CN114349195B - A marine seawater desalination system and working method taking into account carbon dioxide recovery - Google Patents
A marine seawater desalination system and working method taking into account carbon dioxide recovery Download PDFInfo
- Publication number
- CN114349195B CN114349195B CN202210036514.7A CN202210036514A CN114349195B CN 114349195 B CN114349195 B CN 114349195B CN 202210036514 A CN202210036514 A CN 202210036514A CN 114349195 B CN114349195 B CN 114349195B
- Authority
- CN
- China
- Prior art keywords
- interface
- carbon dioxide
- pressure
- pipeline
- recovery device
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 title claims abstract description 128
- 239000013535 sea water Substances 0.000 title claims abstract description 97
- 238000011084 recovery Methods 0.000 title claims abstract description 89
- 239000001569 carbon dioxide Substances 0.000 title claims abstract description 64
- 229910002092 carbon dioxide Inorganic materials 0.000 title claims abstract description 64
- 238000010612 desalination reaction Methods 0.000 title claims abstract description 40
- 238000000034 method Methods 0.000 title claims abstract description 11
- 238000001223 reverse osmosis Methods 0.000 claims abstract description 57
- 239000012528 membrane Substances 0.000 claims abstract description 51
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims abstract description 46
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 claims abstract description 28
- 239000003546 flue gas Substances 0.000 claims abstract description 28
- 238000002485 combustion reaction Methods 0.000 claims abstract description 26
- 239000013505 freshwater Substances 0.000 claims abstract description 24
- 239000007788 liquid Substances 0.000 claims abstract description 24
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 24
- 238000006243 chemical reaction Methods 0.000 claims abstract description 22
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 22
- 239000007789 gas Substances 0.000 claims abstract description 18
- 239000002918 waste heat Substances 0.000 claims abstract description 16
- 238000001179 sorption measurement Methods 0.000 claims abstract description 13
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 8
- 230000009467 reduction Effects 0.000 claims abstract description 6
- 239000000203 mixture Substances 0.000 claims abstract description 4
- 238000004146 energy storage Methods 0.000 claims description 13
- 230000003197 catalytic effect Effects 0.000 claims description 12
- 239000003463 adsorbent Substances 0.000 claims description 6
- 239000003054 catalyst Substances 0.000 claims description 6
- 239000003638 chemical reducing agent Substances 0.000 claims description 6
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims description 6
- 238000003860 storage Methods 0.000 claims description 6
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims description 3
- 229910021536 Zeolite Inorganic materials 0.000 claims description 3
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 3
- 239000004202 carbamide Substances 0.000 claims description 3
- 239000000084 colloidal system Substances 0.000 claims description 3
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 claims description 3
- 239000012535 impurity Substances 0.000 claims description 3
- 229910044991 metal oxide Inorganic materials 0.000 claims description 3
- 150000004706 metal oxides Chemical group 0.000 claims description 3
- 239000002808 molecular sieve Substances 0.000 claims description 3
- 239000003345 natural gas Substances 0.000 claims description 3
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 claims description 3
- XSQUKJJJFZCRTK-UHFFFAOYSA-N urea group Chemical group NC(=O)N XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 claims description 3
- 239000010457 zeolite Substances 0.000 claims description 3
- 239000000446 fuel Substances 0.000 claims description 2
- 239000000779 smoke Substances 0.000 claims 2
- 238000002309 gasification Methods 0.000 claims 1
- 229910052799 carbon Inorganic materials 0.000 abstract description 3
- 238000006722 reduction reaction Methods 0.000 abstract 2
- 238000010531 catalytic reduction reaction Methods 0.000 abstract 1
- 238000001035 drying Methods 0.000 abstract 1
- 230000003647 oxidation Effects 0.000 abstract 1
- 238000007254 oxidation reaction Methods 0.000 abstract 1
- 238000005265 energy consumption Methods 0.000 description 7
- 238000001816 cooling Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- JCXJVPUVTGWSNB-UHFFFAOYSA-N nitrogen dioxide Inorganic materials O=[N]=O JCXJVPUVTGWSNB-UHFFFAOYSA-N 0.000 description 2
- 238000010248 power generation Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 238000009834 vaporization Methods 0.000 description 2
- 230000008016 vaporization Effects 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000004821 distillation Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003204 osmotic effect Effects 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 239000003507 refrigerant Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A20/00—Water conservation; Efficient water supply; Efficient water use
- Y02A20/124—Water desalination
- Y02A20/131—Reverse-osmosis
Landscapes
- Separation Using Semi-Permeable Membranes (AREA)
- Carbon And Carbon Compounds (AREA)
Abstract
Description
技术领域technical field
本发明涉及环境保护和能源高效利用领域,具体涉及一种兼顾二氧化碳回收的船用海水淡化系统及工作方法。The invention relates to the fields of environmental protection and energy efficient utilization, in particular to a marine seawater desalination system and working method that take into account carbon dioxide recovery.
背景技术Background technique
海水淡化装置从原理上分为反渗透装置和海水蒸馏装置,从全球范围内已建成应用的海淡工程来看,反渗透膜法占65%。从国内来看,截止2018年底,全国已建成海水淡化工程103个,产水规模超过90万m³/d,其中膜法反渗透海水淡化产水约57万m³/d,占总产水量的63.3%,处于绝对统治地位。随着反渗透海水淡化技术商业化,该技术在船舶上的应用越来越广泛。Seawater desalination devices are divided into reverse osmosis devices and seawater distillation devices in principle. From the perspective of seawater desalination projects that have been built and applied around the world, reverse osmosis membrane method accounts for 65%. From a domestic point of view, by the end of 2018, 103 seawater desalination projects had been built across the country, with a water production scale of more than 900,000 m³/d, of which about 570,000 m³/d was produced by membrane reverse osmosis seawater desalination, accounting for 63.3% of the total water production. %, in an absolute dominance. With the commercialization of reverse osmosis seawater desalination technology, the application of this technology on ships is becoming more and more extensive.
在反渗透膜法海水淡化系统中,海水经过预处理装置处理为规定水质后,由高压泵增压,压送到反渗透膜分离装置。经过增压的高压海水的一部分克服渗透压通过反渗透膜,成为了淡水,另一部分含盐浓度升高的海水作为浓海水从反渗透分离装置排出。然而在反渗透膜海水淡化处理过程中,由于海水含盐量大,反渗透过程需要较大的压力,因此海水脱盐过程无疑需要消耗大量的能源,而主要能耗为高压泵对进水的增压能耗,通常高压泵运行压力高达5Mpa~6Mpa。In the reverse osmosis membrane seawater desalination system, after the seawater is treated by the pretreatment device to the specified water quality, it is pressurized by a high-pressure pump and sent to the reverse osmosis membrane separation device. Part of the pressurized high-pressure seawater overcomes the osmotic pressure and passes through the reverse osmosis membrane to become fresh water, and the other part of the seawater with increased salt concentration is discharged from the reverse osmosis separation device as concentrated seawater. However, in the seawater desalination process of the reverse osmosis membrane, due to the high salt content of the seawater, the reverse osmosis process requires a relatively large pressure, so the seawater desalination process undoubtedly consumes a lot of energy, and the main energy consumption is the increase of the influent water by the high-pressure pump. Pressure energy consumption, usually the operating pressure of the high pressure pump is as high as 5Mpa~6Mpa.
为降低该部分能耗,现有技术中利用深海中水压作用替代常规反渗透装置中高压泵的泵给压力,从而完成海水淡化,但该方法通常需要将装置必须安装在深度大于200米的深海,操作及维护困难,不易实施,因此研发一种可以替代高压泵并能回收利用压力的系统刻不容缓。In order to reduce this part of energy consumption, in the prior art, the water pressure in the deep sea is used to replace the pumping pressure of the high-pressure pump in the conventional reverse osmosis device, so as to complete the desalination of seawater, but this method usually requires the device to be installed at a depth greater than 200 meters. In the deep sea, operation and maintenance are difficult and difficult to implement. Therefore, it is urgent to develop a system that can replace high-pressure pumps and recycle pressure.
申请号为201310002417.7,名称为“一种热膜耦合海水淡化系统”的发明专利,公开了一种热膜耦合海水淡化系统,用于减少热膜耦合海水淡化系统的能耗。该系统包括海水预处理单元、反渗透单元、低温多效单元,在蒸汽进汽管路上设置一个汽轮机,并将汽轮机与反渗透单元的高压泵轴串联,利用蒸汽膨胀做功带动高压泵工作,提供蒸汽热能的利用率,从而减少高压泵消耗的电能。该系统中利用蒸汽轮机做功带动高压泵工作尽管减少了消耗的电能,但是却加重了蒸汽轮机的能量消耗,并没有减少反渗透膜海水淡化系统的能耗。The application number is 201310002417.7, and the invention patent titled "a thermal film coupled seawater desalination system" discloses a thermal film coupled seawater desalination system, which is used to reduce the energy consumption of the thermal film coupled seawater desalination system. The system includes a seawater pretreatment unit, a reverse osmosis unit, and a low-temperature multi-effect unit. A steam turbine is installed on the steam inlet pipeline, and the steam turbine is connected in series with the high-pressure pump shaft of the reverse osmosis unit. The high-pressure pump is driven to work by steam expansion, providing The utilization rate of steam heat energy reduces the electric energy consumed by the high-pressure pump. In this system, the steam turbine is used to work to drive the high-pressure pump to work, although the power consumption is reduced, but the energy consumption of the steam turbine is increased, and the energy consumption of the reverse osmosis membrane seawater desalination system is not reduced.
发明内容Contents of the invention
本发明所要解决的技术问题是提供一种兼顾二氧化碳回收的船用海水淡化系统,通过利用烟气处理单元来捕获回收内燃机产生的二氧化碳,同时利用二氧化碳的临界压力与海水进行压力转换从而达到反渗透膜海水淡化所需要的压力条件,实现了内燃机零碳排放和淡水制备。The technical problem to be solved by the present invention is to provide a marine seawater desalination system that takes into account the recovery of carbon dioxide, by using the flue gas processing unit to capture and recover the carbon dioxide generated by the internal combustion engine, and at the same time using the critical pressure of carbon dioxide to perform pressure conversion with seawater to achieve reverse osmosis membrane The pressure conditions required for seawater desalination realize zero carbon emissions of internal combustion engines and fresh water preparation.
本发明为实现上述发明目的采用如下技术方案:The present invention adopts following technical scheme for realizing above-mentioned purpose of the invention:
一种兼顾二氧化碳回收的船用海水淡化系统,包括烟气处理单元、能量转换单元及海水淡化单元;A marine seawater desalination system taking into account carbon dioxide recovery, including a flue gas treatment unit, an energy conversion unit and a seawater desalination unit;
所述烟气处理单元包括:LNG入口、LNG泵、内燃机、烟气催化转化器、余热回收器、吸附装置、换热器,所述LNG入口通过管道连接所述LNG泵左接口,所述LNG泵右接口通过管道连接所述换热器上接口,所述换热器的下接口通过管道连接所述内燃机的下接口,所述内燃机依次与所述烟气催化转化器、余热回收器、吸附装置和换热器连接;The flue gas treatment unit includes: an LNG inlet, an LNG pump, an internal combustion engine, a flue gas catalytic converter, a waste heat recovery device, an adsorption device, and a heat exchanger. The LNG inlet is connected to the left interface of the LNG pump through a pipeline, and the LNG The right interface of the pump is connected to the upper interface of the heat exchanger through a pipeline, and the lower interface of the heat exchanger is connected to the lower interface of the internal combustion engine through a pipeline, and the internal combustion engine is connected with the flue gas catalytic converter, waste heat recovery device, adsorption Device and heat exchanger connections;
所述能量转换单元包括:压气机、压力传感器I、压力传感器II、PLC控制器、第一电动控制阀、第二电动控制阀、膨胀阀、分离器、氮气出口、液态二氧化碳出口、能量回收装置I、止回阀、过滤器、原海水进口,所述压气机(8)的左接口通过管道连接所述换热器,所述压气机的右接口通过管道连接所述压力传感器I的下接口,所述压力传感器I的上接口通过信号电缆连接所述PLC控制器,所述PLC控制器同时通过信号电缆分别与所述第一电动控制阀、第二电动控制阀相连接,所述第一电动控制阀的上接口通过管道连接所述压气机的右接口,所述第一电动控制阀的下接口通过管道连接所述分离器,所述分离器的上接口为所述氮气出口,其下接口为所述液态二氧化碳出口,所述压力传感器II还与所述PLC控制器通过信号电缆连接,所述膨胀阀的左接口通过管道连接所述压力传感器I的下接口,所述膨胀阀的右接口通过管道连接所述压力传感器II的下接口,所述第二电动控制阀的上接口通过管道连接所述膨胀阀的右接口,所述第二电动控制阀的下接口通过管道连接所述能量回收装置I的a接口,所述能量回收装置I的b接口通过管道连接所述压气机的下接口,所述能量回收装置I的d接口通过管道连接所述止回阀,所述止回阀通过管道依次连接所述过滤器和所述原海水进口;The energy conversion unit includes: a compressor, a pressure sensor I, a pressure sensor II, a PLC controller, a first electric control valve, a second electric control valve, an expansion valve, a separator, a nitrogen outlet, a liquid carbon dioxide outlet, and an energy recovery device I. Check valve, filter, raw seawater inlet, the left interface of the compressor (8) is connected to the heat exchanger through a pipeline, and the right interface of the compressor is connected to the lower interface of the pressure sensor I through a pipeline , the upper interface of the
所述海水淡化单元包括一级反渗透膜,所述能量回收装置I的c接口通过管道与所述一级反渗透膜相连接,一级反渗透膜的右接口通过管道连接所述淡水收集箱。The seawater desalination unit includes a primary reverse osmosis membrane, the c interface of the
优选的,所述内燃机中的燃料为天然气,所述换热器为板式换热器,所述换热器中设有烟气通道和LNG通道。Preferably, the fuel in the internal combustion engine is natural gas, the heat exchanger is a plate heat exchanger, and the heat exchanger is provided with flue gas channels and LNG channels.
优选的,所述烟气催化转化器中设有催化剂和还原剂,所述的催化剂为金属氧化物或沸石分子筛,所述的还原剂为尿素或液氨。Preferably, the flue gas catalytic converter is provided with a catalyst and a reducing agent, the catalyst is a metal oxide or a zeolite molecular sieve, and the reducing agent is urea or liquid ammonia.
优选的,所述余热回收器内部设有蒸汽管道,利用余热回收进行供热或者发电。Preferably, a steam pipeline is arranged inside the waste heat recovery device, and the waste heat recovery is used for heat supply or power generation.
优选的,所述吸附装置中设有吸附剂,所述的吸附剂为活性炭或活性氧化铝。Preferably, an adsorbent is provided in the adsorption device, and the adsorbent is activated carbon or activated alumina.
优选的,所述氮气出口设有储气罐,所述液态二氧化碳出口设有储液罐。Preferably, the nitrogen outlet is provided with a gas storage tank, and the liquid carbon dioxide outlet is provided with a liquid storage tank.
优选的,所述膨胀阀为气体膨胀阀,起到节流降压的作用。Preferably, the expansion valve is a gas expansion valve, which plays the role of throttling and reducing pressure.
优选的,所述海水淡化单元内还设有二级反渗透膜、能量回收装置II、增压泵及浓海水出口,所述一级反渗透膜的下接口通过管道连接所述能量回收装置II的c接口,所述能量回收装置II的d接口通过管道连接所述浓海水出口的左接口,所述能量回收装置II的a接口通过管道连接所述过滤器的上接口,所述能量回收装置II的b接口通过管道连接所述增压泵的左接口,所述增压泵的右接口通过管道连接所述二级反渗透膜的左接口,所述二级反渗透膜的右接口通过管道连接所述淡水收集箱。Preferably, the seawater desalination unit is also provided with a secondary reverse osmosis membrane, an energy recovery device II, a booster pump and a concentrated seawater outlet, and the lower interface of the primary reverse osmosis membrane is connected to the energy recovery device II through a pipeline. c interface of the energy recovery device II, the d interface of the energy recovery device II is connected to the left interface of the concentrated seawater outlet through a pipeline, the a interface of the energy recovery device II is connected to the upper interface of the filter through a pipeline, and the energy recovery device II The b interface of II is connected to the left interface of the booster pump through a pipeline, the right interface of the booster pump is connected to the left interface of the secondary reverse osmosis membrane through a pipeline, and the right interface of the secondary reverse osmosis membrane is connected through a pipeline Connect the freshwater collection tank.
优选的,所述能量回收装置I和所述能量回收装置II均为功交换式压力回收部件,内部设有活塞,所述能量回收装置I中活塞的左右设有两个腔体,所述能量回收装置II中活塞的上下设有两个腔体。Preferably, both the energy recovery device I and the energy recovery device II are work-exchanging pressure recovery components with a piston inside, and two cavities are arranged on the left and right sides of the piston in the energy recovery device I, and the energy There are two cavities above and below the piston in the recovery device II.
优选的,所述二级反渗透膜的下接口处设有储能式水轮,所述储能式水轮的另一接口与所述压气机轴连接。Preferably, an energy storage water wheel is provided at the lower interface of the secondary reverse osmosis membrane, and the other interface of the energy storage water wheel is connected to the compressor shaft.
根据本发明的另一个方面,提供了一种兼顾二氧化碳回收的船用海水淡化工作方法,具体包括:According to another aspect of the present invention, there is provided a working method for marine desalination of seawater taking into account carbon dioxide recovery, specifically comprising:
(a)所述LNG入口通过所述LNG泵汽化后供所述内燃机做功,内燃机燃烧产生的烟气在所述烟气催化转化器中进行还原,还原后高温的氮气、水蒸气和二氧化碳的混合物进入所述余热回收器被消耗热量降温至50℃~60℃,然后经过所述吸附装置吸附水蒸气后再进入换热器与LNG汽化释放的冷能进行二次降温至25℃~30℃,最后氮气和二氧化碳气体进入所述压气机将压力增加至5Mpa~7Mpa。(a) The LNG inlet is vaporized by the LNG pump for the internal combustion engine to do work, and the flue gas generated by the combustion of the internal combustion engine is reduced in the flue gas catalytic converter, and the mixture of high-temperature nitrogen, water vapor and carbon dioxide after reduction After entering the waste heat recovery device, the consumed heat is cooled to 50°C~60°C, and then after the adsorption device absorbs water vapor, it enters the heat exchanger and the cold energy released by the vaporization of LNG is cooled to 25°C~30°C for the second time. Finally, nitrogen and carbon dioxide gas enter the compressor to increase the pressure to 5Mpa~7Mpa.
(b)当所述压力传感器I检测到压力达7Mpa时,所述PLC控制器带动所述第一电动控制阀将一部分二氧化碳液化后通过所述分离器的下接口即所述液态二氧化碳出口流出,氮气则由所述氮气出口流出;当所述压力传感器II检测到通过所述膨胀阀的二氧化碳压力为5Mpa~6Mpa时,所述PLC控制器带动所述第二电动控制阀使另一部分带有压力的二氧化碳进入能量回收装置I,原海水通过所述原海水进口进入所述过滤器去除原海水中的胶体和悬浮杂质,然后通过所述止回阀进入所述能量回收装置I与带有压力的二氧化碳进行压力转换,转换后高压液态二氧化碳重新变成气态再次进入所述压气机,原海水则压力提升后进入所述一级反渗透膜分离出淡水,产生的淡水通过管道流入所述淡水收集箱。(b) When the pressure sensor I detects that the pressure reaches 7Mpa, the PLC controller drives the first electric control valve to liquefy a part of carbon dioxide and then flows out through the lower interface of the separator, that is, the outlet of the liquid carbon dioxide, Nitrogen then flows out from the nitrogen outlet; when the pressure sensor II detects that the carbon dioxide pressure passing through the expansion valve is 5Mpa~6Mpa, the PLC controller drives the second electric control valve to make the other part with pressure The carbon dioxide enters the energy recovery device I, and the raw seawater enters the filter through the raw seawater inlet to remove colloids and suspended impurities in the raw seawater, and then enters the energy recovery device I through the check valve and is connected with the pressurized The carbon dioxide undergoes pressure conversion. After the conversion, the high-pressure liquid carbon dioxide turns into a gaseous state and enters the compressor again. The original seawater enters the first-stage reverse osmosis membrane after the pressure is raised to separate fresh water, and the fresh water generated flows into the fresh water collection tank through pipelines. .
(c)将一级反渗透膜排出的带有压力的浓海水与经过所述过滤器分流后的原海水再次进入能量回收装置II中进行压力转换后排出,排出的带有压力的浓海水通过所述增压泵加压至5Mpa~6Mpa进入所述二级反渗透膜分离出淡水,同时二级反渗透膜排出的高压浓海水带动所述储能式水轮转动做功供所述压气机工作。(c) The pressurized concentrated seawater discharged from the primary reverse osmosis membrane and the raw seawater diverted by the filter enter the energy recovery device II again for pressure conversion and discharge, and the discharged pressurized concentrated seawater passes through The booster pump is pressurized to 5Mpa~6Mpa and enters the secondary reverse osmosis membrane to separate fresh water, and at the same time, the high-pressure concentrated seawater discharged from the secondary reverse osmosis membrane drives the energy storage type water wheel to rotate and do work for the compressor to work .
采用上述技术方案,本发明至少包括如下有益效果:By adopting the above technical scheme, the present invention at least includes the following beneficial effects:
1.本发明通过烟气处理单元和能量转换单元的耦合,高效地利用了二氧化碳的临界压力,避免了压力泄损,增强了能量的回收利用,制备淡水的同时进行了液态二氧化碳的收集。在能量转换装置中,通过使与原海水经过压力转换后的二氧化碳再次进入压气机循环,不仅避免了直接排放造成环境污染,还提高了二氧化碳的回收率,回收率可达90%以上。1. Through the coupling of the flue gas treatment unit and the energy conversion unit, the present invention efficiently utilizes the critical pressure of carbon dioxide, avoids pressure leakage, enhances energy recovery and utilization, and collects liquid carbon dioxide while preparing fresh water. In the energy conversion device, the carbon dioxide after pressure conversion with the original seawater enters the compressor cycle again, which not only avoids environmental pollution caused by direct discharge, but also improves the recovery rate of carbon dioxide, which can reach more than 90%.
2.本发明在能量转换单元利用二氧化碳的临界压力与原海水在能量回收装置中进行压力转换,避免了传统反渗透膜海水淡化系统中使用高压泵所消耗的额外能量,能降低30%电耗。2. The present invention uses the critical pressure of carbon dioxide in the energy conversion unit and the original seawater to perform pressure conversion in the energy recovery device, avoiding the extra energy consumed by the high-pressure pump used in the traditional reverse osmosis membrane seawater desalination system, and can reduce power consumption by 30% .
3.本发明利用LNG冷量和海水冷量直接捕获天然气燃烧时所产生的二氧化碳,无需二次冷媒的使用,系统简单高效,实现了内燃机的零碳排放。3. The present invention utilizes the cooling capacity of LNG and seawater to directly capture the carbon dioxide produced during the combustion of natural gas, without the use of secondary refrigerant, the system is simple and efficient, and realizes zero-carbon emission of the internal combustion engine.
4.本发明将经过二级渗透膜排出的带有高压的浓海水经过储能式水轮做功从而带动压气机工作,从一定程度上降低了压气机额外的驱动能耗。4. In the present invention, the concentrated seawater with high pressure discharged through the secondary permeable membrane passes through the energy storage water wheel to do work to drive the compressor to work, which reduces the additional driving energy consumption of the compressor to a certain extent.
附图说明Description of drawings
图1为本发明一种兼顾二氧化碳回收的船用海水淡化系统的结构原理示意图。Fig. 1 is a schematic diagram of the structure and principle of a marine seawater desalination system taking into account carbon dioxide recovery according to the present invention.
附图标记:LNG入口1、LNG泵2、内燃机3、烟气催化转化器4、余热回收器5、吸附装置6、换热器7、压气机8、压力传感器I9、压力传感器II10、第一电动控制阀11、第二电动控制阀12、膨胀阀13、能量回收装置I14、能量回收装置II15、一级反渗透膜16、二级反渗透膜17、增压泵18、储能式水轮19、原海水进口20、过滤器21、止回阀22、浓海水出口23、淡水收集箱24、氮气出口25、液态二氧化碳出口26、分离器27、PLC控制器28。Reference signs:
具体实施方式Detailed ways
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。In order to make the purpose, technical solutions and advantages of the embodiments of the present invention more clear, the technical solutions in the embodiments of the present invention will be further described in detail below in conjunction with the drawings in the embodiments of the present invention. It should be understood that the specific embodiments described here are only used to explain the present invention, not to limit the present invention.
如图1所示为,一种兼顾二氧化碳回收的船用海水淡化系统及工作方法,包括烟气处理单元、能量转换单元和海水淡化单元。As shown in Figure 1, a marine seawater desalination system and working method taking into account carbon dioxide recovery, including a flue gas processing unit, an energy conversion unit and a seawater desalination unit.
其中所述烟气处理单元包括:LNG入口1、LNG泵2、内燃机3、烟气催化转化器4、余热回收器5、吸附装置6、换热器7,所述LNG入口1通过管道连接所述LNG泵2左接口,所述LNG泵2右接口通过管道连接所述换热器7上接口,所述换热器7的下接口通过管道连接所述内燃机3的下接口,LNG通过LNG泵2汽化后供内燃机3做功,所述内燃机3通过管道依次连接所述烟气催化转化器4、余热回收器5、吸附装置6及换热器7,使得内燃机3产生的烟气在烟气转化器4中进行还原,还原后高温的氮气、水蒸气、二氧化碳的混合物在余热回收器5中被消耗热量降温至50℃~60℃,再经过吸附装置6内的吸附剂吸附后进入换热器7与LNG汽化释放的冷能进行二次降温,降温至25℃~30℃,所述吸附剂为活性炭或活性氧化铝,在所述烟气催化转化器4中设有催化剂和还原剂,所述的催化剂为金属氧化物或沸石分子筛,所述的还原剂为尿素或液氨。The flue gas treatment unit includes:
其中,所述换热器7为板式换热器,所述换热器7中设有烟气通道和LNG通道,与管壳式换热器相比,相同压力所损失情况下,板式换热器的传热系数一般高2~3倍。Wherein, the heat exchanger 7 is a plate heat exchanger, and the heat exchanger 7 is provided with flue gas passages and LNG passages. Compared with the shell-and-tube heat exchanger, under the same pressure loss, the plate heat The heat transfer coefficient of the device is generally 2 to 3 times higher.
同时,在所述余热回收器5内部设有蒸汽管道,利用余热回收进行供热或者发电。At the same time, a steam pipeline is provided inside the waste heat recovery device 5, and the waste heat recovery is used for heat supply or power generation.
所述能量转换单元包括:压气机8、压力传感器I9、压力传感器II10、PLC控制器28、第一电动控制阀11、第二电动控制阀12、膨胀阀13、分离器27、氮气出口25、液态二氧化碳出口26、能量回收装置I14、止回阀22、过滤器21、原海水进口20;The energy conversion unit includes: a compressor 8, a pressure sensor I9, a pressure sensor II10, a PLC controller 28, a first electric control valve 11, a second
如图1所示,所述压气机8的左接口通过管道连接所述换热器7的右接口,所述压气机8的右接口通过管道连接所述压力传感器I9的下接口,所述压力传感器I9的上接口通过信号电缆连接所述PLC控制器28的左下接口,所述PLC控制器28的左接口通过信号电缆连连接所述第一电动控制阀11的右接口,所述第一电动控制阀11的上接口通过管道连接所述压气机8的右接口,所述第一电动控制阀11的下接口通过管道连接所述分离器27的左接口,所述分离器27的上接口为所述氮气出口25,所述分离器27的下接口为所述液态二氧化碳出口26,所述膨胀阀13的左接口通过管道连接所述压力传感器I9的下接口,所述膨胀阀13的右接口通过管道连接所述压力传感器II10的下接口,所述压力传感器II10的上接口通过信号电缆连接所述PLC控制器28的右下接口,所述PLC控制器28的右接口通过信号电缆连接所述第二电动控制阀12的右接口,所述第二电动控制阀12的上接口通过管道连接所述膨胀阀13的右接口,其中膨胀阀13为气体膨胀阀,在其中起到节流降压的作用,所述第二电动控制阀12的下接口通过管道连接所述能量回收装置I14的a接口,所述能量回收装置I14的b接口通过管道连接所述压气机8的下接口,所述能量回收装置I14的d接口通过管道连接所述止回阀22的上接口,所述止回阀22的下接口通过管道连接所述过滤器21的上接口,所述过滤器21的下接口通过管道连接所述原海水进口20。As shown in Figure 1, the left interface of the compressor 8 is connected to the right interface of the heat exchanger 7 through a pipeline, and the right interface of the compressor 8 is connected to the lower interface of the pressure sensor 19 through a pipeline, and the pressure The upper interface of the sensor 19 is connected to the lower left interface of the PLC controller 28 through a signal cable, and the left interface of the PLC controller 28 is connected to the right interface of the first electric control valve 11 through a signal cable. The upper interface of the control valve 11 is connected to the right interface of the compressor 8 through a pipeline, and the lower interface of the first electric control valve 11 is connected to the left interface of the separator 27 through a pipeline. The upper interface of the separator 27 is The nitrogen outlet 25, the lower interface of the separator 27 is the liquid carbon dioxide outlet 26, the left interface of the
在氮气出口25处设有储气罐,在液态二氧化碳出口26处设有储液罐,进行氮气和液态二氧化碳回收。A gas storage tank is provided at the nitrogen outlet 25, and a liquid storage tank is provided at the liquid carbon dioxide outlet 26 to recover nitrogen and liquid carbon dioxide.
所述能量回收装置I14为功交换式压力回收部件,内部设有活塞,在能量回收装置I14中活塞的左右设有两个腔体,当高压的液态二氧化碳进入左腔体时推动活塞向右移动从而将海水压力提升。The energy recovery device I14 is a work-exchanging pressure recovery component with a piston inside. There are two cavities on the left and right of the piston in the energy recovery device I14. When high-pressure liquid carbon dioxide enters the left cavity, the piston is pushed to move to the right This increases the pressure of sea water.
所述海水淡化单元包括:一级反渗透膜16、二级反渗透膜17、储能式水轮19、能量回收装置II15、增压泵18、浓海水出口23、淡水收集箱24,所述一级反渗透膜16的左接口通过管道连接所述能量回收装置I14的c接口,所述一级反渗透膜16的右接口通过管道连接所述淡水收集箱24,所述一级反渗透膜16的下接口通过管道连接所述能量回收装置II15的c接口,将通过反渗透膜的带有压力的浓海水进行再利用,所述能量回收装置II15的d接口通过管道连接所述浓海水出口23的左接口,所述能量回收装置II15的a接口通过管道连接所述过滤器21的上接口,所述能量回收装置II15的b接口通过管道连接所述增压泵18的左接口,所述增压泵18的右接口通过管道连接所述二级反渗透膜17的左接口,所述二级反渗透膜17的右接口通过管道连接所述淡水收集箱24。The seawater desalination unit includes: a primary reverse osmosis membrane 16, a secondary
所述二级反渗透膜17的下接口处设有储能式水轮19,所述储能式水轮19的另一接口连接压气机8,使二级反渗透膜17排出的高压浓海水通过带动所述储能式水轮19转动做功以储存电能供所述压气机8工作。The lower interface of the secondary
其中,所述能量回收装置II15为功交换式压力回收部件,内部设有活塞,在活塞的上下设有两个腔体,当高压的液态二氧化碳进入左腔体时推动活塞向右移动从而将海水压力提升。Wherein, the energy recovery device II15 is a work-exchanging pressure recovery component, with a piston inside and two cavities above and below the piston. When high-pressure liquid carbon dioxide enters the left cavity, the piston is pushed to move to the right so that the seawater Pressure rises.
经过烟气处理系统产出的氮气和二氧化碳气体进入所述压气机8将压力增加到5Mpa~7Mpa,当所述压力传感器I9检测到压力达7Mpa时,所述PLC控制器28带动所述第一电动控制阀11将一部分二氧化碳液化后通过所述分离器27的下接口即所述液态二氧化碳出口26流出,氮气则由所述氮气出口25流出,当所述压力传感器II10检测到通过所述膨胀阀13的二氧化碳压力为5Mpa~6Mpa时,所述PLC控制器28带动所述第二电动控制阀12使另一部分带有压力的二氧化碳进入所述能量回收装置I14,原海水通过所述原海水进口20进入所述过滤器21去除原海水中的胶体和悬浮杂质,然后通过所述止回阀22进入所述能量回收装置I14与带有压力的二氧化碳进行压力转换,高压液态二氧化碳重新变成气态再次进入所述压气机8,原海水则压力提升后进入所述一级反渗透膜16分离出淡水,产生的淡水通过管道流入所述淡水收集箱24。Nitrogen and carbon dioxide gas produced by the flue gas treatment system enter the compressor 8 to increase the pressure to 5Mpa~7Mpa. When the pressure sensor 19 detects that the pressure reaches 7Mpa, the PLC controller 28 drives the first The electric control valve 11 liquefies a part of carbon dioxide and flows out through the lower interface of the separator 27, that is, the liquid carbon dioxide outlet 26, and nitrogen flows out through the nitrogen outlet 25. When the pressure sensor II10 detects that the gas passes through the expansion valve When the carbon dioxide pressure of 13 is 5Mpa~6Mpa, the PLC controller 28 drives the second
通常,所述一级反渗透膜16排出的浓海水压力可达到4.8Mpa~5.8Mpa,将这部分带有压力的浓海水与经过所述过滤器21分流后的原海水再次进入能量回收装置II15中进行压力转换后排出,排出的带有压力的浓海水通过所述增压泵18加压至5Mpa~6Mpa进入所述二级反渗透膜17分离出淡水,从所述二级反渗透膜17排出的高压浓海水带动所述储能式水轮19转动做功供所述压气机8工作,如此循环。Usually, the pressure of the concentrated seawater discharged from the primary reverse osmosis membrane 16 can reach 4.8Mpa~5.8Mpa, and this part of the concentrated seawater with pressure and the raw seawater after passing through the
以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的范围之内。The above descriptions are only preferred embodiments of the present invention, and are not intended to limit the present invention. Any modifications, equivalent replacements, improvements, etc. made within the spirit and principles of the present invention shall be included in the scope of the present invention. within range.
在本发明的描述中,需要说明的是,术语“上”、“下”、“左”、“右”、“内”、“外”等指示的位置关系为基于附图所示的位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。In the description of the present invention, it should be noted that the positional relationship indicated by the terms "upper", "lower", "left", "right", "inner", "outer" etc. is based on the positional relationship shown in the drawings , are only for the convenience of describing the present invention and simplifying the description, but do not indicate or imply that the referred elements must have a specific orientation, be constructed and operated in a specific orientation, and thus should not be construed as limiting the present invention.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210036514.7A CN114349195B (en) | 2022-01-13 | 2022-01-13 | A marine seawater desalination system and working method taking into account carbon dioxide recovery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210036514.7A CN114349195B (en) | 2022-01-13 | 2022-01-13 | A marine seawater desalination system and working method taking into account carbon dioxide recovery |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114349195A CN114349195A (en) | 2022-04-15 |
CN114349195B true CN114349195B (en) | 2023-06-23 |
Family
ID=81109056
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210036514.7A Active CN114349195B (en) | 2022-01-13 | 2022-01-13 | A marine seawater desalination system and working method taking into account carbon dioxide recovery |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114349195B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114909605B (en) * | 2022-06-08 | 2024-04-19 | 江苏科技大学 | LNG ship cold energy circulation storage and cold energy comprehensive utilization system and working method thereof |
CN115610635B (en) * | 2022-10-24 | 2023-11-17 | 大连海事大学 | Energy management system for production, storage and carbon capture of low-temperature liquid cargo products |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103058438A (en) * | 2013-01-05 | 2013-04-24 | 中国电子工程设计院 | Hot film coupling seawater desalination system |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3787681B2 (en) * | 2002-08-23 | 2006-06-21 | 日立造船株式会社 | Seawater desalination method by reverse osmosis |
DE202004003175U1 (en) * | 2004-03-01 | 2004-07-08 | Schmid, Heinrich | Sea water desalination plant operated by liquid nitrogen, has evaporator pressurizing reverse osmosis unit and employs liberated gas to drive control equipment and liquids |
US20100192575A1 (en) * | 2007-09-20 | 2010-08-05 | Abdulsalam Al-Mayahi | Process and systems |
US9597638B2 (en) * | 2012-07-31 | 2017-03-21 | Ronghui Zhu | Membrane seawater desalination pressurization and energy recovery integrated method and device |
CN105152399B (en) * | 2015-09-01 | 2017-12-29 | 中冶建筑研究总院有限公司 | A kind of counter-infiltration container-type sea water desalinating unit and its production hydraulic art |
CN109305720B (en) * | 2018-11-26 | 2020-10-27 | 西安交通大学 | A reverse osmosis seawater desalination system with two-stage residual pressure recovery and a seawater desalination treatment method based thereon |
CN110332764B (en) * | 2019-05-27 | 2021-04-06 | 江苏科技大学 | Zero-emission power system for recycling CO2 by utilizing LNG cold energy cascade compound circulation |
CN110563089A (en) * | 2019-08-05 | 2019-12-13 | 江苏科技大学 | High-pressure energy recovery device for reverse osmosis seawater desalination system |
-
2022
- 2022-01-13 CN CN202210036514.7A patent/CN114349195B/en active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103058438A (en) * | 2013-01-05 | 2013-04-24 | 中国电子工程设计院 | Hot film coupling seawater desalination system |
Also Published As
Publication number | Publication date |
---|---|
CN114349195A (en) | 2022-04-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108868930B (en) | Supercritical/transcritical carbon dioxide combined cycle power generation system utilizing waste heat of internal combustion engine | |
US20200381757A1 (en) | Hydrated magnesium hydride energy system | |
CN114349195B (en) | A marine seawater desalination system and working method taking into account carbon dioxide recovery | |
CN113669175B (en) | Low-temperature desublimated carbon capture system and method for tail gas of marine natural gas engine | |
CN106914117B (en) | A device suitable for continuous capture and power generation of carbon dioxide in the flue gas of cement kilns | |
CN103272467B (en) | Improved heat integration coal-fired power plant decarbonization system and method | |
CN104727873A (en) | Air-extracting regenerative organic Rankine cycle engine waste heat reclaiming system and control method | |
CN112554983A (en) | Liquid carbon dioxide energy storage system and method coupled with kalina cycle | |
CN108870368A (en) | A kind of oxygen-enriched combustion system and method based on new chemical chain oxygen | |
CN115263466A (en) | Low-temperature carbon capture coupling cold energy and waste heat cascade utilization system of LNG power ship | |
CN111648861A (en) | A mobile gas turbine power generation device coupled with supercritical CO2 cycle and LNG cold source | |
CN212685887U (en) | Comprehensive energy supply system for green ships | |
CN106076073A (en) | A kind of solar energy and the energy utility system of geothermal energy united power plant low-carbon emission | |
CN108412613A (en) | A kind of biogas-supercritical carbon dioxide recompression cycle generating system | |
CN104929805A (en) | Vehicle engine waste heat recycling device using reheat type organic Rankine cycle technology | |
CN110219628B (en) | Flue gas thermal oil extraction equipment | |
CN109665080A (en) | Underwater boat device air cleaning system | |
CN105569872A (en) | Vehicle organic rankine cycle waste heat recovery system adopting liquid combustible organic working media | |
CN206033359U (en) | Electricity generation of super supercritical carbon dioxide brayton cycle waste water treatment's coupled system | |
CN102464999B (en) | Oil gas absorption recovering method | |
CN116078116B (en) | A containerized modular ship exhaust carbon capture system | |
CN111734549A (en) | Circulation system and method for waste heat recovery of EGR diesel engine | |
CN217273515U (en) | CO for ship 2 Trapping and sealing system and ship | |
CN111214926A (en) | Waste gas recovery processing system and method based on LNG cold energy utilization | |
CN102698566A (en) | High and medium pressure regeneration system for flue gas decarbonization |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |