌30min;(3) add glutaraldehyde 3mL to the mixed solution of step (2), continue to fully stir for 30min;

(4)步骤(3)真空抽滤使得固液分离,收集固定化细胞150g(湿菌体含量0.67g/g固定化细胞),并用水洗涤3次,保存于4℃冰箱中。(4) Step (3) Vacuum filtration to separate solid and liquid, collect 150 g of immobilized cells (wet cell content 0.67 g/g immobilized cells), wash with water 3 times, and store in a 4°C refrigerator.

实施例9:固定化细胞性能测定及用于L-草铵膦合成Example 9: Immobilized cell performance assay and its use in L-glufosinate synthesis

1、酶活1. Enzyme activity

取实施例8制得的固定化细胞0.5g(含湿菌体0.2g)于10mL pH 7.5磷酸盐缓冲液中,加入100mM的2-羰基-4-(羟基甲基膦酰基)-丁酸,150mM甲酸铵,1mM NAD+构成1mL的反应体系,35℃、600rpm反应10min,取样,采用实施例3所述HPLC检测产物L-草铵膦的浓度,根据实施例5酶活测试方法计算固定化细胞酶活。Take 0.5 g of immobilized cells (containing 0.2 g of wet cells) prepared in Example 8 in 10 mL of pH 7.5 phosphate buffer, add 100 mM of 2-carbonyl-4-(hydroxymethylphosphono)-butyric acid, 150mM ammonium formate, 1mM NAD+ constitute a 1mL reaction system, react at 35°C and 600rpm for 10min, take samples, use the HPLC described in Example 3 to detect the concentration of the product L-glufosinate-ammonium, and calculate the immobilized cells according to the enzyme activity test method in Example 5 enzyme activity.

同样条件下,检测突变体共表达E.coli BL21(DE3)-KmGDH-P145G-V384Y-S348A-A292C-A202L-PseFDH工程菌的湿菌体的酶活,作为游离细胞酶活。Under the same conditions, the enzyme activity of the wet cells of the mutant co-expressing E.coli BL21(DE3)-KmGDH-P145G-V384Y-S348A-A292C-A202L-PseFDH engineering bacteria was detected as free cell enzyme activity.

固定化细胞酶活除以游离细胞酶活计算出固定化细胞酶活回收率。The enzyme activity recovery rate of immobilized cells was calculated by dividing the enzyme activity of immobilized cells by the enzyme activity of free cells.

结果表明,固定化细胞酶活为162.5U/g,酶活回收率为78.1%。The results showed that the enzymatic activity of immobilized cells was 162.5 U/g, and the recovery rate of enzymatic activity was 78.1%.

2、重复使用2. Reuse

取实施例8方法制得的固定化细胞37.5g(含湿菌体25g)于3L装有1L磷酸盐缓冲液(pH=7.5,100mM)的机械搅拌反应器中,加入2-羰基-4-(羟基甲基膦酰基)-丁酸400mM,甲酸铵600mM,NAD+0.1mM,35℃,600rpm搅拌转速反应8h,每隔0.5h取样,采用实施例3所述方法检测底物和产物L-草铵膦的浓度,计算底物转化率和ee值,结果见图7所示。图7表明以固定化细胞为催化剂,可以实现4h内完全转化400mM底物PPO,产物对ee值大于99.9%。Take 37.5 g of immobilized cells (containing 25 g of wet cells) prepared by the method of Example 8 into a 3 L mechanically stirred reactor equipped with 1 L of phosphate buffer (pH=7.5, 100 mM), add 2-carbonyl-4- (Hydroxymethylphosphono)-butyric acid 400mM, ammonium formate 600mM, NAD + 0.1mM, 35°C, 600rpm stirring speed reaction for 8h, sampling every 0.5h, using the method described in Example 3 to detect the substrate and product L- The concentration of glufosinate-ammonium, the substrate conversion rate and the ee value were calculated, and the results are shown in Figure 7. Figure 7 shows that using immobilized cells as a catalyst can achieve complete conversion of 400 mM substrate PPO within 4 h, and the product-to-ee value is greater than 99.9%.

反应结束后,反应液真空抽滤进行固液分离后,沉淀(即固定化细胞)用蒸馏水洗涤三次后,进行下一批转化,计算每一批次的转化率,结果见图8所示。同样条件下,将固定化细胞替换为E.coli BL21(DE3)-KmGDH-P145G-V384Y-S348A-A292C-A202L-PseFDH工程菌的湿菌体。After the reaction, the reaction solution was vacuum filtered for solid-liquid separation, and the precipitate (i.e., the immobilized cells) was washed three times with distilled water, and then the next batch of transformation was carried out, and the conversion rate of each batch was calculated. The results are shown in Figure 8. Under the same conditions, the immobilized cells were replaced with wet cells of E.coli BL21(DE3)-KmGDH-P145G-V384Y-S348A-A292C-A202L-PseFDH engineering bacteria.

图8结果表明,固定化细胞连续操作22批次仍能保持100%的转化率,而未经固定化的湿菌体在相同的反应条件下,第二批次开始转化率明显下降,重复使用4批次后完全失去活力。The results in Figure 8 show that 22 batches of immobilized cells can still maintain a 100% conversion rate, while under the same reaction conditions, the conversion rate of the unimmobilized wet cells starts to drop significantly from the second batch. Repeated use Completely lost vitality after 4 batches.

实施例10:草铵膦脱氢酶突变体固定化细胞的制备及性能检测Example 10: Preparation and performance testing of glufosinate-ammonium dehydrogenase mutant immobilized cells

制备方法同实施例8,不同之处在于,步骤(1)中载体改为活性炭,步骤(2)中聚乙烯亚胺分子量为1800,步骤(3)中所用交联剂为双醛淀粉。The preparation method is the same as in Example 8, except that the carrier in step (1) is changed to activated carbon, the molecular weight of polyethyleneimine in step (2) is 1800, and the crosslinking agent used in step (3) is dialdehyde starch.

经测定,所得固定化细胞性能如下:固定化细胞酶活为106.4U/g,连续转化20批次后转化率为68.7%。The properties of the obtained immobilized cells were determined as follows: the enzymatic activity of the immobilized cells was 106.4 U/g, and the conversion rate was 68.7% after 20 batches of continuous transformation.

实施例11:草铵膦脱氢酶突变体固定化细胞的制备及性能检测Example 11: Preparation and performance testing of glufosinate-ammonium dehydrogenase mutant immobilized cells

制备方法同实施例8,不同之处在于,步骤(1)中载体改为膨润土,步骤(2)中聚乙烯亚胺分子量为700,步骤(3)中所用交联剂为戊二醛。The preparation method is the same as that in Example 8, except that the carrier in step (1) is changed to bentonite, the molecular weight of polyethyleneimine in step (2) is 700, and the crosslinking agent used in step (3) is glutaraldehyde.

经测定,所得固定化细胞性能如下:固定化细胞酶活为154.3U/g,连续转化20批次后转化率为65.1%。The properties of the obtained immobilized cells were determined as follows: the enzymatic activity of the immobilized cells was 154.3 U/g, and the conversion rate after 20 batches of continuous transformation was 65.1%.

实施例12:草铵膦脱氢酶突变体固定化细胞的制备及性能检测Example 12: Preparation and performance testing of glufosinate-ammonium dehydrogenase mutant immobilized cells

制备方法同实施例8,不同之处在于,步骤(1)中载体改为蒙脱土,步骤(2)中聚乙烯亚胺分子量为70000,步骤(3)中所用交联剂为乙二醛。The preparation method is the same as in Example 8, except that the carrier in step (1) is changed to montmorillonite, the molecular weight of polyethyleneimine in step (2) is 70000, and the crosslinking agent used in step (3) is glyoxal .

经测定,所得固定化细胞性能如下:固定化细胞酶活为80.7U/g,连续转化20批次后转化率为56.6%。The properties of the obtained immobilized cells were determined as follows: the enzymatic activity of the immobilized cells was 80.7 U/g, and the conversion rate was 56.6% after 20 batches of continuous transformation.

序列表sequence listing

<110> 浙江工业大学<110> Zhejiang University of Technology

<120> 草铵膦脱氢酶突变体、工程菌、固定化细胞及应用<120> Glufosinate-ammonium dehydrogenase mutants, engineered bacteria, immobilized cells and applications

<160> 3<160> 3

<170> SIPOSequenceListing 1.0<170> SIPOSequenceListing 1.0

<210> 1<210> 1

<211> 1242<211> 1242

<212> DNA<212> DNA

<213> 马赛库特氏菌(Kurthia massiliensis)<213> Kurthia massiliensis

<400> 1<400> 1

atggcagaaa acctgaactt atttacgagc acccaggcga ttattaaaga agcgctgcag 60atggcagaaa acctgaactt atttacgagc acccaggcga ttattaaaga agcgctgcag 60

aaactgggct acgatgaggc gatgtatgac ttactgaaag aaccgctgcg tatgctgcag 120aaactgggct acgatgaggc gatgtatgac ttactgaaag aaccgctgcg tatgctgcag 120

gttagaatcc cggtccgtat ggacgacggc accgttaccg ttttcacagg ttatcgtgcc 180gttagaatcc cggtccgtat ggacgacggc accgttaccg ttttcacagg ttatcgtgcc 180

caacataatg atgcagttgg cccgaccaag ggtggcgtac gttttcatcc gaatgttagt 240caacataatg atgcagttgg cccgaccaag ggtggcgtac gttttcatcc gaatgttagt 240

gaagaagaag ttaaagcact gagcatgtgg atgaccctga aagcaggtat tgttgattta 300gaagaagaag ttaaagcact gagcatgtgg atgaccctga aagcaggtat tgttgattta 300

ccatatgggg gtggtaaagg cggcgtgatt tgtgatcctc gtcagatgag catgggtgaa 360ccatatgggg gtggtaaagg cggcgtgatt tgtgatcctc gtcagatgag catgggtgaa 360

ctggaaagat taagccgtgg atatgttcgg gcaacctcgc agattgttgg tccgaccaaa 420ctggaaagat taagccgtgg atatgttcgg gcaacctcgc agattgttgg tccgaccaaa 420

gatattccgg caccggatgt ttttaccaat gcacaaatta tggcatggat gatggatgaa 480gatattccgg caccggatgt ttttaccaat gcacaaatta tggcatggat gatggatgaa 480

tatagccgta tggatgaatt taatagcccg ggctttataa cgggtaaacc tattgtgtta 540tatagccgta tggatgaatt taatagcccg ggctttataa cgggtaaacc tattgtgtta 540

ggtggtagtc aggggcgtga tcgtgccaca gcccagggcg taacgattgt tatagaacag 600ggtggtagtc aggggcgtga tcgtgccaca gcccagggcg taacgattgt tatagaacag 600

gcagcaaaac ggcggaatct gcaaatcgaa ggtgcaagag tggtgattca gggatttgga 660gcagcaaaac ggcggaatct gcaaatcgaa ggtgcaagag tggtgattca gggatttgga 660

aatgcaggta gctttctggc taaattcatg aatgatctgg gcgcgaaagt ggtgggtatt 720aatgcaggta gctttctggc taaattcatg aatgatctgg gcgcgaaagt ggtgggtatt 720

agtgacgcaa atggcgcact gtacgatccg gaaggactgg atattgatta tctgttagac 780agtgacgcaa atggcgcact gtacgatccg gaaggactgg atattgatta tctgttagac 780

cgtcgtgata gttttggtac cgttactaat ctgtttgaaa ataccattac caacgaagaa 840cgtcgtgata gttttggtac cgttactaat ctgtttgaaa ataccattac caacgaagaa 840

cttttagaat tagagtgtga tatcctggtt ccggctgcca ttgaaaacca aattacagca 900cttttagaat tagagtgtga tatcctggtt ccggctgcca ttgaaaacca aattacagca 900

gaaaatgcac ataatatcaa ggccaacatt gttgtggaag cagcaaacgg accgaccacc 960gaaaatgcac ataatatcaa ggccaacatt gttgtggaag cagcaaacgg accgaccacc 960

caggaagcca caaaaatact gaccgagcgt ggagttctgc tggtgccgga cgttttagca 1020caggaagcca caaaaatact gaccgagcgt ggagttctgc tggtgccgga cgttttagca 1020

agcgcaggtg gcgttacagt aagctacttt gaatgggttc agaataatca gggctattac 1080agcgcaggtg gcgttacagt aagctacttt gaatgggttc agaataatca gggctattac 1080

tggagtgaag aagaggttaa tgataaatta tacaagaaga tggtggaggc gtttgataat 1140tggagtgaag aagaggttaa tgataaatta tacaagaaga tggtggaggc gtttgataat 1140

atttataatg tggcagaagc ccgcaaaata gatatgagac tggcggcata tatggtgggc 1200atttataatg tggcagaagc ccgcaaaata gatatgagac tggcggcata tatggtgggc 1200

gttagaaaaa cagcagaagc aagccggttt agaggctggg tt 1242gttagaaaaa cagcagaagc aagccggttt agaggctggg tt 1242

<210> 2<210> 2

<211> 414<211> 414

<212> PRT<212> PRT

<213> 马赛库特氏菌(Kurthia massiliensis)<213> Kurthia massiliensis

<400> 2<400> 2

Met Ala Glu Asn Leu Asn Leu Phe Thr Ser Thr Gln Ala Ile Ile LysMet Ala Glu Asn Leu Asn Leu Phe Thr Ser Thr Gln Ala Ile Ile Lys

1 5 10 151 5 10 15

Glu Ala Leu Gln Lys Leu Gly Tyr Asp Glu Ala Met Tyr Asp Leu LeuGlu Ala Leu Gln Lys Leu Gly Tyr Asp Glu Ala Met Tyr Asp Leu Leu

20 25 30 20 25 30

Lys Glu Pro Leu Arg Met Leu Gln Val Arg Ile Pro Val Arg Met AspLys Glu Pro Leu Arg Met Leu Gln Val Arg Ile Pro Val Arg Met Asp

35 40 45 35 40 45

Asp Gly Thr Val Thr Val Phe Thr Gly Tyr Arg Ala Gln His Asn AspAsp Gly Thr Val Thr Val Phe Thr Gly Tyr Arg Ala Gln His Asn Asp

50 55 60 50 55 60

Ala Val Gly Pro Thr Lys Gly Gly Val Arg Phe His Pro Asn Val SerAla Val Gly Pro Thr Lys Gly Gly Val Arg Phe His Pro Asn Val Ser

65 70 75 8065 70 75 80

Glu Glu Glu Val Lys Ala Leu Ser Met Trp Met Thr Leu Lys Ala GlyGlu Glu Glu Val Lys Ala Leu Ser Met Trp Met Thr Leu Lys Ala Gly

85 90 95 85 90 95

Ile Val Asp Leu Pro Tyr Gly Gly Gly Lys Gly Gly Val Ile Cys AspIle Val Asp Leu Pro Tyr Gly Gly Gly Lys Gly Gly Val Ile Cys Asp

100 105 110 100 105 110

Pro Arg Gln Met Ser Met Gly Glu Leu Glu Arg Leu Ser Arg Gly TyrPro Arg Gln Met Ser Met Gly Glu Leu Glu Arg Leu Ser Arg Gly Tyr

115 120 125 115 120 125

Val Arg Ala Thr Ser Gln Ile Val Gly Pro Thr Lys Asp Ile Pro AlaVal Arg Ala Thr Ser Gln Ile Val Gly Pro Thr Lys Asp Ile Pro Ala

130 135 140 130 135 140

Pro Asp Val Phe Thr Asn Ala Gln Ile Met Ala Trp Met Met Asp GluPro Asp Val Phe Thr Asn Ala Gln Ile Met Ala Trp Met Met Asp Glu

145 150 155 160145 150 155 160

Tyr Ser Arg Met Asp Glu Phe Asn Ser Pro Gly Phe Ile Thr Gly LysTyr Ser Arg Met Asp Glu Phe Asn Ser Pro Gly Phe Ile Thr Gly Lys

165 170 175 165 170 175

Pro Ile Val Leu Gly Gly Ser Gln Gly Arg Asp Arg Ala Thr Ala GlnPro Ile Val Leu Gly Gly Ser Gln Gly Arg Asp Arg Ala Thr Ala Gln

180 185 190 180 185 190

Gly Val Thr Ile Val Ile Glu Gln Ala Ala Lys Arg Arg Asn Leu GlnGly Val Thr Ile Val Ile Glu Gln Ala Ala Lys Arg Arg Asn Leu Gln

195 200 205 195 200 205

Ile Glu Gly Ala Arg Val Val Ile Gln Gly Phe Gly Asn Ala Gly SerIle Glu Gly Ala Arg Val Val Ile Gln Gly Phe Gly Asn Ala Gly Ser

210 215 220 210 215 220

Phe Leu Ala Lys Phe Met Asn Asp Leu Gly Ala Lys Val Val Gly IlePhe Leu Ala Lys Phe Met Asn Asp Leu Gly Ala Lys Val Val Gly Ile

225 230 235 240225 230 235 240

Ser Asp Ala Asn Gly Ala Leu Tyr Asp Pro Glu Gly Leu Asp Ile AspSer Asp Ala Asn Gly Ala Leu Tyr Asp Pro Glu Gly Leu Asp Ile Asp

245 250 255 245 250 255

Tyr Leu Leu Asp Arg Arg Asp Ser Phe Gly Thr Val Thr Asn Leu PheTyr Leu Leu Asp Arg Arg Asp Ser Phe Gly Thr Val Thr Asn Leu Phe

260 265 270 260 265 270

Glu Asn Thr Ile Thr Asn Glu Glu Leu Leu Glu Leu Glu Cys Asp IleGlu Asn Thr Ile Thr Asn Glu Glu Leu Leu Glu Leu Glu Cys Asp Ile

275 280 285 275 280 285

Leu Val Pro Ala Ala Ile Glu Asn Gln Ile Thr Ala Glu Asn Ala HisLeu Val Pro Ala Ala Ile Glu Asn Gln Ile Thr Ala Glu Asn Ala His

290 295 300 290 295 300

Asn Ile Lys Ala Asn Ile Val Val Glu Ala Ala Asn Gly Pro Thr ThrAsn Ile Lys Ala Asn Ile Val Val Glu Ala Ala Asn Gly Pro Thr Thr

305 310 315 320305 310 315 320

Gln Glu Ala Thr Lys Ile Leu Thr Glu Arg Gly Val Leu Leu Val ProGln Glu Ala Thr Lys Ile Leu Thr Glu Arg Gly Val Leu Leu Val Pro

325 330 335 325 330 335

Asp Val Leu Ala Ser Ala Gly Gly Val Thr Val Ser Tyr Phe Glu TrpAsp Val Leu Ala Ser Ala Gly Gly Val Thr Val Ser Tyr Phe Glu Trp

340 345 350 340 345 350

Val Gln Asn Asn Gln Gly Tyr Tyr Trp Ser Glu Glu Glu Val Asn AspVal Gln Asn Asn Gln Gly Tyr Tyr Trp Ser Glu Glu Glu Val Asn Asp

355 360 365 355 360 365

Lys Leu Tyr Lys Lys Met Val Glu Ala Phe Asp Asn Ile Tyr Asn ValLys Leu Tyr Lys Lys Met Val Glu Ala Phe Asp Asn Ile Tyr Asn Val

370 375 380 370 375 380

Ala Glu Ala Arg Lys Ile Asp Met Arg Leu Ala Ala Tyr Met Val GlyAla Glu Ala Arg Lys Ile Asp Met Arg Leu Ala Ala Tyr Met Val Gly

385 390 395 400385 390 395 400

Val Arg Lys Thr Ala Glu Ala Ser Arg Phe Arg Gly Trp ValVal Arg Lys Thr Ala Glu Ala Ser Arg Phe Arg Gly Trp Val

405 410 405 410

<210> 3<210> 3

<211> 1203<211> 1203

<212> DNA<212> DNA

<213> 绿脓杆菌(Pseudomonas sp.)<213> Pseudomonas sp.

<400> 3<400> 3

atggccaaag ttctgtgtgt actgtatgac gacccggttg atggttaccc taaaacttac 60atggccaaag ttctgtgtgt actgtatgac gacccggttg atggttaccc taaaacttac 60

gcacgtgacg atctgccgaa aatcgaccac tacccgggcg gccagaccct gccgacgccg 120gcacgtgacg atctgccgaa aatcgaccac tacccgggcg gccagaccct gccgacgccg 120

aaagcgatcg atttcactcc gggccaactg ctgggttctg tttctggtga actgggcctg 180aaagcgatcg atttcactcc gggccaactg ctgggttctg tttctggtga actgggcctg 180

cgtaaatatc tggaatccaa cggccacacc ctggtggtga ccagcgacaa agatggtccg 240cgtaaatatc tggaatccaa cggccacacc ctggtggtga ccagcgacaa agatggtccg 240

gactccgtgt tcgaacgtga actggttgat gctgacgttg tcattagcca gccgttctgg 300gactccgtgt tcgaacgtga actggttgat gctgacgttg tcattagcca gccgttctgg 300

ccggcgtatc tgaccccgga acgcatcgcc aaagctaaaa acctgaaact ggcactgacc 360ccggcgtatc tgaccccgga acgcatcgcc aaagctaaaa acctgaaact ggcactgacc 360

gcaggtattg gttctgacca cgttgatctg cagtccgcca tcgatcgtaa cgttaccgtt 420gcaggtattg gttctgacca cgttgatctg cagtccgcca tcgatcgtaa cgttaccgtt 420

gccgaagtaa cctactgtaa ctctatctcc gtggctgaac atgtggttat gatgatcctg 480gccgaagtaa cctactgtaa ctctatctcc gtggctgaac atgtggttat gatgatcctg 480

tctctggttc gcaactatct gccgtctcat gaatgggcgc gtaaaggcgg ctggaacatc 540tctctggttc gcaactatct gccgtctcat gaatgggcgc gtaaaggcgg ctggaacatc 540

gctgattgtg tcagccatgc gtatgacctg gaagcaatgc atgtgggcac tgttgcagct 600gctgattgtg tcagccatgc gtatgacctg gaagcaatgc atgtgggcac tgttgcagct 600

ggtcgcatcg gcctggctgt cctgcgtcgc ctggcaccat tcgacgtaca cctgcactac 660ggtcgcatcg gcctggctgt cctgcgtcgc ctggcaccat tcgacgtaca cctgcactac 660

actgaccgtc accgtctgcc agaaagcgtg gagaaagaac tgaacctgac ctggcatgct 720actgaccgtc accgtctgcc agaaagcgtg gagaaagaac tgaacctgac ctggcatgct 720

actcgcgaag acatgtaccc ggtgtgcgac gttgttaccc tgaactgtcc actgcacccg 780actcgcgaag acatgtaccc ggtgtgcgac gttgttaccc tgaactgtcc actgcacccg 780

gagaccgaac acatgattaa cgatgaaacc ctgaagctgt tcaaacgtgg cgcgtacatc 840gagaccgaac acatgattaa cgatgaaacc ctgaagctgt tcaaacgtgg cgcgtacatc 840

gtaaacacgg ctcgtggtaa gctgtgcgat cgtgacgctg tggcacgtgc gctggaatct 900gtaaacacgg ctcgtggtaa gctgtgcgat cgtgacgctg tggcacgtgc gctggaatct 900

ggtcgcctgg ccggttacgc tggtgatgta tggtttccac agccggctcc gaaagaccac 960ggtcgcctgg ccggttacgc tggtgatgta tggtttccac agccggctcc gaaagaccac 960

ccgtggcgca ccatgcctta caatggtatg accccgcaca tttctggtac cactctgacc 1020ccgtggcgca ccatgcctta caatggtatg accccgcaca tttctggtac cactctgacc 1020

gcacaggcgc gttacgcagc gggtacccgt gaaattctgg agtgcttctt tgaaggtcgc 1080gcacaggcgc gttacgcagc gggtacccgt gaaattctgg agtgcttctt tgaaggtcgc 1080

ccgatccgtg atgaatacct gatcgttcag ggtggtgcgc tggctggcac tggtgctcat 1140ccgatccgtg atgaatacct gatcgttcag ggtggtgcgc tggctggcac tggtgctcat 1140

tcctactcta aaggtaacgc gaccggtggt tctgaagagg cggcgaaatt caaaaaggcc 1200tcctactcta aaggtaacgc gaccggtggt tctgaagagg cggcgaaatt caaaaaggcc 1200

gtt 1203gtt 1203

Claims (10)

1.一种草铵膦脱氢酶突变体,其特征在于所述突变体是将SEQ ID No.2所示草铵膦脱氢酶氨基酸序列的第145位、第384位、第348位、第292位、第202位、第70位、第78位进行单突变或多突变获得的。1. A glufosinate-ammonium dehydrogenase mutant, characterized in that the mutant is the amino acid sequence of glufosinate-ammonium dehydrogenase shown in SEQ ID No. 2 at positions 145, 384, 348, The 292nd, 202nd, 70th, and 78th positions are obtained by single mutation or multiple mutation. 2.如权利要求1所述的草铵膦脱氢酶突变体,其特征在于所述突变体是将SEQ ID No.2所示氨基酸序列突变为下列之一:(1)第145位脯氨酸突变为甘氨酸、或者第348位丝氨酸突变为丙氨酸;(2)第145位脯氨酸突变为甘氨酸、第384位缬氨酸突变为苯丙氨酸且第70位赖氨酸突变为丙氨酸;(3)第145位脯氨酸突变为甘氨酸、第384位缬氨酸突变为谷氨酰胺且第78位天冬酰胺突变为丝氨酸;(4)第145位脯氨酸突变为甘氨酸、第384位缬氨酸突变为酪氨酸、第348位丝氨酸突变为丙氨酸,第292位丙氨酸突变为半胱氨酸且第202位丙氨酸突变为亮氨酸。2. The glufosinate-ammonium dehydrogenase mutant according to claim 1, wherein the mutant is the amino acid sequence shown in SEQ ID No. 2 mutated into one of the following: (1) Proline at position 145 Acid is mutated to glycine, or serine 348 is mutated to alanine; (2) proline 145 is mutated to glycine, valine 384 is mutated to phenylalanine and lysine 70 is mutated to Alanine; (3) Proline 145 is mutated to glycine, valine 384 is mutated to glutamine and asparagine 78 is mutated to serine; (4) Proline 145 is mutated to Glycine, valine 384 to tyrosine, serine 348 to alanine, alanine 292 to cysteine and alanine 202 to leucine. 3.一种权利要求1所述草铵膦脱氢酶突变体编码基因。3. A gene encoding the glufosinate-ammonium dehydrogenase mutant of claim 1. 4.一种权利要求3所述编码基因构建的重组基因工程菌。4. A recombinant genetic engineering bacterium constructed from the coding gene of claim 3. 5.如权利要求4所述的重组基因工程菌,其特征在于所述重组基因工程菌按如下步骤构建:将草铵膦脱氢酶突变体基因克隆到质粒pETDuet的MCS1的NcoI上,构建重组表达载体,保留质粒本身的His-Tag基因;再将甲酸脱氢酶基因构建至重组表达载体的MCS2的NdeI上,获得共表达载体,转化至大肠杆菌E.coli BL21(DE3),获得草铵膦脱氢酶突变体与甲酸脱氢酶共表达的重组基因工程菌。5. recombinant genetic engineering bacterium as claimed in claim 4 is characterized in that described recombinant genetic engineering bacterium is constructed according to the following steps: the glufosinate-ammonium dehydrogenase mutant gene is cloned on the NcoI of the MCS1 of plasmid pETDuet, constructs recombination The expression vector retains the His-Tag gene of the plasmid itself; the formate dehydrogenase gene is then constructed on the NdeI of MCS2 of the recombinant expression vector to obtain a co-expression vector, which is transformed into Escherichia coli E.coli BL21 (DE3) to obtain glufosinate Recombinant genetically engineered bacteria co-expressing phosphine dehydrogenase mutants and formate dehydrogenase. 6.一种权利要求1草铵膦脱氢酶突变体在催化2-羰基-4-(羟基甲基膦酰基)-丁酸制备L-草铵膦中的应用。6. The application of a glufosinate-ammonium dehydrogenase mutant of claim 1 in catalyzing 2-carbonyl-4-(hydroxymethylphosphono)-butyric acid to prepare L-glufosinate-ammonium. 7.如权利要求6所述的应用,其特征在于所述的应用方法为:以含草铵膦脱氢酶突变体基因与甲酸脱氢酶基因的重组基因工程菌经诱导培养获得的湿菌体或湿菌体制备的固定化细胞为催化剂,以2-羰基-4-(羟基甲基膦酰基)-丁酸为底物,以甲酸铵为辅酶再生底物,外源添加NAD+,以pH 7.4、100mM磷酸盐缓冲液为反应介质构成反应体系,在20-50℃、200-800转/分钟进行转化反应,反应结束后,反应液抽滤,滤饼回收催化剂,滤液分离纯化,获得L-草铵膦。7. application as claimed in claim 6, it is characterized in that described application method is: the wet bacterium that the recombinant genetic engineering bacterium containing glufosinate-ammonium dehydrogenase mutant gene and formate dehydrogenase gene is obtained through induction culture The immobilized cells prepared from bacterial cells or wet cells are used as catalysts, 2-carbonyl-4-(hydroxymethylphosphono)-butyric acid is used as substrate, ammonium formate is used as coenzyme regeneration substrate, and NAD + is added exogenously to pH 7.4, 100mM phosphate buffer is the reaction medium to form a reaction system, and the conversion reaction is carried out at 20-50 ° C and 200-800 r/min. After the reaction, the reaction solution is suction filtered, the filter cake is used to recover the catalyst, and the filtrate is separated and purified to obtain L-Glufosinate-ammonium. 8.如权利要求7所述的应用,其特征在于所述固定化细胞按如下方法制备:将所述重组基因工程菌经发酵培养获得的湿菌体加入pH6.0-8.0的磷酸缓冲液中,加入载体,充分搅拌20~30min,再加入聚乙烯亚胺,充分搅拌20~30min,然后加入交联剂,充分搅拌20~30min,减压抽滤,滤饼水洗,获得所述重组基因工程菌固定化细胞;所述载体为活性炭、硅藻土、膨润土或蒙脱土;所述交联剂为戊二醛、乙二醛或双醛淀粉;所述聚乙烯亚胺分子量为600~70000。8. application as claimed in claim 7 is characterized in that described immobilized cell is prepared by the following method: the wet thalline that described recombinant genetic engineering bacteria is obtained through fermentation culture is added in the phosphate buffer of pH6.0-8.0 , add the carrier, stir well for 20-30min, then add polyethyleneimine, stir well for 20-30min, then add cross-linking agent, stir well for 20-30min, filter under reduced pressure, and wash the filter cake with water to obtain the recombinant genetic engineering Bacteria immobilized cells; the carrier is activated carbon, diatomite, bentonite or montmorillonite; the cross-linking agent is glutaraldehyde, glyoxal or dialdehyde starch; the molecular weight of the polyethyleneimine is 600-70000 . 9.如权利要求8所述的应用,其特征在于所述磷酸缓冲液体积用量以湿菌体重量计为5-20mL/g;所述载体质量用量为菌体质量的2~10%;所述聚乙烯亚胺用量以菌体质量计为1~10mL/100g;所述交联剂用量以菌体质量计为1~10mL/100g。9. The application according to claim 8, wherein the volumetric dosage of the phosphate buffer is 5-20 mL/g in terms of wet cell weight; the carrier mass dosage is 2-10% of the cell mass; The dosage of the polyethyleneimine is 1-10 mL/100g based on the mass of the bacterial body; the dosage of the cross-linking agent is 1-10 mL/100 g based on the mass of the bacterial body. 10.如权利要求7所述的应用,其特征在于所述反应体系中,催化剂用量以反应介质体积计10-50g/L,底物终浓度100-400mM,甲酸铵终浓度100-800mM,NAD+终浓度0.05-2mM。10. The application according to claim 7, characterized in that in the reaction system, the amount of catalyst is 10-50g/L by volume of the reaction medium, the final concentration of the substrate is 100-400mM, the final concentration of ammonium formate is 100-800mM, and the NAD + Final concentration 0.05-2mM.
CN202111646663.7A 2021-12-30 2021-12-30 Glufosinate dehydrogenase mutant, engineering bacteria, immobilized cells and application Active CN114350631B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111646663.7A CN114350631B (en) 2021-12-30 2021-12-30 Glufosinate dehydrogenase mutant, engineering bacteria, immobilized cells and application

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111646663.7A CN114350631B (en) 2021-12-30 2021-12-30 Glufosinate dehydrogenase mutant, engineering bacteria, immobilized cells and application

Publications (2)

Publication Number Publication Date
CN114350631A true CN114350631A (en) 2022-04-15
CN114350631B CN114350631B (en) 2024-03-26

Family

ID=81104291

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111646663.7A Active CN114350631B (en) 2021-12-30 2021-12-30 Glufosinate dehydrogenase mutant, engineering bacteria, immobilized cells and application

Country Status (1)

Country Link
CN (1) CN114350631B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115354034A (en) * 2022-04-25 2022-11-18 浙江工业大学 NADP-dependent formate dehydrogenase mutant, coenzyme regeneration system and its application in the preparation of L-glufosinate-ammonium

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109609475A (en) * 2018-12-28 2019-04-12 浙江工业大学 Glufosinate-ammonium Dehydrogenase Mutant and Its Application in Synthesis of L-Glufosinate-ammonium
CN110592036A (en) * 2019-08-30 2019-12-20 浙江工业大学 A kind of glufosinate-ammonium dehydrogenase mutant and its application in oxidative-reduction multi-enzyme coupling production of L-glufosinate-ammonium
CN110791484A (en) * 2019-08-15 2020-02-14 浙江工业大学 A kind of glufosinate-ammonium dehydrogenase mutant and its application in producing L-glufosinate-ammonium
CN111621482A (en) * 2020-06-30 2020-09-04 浙江工业大学 Glufosinate-ammonium dehydrogenase mutant, gene engineering bacteria and one-pot multi-enzyme synchronous directed evolution method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109609475A (en) * 2018-12-28 2019-04-12 浙江工业大学 Glufosinate-ammonium Dehydrogenase Mutant and Its Application in Synthesis of L-Glufosinate-ammonium
CN110791484A (en) * 2019-08-15 2020-02-14 浙江工业大学 A kind of glufosinate-ammonium dehydrogenase mutant and its application in producing L-glufosinate-ammonium
CN110592036A (en) * 2019-08-30 2019-12-20 浙江工业大学 A kind of glufosinate-ammonium dehydrogenase mutant and its application in oxidative-reduction multi-enzyme coupling production of L-glufosinate-ammonium
CN111621482A (en) * 2020-06-30 2020-09-04 浙江工业大学 Glufosinate-ammonium dehydrogenase mutant, gene engineering bacteria and one-pot multi-enzyme synchronous directed evolution method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115354034A (en) * 2022-04-25 2022-11-18 浙江工业大学 NADP-dependent formate dehydrogenase mutant, coenzyme regeneration system and its application in the preparation of L-glufosinate-ammonium
CN115354034B (en) * 2022-04-25 2024-05-03 浙江工业大学 NADP dependent formate dehydrogenase mutant, coenzyme regeneration system and application thereof in preparation of L-glufosinate

Also Published As

Publication number Publication date
CN114350631B (en) 2024-03-26

Similar Documents

Publication Publication Date Title
CN109750009B (en) A kind of glufosinate-ammonium dehydrogenase mutant and its application
CN110791484B (en) Glufosinate-ammonium dehydrogenase mutant and application thereof in production of L-glufosinate-ammonium
CN109609474B (en) Amino acid dehydrogenase mutant and application thereof in synthesis of L-glufosinate-ammonium
CN111621482B (en) A kind of glufosinate-ammonium dehydrogenase mutant, genetic engineering bacteria and one-pot multi-enzyme simultaneous directed evolution method
CN109609475B (en) Glufosinate-ammonium dehydrogenase mutant and application thereof in synthesizing L-glufosinate-ammonium
CN110592036A (en) A kind of glufosinate-ammonium dehydrogenase mutant and its application in oxidative-reduction multi-enzyme coupling production of L-glufosinate-ammonium
CN106929521B (en) Aldehyde ketone reductase gene recombination co-expression vector, engineering bacterium and application thereof
CN111363775B (en) A method for preparing L-glufosinate-ammonium by biological enzymatic deracemization, glufosinate-ammonium dehydrogenase mutant and application
CN112877307B (en) Amino acid dehydrogenase mutant and application thereof
CN109609478B (en) α-Transaminases and mutants and their application in asymmetric synthesis of L-glufosinate
CN109609477B (en) Alpha-transaminase mutant and application thereof in asymmetric synthesis of L-glufosinate-ammonium
CN111019982B (en) A kind of method that utilizes hydroxyl acid dehydrogenase to prepare L-glufosinate-ammonium
CN114350631A (en) Glufosinate-ammonium dehydrogenase mutant, engineering bacteria, immobilized cell and application
CN112908417B (en) Gene mining method combining functional sequence and structure simulation, NADH-preferring glufosinate dehydrogenase mutant and its application
CN111004787B (en) Streptomyces phospholipase D mutant, transformation method and application thereof
CN110331173B (en) Application of phenylpyruvic acid decarboxylase mutant M538A in production of phenethyl alcohol through biological fermentation
CN101302503A (en) Mutant Lactobacillus plantarum D-lactate dehydrogenase and its gene, recombinant enzyme and application
CN109609476B (en) α-Transaminases and mutants and their application in asymmetric synthesis of L-glufosinate
CN112921012B (en) Corynebacterium glutamicum meso-2,6-diaminopimelate dehydrogenase mutant and its application
CN114621934B (en) P450 reductase and application thereof
CN110951717B (en) A kind of L-arabinose isomerase isomer and its application
CN115786298A (en) D-transaminase mutant and application thereof in preparation of L-glufosinate-ammonium
JP2009089649A (en) Clostridium cruberi diaphorase gene and its use
CN110295204B (en) Application of phenylpyruvic acid decarboxylase mutant F542W in production of phenethyl alcohol through biological fermentation
CN116837045A (en) A chemical-biological level combination method and mutant for synthesizing L-glufosinate-ammonium

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant