CN114322863A - A method for far-field illumination and detection of objects that break the diffraction limit - Google Patents
A method for far-field illumination and detection of objects that break the diffraction limit Download PDFInfo
- Publication number
- CN114322863A CN114322863A CN202111492424.0A CN202111492424A CN114322863A CN 114322863 A CN114322863 A CN 114322863A CN 202111492424 A CN202111492424 A CN 202111492424A CN 114322863 A CN114322863 A CN 114322863A
- Authority
- CN
- China
- Prior art keywords
- wave
- field
- characteristic
- far
- size
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000001514 detection method Methods 0.000 title claims abstract description 37
- 238000000034 method Methods 0.000 title claims abstract description 27
- 238000005286 illumination Methods 0.000 title claims abstract description 20
- 238000004364 calculation method Methods 0.000 claims description 13
- 230000005540 biological transmission Effects 0.000 claims description 11
- 230000005284 excitation Effects 0.000 claims description 4
- 230000000644 propagated effect Effects 0.000 claims 1
- 230000000694 effects Effects 0.000 abstract description 2
- 239000000463 material Substances 0.000 description 10
- 238000001228 spectrum Methods 0.000 description 9
- 238000005516 engineering process Methods 0.000 description 7
- 230000001902 propagating effect Effects 0.000 description 7
- 238000010586 diagram Methods 0.000 description 6
- 230000006870 function Effects 0.000 description 6
- 238000003384 imaging method Methods 0.000 description 5
- 238000000799 fluorescence microscopy Methods 0.000 description 3
- 230000009022 nonlinear effect Effects 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 238000001758 scanning near-field microscopy Methods 0.000 description 3
- 238000010521 absorption reaction Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000005672 electromagnetic field Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000007850 fluorescent dye Substances 0.000 description 1
- 238000001215 fluorescent labelling Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000005459 micromachining Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000001131 transforming effect Effects 0.000 description 1
Images
Landscapes
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
本申请实施例提供一种对突破衍射极限的物体进行远场照明和探测的方法,该方法包括:波源向物体发射波,波被物体散射后产生倏逝场,经倏逝场激发产生可传输到远场的波信号,物体的特征尺寸与波信号的、随时间变化的波强度之间具有对应关系;波强探测器探测随时间变化的波强度;计算单元获取随时间变化的波强度和对应关系并且基于该二者确定物体的特征尺寸。本申请实施例的技术方案突破了衍射效应的限制,可以基于上述对应关系探测出任意大小的物体。
An embodiment of the present application provides a method for far-field illumination and detection of an object that breaks through the diffraction limit. The method includes: a wave source emits a wave to the object, the wave is scattered by the object to generate an evanescent field, and is excited by the evanescent field to generate a transmittable field. To the wave signal in the far field, there is a corresponding relationship between the characteristic size of the object and the time-varying wave intensity of the wave signal; the wave intensity detector detects the time-varying wave intensity; the computing unit obtains the time-varying wave intensity and correspondence and determine the characteristic size of the object based on the two. The technical solutions of the embodiments of the present application break through the limitation of diffraction effects, and objects of any size can be detected based on the above correspondence.
Description
技术领域technical field
本发明涉及物体探测领域,尤其涉及对突破衍射极限的显微物体进行远场超分辨探测的方法。The invention relates to the field of object detection, in particular to a method for far-field super-resolution detection of microscopic objects that break through the diffraction limit.
背景技术Background technique
在对物体进行探测时,被探测的物体小于二分之一个波长的高空间频率信息(也成为超衍射极限的信息)由倏逝场携带,但是,这种倏逝场局限在被探测物体表面附近而不能传播到远场。因此,通常的远场探测技术能够探测到的空间成像分辨率极限约为入射波波长的二分之一左右。When the object is detected, the high spatial frequency information of the detected object less than one-half wavelength (also known as the information beyond the diffraction limit) is carried by the evanescent field, but this evanescent field is limited to the detected object. near the surface and cannot propagate into the far field. Therefore, the limit of spatial imaging resolution that can be detected by the usual far-field detection technology is about half the wavelength of the incident wave.
现有探测物体超衍射极限信息的技术主要包括近场扫描显微技术、基于人工微结构材料的超透镜探测技术、以及基于荧光标记的荧光显微探测等。Existing technologies for detecting information beyond the diffraction limit of objects mainly include near-field scanning microscopy, superlens detection technology based on artificial microstructure materials, and fluorescence microscopy detection based on fluorescent labels.
在近场扫描显微技术中,将波源或者探测器放置于被探测物体的近场,在近场对被探测物体的倏逝场进行逐点扫描,这不仅使得成像速度慢,而且难免破坏需要被探测目标物体的信息,容易产生假像。In near-field scanning microscopy, the wave source or detector is placed in the near field of the detected object, and the evanescent field of the detected object is scanned point by point in the near field, which not only makes the imaging speed slow, but also inevitably destroys the need for The information of the detected target object is prone to false images.
在基于人工微结构材料超透镜的探测技术中,将透镜放置在被探测物体的近场,使得被探测物体需要紧贴透镜放置;并且,由于这种透镜是由人工微结构材料构成的,因此,其可获得的空间分辨率受到透镜的精细微结构、复杂程度(受限于微加工技术)、吸收损耗等的严格限制。In the detection technology based on the artificial microstructure material superlens, the lens is placed in the near field of the detected object, so that the detected object needs to be placed close to the lens; , the achievable spatial resolution is strictly limited by the fine microstructure of the lens, its complexity (limited by micromachining techniques), absorption losses, etc.
在基于荧光标记的荧光显微技术中,利用了材料的非线性效应,需要高功率激光和非线性响应材料(荧光标记物);并且需要点对点扫描或者拍摄成百上千幅原始图像用于图像重建,导致成像过程复杂且缓慢。In fluorescence microscopy based on fluorescent labeling, the nonlinear effects of materials are exploited, high power lasers and nonlinearly responsive materials (fluorescent labels) are required; and point-to-point scanning or the capture of hundreds or thousands of raw images is required for imaging reconstruction, resulting in a complex and slow imaging process.
发明内容SUMMARY OF THE INVENTION
本发明解决的技术问题是现有探测物体超衍射极限信息的技术具有探测速度慢、容易产生假像、空间分辨率受限于透镜的精细微结构等、以及需要利用非线性材料和高功率激光器等缺陷。The technical problem solved by the present invention is that the existing technology for detecting information beyond the diffraction limit of an object has the disadvantages of slow detection speed, easy generation of false images, spatial resolution limited by the fine microstructure of the lens, etc., and the need to use nonlinear materials and high-power lasers. and other defects.
为解决上述技术问题,本发明实施例提供一种对突破衍射极限的物体进行远场照明和探测的方法,其包括:波源向物体发射波,波被物体散射后产生倏逝场,经倏逝场激发产生可传输到远场的波信号,物体的特征尺寸与波信号的、随时间变化的波强度之间具有对应关系;波强探测器探测随时间变化的波强度;计算单元获取随时间变化的波强度和对应关系并且基于该二者确定物体的特征尺寸。In order to solve the above technical problems, the embodiments of the present invention provide a method for far-field illumination and detection of objects that break through the diffraction limit. The field excitation generates a wave signal that can be transmitted to the far field, and there is a correspondence between the characteristic size of the object and the time-varying wave intensity of the wave signal; the wave intensity detector detects the time-varying wave intensity; the computing unit obtains the time-varying wave intensity; The varying wave intensities and correspondences and based on both determine the characteristic size of the object.
可选地,波为任意频段的电磁波、弹性波或者声波。Optionally, the waves are electromagnetic waves, elastic waves or sound waves in any frequency band.
可选地,波源和波强探测器均位于远场,远场为到物体的表面的距离大于波的波长的区域。Optionally, both the wave source and the wave intensity detector are located in the far field, which is the region where the distance to the surface of the object is greater than the wavelength of the wave.
可选地,波具有单一波长,波的波长为单一波长;或者,波包括离散的多个波长,波的波长为离散的多个波长中的任一个波长。Optionally, the wave has a single wavelength, and the wavelength of the wave is a single wavelength; or, the wave includes a plurality of discrete wavelengths, and the wavelength of the wave is any one of the plurality of discrete wavelengths.
可选地,计算单元适于将随时间变化的波强度进行傅里叶变换而获得特征振动频率,并基于特征振动频率和对应关系获得物体的特征尺寸,对应关系为:Optionally, the computing unit is adapted to perform Fourier transform on the time-varying wave intensity to obtain the characteristic vibration frequency, and obtain the characteristic size of the object based on the characteristic vibration frequency and the corresponding relationship, and the corresponding relationship is:
Ps=λ/(1+fs/f0),P s =λ/(1+f s /f 0 ),
其中,Ps为特征尺寸,λ为波的波长,fs为特征振动频率,f0为波的中心频率。where P s is the characteristic size, λ is the wavelength of the wave, f s is the characteristic vibration frequency, and f 0 is the center frequency of the wave.
可选地,上述方法包括:基于物体的预估尺寸选择相应的波源;判断能否获得特征振动频率;如果为是则指示计算单元基于特征振动频率和对应关系计算特征尺寸,如果为否则选择不同波长的波源、重复上述判断步骤直至获得特征振动频率、以及指示计算单元基于特征振动频率和对应关系计算特征尺寸。Optionally, the above-mentioned method comprises: selecting the corresponding wave source based on the estimated size of the object; judging whether the characteristic vibration frequency can be obtained; if so, instruct the computing unit to calculate the characteristic size based on the characteristic vibration frequency and the corresponding relationship, if otherwise, select different. Wave source of wavelength, repeating the above judgment steps until the characteristic vibration frequency is obtained, and instructing the calculation unit to calculate the characteristic size based on the characteristic vibration frequency and the corresponding relationship.
可选地,特征尺寸为物体的表面处彼此相邻的部分之间的距离、或者为物体的实际尺寸。Optionally, the characteristic size is the distance between adjacent parts of the surface of the object, or the actual size of the object.
可选地,特征尺寸为物体内部二处之间的距离,二处散射波源发射的波而获得相应的倏逝场,其激发相应的传播到远场的波信号,波信号的随时间变化的波强度经傅里叶变换后,在频域具有特征振动频率。Optionally, the feature size is the distance between two places inside the object, and the two places scatter the waves emitted by the wave source to obtain the corresponding evanescent field, which excites the corresponding wave signal propagating to the far field, and the time-varying wave signal is After the wave intensity is Fourier transformed, it has a characteristic vibration frequency in the frequency domain.
可选地,经倏逝场激发而产生可传输到远场的波信号通过如下波信号复振幅的公式计算:Optionally, the wave signal generated by the evanescent field excitation that can be transmitted to the far field is calculated by the formula of the complex amplitude of the wave signal as follows:
其中,ψs(z,t)为波信号的复振幅,i为虚数单位,t为波信号传输的时间,z为波信号的传播距离,ωs为波信号的特征角频率,ω为波源的角频率,c为波在自由空间中的传输速度,k⊥为倏逝场的波数,Θ(t-z/c)为开关函数,开关函数在t≦z/c时取值为0、在t>z/c时取值为1。Among them, ψ s (z, t) is the complex amplitude of the wave signal, i is the imaginary unit, t is the transmission time of the wave signal, z is the propagation distance of the wave signal, ω s is the characteristic angular frequency of the wave signal, and ω is the wave source The angular frequency of , c is the transmission speed of the wave in free space, k ⊥ is the wave number of the evanescent field, Θ(tz/c) is the switching function, the switching function is 0 when t≦z/c When >z/c, the value is 1.
与现有技术相比,本发明实施例的技术方案至少具有以下有益效果。Compared with the prior art, the technical solutions of the embodiments of the present invention have at least the following beneficial effects.
例如,在现有技术中,波源向物体发射的波被物体散射后产生倏逝场,其位于近场,因此无法在远场探测到。而在本发明实施例的技术方案中,波源向物体发射的波被物体散射后产生倏逝场,其激发产生可传输到远场的波信号;由于物体的特征尺寸与波信号的、随时间变化的波强度之间具有对应关系,因此可以基于该对应关系和波强探测器探测的波强度确定物体的特征尺寸。本发明实施例的技术方案可以探测由倏逝场激发的波信号,这不仅突破了衍射效应的限制(超衍射极限),还可以基于上述对应关系探测出任意大小的物体,例如探测出该物体的特征尺寸。For example, in the prior art, the wave emitted by the wave source to the object is scattered by the object to generate an evanescent field, which is located in the near field and thus cannot be detected in the far field. In the technical solution of the embodiment of the present invention, the wave emitted by the wave source to the object is scattered by the object to generate an evanescent field, which is excited to generate a wave signal that can be transmitted to the far field; due to the characteristic size of the object and the variation of the wave signal with time There is a correspondence between the varying wave intensities, so the characteristic size of the object can be determined based on the correspondence and the wave intensities detected by the wave intensity detector. The technical solution of the embodiment of the present invention can detect the wave signal excited by the evanescent field, which not only breaks through the limitation of the diffraction effect (super-diffraction limit), but also can detect an object of any size based on the above-mentioned corresponding relationship, for example, by detecting the object feature size.
又例如,在现有的近场扫描显微技术中,需要波源或者探测器放置于被探测物体的近场而直接探测倏逝场,在基于人工微结构材料的超透镜探测技术中,需要将透镜放置在被探测物体的近场,并将倏逝场转换成传播场到远场进行探测;这使得设置波源、探测器或者透镜的难度大,对透镜的精细微结构、吸收损耗等要求严格,并且探测的操作复杂。而在本发明实施例的技术方案中,探测经倏逝场激发而产生可传输到远场的波信号,在该探测的过程中,可以将波源和探测器均放置于远场,这使得波源和探测器的设置容易,并且探测的操作简单。For another example, in the existing near-field scanning microscopy technology, the wave source or detector needs to be placed in the near field of the object to be detected to directly detect the evanescent field. In the superlens detection technology based on artificial microstructured materials, it is necessary to The lens is placed in the near field of the object to be detected, and converts the evanescent field into a propagating field to the far field for detection; this makes it difficult to set up a wave source, detector or lens, and requires strict requirements on the fine microstructure of the lens, absorption loss, etc. , and the detection operation is complicated. In the technical solution of the embodiment of the present invention, the detection is excited by the evanescent field to generate a wave signal that can be transmitted to the far field. During the detection process, both the wave source and the detector can be placed in the far field, which makes the wave source The setup of the detector and the detector are easy, and the operation of the detector is simple.
再例如,在现有的荧光显微技术中,不仅利用了材料的非线性效应,需要高功率激光和非线性响应材料,如荧光标记物,没有从原理上提供探测超分辨物体的物理机制;而且仍然需要点对点扫描或者拍摄成百上千幅原始图像用于图像重建,导致成像过程复杂且缓慢。而在本发明实施例的技术方案中,不需要依赖附加的标记材料和非线性效应,直接从原理上提供了一种线性方法探测超分辨物体。For another example, in the existing fluorescence microscopy techniques, not only the nonlinear effects of materials are utilized, but high-power lasers and nonlinear response materials, such as fluorescent markers, are required, and there is no physical mechanism to detect super-resolution objects in principle; And it still needs to scan point-to-point or take hundreds or thousands of original images for image reconstruction, which makes the imaging process complicated and slow. However, in the technical solution of the embodiment of the present invention, without relying on additional marking materials and nonlinear effects, a linear method for detecting super-resolution objects is directly provided in principle.
附图说明Description of drawings
图1是本发明实施例中对突破衍射极限的物体进行远场照明和探测的设备的一种结构示意图;1 is a schematic structural diagram of a device for performing far-field illumination and detection on objects that break through the diffraction limit in an embodiment of the present invention;
图2是本发明实施例中对突破衍射极限的物体进行远场照明和探测的设备的另一种结构示意图;2 is another schematic structural diagram of a device for performing far-field illumination and detection on objects that break through the diffraction limit in an embodiment of the present invention;
图3是本发明实施例中随时间变化的波强度及其对应的频谱的示意图;Fig. 3 is the schematic diagram of the wave intensity that changes with time and its corresponding frequency spectrum in the embodiment of the present invention;
图4是本发明实施例中对突破衍射极限的物体的特征尺寸进行探测的一种示意图,其中特征尺寸表示物体表面的起伏变化;4 is a schematic diagram of detecting the characteristic size of an object that breaks through the diffraction limit in an embodiment of the present invention, wherein the characteristic size represents the fluctuation of the surface of the object;
图5是本发明实施例中对突破衍射极限的物体的特征尺寸进行探测的一种示意图,其中特征尺寸表示物体的实际尺寸;5 is a schematic diagram of detecting the characteristic size of an object that breaks through the diffraction limit in an embodiment of the present invention, wherein the characteristic size represents the actual size of the object;
图6是本发明实施例中对突破衍射极限的物体的特征尺寸进行探测的一种示意图,其中特征尺寸表示物体的内部结构;6 is a schematic diagram of detecting the characteristic size of an object that breaks through the diffraction limit in an embodiment of the present invention, wherein the characteristic size represents the internal structure of the object;
图7是本发明实施例中对突破衍射极限的物体进行远场照明和探测的方法的流程图。FIG. 7 is a flowchart of a method for far-field illumination and detection of objects that break through the diffraction limit in an embodiment of the present invention.
具体实施方式Detailed ways
为使本发明的上述目的、特征和优点能够更为明显易懂,下面结合附图对本发明的具体实施例做详细的说明。In order to make the above objects, features and advantages of the present invention more clearly understood, the specific embodiments of the present invention will be described in detail below with reference to the accompanying drawings.
本发明的实施例提供一种对突破衍射极限的物体进行远场照明和探测的设备。Embodiments of the present invention provide a device for far-field illumination and detection of objects that break through the diffraction limit.
如图1、2、4至6所示,设备100、200、300、400、500用于对物体进行远场照明和远场探测。设备100、200、300、400、500可以包括波源110、波强探测器120和计算单元130。As shown in Figures 1, 2, 4 to 6,
波源110可以向物体发射波。The
波可以具有单一波长(即仅具有一个频率的波),此时,波的波长λ为该单一波长。波也可以包括离散的多个波长(即具有多个频率的波),此时,波的波长λ为该离散的多个波长中的任一个波长。A wave may have a single wavelength (ie, a wave having only one frequency), in which case the wavelength λ of the wave is the single wavelength. The wave may also include multiple discrete wavelengths (ie, waves having multiple frequencies), and in this case, the wavelength λ of the wave is any one of the discrete multiple wavelengths.
在具体实施中,波源110可以为电磁场源,其发射的波为电磁波,例如无线电波、微波、红外线、可见光、紫外线、X射线和γ射线;波源110发射的波也可以为弹性波源,其发射的波为弹性波,例如体波和界面波;波源110发射的波还可以为声波源,其发射的波为声波,例如次声波、可闻声波、超声波和特超声波。In a specific implementation, the
物体对波源110发射的波进行散射,从而产生倏逝场和传播场。The object scatters the waves emitted by the
在本发明的实施例中,物体对波源110发射的波进行散射时产生不同频率的倏逝场,而不同频率的倏逝场会激发并且产生可传输到远场的波信号,该波信号产生的原理可以通过如下波信号复振幅的公式表示:In the embodiment of the present invention, when the object scatters the waves emitted by the
其中,ψs(z,t)为波信号的复振幅,i为虚数单位,t为波信号传输的时间,z为波信号的传播距离,ωs为波信号的特征角频率,ω为波源的角频率,c为波在自由空间中的传输速度,k⊥为倏逝场的波数,Θ(t-z/c)为开关函数,开关函数在t≦z/c时取值为0、在t>z/c时取值为1。Among them, ψ s (z, t) is the complex amplitude of the wave signal, i is the imaginary unit, t is the transmission time of the wave signal, z is the propagation distance of the wave signal, ω s is the characteristic angular frequency of the wave signal, and ω is the wave source The angular frequency of , c is the transmission speed of the wave in free space, k ⊥ is the wave number of the evanescent field, Θ(tz/c) is the switching function, the switching function is 0 when t≦z/c When >z/c, the value is 1.
上述公式在倏逝场(如其波数k⊥)和其激发产生的、可传输到远场的波信号[如其复振幅ψs(z,t)]之间建立了关联。The above formula establishes a correlation between an evanescent field (eg its wavenumber k ⊥ ) and its excitation-generated wave signal [eg, its complex amplitude ψ s (z,t)] that can be transmitted to the far field.
在上述公式中,在其他参数已知的情形下,随着波信号的传播距离z的逐渐增大,波信号的复振幅ψs(z,t)逐渐减小。In the above formula, when other parameters are known, as the propagation distance z of the wave signal increases gradually, the complex amplitude ψ s (z, t) of the wave signal gradually decreases.
在本发明的实施例中,物体对波所进行的散射包括透射型散射和反射型散射。其中,透射型散射表示,入射波照射于物体表面、边缘或者内部结构后,发生散射,而散射后产生的波可以透过物体而到达位于物体后侧的波强探测器120;反射型散射表示,入射波照射于物体表面、边缘或者内部结构后,发生散射,而散射后产生的波被反射而到达位于物体前侧的波强探测器120。In the embodiment of the present invention, the scattering of the wave by the object includes transmission type scattering and reflection type scattering. Among them, the transmission type scattering means that the incident wave irradiates on the surface, edge or internal structure of the object and is scattered, and the wave generated after the scattering can pass through the object and reach the
如图1所示,设备100对物体11进行远场照明和远场探测。物体11可以对波进行透射型散射,散射后产生的波透过物体11而到达位于物体11后侧的波强探测器120。As shown in FIG. 1 , the
如图2所示,设备200对物体12进行远场照明和远场探测。物体12可以对波进行反射型散射,散射后产生的波透过物体12被反射而到达位于物体12前侧的波强探测器120。As shown in FIG. 2 ,
波强探测器120可以探测经倏逝场激发而产生可传输到远场的波信号,该波信号为随时间变化的波强度信号。The
在一些实施例中,波强探测器120可以为已知的照度计、波照强度测量仪、振幅实部探测设备等,其将波信号的波强度转换为相应强度的电流,并且基于被度量的电流确定相应的探测物理量的大小。In some embodiments, the
波强探测器120还可以对不同波长(或者不同频率)的波强度分别进行测量。The
波强度可以随着时间而变化,波强探测器120可以实时地探测波强度,从而获得波强度在时域的分布。The wave intensity can vary with time, and the
在本发明的实施例中,波源发射的波具有波长λ,到被探测物体的表面的距离小于λ的区域可称为近场,到被探测物体的表面的距离大于λ的区域可称为远场。In the embodiment of the present invention, the wave emitted by the wave source has a wavelength λ, a region with a distance to the surface of the detected object less than λ can be called a near field, and a region with a distance from the surface of the detected object greater than λ can be called a far field field.
在设备100、200、300、400、500对物体进行远场照明和远场探测时,波源110和波强探测器120均位于远场。When the
在一个实施例中,如图3的子图3a所示,波强探测器120实时地探测到波强度随时间变化的分布。In one embodiment, as shown in sub-figure 3a of FIG. 3, the
随时间变化的波强度分布可以进行傅里叶变换,而获得频谱,其横坐标为波强度分布对应的频域,如图3的子图3b所示。The time-varying wave intensity distribution can be Fourier transformed to obtain a frequency spectrum, the abscissa of which is the frequency domain corresponding to the wave intensity distribution, as shown in sub-figure 3b of FIG. 3 .
在该频谱中,具有特征振动频率fs。In this spectrum, there is a characteristic vibrational frequency f s .
物体可以为固体或者液体,其中可以具有特征尺寸Ps,其与上述频谱中的特征振动频率fs对应。The object may be a solid or a liquid, wherein it may have a characteristic dimension P s , which corresponds to the characteristic vibrational frequency f s in the above-mentioned frequency spectrum.
物体的特征尺寸Ps小于衍射极限,例如其长、宽、高、直径或者其表面相距最远的二点之间的距离可以小于波的波长λ的一半。The characteristic dimension Ps of an object is less than the diffraction limit, eg its length, width, height, diameter or the distance between the two most distant points on its surface may be less than half the wavelength λ of the wave.
在一些实施例中,特征尺寸Ps可以表示物体表面的起伏变化的大小。In some embodiments, the feature size P s may represent the magnitude of the fluctuation of the surface of the object.
如图4所示,设备300对物体13进行远场照明和远场探测。物体13表面具有彼此相邻的部分,例如为相邻的峰部A和谷部B,其中,峰部A和谷部B可以相互参照而进行比较,从而分别具有彼此相对的峰部和谷部。彼此相邻的峰部A和谷部B类似于光栅结构,对波源110发射的波进行散射而获得相应的倏逝场,其激发相应的传播到远场的波信号,波信号具有随时间变化的波强度,其经傅里叶变换后,在频域具有高频幅的频率(特征振动频率)fs,参照图3所示。特征尺寸Ps表示峰部A和谷部B之间的距离,即峰部A的顶峰和谷部B的谷底之间的距离。As shown in FIG. 4 , the
在另一些实施例中,特征尺寸Ps可以表示物体的实际尺寸。In other embodiments, the characteristic size P s may represent the actual size of the object.
如图5所示,设备400对物体14进行远场照明和远场探测。物体14的实际尺寸可以通过其表面相距较远或者最远的边缘位置C和D表示。物体14位于边缘位置C和D之间,其类似于光栅结构,对波源110发射的波进行散射而获得相应的倏逝场,其激发相应的传播到远场的波信号,波信号具有随时间变化的波强度,其经傅里叶变换后,在频域具有高频幅的频率(特征振动频率)fs,参照图3所示。特征尺寸Ps表示边缘位置C和D之间的距离,即物体14的实际尺寸。As shown in FIG. 5 ,
在又一些实施例中,特征尺寸Ps可以表示物体的内部结构。In yet other embodiments, the feature size Ps may represent the internal structure of the object.
如图6所示,设备500对物体15进行远场照明和远场探测。物体15内部的二处E、F具有不同的材料、密度、构造、浓度或者其他物理属性。物体15在该二处E、F之间的部分类似于光栅结构,对波源110发射的波进行散射而获得相应的倏逝场,其激发相应的传播到远场的波信号,波信号具有随时间变化的波强度,其经傅里叶变换后,在频域具有高频幅的频率(特征振动频率)fs,参照图3所示。特征尺寸Ps表示该二处E、F之间的距离。As shown in FIG. 6 ,
以上结合图4至6描述了关于特征尺寸Ps的相关实施例,尽管图4至6示意了透射型散射,应理解,上述关于特征尺寸Ps的实施例也可以应用于反射型散射的场景。The above-mentioned embodiments related to the feature size P s are described above with reference to FIGS. 4 to 6 . Although FIGS. 4 to 6 illustrate transmission-type scattering, it should be understood that the above-mentioned embodiments related to the feature size P s can also be applied to reflective-type scattering scenarios. .
计算单元130可以获取随时间变化的波强度和对应关系并且基于该二者确定物体的特征尺寸。The
在本发明的实施例中,物体的尺寸与波信号的、随时间变化的波强度之间具有对应关系。In an embodiment of the present invention, there is a correspondence between the size of the object and the time-varying wave intensity of the wave signal.
具体而言,计算单元130可以接收波强探测器120输出的随时间变化的波强度,并且可以对随时间变化的波强度分布进行傅里叶变换,而获得相应的频谱。因此,物体的特征尺寸与波信号的、随时间变化的波强度之间的对应关系可以表示为物体的特征尺寸与相应的频谱之间的对应关系,其通过如下公式表示:Specifically, the
Ps=λ/(1+fs/f0),P s =λ/(1+f s /f 0 ),
其中,Ps为特征尺寸,λ为波的波长,fs为特征振动频率,f0为波的中心频率。where P s is the characteristic size, λ is the wavelength of the wave, f s is the characteristic vibration frequency, and f 0 is the center frequency of the wave.
当波具有单一波长时,上式中波的波长λ取该单一波长。当波包括离散的多个波长时,例如包括λ1、λ2时,上式中波的波长λ可以取离散的多个波长中的任一个波长,例如取λ1或者λ2。When the wave has a single wavelength, the wavelength λ of the wave in the above formula takes the single wavelength. When the wave includes a plurality of discrete wavelengths, for example, λ 1 and λ 2 , the wavelength λ of the wave in the above formula can take any one of the plurality of discrete wavelengths, such as λ 1 or λ 2 .
计算单元130可以获取物体的尺寸与相应的频谱的对应关系或者物体的特征尺寸Ps与特征振动频率fs的对应关系,该对应关系可以预先存储于存储器中,该存储器可以设置于计算单元130内部或者外部。在计算单元130进行计算时,可以从存储器中读取该对应关系。The
理论上,通过物体的特征尺寸Ps与特征振动频率fs的对应关系,基于波源110发射的波的波长λ、特征振动频率fs和波的中心频率f0,计算单元130可以计算出任意大小的物体的特征尺寸Ps。Theoretically, through the corresponding relationship between the characteristic size P s of the object and the characteristic vibration frequency f s , based on the wavelength λ of the wave emitted by the
在实际实验的探测中,可探测物体的特征尺寸Ps由波强探测器120的探测精度决定。本实施例依据自主拥有的探测器的探测精度,可探测的、物体的特征尺寸Ps可以达到波的波长λ的六分之一,突破了衍射极限(其约为波长的二分之一)。In the detection of actual experiments, the characteristic size P s of the detectable object is determined by the detection accuracy of the
在数值模拟实验中,通过物体的特征尺寸Ps与特征振动频率fs的对应关系进行计算,可探测的、物体的特征尺寸Ps可以达到波的波长λ的三十分之一,这远远突破了衍射极限。In the numerical simulation experiment, the corresponding relationship between the characteristic size P s of the object and the characteristic vibration frequency f s is calculated, and the characteristic size P s of the detectable object can reach one-thirtieth of the wavelength λ of the wave, which is far far beyond the diffraction limit.
在实际探测时,对物体进行远场照明和远场探测的设备可以包括控制单元,波源可以选择性地设置。例如,若干个不同波长的波源均可以被控制单元控制而选择性地向物体发射波,控制单元可以选择其中的一个波源向物体发射波。During actual detection, the device for performing far-field illumination and far-field detection on an object may include a control unit, and the wave source may be selectively set. For example, several wave sources with different wavelengths can be controlled by the control unit to selectively emit waves to the object, and the control unit can select one of the wave sources to emit waves to the object.
具体而言,首先,可以预估被探测物体的尺寸,然后控制单元基于该预估的尺寸选择相应的波源。例如,基于输入的预估被探测物体的尺寸a,控制单元选择发射波的波长为2a的波源。Specifically, first, the size of the detected object can be estimated, and then the control unit selects a corresponding wave source based on the estimated size. For example, based on the input estimated size a of the detected object, the control unit selects a wave source whose emission wave has a wavelength of 2a.
接着,控制单元判断在对波强度分布进行傅里叶变换而获得相应的频谱中能否确定特征振动频率fs。如果能确定特征振动频率fs,则控制单元指示计算单元基于该特征振动频率fs和对应关系计算物体的特征尺寸Ps。如果不能确定特征振动频率fs,则控制单元可以选择不同波长的波源;控制单元重复该步骤,直至在频谱中可以确定特征振动频率fs,并且基于该特征振动频率fs计算物体的特征尺寸Ps。Next, the control unit judges whether the characteristic vibration frequency f s can be determined in the corresponding frequency spectrum obtained by Fourier transforming the wave intensity distribution. If the characteristic vibration frequency f s can be determined, the control unit instructs the calculation unit to calculate the characteristic size P s of the object based on the characteristic vibration frequency f s and the corresponding relationship. If the characteristic vibrational frequency fs cannot be determined, the control unit may select wave sources of different wavelengths; the control unit repeats this step until the characteristic vibrational frequency fs can be determined in the frequency spectrum, and calculates the characteristic size of the object based on the characteristic vibrational frequency fs P s .
在本发明的实施例中,计算单元130和控制单元可以为处理器,例如为中央处理单元(Central Processing Unit,CPU)、通用处理器、微处理器、数字信号处理器(DigitalSignal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)、其他可编程逻辑器件、分立门或晶体管逻辑器件、或者分立硬件组件等。In the embodiment of the present invention, the
本发明的实施例还提供一种对突破衍射极限的物体进行远场照明和探测的方法。Embodiments of the present invention also provide a method for far-field illumination and detection of objects that break through the diffraction limit.
如图7所示,对突破衍射极限的物体进行远场照明和探测的方法600包括:步骤S610,波源向物体发射波,波被物体散射后产生倏逝场,经倏逝场激发产生可传输到远场的波信号,物体的特征尺寸与波信号的、随时间变化的波强度之间具有对应关系;步骤S620,波强探测器探测随时间变化的波强度;步骤S630,计算单元获取随时间变化的波强度和对应关系并且基于该二者确定物体的特征尺寸。As shown in FIG. 7 , the
在具体实施中,方法600可以基于上述设备100、200、300、400、500中的任一者执行。In a specific implementation, the
在具体实施中,计算单元将随时间变化的波强度进行傅里叶变换而获得特征振动频率,对应关系为:In a specific implementation, the computing unit performs Fourier transform on the wave intensity that changes with time to obtain the characteristic vibration frequency, and the corresponding relationship is:
Ps=λ/(1+fs/f0),P s =λ/(1+f s /f 0 ),
其中,Ps为特征尺寸,λ为波的波长,fs为特征振动频率,f0为波的中心频率。where P s is the characteristic size, λ is the wavelength of the wave, f s is the characteristic vibration frequency, and f 0 is the center frequency of the wave.
在具体实施中,控制单元可以执行以下步骤:基于物体的预估尺寸选择相应的波源;判断能否获得特征振动频率;如果为是则指示计算单元基于特征振动频率和对应关系计算特征尺寸,如果为否则选择不同波长的波源、重复上述判断步骤直至获得特征振动频率、以及指示计算单元基于特征振动频率和对应关系计算特征尺寸。In specific implementation, the control unit can perform the following steps: select the corresponding wave source based on the estimated size of the object; determine whether the characteristic vibration frequency can be obtained; if so, instruct the calculation unit to calculate the characteristic size based on the characteristic vibration frequency and the corresponding relationship, if Otherwise, select a wave source with a different wavelength, repeat the above judgment steps until the characteristic vibration frequency is obtained, and instruct the calculation unit to calculate the characteristic size based on the characteristic vibration frequency and the corresponding relationship.
在具体实施中,波为任意频段的电磁波、弹性波或者声波。In a specific implementation, the waves are electromagnetic waves, elastic waves or sound waves in any frequency band.
在具体实施中,波源和波强探测器均位于远场,远场为到物体的表面的距离大于波的波长的区域。In a specific implementation, both the wave source and the wave intensity detector are located in the far field, and the far field is the region where the distance to the surface of the object is greater than the wavelength of the wave.
在具体实施中,波具有单一波长,波的波长为单一波长;或者,波包括离散的多个波长,波的波长为离散的多个波长中的任一个波长。In a specific implementation, the wave has a single wavelength, and the wavelength of the wave is a single wavelength; or, the wave includes multiple discrete wavelengths, and the wavelength of the wave is any one of the multiple discrete wavelengths.
在具体实施中,特征尺寸为物体的表面处彼此相邻的部分之间的距离、或者为物体的实际尺寸。In a specific implementation, the characteristic size is the distance between adjacent parts of the surface of the object, or the actual size of the object.
在具体实施中,特征尺寸为物体内部二处之间的距离,二处散射波源发射的波而获得相应的倏逝场,其激发相应的传播到远场的波信号,波信号的随时间变化的波强度经傅里叶变换后,在频域具有特征振动频率。In the specific implementation, the feature size is the distance between two places inside the object, and the two places scatter the waves emitted by the wave source to obtain the corresponding evanescent field, which excites the corresponding wave signal propagating to the far field, and the wave signal changes with time. After Fourier transform, the wave intensity has characteristic vibration frequency in the frequency domain.
在具体实施中,经倏逝场激发而产生可传输到远场的波信号通过如下波信号复振幅的公式计算:In a specific implementation, the wave signal that can be transmitted to the far field generated by the evanescent field excitation is calculated by the formula of the complex amplitude of the wave signal as follows:
其中,ψs(z,t)为波信号的复振幅,i为虚数单位,t为波信号传输的时间,z为波信号的传播距离,ωs为波信号的特征角频率,ω为波源的角频率,c为波在自由空间中的传输速度,k⊥为倏逝场的波数,Θ(t-z/c)为开关函数,开关函数在t≦z/c时取值为0、在t>z/c时取值为1。Among them, ψ s (z, t) is the complex amplitude of the wave signal, i is the imaginary unit, t is the transmission time of the wave signal, z is the propagation distance of the wave signal, ω s is the characteristic angular frequency of the wave signal, and ω is the wave source The angular frequency of , c is the transmission speed of the wave in free space, k ⊥ is the wave number of the evanescent field, Θ(tz/c) is the switching function, the switching function is 0 when t≦z/c When >z/c, the value is 1.
关于对物体进行远场照明和远场探测的方法600的具体原理和实施方式等,可以参照上述结合图1至6关于对物体进行远场照明和远场探测的设备的相关描述,这里不再赘述。For the specific principles, implementations, etc. of the
虽然本发明披露如上,但本发明并非限定于此。任何本领域技术人员,在不脱离本发明的精神和范围内,均可作各种更动与修改,因此本发明的保护范围应当以权利要求所限定的范围为准。Although the present invention is disclosed above, the present invention is not limited thereto. Any person skilled in the art can make various changes and modifications without departing from the spirit and scope of the present invention. Therefore, the protection scope of the present invention should be based on the scope defined by the claims.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111492424.0A CN114322863B (en) | 2021-12-08 | 2021-12-08 | Method for far-field illumination and detection of objects that break through diffraction limits |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111492424.0A CN114322863B (en) | 2021-12-08 | 2021-12-08 | Method for far-field illumination and detection of objects that break through diffraction limits |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114322863A true CN114322863A (en) | 2022-04-12 |
CN114322863B CN114322863B (en) | 2023-05-05 |
Family
ID=81050152
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202111492424.0A Active CN114322863B (en) | 2021-12-08 | 2021-12-08 | Method for far-field illumination and detection of objects that break through diffraction limits |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114322863B (en) |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005078382A1 (en) * | 2004-01-22 | 2005-08-25 | Mosong Cheng | Apparatus and method for super-resolution optical microscopy |
JP2006090715A (en) * | 2004-09-21 | 2006-04-06 | Sii Nanotechnology Inc | Scattering near-field microscope and measuring method thereof |
US20070013999A1 (en) * | 2005-04-28 | 2007-01-18 | Marks Daniel L | Multiplex near-field microscopy with diffractive elements |
CN101820817A (en) * | 2007-05-22 | 2010-09-01 | 阶段聚焦有限公司 | Three dimensional imaging |
CN101949848A (en) * | 2010-09-08 | 2011-01-19 | 华中科技大学 | Photoactivation positioning microscopic imaging system based on micronano optical fiber evanescent field illuminator |
CN101952710A (en) * | 2007-11-05 | 2011-01-19 | 皇家飞利浦电子股份有限公司 | Microelectronic sensor |
CN102411003A (en) * | 2011-07-25 | 2012-04-11 | 中国科学院光电技术研究所 | Sensing method of far-field optical fiber evanescent field |
CN103048272A (en) * | 2013-01-08 | 2013-04-17 | 浙江大学 | Frequency-shift super-resolution microimaging method and device based on evanescent field illumination |
RU2012127872A (en) * | 2012-07-05 | 2014-01-10 | Георгий Маркович Мустафа | FILTER-COMPENSATING DEVICE OF HIGH-VOLTAGE DC POWER TRANSMISSION |
CN103858021A (en) * | 2011-09-23 | 2014-06-11 | 埃西斯创新有限公司 | Acousto-electromagnetic investigation of physical properties of an object |
CN103969225A (en) * | 2014-04-28 | 2014-08-06 | 中国科学院光电技术研究所 | Far field detection method for near-field evanescent wave optical field transmittance transfer characteristic function of super-diffraction structure material |
CN111157768A (en) * | 2020-01-07 | 2020-05-15 | 电子科技大学 | A method for extracting phase information from near-field optical microscopy based on probe arrays |
-
2021
- 2021-12-08 CN CN202111492424.0A patent/CN114322863B/en active Active
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005078382A1 (en) * | 2004-01-22 | 2005-08-25 | Mosong Cheng | Apparatus and method for super-resolution optical microscopy |
JP2006090715A (en) * | 2004-09-21 | 2006-04-06 | Sii Nanotechnology Inc | Scattering near-field microscope and measuring method thereof |
US20070013999A1 (en) * | 2005-04-28 | 2007-01-18 | Marks Daniel L | Multiplex near-field microscopy with diffractive elements |
CN101820817A (en) * | 2007-05-22 | 2010-09-01 | 阶段聚焦有限公司 | Three dimensional imaging |
CN101952710A (en) * | 2007-11-05 | 2011-01-19 | 皇家飞利浦电子股份有限公司 | Microelectronic sensor |
CN101949848A (en) * | 2010-09-08 | 2011-01-19 | 华中科技大学 | Photoactivation positioning microscopic imaging system based on micronano optical fiber evanescent field illuminator |
CN102411003A (en) * | 2011-07-25 | 2012-04-11 | 中国科学院光电技术研究所 | Sensing method of far-field optical fiber evanescent field |
CN103858021A (en) * | 2011-09-23 | 2014-06-11 | 埃西斯创新有限公司 | Acousto-electromagnetic investigation of physical properties of an object |
RU2012127872A (en) * | 2012-07-05 | 2014-01-10 | Георгий Маркович Мустафа | FILTER-COMPENSATING DEVICE OF HIGH-VOLTAGE DC POWER TRANSMISSION |
CN103048272A (en) * | 2013-01-08 | 2013-04-17 | 浙江大学 | Frequency-shift super-resolution microimaging method and device based on evanescent field illumination |
CN103969225A (en) * | 2014-04-28 | 2014-08-06 | 中国科学院光电技术研究所 | Far field detection method for near-field evanescent wave optical field transmittance transfer characteristic function of super-diffraction structure material |
CN111157768A (en) * | 2020-01-07 | 2020-05-15 | 电子科技大学 | A method for extracting phase information from near-field optical microscopy based on probe arrays |
Non-Patent Citations (1)
Title |
---|
王云新;郭莎;王大勇;戎路;林巧文;王敏超;: "突破衍射极限的远场光学成像方法" * |
Also Published As
Publication number | Publication date |
---|---|
CN114322863B (en) | 2023-05-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Solodov et al. | A new mode of acoustic NDT via resonant air-coupled emission | |
JPS6239705B2 (en) | ||
JPS612046A (en) | Method and device for detecting heat wave | |
CN108801439A (en) | A kind of sound field measuring device and measurement method | |
CN104334088A (en) | Laser-induced ultrasonic wave apparatus and method | |
US11692810B2 (en) | Photoacoustic excitation sensing enhanced by cross-correlated unfocused speckle images | |
Chen et al. | Operational and defect parameters concerning the acoustic-laser vibrometry method for FRP-reinforced concrete | |
Kersemans et al. | Fast reconstruction of a bounded ultrasonic beam using acoustically induced piezo-luminescence | |
CN103438980B (en) | Method and device for liquid surface wave detection based on linear array CCD and linear infrared laser | |
Verrina et al. | Photoacoustic detection of low duty cycle gratings through optically opaque layers | |
CN101055265B (en) | Surface and near-surface layered tomography methods for functionally graded materials | |
CN114322863A (en) | A method for far-field illumination and detection of objects that break the diffraction limit | |
KR100496826B1 (en) | Apparatus and method of noncontact measurement of crystal grain size | |
CN114562942A (en) | Measuring system and measuring method | |
Jia et al. | Characterization of pulsed ultrasound using optical detection in Raman-Nath regime | |
KR101215362B1 (en) | Apparatus and method for detecting photothermal effect | |
Stratoudaki et al. | Cheap optical transducers (CHOTs) for generation and detection of longitudinal waves | |
JP2013228328A (en) | Surface inspection device and surface inspection method | |
JP2022021390A (en) | Analytical systems, information processing equipment, analytical methods and programs | |
WO2014174800A1 (en) | Acousto-optical imaging device | |
Lu et al. | Dynamic quantitative visualization of transient shear stresses in solids | |
Dekýš et al. | Detection of composite damage by IR NDT using ultrasonic and optic excitation | |
Matsuya et al. | 2P1-9 Directivity Patterns of Ultrasound Generated by Evanescent light at the Interface between Prism and Aluminum Surface | |
Zhi et al. | Visualization of Continuous and Pulsed Ultrasonic Propagation in Water | |
WO2024176635A1 (en) | Ultrasonic inspection device and ultrasonic inspection method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |