CN114322330A - An integrated circulating drying water intake device and method based on solar energy - Google Patents
An integrated circulating drying water intake device and method based on solar energy Download PDFInfo
- Publication number
- CN114322330A CN114322330A CN202111612912.0A CN202111612912A CN114322330A CN 114322330 A CN114322330 A CN 114322330A CN 202111612912 A CN202111612912 A CN 202111612912A CN 114322330 A CN114322330 A CN 114322330A
- Authority
- CN
- China
- Prior art keywords
- desorption
- drying
- air
- heating system
- moisture absorption
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000001035 drying Methods 0.000 title claims abstract description 112
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title claims abstract description 73
- 238000000034 method Methods 0.000 title claims abstract description 35
- 238000010438 heat treatment Methods 0.000 claims abstract description 103
- 238000003795 desorption Methods 0.000 claims abstract description 99
- 238000001816 cooling Methods 0.000 claims abstract description 88
- 238000010521 absorption reaction Methods 0.000 claims abstract description 81
- 239000007788 liquid Substances 0.000 claims abstract description 36
- 238000001179 sorption measurement Methods 0.000 claims description 49
- 239000004065 semiconductor Substances 0.000 claims description 40
- 239000000463 material Substances 0.000 claims description 36
- 239000013505 freshwater Substances 0.000 claims description 21
- 238000005338 heat storage Methods 0.000 claims description 17
- 239000011521 glass Substances 0.000 claims description 16
- 238000009833 condensation Methods 0.000 claims description 15
- 230000005494 condensation Effects 0.000 claims description 15
- 230000008569 process Effects 0.000 claims description 14
- 239000000110 cooling liquid Substances 0.000 claims description 11
- 238000007791 dehumidification Methods 0.000 claims description 8
- 230000017525 heat dissipation Effects 0.000 claims description 6
- 238000012546 transfer Methods 0.000 claims description 6
- 230000018044 dehydration Effects 0.000 claims description 4
- 238000006297 dehydration reaction Methods 0.000 claims description 4
- 230000001360 synchronised effect Effects 0.000 claims description 4
- 238000003809 water extraction Methods 0.000 claims description 3
- 238000005516 engineering process Methods 0.000 abstract description 16
- 238000013486 operation strategy Methods 0.000 abstract description 3
- 230000005855 radiation Effects 0.000 abstract description 2
- 229910052802 copper Inorganic materials 0.000 description 18
- 239000010949 copper Substances 0.000 description 18
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 17
- 238000005057 refrigeration Methods 0.000 description 10
- 238000003466 welding Methods 0.000 description 10
- 238000010586 diagram Methods 0.000 description 8
- 230000000694 effects Effects 0.000 description 8
- 238000006243 chemical reaction Methods 0.000 description 7
- 238000009434 installation Methods 0.000 description 7
- 229910000838 Al alloy Inorganic materials 0.000 description 6
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 6
- 238000013461 design Methods 0.000 description 6
- 230000009471 action Effects 0.000 description 5
- 230000008859 change Effects 0.000 description 5
- 239000007789 gas Substances 0.000 description 4
- 229920006395 saturated elastomer Polymers 0.000 description 4
- 239000011232 storage material Substances 0.000 description 4
- 238000009423 ventilation Methods 0.000 description 4
- 229910052786 argon Inorganic materials 0.000 description 3
- 239000000919 ceramic Substances 0.000 description 3
- 239000002826 coolant Substances 0.000 description 3
- 239000002274 desiccant Substances 0.000 description 3
- 239000000835 fiber Substances 0.000 description 3
- 230000005484 gravity Effects 0.000 description 3
- 238000003698 laser cutting Methods 0.000 description 3
- 239000012528 membrane Substances 0.000 description 3
- 238000007789 sealing Methods 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 239000003463 adsorbent Substances 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 230000002209 hydrophobic effect Effects 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000012782 phase change material Substances 0.000 description 2
- 229920001495 poly(sodium acrylate) polymer Polymers 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 239000000741 silica gel Substances 0.000 description 2
- 229910002027 silica gel Inorganic materials 0.000 description 2
- NNMHYFLPFNGQFZ-UHFFFAOYSA-M sodium polyacrylate Chemical group [Na+].[O-]C(=O)C=C NNMHYFLPFNGQFZ-UHFFFAOYSA-M 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000010963 304 stainless steel Substances 0.000 description 1
- 229910000553 6063 aluminium alloy Inorganic materials 0.000 description 1
- 230000005679 Peltier effect Effects 0.000 description 1
- 229910000589 SAE 304 stainless steel Inorganic materials 0.000 description 1
- NGONBPOYDYSZDR-UHFFFAOYSA-N [Ar].[W] Chemical compound [Ar].[W] NGONBPOYDYSZDR-UHFFFAOYSA-N 0.000 description 1
- 230000002528 anti-freeze Effects 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 239000003651 drinking water Substances 0.000 description 1
- 235000020188 drinking water Nutrition 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 239000003292 glue Substances 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 229920006327 polystyrene foam Polymers 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/40—Solar thermal energy, e.g. solar towers
Landscapes
- Drying Of Gases (AREA)
- Drying Of Solid Materials (AREA)
Abstract
本发明公开了一种基于太阳能的一体式循环干燥取水装置及方法,属于太阳能干燥技术领域,包括太阳能供热系统、干燥系统、交替式吸湿解吸系统、强制液冷系统及供电系统,具体的;所述太阳能供热系统、所述干燥系统、所述交替式吸湿解吸系统吸湿侧依次连接组成干燥环路;所述太阳能供热系统还与所述交替式吸湿解吸系统解吸侧及强制液冷系统依次连接组成取水环路;所述供电系统为装置供电。本发明示例的循环干燥取水装置及方法,将对流式干燥、辐射式干燥、吸湿解吸式空气取水技术相结合,执行协同运行策略,装置各环节实现了有机结合,可大幅提高太阳能利用率及装置工作效率,并能有效延长装置连续稳定运行的时长。
The invention discloses a solar energy-based integrated circulating drying water intake device and method, belonging to the technical field of solar drying, comprising a solar heating system, a drying system, an alternate moisture absorption and desorption system, a forced liquid cooling system and a power supply system, in particular; The solar heating system, the drying system and the moisture absorption side of the alternating moisture absorption and desorption system are connected in sequence to form a drying loop; the solar heating system is also connected with the desorption side of the alternating moisture absorption and desorption system and the forced liquid cooling system Connected in sequence to form a water intake loop; the power supply system supplies power to the device. The circulating drying water intake device and method exemplified in the present invention combines convection drying, radiation drying, and moisture absorption and desorption air water intake technologies to implement a coordinated operation strategy. Work efficiency, and can effectively extend the continuous and stable operation of the device.
Description
技术领域technical field
本发明涉及太阳能干燥技术领域,特别是涉及一种基于太阳能的一体式循环干燥取水装置及方法。The present invention relates to the technical field of solar drying, in particular to a solar energy-based integrated circulating drying water intake device and method.
背景技术Background technique
太阳能干燥技术是利用太阳能对各种物料进行干燥,太阳能干燥装置类型主要有温室型、集热器型、集热器与温室结合型、太阳能集热器与热泵系统联合型等。Solar drying technology uses solar energy to dry various materials. The main types of solar drying devices are greenhouse type, collector type, combined collector and greenhouse, combined solar collector and heat pump system, etc.
吸附式空气取水技术是采用液体或固体干燥剂吸收湿空气中的水分后,通过干燥剂的再生过程获得淡水的技术形式。其中,液体吸收法存在装置结构复杂、体积庞大、单次循环时间长、具有一定腐蚀性及化学试剂不够安全等诸多缺陷,因此,通过该方法获得的淡水不宜作为安全饮用水。此外,相比于制冷结露法,利用固体干燥剂的吸附式空气取水技术具有不需要电能或机械能输入、占地面积小、运动部件少、运行噪声低、装置结构简单、运行成本低、寿命长、能利用太阳能集热装置除湿等诸多优点。The adsorption air water intake technology is a technical form in which fresh water is obtained through the regeneration process of the desiccant after the liquid or solid desiccant is used to absorb the moisture in the wet air. Among them, the liquid absorption method has many defects such as complex device structure, large volume, long single cycle time, certain corrosiveness and unsafe chemical reagents. Therefore, the fresh water obtained by this method is not suitable for safe drinking water. In addition, compared with the refrigeration condensation method, the adsorption air water intake technology using solid desiccant has the advantages of no electrical or mechanical energy input, small footprint, few moving parts, low operating noise, simple device structure, low operating cost, and long life. It has many advantages, such as long time, dehumidification using solar collectors and so on.
半导体制冷技术是通过帕尔贴效应达到制冷目的的一种新型制冷技术。当电流通过由半导体组成的闭合回路时,能在半导体制冷片两侧表面产生吸热或放热效应,会使半导体制冷器冷端的热量流向热端,使冷端温度不断降低,热端温度不断升高,即可实现制冷降温目的。Semiconductor refrigeration technology is a new type of refrigeration technology that achieves refrigeration through the Peltier effect. When the current passes through the closed circuit composed of semiconductors, it can generate heat absorption or exothermic effect on both sides of the semiconductor refrigeration sheet, which will make the heat of the cold end of the semiconductor refrigerator flow to the hot end, so that the temperature of the cold end will continue to decrease, and the temperature of the hot end will continue to rise. high, the purpose of cooling and cooling can be achieved.
大多数现有太阳能干燥系统的功能较为单一,只局限于对干燥物料进行脱水干燥,不能实现对干燥物料脱出水分的回收再利用。此外,当前主流的太阳能吸附式取水装置的吸湿解吸周期较长,仅局限于“夜间吸附、白天解吸”的运行模式,且大多数吸附剂容易达到吸水饱和状态,导致无法进一步除湿干燥,故该类太阳能干燥系统的太阳能利用率及运行效率均很低。Most of the existing solar drying systems have a relatively single function, which is limited to dehydrating and drying the dry materials, and cannot realize the recovery and reuse of the moisture removed from the dry materials. In addition, the current mainstream solar adsorption water intake device has a long moisture absorption and desorption cycle, which is limited to the operation mode of "night adsorption and daytime desorption", and most adsorbents are easily saturated with water, which makes further dehumidification and drying impossible. The solar energy utilization rate and operating efficiency of the solar-like drying system are very low.
发明内容SUMMARY OF THE INVENTION
为了解决上述现有技术中的不足,本发明的目的是提供一种基于太阳能的一体式循环干燥取水装置及方法,本装置将对流式干燥、辐射式干燥、吸湿解吸式空气取水技术相结合,并将太阳能集热技术、半导体制冷技术、相变蓄热技术、管壳式风冷设计、电动流道交换设计与太阳能干燥取水技术进行耦合,执行协同运行策略,装置各环节实现了有机结合,可大幅提高太阳能利用率及装置工作效率,并能有效延长装置连续稳定运行的时长。In order to solve the above-mentioned deficiencies in the prior art, the purpose of the present invention is to provide a solar energy-based integrated circulating drying water intake device and method. The solar heat collection technology, semiconductor refrigeration technology, phase change heat storage technology, shell-and-tube air-cooling design, electric flow channel exchange design and solar drying water intake technology are coupled to implement the coordinated operation strategy, and the organic combination of each link of the device is realized. It can greatly improve the utilization rate of solar energy and the working efficiency of the device, and can effectively prolong the continuous and stable operation time of the device.
本发明解决其技术问题所采用的技术方案为:The technical scheme adopted by the present invention to solve its technical problems is:
提供了一种基于太阳能的一体式循环干燥取水装置,包括太阳能供热系统、干燥系统、交替式吸湿解吸系统、强制液冷系统及供电系统,具体的:Provided is an integrated circulating drying water intake device based on solar energy, including a solar heating system, a drying system, an alternate moisture absorption and desorption system, a forced liquid cooling system and a power supply system, specifically:
所述太阳能供热系统、所述干燥系统、所述交替式吸湿解吸系统吸湿侧依次连接组成干燥环路;The solar heating system, the drying system and the hygroscopic side of the alternating moisture absorption and desorption system are connected in sequence to form a drying loop;
所述太阳能供热系统还与所述交替式吸湿解吸系统解吸侧及强制液冷系统依次连接组成取水环路;The solar heating system is also connected with the desorption side of the alternating moisture absorption and desorption system and the forced liquid cooling system in sequence to form a water intake loop;
所述供电系统为装置供电。The power supply system powers the device.
进一步的,所述太阳能供热系统包括第一供热系统及第二供热系统,所述第二供热系统出风口与所述干燥系统进风口连接,用于为所述干燥系统持续提供热风;所述第一供热系统出风口与所述交替式吸湿解吸系统解吸侧进口连接,用于为所述交替式吸湿解吸系统解吸侧除湿解吸;Further, the solar heating system includes a first heating system and a second heating system, the air outlet of the second heating system is connected to the air inlet of the drying system, and is used to continuously provide hot air for the drying system ; the air outlet of the first heating system is connected to the desorption side inlet of the alternate moisture absorption and desorption system, and is used for dehumidification and desorption of the desorption side of the alternate moisture absorption and desorption system;
所述交替式吸湿解吸系统吸湿侧与所述第二供热系统及干燥系统连接,用于为所述干燥系统排出的湿空气除湿并将除湿后的空气输送至第二供热系统进风口;所述交替式吸湿解吸系统解吸侧还与所述第一供热系统连接,利用所述第一供热系统为交替式吸湿解吸系统的解吸侧除湿解吸;The moisture absorption side of the alternating moisture absorption and desorption system is connected to the second heating system and the drying system, and is used for dehumidifying the humid air discharged from the drying system and delivering the dehumidified air to the air inlet of the second heating system; The desorption side of the alternating moisture absorption and desorption system is also connected to the first heat supply system, and the first heat supply system is used to dehumidify and desorb the desorption side of the alternating moisture absorption and desorption system;
所述强制液冷系统进口与所述交替式吸湿解吸系统解吸侧出口连接,且第一供热系统进风口连接所述强制液冷系统出口,所述强制液冷系统用于冷却高温湿空气,以形成淡水,并将冷凝脱水后的干燥冷空气输送至第一供热系统进风口。The inlet of the forced liquid cooling system is connected to the outlet of the desorption side of the alternating moisture absorption and desorption system, and the air inlet of the first heating system is connected to the outlet of the forced liquid cooling system, and the forced liquid cooling system is used for cooling high-temperature humid air, to form fresh water, and deliver the condensed and dehydrated dry cold air to the air inlet of the first heating system.
进一步的,所述第一供热系统及第二供热系统均由真空管式太阳能集热器组成,所述真空管式太阳能集热器包括真空集热管,所述真空集热管内设有储热套件,所述真空集热管的上方与汇流腔连通,还包括用于固定的固定管及固定支架;Further, the first heating system and the second heating system are both composed of vacuum tube solar heat collectors, the vacuum tube solar heat collectors include vacuum heat collector tubes, and a heat storage kit is arranged in the vacuum heat collector tubes. , the top of the vacuum heat collecting tube is communicated with the confluence chamber, and also includes a fixing tube and a fixing bracket for fixing;
所述第一供热系统中的真空管式太阳能集热器数量多于所述第二供热系统中的真空管式太阳能集热器数量。The number of evacuated tube solar heat collectors in the first heating system is greater than the number of evacuated tube solar heat collectors in the second heating system.
进一步的,所述干燥系统包括干燥箱及物料架,所述干燥箱内设有安装在物料架上的物料托盘;所述干燥箱的上端面倾斜设置,所述干燥箱的上端面处设有玻璃盖板,位于所述玻璃盖板较低一侧的下方设有汇水槽,所述汇水槽出口连接淡水收集瓶;所述干燥箱位于所述玻璃盖板较高一侧的下方设有湿空气出口,所述湿空气出口与所述交替式吸湿解吸系统吸湿侧连通。Further, the drying system includes a drying box and a material rack, and the drying box is provided with a material tray installed on the material rack; the upper end surface of the drying box is inclined and provided with The glass cover plate is provided with a sink under the lower side of the glass cover plate, and the outlet of the sink tank is connected to a fresh water collection bottle; the drying box is located under the higher side of the glass cover plate with a wet an air outlet, the moist air outlet communicates with the hygroscopic side of the alternate hygroscopic desorption system.
进一步的,所述物料架的下方设有导气器,所述导气器与所述第二供热系统出风口连接。Further, an air guide is arranged below the material rack, and the air guide is connected to the air outlet of the second heating system.
进一步的,所述交替式吸湿解吸系统包括第一吸附床、第二吸附床、第一电动流道交换器及第二电动流道交换器,所述第一吸附床及第二吸附床的进口端分别通过第一电动流道交换器与所述湿空气出口及第一供热系统出风口连接;所述第一吸附床及第二吸附床的出口端分别通过第二电动流道交换器与所述强制液冷系统进风口及第二供热系统进风口连接。Further, the alternating moisture absorption and desorption system includes a first adsorption bed, a second adsorption bed, a first electric flow channel exchanger and a second electric flow channel exchanger, and the inlets of the first adsorption bed and the second adsorption bed are The ends are respectively connected with the wet air outlet and the air outlet of the first heating system through the first electric flow channel exchanger; the outlet ends of the first adsorption bed and the second adsorption bed are respectively connected with the second electric flow channel exchanger through the second electric flow channel exchanger. The air inlet of the forced liquid cooling system is connected with the air inlet of the second heating system.
进一步的,所述强制液冷系统包括蒸汽冷凝单元、管壳式风冷单元、冷却液循环驱动单元及半导体冷却单元。Further, the forced liquid cooling system includes a steam condensing unit, a shell-and-tube air cooling unit, a cooling liquid circulation driving unit and a semiconductor cooling unit.
进一步的,所述蒸汽冷凝单元进风口与所述交替式吸湿解吸系统解吸侧出风口连接,所述蒸汽冷凝单元出风口还与所述第一供热系统的进风口连接;Further, the air inlet of the steam condensing unit is connected with the air outlet on the desorption side of the alternating moisture absorption and desorption system, and the air outlet of the steam condensing unit is also connected with the air inlet of the first heating system;
或者,所述管壳式风冷散热单元包括对流腔,所述对流腔内设有换热管束及竖直设置的折流肋片;所述换热管束延伸至所述蒸汽冷凝单元;所述对流腔的上方另一侧设有风冷单元出风口,所述风冷单元出风口通过三通阀接入所述第一引风风机;Alternatively, the shell-and-tube air-cooled heat dissipation unit includes a convection cavity, and the convection cavity is provided with a heat exchange tube bundle and vertically arranged baffle fins; the heat exchange tube bundle extends to the steam condensation unit; the The upper and other side of the convection cavity is provided with an air outlet of an air-cooling unit, and the air outlet of the air-cooling unit is connected to the first induced draft fan through a three-way valve;
或者,所述冷却液循环驱动单元包括分别与所述换热管束两端连通的半导体冷却仓及转接仓,所述转接仓连通循环水箱,所述循环水箱通过循环泵与所述半导体冷却仓连通;Alternatively, the cooling liquid circulation driving unit includes a semiconductor cooling bin and a transfer bin respectively communicating with both ends of the heat exchange tube bundle, the transfer bin is connected to a circulating water tank, and the circulating water tank is cooled with the semiconductor through a circulating pump warehouse connection;
或者,所述半导体冷却单元包括依次连接的冷却器、半导体制冷片及散热器,所述半导体冷却单元的出风口通过管道与所述第一引风风机连接。Alternatively, the semiconductor cooling unit includes a cooler, a semiconductor cooling sheet and a radiator connected in sequence, and an air outlet of the semiconductor cooling unit is connected to the first induced draft fan through a pipe.
一种基于太阳能的一体式循环干燥取水方法,其特征在于,使用如权利要求2-8任一项所述的基于太阳能的一体式循环干燥取水装置,具体的,包括以下步骤:A solar energy-based integrated cycle drying water intake method, characterized in that, using the solar energy-based integrated cycle drying water intake device according to any one of claims 2-8, specifically, comprising the following steps:
S1:冷空气通过所述第一供热系统及第二供热系统加热;S1: The cold air is heated by the first heating system and the second heating system;
S2:从所述第二供热系统中流出的高温干空气在干燥系统中对物料进行干燥,产生湿空气,大部分湿空气通过湿空气出口排出,一小部分湿空气在干燥系统的顶部玻璃盖板内表面凝结为水滴并流入淡水收集瓶;S2: The high-temperature dry air flowing out of the second heating system dries the material in the drying system to generate moist air, most of the moist air is discharged through the moist air outlet, and a small part of the moist air is in the top glass of the drying system. The inner surface of the cover plate condenses into water droplets and flows into the fresh water collection bottle;
S3:步骤S2排出的湿空气流入所述交替式吸湿解吸系统的吸湿侧,通过交替式吸湿解吸系统为湿空气除湿,除湿后的气体重新进入第二供热系统完成下一次干燥脱水循环;S3: the moist air discharged in step S2 flows into the moisture absorption side of the alternating moisture absorption and desorption system, dehumidifies the humid air through the alternating moisture absorption and desorption system, and the dehumidified gas re-enters the second heating system to complete the next drying and dehydration cycle;
S4:当步骤S3中的交替式吸湿解吸系统吸湿侧达到吸水饱和状态时,原吸湿侧快速切换为新解吸侧,原解吸侧快速切换为新吸湿侧,实现了吸湿过程和解吸过程的连续快速切换及同步运行,第一供热系统中的高温干空气进入交替式吸湿解吸系统的新解吸侧,并对交替式吸湿解吸系统的新解吸侧进行除湿取水;S4: When the moisture absorption side of the alternating moisture absorption and desorption system in step S3 reaches the water absorption saturation state, the original moisture absorption side is quickly switched to the new desorption side, and the original desorption side is rapidly switched to the new moisture absorption side, realizing the continuous and rapid moisture absorption process and desorption process. Switching and synchronous operation, the high-temperature dry air in the first heating system enters the new desorption side of the alternating moisture absorption and desorption system, and dehumidifies and takes water from the new desorption side of the alternating moisture absorption and desorption system;
S5:步骤S4产生的温度较高的湿空气流入强制液冷系统,在强制液冷系统中冷凝后形成淡水;经冷凝除湿后的干燥冷空气再次进入第一供热系统进风口开始下一次循环;当第一供热系统中的风压过高时,多余的干燥冷空气将自动排入大气环境。S5: The humid air with higher temperature generated in step S4 flows into the forced liquid cooling system, and is condensed in the forced liquid cooling system to form fresh water; the dry cold air after condensation and dehumidification enters the air inlet of the first heating system again to start the next cycle ; When the wind pressure in the first heating system is too high, the excess dry cold air will be automatically discharged into the atmosphere.
进一步的,所述第一供热系统及第二供热系统均由真空管式太阳能集热器组成,且所述第一供热系统中的真空管式太阳能集热器数量多于所述第二供热系统中的真空管式太阳能集热器数量。Further, both the first heating system and the second heating system are composed of vacuum tube solar heat collectors, and the number of vacuum tube solar heat collectors in the first heating system is more than that of the second heating system. Number of evacuated tube solar collectors in thermal systems.
与现有技术相比,本发明的有益效果在于:Compared with the prior art, the beneficial effects of the present invention are:
1、本发明示例的基于太阳能的一体式循环干燥取水装置及方法,本装置将对流式干燥、辐射式干燥、吸湿解吸式空气取水技术相结合,并将太阳能集热技术、半导体制冷技术、相变蓄热技术、管壳式风冷设计、电动流道交换设计与太阳能干燥取水技术进行耦合,执行协同运行策略,装置各环节实现了有机结合,可大幅提升太阳能利用率及装置工作效率,并能有效延长装置连续稳定运行的时长;1. The solar energy-based integrated circulating drying water intake device and method exemplified in the present invention combines convection drying, radiation drying, and moisture absorption and desorption air water intake technologies, and combines solar heat collection technology, semiconductor refrigeration technology, and phase Variable heat storage technology, shell-and-tube air-cooling design, electric flow channel exchange design and solar drying water technology are coupled to implement a coordinated operation strategy. The organic combination of each link of the device can greatly improve the utilization rate of solar energy and the working efficiency of the device. It can effectively prolong the continuous and stable operation of the device;
2、本发明示例的基于太阳能的一体式循环干燥取水装置及方法,设计了一种电动流道交换器并提出了一种交替式吸湿解吸方法,相比传统的吸附式取水技术而言,实现了吸附过程与解吸过程的无缝连续切换及同步运行,解决了吸附剂吸水饱和后不吸水的弊端,进而有效提高了太阳能利用率及装置的运行效率;2. The solar energy-based integrated circulating drying water intake device and method exemplified in the present invention designs an electric flow channel exchanger and proposes an alternate moisture absorption and desorption method. Compared with the traditional adsorption water intake technology, the The seamless continuous switching and synchronous operation of the adsorption process and the desorption process solves the drawback that the adsorbent does not absorb water after it is saturated with water, thereby effectively improving the utilization rate of solar energy and the operating efficiency of the device;
3、本发明示例的基于太阳能的一体式循环干燥取水装置及方法,提出了一种双效冷却型强制冷凝机制,利用半导体制冷和管壳式热交换双冷却模式对循环冷却液进行强制冷却,极大地降低了循环冷却液的工作温度,提高了系统的取水量及取水效率;3. The solar-based integrated circulating drying water intake device and method exemplified in the present invention proposes a double-effect cooling forced condensation mechanism, which uses semiconductor refrigeration and shell-and-tube heat exchange double cooling modes to force the circulating cooling liquid to cool, Greatly reduces the working temperature of the circulating coolant, and improves the water intake and water intake efficiency of the system;
4、本发明示例的基于太阳能的一体式循环干燥取水装置及方法,对干燥系统进行了匀/整流设计,大幅提升了干燥系统物料托盘处热气流的通流均匀性,有效降低了热气流在干燥系统中流动时的局部损失,同时也保证了干燥系统中物料的脱水品质,并提高了干燥效率。4. The solar energy-based integrated circulating drying water intake device and method exemplified in the present invention has a uniform/rectified design for the drying system, which greatly improves the uniformity of hot air flow at the material tray of the drying system, and effectively reduces the amount of hot air in the drying system. The local loss during the flow in the drying system also ensures the dehydration quality of the materials in the drying system and improves the drying efficiency.
附图说明Description of drawings
通过阅读参照以下附图所作的对非限制性实施例所作的详细描述,本申请的其它特征、目的和优点将会变得更明显:Other features, objects and advantages of the present application will become more apparent by reading the detailed description of non-limiting embodiments made with reference to the following drawings:
图1为本发明结构示意图;Fig. 1 is the structural representation of the present invention;
图2为本发明储热套件结构示意图;2 is a schematic structural diagram of a heat storage kit of the present invention;
图3为本发明汇流腔结构示意图;FIG. 3 is a schematic view of the structure of the confluence chamber of the present invention;
图4为本发明干燥系统结构示意图;FIG. 4 is a schematic structural diagram of the drying system of the present invention;
图5为本发明导气器结构示意图;5 is a schematic structural diagram of an air guide according to the present invention;
图6为本发明交替式吸湿解吸系统结构示意图;FIG. 6 is a schematic structural diagram of the alternating moisture absorption and desorption system of the present invention;
图7为本发明第一、第二吸附床内部结构示意图;7 is a schematic diagram of the internal structure of the first and second adsorption beds of the present invention;
图8为本发明第一、第二电动流道交换器结构示意图;8 is a schematic structural diagram of the first and second electric flow channel exchangers of the present invention;
图9为本发明强制液冷系统后视图;9 is a rear view of the forced liquid cooling system of the present invention;
图10为本发明强制液冷系统内部结构示意图;10 is a schematic diagram of the internal structure of the forced liquid cooling system of the present invention;
图11为本发明半导体散热单元结构示意图。FIG. 11 is a schematic diagram of the structure of the semiconductor heat dissipation unit of the present invention.
图中:1-太阳能供热系统,1-1-第一供热系统,1-2-第二供热系统,101-真空集热管,102-汇流腔,103-固定管,104-固定支架,105-法兰,106-储热套件,107-铜管,108-套筒,109-丁字形肋片,110-直板型肋片,111-外腔,112-内腔,113-内腔螺纹孔,114-真空管连接孔,2-干燥系统,201-干燥箱,202-物料架,203-物料托盘,204-导气器,205-湿空气出口,206-玻璃盖板,207-汇水槽,208-淡水收集瓶,209-整流栅格,210-进风匀气器,211-进风管道,3-交替式吸湿解吸系统,3-1-第一吸附床,3-2-第二吸附床,3-3-第一电动流道交换器,3-4-第二电动流道交换器,301-渐扩型整流腔,302-反应发生腔,303-出口汇流腔,304-正弦波式吸附板,305-电动转子,306-外部定子,307-直流流道,308-交叉流道,4-强制液冷系统,401-蒸汽冷凝仓,402-过滤器,403-接水槽,404-淡水收集器,405-干燥冷空气出口,406-第一引风风机,407-第二引风风机,408-对流腔,409-换热管束,410-折流肋片,411-转接仓,412-半导体冷却仓,413-循环水箱,414-单向阀,415-冷却器,416-半导体制冷片,417-散热器,418-高温热空气进口,419-风冷单元进风口,5-供电系统。In the figure: 1-solar heating system, 1-1-first heating system, 1-2-second heating system, 101-vacuum collector tube, 102-collection cavity, 103-fixed tube, 104-fixed bracket , 105-flange, 106-heat storage kit, 107-copper tube, 108-sleeve, 109-T-shaped rib, 110-straight plate fin, 111-outer cavity, 112-inner cavity, 113-inner cavity Threaded hole, 114-Vacuum tube connection hole, 2-Drying system, 201-Drying box, 202-Material rack, 203-Material tray, 204-Air guide, 205-Wet air outlet, 206-Glass cover plate, 207-Sink Water tank, 208-fresh water collection bottle, 209-rectification grid, 210-air inlet air conditioner, 211-air inlet pipe, 3-alternating moisture absorption and desorption system, 3-1-first adsorption bed, 3-2-first Two adsorption beds, 3-3-first electric flow channel exchanger, 3-4-second electric flow channel exchanger, 301-expanded rectifier cavity, 302-reaction generation cavity, 303-exit confluence cavity, 304- Sine wave adsorption plate, 305-electric rotor, 306-external stator, 307-DC flow channel, 308-cross flow channel, 4-forced liquid cooling system, 401-steam condensation tank, 402-filter, 403-water receiving tank , 404-fresh water collector, 405-dry cold air outlet, 406-first draft fan, 407-second draft fan, 408-convection cavity, 409-heat exchange tube bundle, 410-baffle fin, 411- Adapter compartment, 412-semiconductor cooling compartment, 413-circulating water tank, 414-check valve, 415-cooler, 416-semiconductor refrigeration sheet, 417-radiator, 418-high temperature hot air inlet, 419-air cooling unit inlet Air outlet, 5-power supply system.
具体实施方式Detailed ways
下面结合附图和实施例对本申请作进一步的详细说明。可以理解的是,此处所描述的具体实施例仅仅用于解释相关发明,而非对该发明的限定。另外还需要说明的是,为了便于描述,附图中仅示出了与发明相关的部分。The present application will be further described in detail below with reference to the accompanying drawings and embodiments. It should be understood that the specific embodiments described herein are only used to explain the related invention, but not to limit the invention. In addition, it should be noted that, for the convenience of description, only the parts related to the invention are shown in the drawings.
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本申请。It should be noted that the embodiments in the present application and the features of the embodiments may be combined with each other in the case of no conflict. The present application will be described in detail below with reference to the accompanying drawings and in conjunction with the embodiments.
如图1所示,本实施例提供了一种基于太阳能的一体式循环干燥取水装置,包括太阳能供热系统1、干燥系统2、交替式吸湿解吸系统3、强制液冷系统4及供电系统5,具体的:As shown in FIG. 1 , this embodiment provides a solar-based integrated circulating drying and water intake device, including a solar heating system 1 , a
所述太阳能供热系统1为真空管式太阳能供热系统1,由两套子系统构成,即第一供热系统1-1及第二供热系统1-2。The solar heating system 1 is a vacuum tube solar heating system 1, which is composed of two subsystems, namely a first heating system 1-1 and a second heating system 1-2.
其中,第二供热系统1-2与干燥系统2连接,本实施例中,第一供热系统1-2由两台真空管式太阳能集热器串联而成,且在热风出口处装有一台轴流式引风风机,第二供热系统1-2为干燥系统2持续提供热风。第一供热系统1-1出风口与交替式吸湿解吸系统3的解吸侧进风口连接,本实施例中,第一供热系统1-1由三台真空管式太阳能集热器串联而成,且在出风口处也安装有一台轴流式引风风机,第一供热系统1-1可将交替式吸湿解吸系统3解吸侧吸附的水分进行加热解吸,并将解吸后的湿热空气送入强制液冷系统4中进行冷凝取水。The second heating system 1-2 is connected to the
本实施例中,真空管式太阳能集热器主体部分由7根真空集热管101、汇流腔102、固定支架104、固定管103、法兰105及管内储热套件106组成。In this embodiment, the main body of the vacuum tube solar collector is composed of seven
真空集热管101的内径为58mm、长度为1.5m,真空集热管101内置一根外径为50mm、长度为1.4m的储热套件106。The inner diameter of the vacuum
如图2所示,所述储热套件106包括内外同心设置的铜管107及套筒108,所述套筒108的外壁面处均匀分布了6个丁字形肋片109;所述套筒108的内侧设有直板型肋片110。具体的,加工时,先将一根长度为1.5m、外径为22mm、壁厚为2mm的铜管107的一端车出10mm长的螺纹,然后同轴心插入长度为1.4m、内径为38mm的铜制套筒108内部,套筒108上端出口处铜管107伸出10cm,套筒108下端与铜管107平齐;套筒108两端用外径为42mm、内径为22mm、厚度为2mm的圆环型铜盖封口,铜盖与套筒108或铜管107接触部分用气焊进行焊接;焊接完成后,在铜盖靠近边缘位置开设一处直径为5mm的螺纹孔,然后将处于熔融状态的低温相变储热材料经由螺纹孔注入;相变材料注入完毕后,采用密封堵头进行封堵。套筒108外侧及铜管107内侧的强化换热肋片,可用气焊焊接方式或直接铸造成型方式进行定位。套筒108外侧壁面处的丁字形肋片109比套筒108长5cm,上端与套筒108平齐,下端超出部分插入固定管103内的定位孔中;铜管107内侧也设有6个直板型肋片110,套件内外两侧的强化传热肋片均绕轴线等弧度一一对应。As shown in FIG. 2 , the
如图3所示,所述汇流腔102整体为圆柱形,分为内外两层,均为铝合金材质。内腔112一端开口,一端封闭,其过轴线的半剖面为U字型,在其侧下方等间距开设7个内腔螺纹孔113,用于连接铜管107;开口端与法兰105内端面用钨极氩弧焊焊接。外腔111两端均开口,与内腔112同轴安装在法兰105端面处,两端与法兰105端面均用钨极氩弧焊焊接,在外腔111侧下方,正对内腔螺纹孔113处,开设7个直径略大于真空管外径的真空管连接孔114并安装密封硅胶垫。As shown in FIG. 3 , the
整体装配真空管集热器时,先将7根储热套件106车有螺纹的一端穿过外腔111的真空管连接孔114,拧进内腔螺纹孔113;然后将真空集热管101依次套进储热套件106,并依次将真空管上端伸入外腔111的真空管连接孔114,随后将真空集热管101的下端安装进固定管103相应的定位孔中。两侧法兰105中心圆孔的直径与内腔112的内径相同。When assembling the vacuum tube heat collector as a whole, first pass the threaded end of the seven
所述干燥系统2为双效混合式干燥系统2。如图4所示,所述干燥系统2包括物料托盘203、物料架202、导气器204、玻璃盖板206、汇水槽207、淡水收集瓶208及用于承载上述部件的干燥箱201。The
本实施例中,干燥箱201侧方位投影为梯形,由铝合金制成,维护结构外表面紧密包裹了保温性能优良的聚苯乙烯泡沫板,安装使用时,干燥箱201较矮的一侧朝南安装。箱体上端面的向阳面覆盖一块具有高透光率的玻璃盖板206,玻璃盖板采光面朝南。箱体内部,三层物料托盘203等间距安装在特制物料架202上,每层物料托盘203均由1mm厚的不锈钢板一次冲压成型,面向箱体北侧方向的托盘侧面均安装有推拉把手。物料架202靠南一侧,设置了具有微小倾角的汇水槽207,用于收集玻璃盖板206处凝结的液滴;汇水槽207出口处通过特制细管连接淡水收集瓶208,滴入汇水槽207中的液滴将在重力作用下流入淡水收集瓶208中。湿空气出口205设置在干燥箱201北部侧面的上端位置。In this embodiment, the side projection of the
根据主要干燥物料的外观形状和尺寸分布,在物料托盘203底板上均匀布置若干密集通气孔。装置运行过程中,为避免干燥对象堵塞通气孔,进而导致出现干燥不均现象,可在通气孔周围用压模机均匀压制出若干凸起。According to the appearance, shape and size distribution of the main drying materials, several dense ventilation holes are evenly arranged on the bottom plate of the
如图5所示,导气器204主要由整流栅格209、进风匀气器210和进风管道211组成,安装在干燥箱201底部,整流栅格209出口正对物料托盘203。进风匀气器210整体为渐扩型热风通道,为保证热风均匀流入整流栅格209,在匀气器腔体内部装有若干匀流导气肋片,进风匀气器210出口端与整流栅格209底部进风端连通,进风匀气器210进口端与第二供热系统1-2出风口通过进风管道211可拆卸式密封连接。As shown in FIG. 5 , the
如图6所示,所述交替式吸湿解吸系统3包括并排设置的第一吸附床3-1、第二吸附床3-2及第一电动流道交换器3-3、第二电动流道交换器3-4,两吸附床进出口处均通过管道接入对应的电动流道交换器接口,接口处采用螺纹连接。所述第一吸附床3-1及第二吸附床3-2的进口端分别通过第一电动流道交换器3-3与所述湿空气出口205及第一供热系统1-1出风口以可连续切换连通口方式连接;所述第一吸附床3-1及第二吸附床3-2的出口端分别通过第二电动流道交换器3-4与所述强制液冷系统4的进风口及第二供热系统1-2的进风口以可连续切换连通口方式连接。As shown in FIG. 6 , the alternating moisture absorption and desorption system 3 includes a first adsorption bed 3-1, a second adsorption bed 3-2, a first electric flow channel exchanger 3-3, a second electric flow channel arranged side by side For exchangers 3-4, the inlet and outlet of the two adsorption beds are connected to the corresponding interface of the electric flow channel exchanger through the pipeline, and the interface is connected by a thread. The inlet ends of the first adsorption bed 3-1 and the second adsorption bed 3-2 pass through the first electric flow channel exchanger 3-3, the
如图7所示,吸附床由渐扩型整流腔301、反应发生腔302及出口汇流腔303三部分组成。根据腔体结构和尺寸,渐扩型整流腔301内部安装有特制的多通道渐扩整流栅格,栅格用铝合金材料制作而成;渐扩型整流腔301出口端连接反应发生腔302进口,反应发生腔302内横向装有特制的正弦波式吸附板304,吸附板的主要成分为聚丙烯酸钠纤维,纤维直径约为30μm,15秒左右吸收的水分质量为其自身质量的70~100倍,极限氧指数(LOI)为10,且具有良好的阻燃性;反应发生腔302出口端连接出口汇流腔303,其整体外形为四棱锥体,腔体维护结构材料宜为铝合金。As shown in FIG. 7 , the adsorption bed is composed of three parts: a gradually expanding
如图8所示,所述电动流道交换器包括电动转子305及外部定子306。电动转子305呈圆柱形,内设两条直流流道307及两条交叉流道308,各流道直径相同。两条直流流道307的中心线关于转子中心线呈轴对称分布,两条交叉流道308的中心线关于转子中心线呈中心对称分布,各流道在两端面对应的圆形接口绕端面圆心按等半径、等弧度形式分布。转子靠近吸附床的一端称为内端面,另一端称为外端面,外端面圆心处开设有一个可安装平键的圆孔,用于连接电机转轴。电动转子305由3D打印机打印而成,其主要材料是由高分子材料组成的胶状光敏树脂。外部定子306整体形状为一带法兰的套筒,法兰与套筒采用螺纹连接。外部定子306内外两端面各开设有与电动转子305流道直径相同的两个螺纹孔,用于连接管道,两螺纹孔关于端面圆心对称,且螺纹中心距与内部流道端面圆孔的中心距相同,可精准确保转子流道和对应螺纹孔之间形成流畅的气流通路。定子外端面圆心位置开设一圆孔,圆孔内嵌滚子轴承,轴承内径与转子外端面中心孔直径相同。As shown in FIG. 8 , the electric flow channel exchanger includes an
如图9所示,所述强制液冷系统4为双效冷却型强制液冷系统4,包括半导体冷却单元、管壳式风冷单元、冷却液循环驱动单元及蒸汽冷凝单元及承载各单元的箱体。As shown in FIG. 9 , the forced liquid cooling system 4 is a double-effect cooling type forced liquid cooling system 4, including a semiconductor cooling unit, a shell-and-tube air cooling unit, a cooling liquid circulation driving unit, a steam condensation unit, and a box.
如图10所示,所述蒸汽冷凝单元与所述交替式吸湿解吸系统3的出风口连接,所述蒸汽冷凝单元包括高温热空气进口418及蒸汽冷凝仓401,所述蒸汽冷凝仓401内设有过滤器402,所述过滤器402的下方设有接水槽403,所述接水槽403下方设有淡水收集器404;所述蒸汽冷凝仓401体壁上设有位于所述过滤器402上方的干燥冷空气出口405,所述干燥冷空气出口405通过电动三通阀分别接入第一引风风机406出口端的三通阀和第二引风风机407的进口端;所述第一引风风机406出口端的三通阀通过管道与所述第一供热系统1-1的进口端连接,所述第二引风风机407出口接入大气环境。As shown in FIG. 10 , the steam condensing unit is connected to the air outlet of the alternating moisture absorption and desorption system 3 , and the steam condensing unit includes a high-temperature
本实施例中,高温热空气进口418与所述交替式吸湿解吸系统3的出风口连接,管道呈渐扩形,下端连接蒸汽冷凝仓401,出口正对换热管束409,管道与箱体间固定式连接;过滤器402由五层平板陶瓷膜组成,五层平板陶瓷膜平行安装于箱体内部设定的卡槽中;干燥冷空气出口405略高于过滤器402,出口处安装有平板型疏水陶瓷膜;接水槽403位于过滤器402下方,整体呈倒三角型,底部连接淡水收集器404。干燥冷空气出口405通过电动三通阀分别接入第一引风风机406出口端的三通阀和第二引风风机407的进口端;第一引风风机406出口端的三通阀通过管道接入第一供热系统1-1的进口端;第二引风风机407出口接入大气环境。In this embodiment, the high-temperature
所述管壳式风冷单元包括对流腔408,所述对流腔408的上方一侧设有风冷单元进风口419,所述对流腔408内设有换热管束409及竖直设置的折流肋片410,所述折流肋片410设有多块并分别与所述对流腔408的顶部、底部交替连接;所述换热管束409延伸至所述蒸汽冷凝单元;所述对流腔408的上方另一侧设有风冷单元出风口,所述风冷单元出风口通过三通阀接入所述第一引风风机406进口。The shell-and-tube air-cooling unit includes a
本实施例中,风冷单元进风口呈渐扩形,设置在对流腔408顶部,进风口正对换热管束409最左侧;折流肋片410共五块,肋片的前后向长度与箱体的前后向宽度相同,上下向宽度略小于对流腔408高度,分别上下交替式安装于对流腔408顶部和底部位置指定的卡槽中,顶部位置设置三块、底部位置设置两块,均由铝合金材料制成,相邻肋片的间距约为10cm,肋片安装完毕后,将箱体放置于激光切割台处,然后用激光切割机在箱体左壁上侧位置从左至右均匀开设11组定位孔,激光束依次穿过箱体左侧壁面、折流肋片410、箱体内中间挡板及箱体右侧壁面,从而形成整齐的定位孔束,定位孔直径均为17mm;换热管束409由11根铜制换热管组成,其长度与箱体的左右向长度相同,壁厚为1mm;散热单元安装前,将11根换热管分别从箱体右侧壁面定位孔插入,穿过中间隔板定位孔,然后使管束中各铜管107两端面与箱体左右壁平齐,端面连接处焊接固定并均匀涂抹耐高温防水材料;出风口位于对流腔408顶部右侧位置,通过三通阀接入第一引风风机406。In this embodiment, the air inlet of the air-cooling unit is in a gradually expanding shape and is arranged on the top of the
所述冷却液循环驱动单元包括分别与所述换热管束409两端连通的半导体冷却仓412及转接仓411,所述转接仓411连接循环水箱413,所述循环水箱413通过循环泵与所述半导体冷却仓412连通。The cooling liquid circulation driving unit includes a
本实施例中,转接仓411设置在箱体左侧壁面顶部位置,转接仓411右侧端面的安装孔将11个定位孔完全覆盖,连接处焊接固定并做防水处理;转接仓411下端开孔,并通过管道可拆卸式连接至循环水箱413进水口;循环水箱413位于箱体左下方,出口处通过管道可拆卸式连接至循环泵轴向进口端,循环泵选用标准的304不锈钢离心式循环泵,型号为25WBS2-8,功率为250W,最大扬程为10m,可应用于酸碱性工作环境;循环泵径向出口端连接单向阀414,然后经管道接入半导体冷却仓412下方的进口处;半导体冷却仓412设置在箱体右侧壁面顶部位置,半导体冷却仓412左侧端面安装孔将定位孔完全覆盖,连接处焊接固定,并做防水处理;为适应冬季低温环境,该系统所用的循环冷却液可选为防冻液。In this embodiment, the adapter box 411 is set at the top of the left side wall of the box body, the installation holes on the right end face of the adapter box 411 completely cover the 11 positioning holes, and the joints are welded and fixed and waterproofed; the adapter box 411 The lower end has a hole and is detachably connected to the water inlet of the circulating water tank 413 through a pipe; the circulating water tank 413 is located at the lower left of the box, and the outlet is detachably connected to the axial inlet end of the circulating pump through a pipe, and the circulating pump is made of standard 304 stainless steel Centrifugal circulating pump, the model is 25WBS2-8, the power is 250W, the maximum lift is 10m, and it can be used in acid-base working environment; the radial outlet of the circulating pump is connected to the check valve 414, and then connected to the semiconductor cooling bin 412 The entrance below; the semiconductor cooling bin 412 is set at the top of the right side wall of the box body, the mounting hole on the left end face of the semiconductor cooling bin 412 completely covers the positioning hole, the connection is welded and fixed, and waterproof treatment; in order to adapt to the low temperature environment in winter, The circulating coolant used in this system can optionally be antifreeze.
如图11所示,所述半导体冷却单元包括冷却器415、半导体制冷片416及散热器417,所述半导体冷却单元的出风口通过管道与所述第一引风风机406连接。为降低半导体冷却单元的加工与安装难度,本实施例中,冷却器415和散热器417均选用统一规格的通用散热块,材质为6063铝材,长150mm、宽100mm、高36mm、齿厚0.8mm、齿间距2.93mm、底厚2mm;半导体制冷片416的外形尺寸为130mm×80mm×3.6mm,额定电压为12V,最大工作电流为10A,最大功率为120W;引风风道的外形尺寸为150mm×100mm×39mm,壁厚为1.5mm,材质为铝合金,侧面用激光切割机开设尺寸为130mm×80mm的安装孔;出风口连接渐扩型汇气管道,连接处用氩弧焊焊接;安装时,将导热硅胶均匀涂抹在冷却器415和散热器417的接触面处,将其分别粘贴在半导体制冷片416的冷却侧和散热侧,冷却器415齿片按上下向安装、散热器417齿片按前后向安装,然后用热风对导热硅胶进行干燥。干燥完毕后,将粘接好的液冷模块的散热侧伸入引风风道安装孔,当散热器417齿端面与引风风道安装孔端面充分贴合时,在接触线处用氩弧焊焊接;此过程安装完成后,将冷却侧伸入箱体左侧壁面的半导体冷却仓412,接触面也用氩弧焊焊接;考虑到半导体冷却仓412内的流动工质为液体,因此,为防止泄露,在焊接处涂抹一层防水胶;为避免各接触面连接不牢而出现脱落现象,在半导体散热单元安装完成后,在其底部加装一直角型托架,托架上端与散热单元紧密接触,左端固定在箱体右侧壁面处。As shown in FIG. 11 , the semiconductor cooling unit includes a cooler 415 , a
供电系统5为光伏供电系统5,为整个装置供电。The
基于太阳能的一体式循环干燥取水的方法,包括以下步骤:The solar energy-based integrated circulating drying water extraction method includes the following steps:
S1:冷空气通过所述第一供热系统1-1及第二供热系统1-2加热;S1: The cold air is heated by the first heating system 1-1 and the second heating system 1-2;
S2:从所述第二供热系统1-2中流出的高温干空气在干燥系统2中对物料进行干燥,产生湿空气,大部分湿空气通过湿空气出口205排出,一小部分湿空气在干燥系统2顶部玻璃盖板内表面凝结为水滴并流入淡水收瓶集208;S2: The high-temperature dry air flowing out of the second heating system 1-2 dries the material in the
S3:步骤S2排出的湿空气流入所述交替式吸湿解吸系统3的吸湿侧,通过交替式吸湿解吸系统3为湿空气除湿,除湿后的空气重新进入第二供热系统1-2完成下一次干燥脱水循环;S3: The moist air discharged in step S2 flows into the moisture absorption side of the alternating moisture absorption and desorption system 3, dehumidifies the humid air through the alternating moisture absorption and desorption system 3, and the dehumidified air re-enters the second heating system 1-2 to complete the next time Drying and dehydration cycle;
S4:当步骤S3中的交替式吸湿解吸系统3吸湿侧达到吸水饱和状态时,原吸湿侧快速切换为新解吸侧,原解吸侧快速切换为新吸湿侧,实现了吸湿过程和解吸过程的连续快速切换及同步运行,进而第一供热系统1-1中的高温干空气进入交替式吸湿解吸系统3的新解吸侧,并对交替式吸湿解吸系统3的新解吸侧进行除湿取水;S4: When the moisture absorption side of the alternating moisture absorption and desorption system 3 in step S3 reaches the water saturation state, the original moisture absorption side is quickly switched to the new desorption side, and the original desorption side is rapidly switched to the new moisture absorption side, realizing the continuity of the moisture absorption process and the desorption process. Fast switching and synchronous operation, and then the high-temperature dry air in the first heating system 1-1 enters the new desorption side of the alternate moisture absorption and desorption system 3, and dehumidifies and takes water from the new desorption side of the alternate moisture absorption and desorption system 3;
S5:步骤S4产生的温度较高的湿空气气流流入强制液冷系统4,在强制液冷系统4中冷凝后形成淡水;经冷凝除湿后的干燥冷空气再次进入第一供热系统1-2进风口开始下一次循环;当第一供热系统1-1中的风压过高时,多余的干燥冷空气将自动排入大气环境。S5: The high-temperature humid air flow generated in step S4 flows into the forced liquid cooling system 4, and is condensed in the forced liquid cooling system 4 to form fresh water; the dry cold air after condensation and dehumidification enters the first heating system 1-2 again The air inlet starts the next cycle; when the air pressure in the first heating system 1-1 is too high, the excess dry cold air will be automatically discharged into the atmospheric environment.
具体的:specific:
带相变蓄热的太阳能供热系统1的供热方法为:The heating method of the solar heating system 1 with phase change heat storage is:
系统运行时,常温空气首先从内腔112开口端进入,然后通过内腔112侧下方七个并排的螺纹孔流入储热套件106中的铜管107内部,低温相变储热材料通过铜管107壁及其内部的直板型强化换热肋片对流入的常温空气进行初级预热;预热后的气流在铜管107底部发生180°转向流动,然后沿套筒108外侧流出真空集热管101,在此过程中,气流直接外掠真空集热管101内壁,吸收大量辐射热后,温度快速升高并超过相变材料层的温度,进而将一部分热量通过套筒108壁和丁字形肋片109传递至低温相变储热材料;从各真空集热管流出的热空气,在外腔111中汇流,通过法兰105中心孔流入下一级集热器再升温。为降低热气流在外腔111中的热损失,在外腔111外表面设置有保温层。当装置在夜间运行时,储热套件106内的低温相变储热材料开始向外放热,进而为系统提供运行能源。When the system is running, the normal temperature air first enters from the open end of the
双效混合式干燥系统2的干燥方法为:The drying method of the double-effect
干燥系统2中的对流式干燥为第一效,原理是:从第二供热系统1-2流出的高温干空气首先从干燥箱201下方的进风口进入进风匀气器210,在导气器204的匀流作用下,均匀流入整流栅格209,经整流栅格209整流后的高温干空气均匀通过三层物料托盘203上的通气孔对干燥物料直接进行对流式干燥;此过程中,干燥物料所含水分源源不断的透过表皮与高温空气掺混形成湿空气,最后从箱体背板上方的湿空气出口205流出。第二效为辐射式干燥,太阳光线透过玻璃盖板206以闷晒方式直接干燥物料,进一步提升了干燥箱201内部的温度,加速了干燥物料内部水分的蒸发速度。箱体内部产生的大部分水蒸气将与热空气充分对流掺混形成湿空气,并从湿空气出口205流出,少部分水蒸气会在玻璃盖板206内侧壁面处发生凝结,再在重力作用下滚落至汇水槽207处,最后流入淡水收集瓶208。The convective drying in the
交替式吸湿解吸系统3的吸湿解吸方法为:The moisture absorption and desorption method of the alternating moisture absorption and desorption system 3 is:
系统启动初期,系统的气流通道为直流流道307;从干燥箱201湿空气出口205流出的湿空气首先通过第一电动流道交换器3-3进入其中一台吸附床(原吸附床),湿空气在渐扩型整流腔301的整流作用下,均匀流入反应发生腔302;由于腔体及栅格均为渐扩型,故产生的局部损失很小;当湿空气进入反应发生腔302后,在正弦波式吸附板304的导流及扰流作用下,湿空气气流在吸附板304表面形成的热边界层和速度边界层均被破坏,进而湿空气与吸附板304表面可实现充分接触,在聚丙烯酸钠纤维高强度的吸湿作用下,湿空气中携带的水分将被吸附板304充分吸附,此过程可对干燥箱流出的湿空气进行彻底除湿;经除湿后的干空气在出口汇流腔303内汇集,然后通过第二电动流道交换器3-4流入第二供热系统1-2,进而开始下一次干燥-除湿循环。当吸附板304达到吸水饱和状态时,电动流道交换器将气流流道自动切换至交叉流道308,即原吸附侧切换为新解吸侧,另一台吸附床切换为新吸附侧。来自第一供热系统1-2的高温干空气经第一电动流道交换器3-3流入新解吸侧吸附床,由于第一供热系统1-1相比于第二供热系统1-2多一台集热器,因此由第一供热系统1-1输出的热空气温度高于干燥系统2输出湿空气的温度;高温干空气与新解吸侧吸附板充分接触,加热吸附板并使吸附的水分快速蒸发,进而与干空气掺混,形成湿空气气流;温度较高的湿空气气流经出口端的第二电动流道交换器3-4流入强制液冷系统4。此后,吸附过程与解吸过程同步进行,当吸附侧达到吸水饱和状态时,自动将原吸附侧切换为新解吸侧,同时将原解吸侧切换为新吸附侧。In the initial stage of system startup, the air flow channel of the system is a direct flow channel 307; the humid air flowing out from the humid air outlet 205 of the drying box 201 first enters one of the adsorption beds (original adsorption bed) through the first electric flow channel exchanger 3-3, The moist air flows into the reaction generating chamber 302 evenly under the rectification effect of the gradually expanding rectifying cavity 301 ; since the cavity and the grid are both gradually expanding, the local loss generated is very small; when the moist air enters the reaction generating chamber 302 , under the action of the diversion and turbulence of the sine wave adsorption plate 304, the thermal boundary layer and the velocity boundary layer formed by the moist air flow on the surface of the adsorption plate 304 are destroyed, and the moist air and the surface of the adsorption plate 304 can be fully contacted , under the high-strength hygroscopic effect of sodium polyacrylate fiber, the moisture carried in the moist air will be fully absorbed by the adsorption plate 304, and this process can thoroughly dehumidify the moist air flowing out of the drying box; the dehumidified dry air will converge at the outlet Collected in the cavity 303, and then flows into the second heating system 1-2 through the second electric flow channel exchanger 3-4, and then starts the next drying-dehumidifying cycle. When the
双效冷却型强制液冷系统4的冷凝方法为:The condensation method of the double-effect cooling type forced liquid cooling system 4 is:
装置运行时,循环泵驱动冷却液开始循环。交替式吸湿解吸系统解吸侧中流出的高温湿空气首先通过箱体上方的高温湿空气进口管道流入蒸汽冷凝仓401,然后通过管壁与换热管束409中的循环冷却液进行对流换热,进而使气流中的水蒸气冷凝并形成液滴;液滴在重力作用下滴入过滤器402,过滤器402可有效拦截气流中微量的杂质和细小颗粒;经过滤器402过滤后的纯净水流入接水槽403,最后进入淡水收集器404。经冷凝除湿后的干燥冷空气经由出口流入第一引风风机406出口处的三通阀,然后流入第一供热系统1-1的进风口,并开始下一次循环;干燥冷空气出口405处的平板型疏水陶瓷膜能够阻挡细小液滴泄漏,只有空气和少量水蒸气可以通过,进一步提升了系统的产水效率;当第一供热系统1-1中的风压过高时,多余干燥冷空气将在电动三通阀的调控下经第二引风风机407排入大气环境。When the device is running, the circulating pump drives the coolant to start circulating. The high-temperature humid air flowing out from the desorption side of the alternating moisture absorption and desorption system first flows into the
半导体制冷片416接通直流电后,半导体制冷片416通过其左侧的冷却器415,吸收循环冷却液中的热量,进而对冷却液进行第一效冷却;在第一引风风机406的抽吸作用下,大气环境中的常温空气分别流入散热侧风道及箱体上方的风冷单元进风口,在风道中,冷空气与散热器417中的强制换热肋片及管壁发生对流换热,进而带走制冷片的热产;冷空气进入对流腔408后,在折流肋片410的作用下与换热管束409内的冷却液发生对流换热,进而实现第二效冷却,然后与半导体冷却单元流出的空气发生汇流,最终流入第一供热系统1-1的进风口。After the
本领域技术人员应当理解,本申请中所涉及的发明范围,并不限于上述技术特征的特定组合而成的技术方案,同时也应涵盖在不脱离所述发明构思的情况下,由上述技术特征或其等同特征进行任意组合而形成的其它技术方案。例如上述特征与本申请中公开的(但不限于)具有类似功能的技术特征进行互相替换而形成的技术方案。Those skilled in the art should understand that the scope of the invention involved in this application is not limited to the technical solution formed by the specific combination of the above-mentioned technical features, and should also cover the above-mentioned technical features without departing from the inventive concept. Other technical solutions formed by any combination of its equivalent features. For example, a technical solution is formed by replacing the above-mentioned features with the technical features disclosed in this application (but not limited to) with similar functions.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111612912.0A CN114322330B (en) | 2021-12-27 | 2021-12-27 | A solar energy-based integrated circulation drying water intake device and method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111612912.0A CN114322330B (en) | 2021-12-27 | 2021-12-27 | A solar energy-based integrated circulation drying water intake device and method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114322330A true CN114322330A (en) | 2022-04-12 |
CN114322330B CN114322330B (en) | 2023-08-29 |
Family
ID=81012677
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202111612912.0A Active CN114322330B (en) | 2021-12-27 | 2021-12-27 | A solar energy-based integrated circulation drying water intake device and method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114322330B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115060088A (en) * | 2022-06-30 | 2022-09-16 | 南华大学 | Air catchment system and water catchment method |
Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1844772A (en) * | 2006-04-29 | 2006-10-11 | 叶立英 | Air conditioning system capable of comprehensively utilizing solar energy and low-grade energy |
EP1936300A1 (en) * | 2006-12-20 | 2008-06-25 | Ayman Adnan Salim Al-Maaitah | Water generation from air utilizing solar energy and adsorption refrigeration unit |
US20120156580A1 (en) * | 2010-12-15 | 2012-06-21 | The Boeing Company | Water Harvesting System |
CN104563210A (en) * | 2014-12-24 | 2015-04-29 | 中国人民解放军理工大学 | Energy-saving device for extracting water from air |
CN104594448A (en) * | 2014-12-24 | 2015-05-06 | 中国人民解放军理工大学 | Solar air water taking system |
CN104789711A (en) * | 2015-04-03 | 2015-07-22 | 成都力鑫科技有限公司 | Double-side air blowing type leather processing equipment |
CN106564979A (en) * | 2015-10-08 | 2017-04-19 | 中国科学院大连化学物理研究所 | Integrated refrigeration, dehumidification and pure water preparation system using solar energy or low-temperature heat source |
CN208579584U (en) * | 2018-06-25 | 2019-03-05 | 陕西科技大学 | A solar-heat pump combined drying device with energy storage |
CN109539437A (en) * | 2018-11-08 | 2019-03-29 | 上海交通大学 | The independent temperature-humidity control solar energy of open type directly drives air-conditioning system and its working method |
CN111595059A (en) * | 2019-02-21 | 2020-08-28 | 佛山市顺德区美的饮水机制造有限公司 | Circulating liquid refrigerating system and refrigerating equipment |
CN112344658A (en) * | 2020-11-27 | 2021-02-09 | 内蒙古工业大学 | Novel efficient solar dryer |
CN214625890U (en) * | 2020-11-16 | 2021-11-05 | 泗阳中恒电力科技有限公司 | A power distribution box with a heat dissipation structure |
CN113605494A (en) * | 2021-08-26 | 2021-11-05 | 浙江理工大学 | Solar regenerative adsorption air water intake device and method of using the same |
-
2021
- 2021-12-27 CN CN202111612912.0A patent/CN114322330B/en active Active
Patent Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1844772A (en) * | 2006-04-29 | 2006-10-11 | 叶立英 | Air conditioning system capable of comprehensively utilizing solar energy and low-grade energy |
EP1936300A1 (en) * | 2006-12-20 | 2008-06-25 | Ayman Adnan Salim Al-Maaitah | Water generation from air utilizing solar energy and adsorption refrigeration unit |
US20120156580A1 (en) * | 2010-12-15 | 2012-06-21 | The Boeing Company | Water Harvesting System |
CN104563210A (en) * | 2014-12-24 | 2015-04-29 | 中国人民解放军理工大学 | Energy-saving device for extracting water from air |
CN104594448A (en) * | 2014-12-24 | 2015-05-06 | 中国人民解放军理工大学 | Solar air water taking system |
CN104789711A (en) * | 2015-04-03 | 2015-07-22 | 成都力鑫科技有限公司 | Double-side air blowing type leather processing equipment |
CN106564979A (en) * | 2015-10-08 | 2017-04-19 | 中国科学院大连化学物理研究所 | Integrated refrigeration, dehumidification and pure water preparation system using solar energy or low-temperature heat source |
CN208579584U (en) * | 2018-06-25 | 2019-03-05 | 陕西科技大学 | A solar-heat pump combined drying device with energy storage |
CN109539437A (en) * | 2018-11-08 | 2019-03-29 | 上海交通大学 | The independent temperature-humidity control solar energy of open type directly drives air-conditioning system and its working method |
CN111595059A (en) * | 2019-02-21 | 2020-08-28 | 佛山市顺德区美的饮水机制造有限公司 | Circulating liquid refrigerating system and refrigerating equipment |
CN214625890U (en) * | 2020-11-16 | 2021-11-05 | 泗阳中恒电力科技有限公司 | A power distribution box with a heat dissipation structure |
CN112344658A (en) * | 2020-11-27 | 2021-02-09 | 内蒙古工业大学 | Novel efficient solar dryer |
CN113605494A (en) * | 2021-08-26 | 2021-11-05 | 浙江理工大学 | Solar regenerative adsorption air water intake device and method of using the same |
Non-Patent Citations (4)
Title |
---|
RUI TIAN: "A high efficiency solar steam generation system with using residual heat to enhance steam escape", 《DESALINATION》 * |
常泽辉: "太阳能干燥装置槽式复合抛物面聚光器热性能分析", 《农业工程学报》, vol. 35, no. 13 * |
李彩霞;: "新型高效太阳能集热干燥箱的研究设计", no. 06 * |
郝秀渊;耿世彬;袁丽;: "吸湿解析和冷冻结露复合法空气取水方案探讨", no. 2 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115060088A (en) * | 2022-06-30 | 2022-09-16 | 南华大学 | Air catchment system and water catchment method |
Also Published As
Publication number | Publication date |
---|---|
CN114322330B (en) | 2023-08-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111132746B (en) | Apparatus and method for low energy atmospheric water generation | |
CN201503090U (en) | Heat recovering energy-saving dehumidifying system for air hot pipe | |
CN105650787B (en) | Solar energy heating is the same as the cooling Winter-summer dual purpose air conditioner being combined of evaporation | |
CN207501312U (en) | Energy-saving dehumidifier | |
CN102674491B (en) | Seawater desalination device | |
CN114322330B (en) | A solar energy-based integrated circulation drying water intake device and method | |
KR101445378B1 (en) | Apparatus for dehumidifying and cooling air | |
CN104128074B (en) | A kind of compressed air drying adsorption system | |
CN101653689B (en) | Dehumidification device of air preprocessing solution | |
CN203100497U (en) | Waste heat recovery device for two-side-enhanced heat transfer of hot exhaust gas of lithium battery type coating machine | |
CN108449047A (en) | A system and method for comprehensive utilization of photovoltaic light and heat | |
CN101270899A (en) | Solar-powered compact two-stage parallel liquid desiccant air conditioner | |
CN217685584U (en) | Full fresh air conditioning unit heat recovery system based on photovoltaic waste heat | |
CN207451659U (en) | A kind of humidification and condensation formula desalination plant | |
CN113188200B (en) | A triple supply system coupled with photovoltaic solar thermal modules, heat pump and solution dehumidifier | |
CN112910409B (en) | Multifunctional evaporative cooling heat pipe type photovoltaic photo-thermal system and working method | |
CN108954575A (en) | Cooling and dehumidifying system is evaporated based on the regenerated multistage dew point of pressure reducing film distillation | |
CN211887458U (en) | Temperature Control System of Hypergravity Centrifuge | |
CN203760496U (en) | Condensing mirror automatic tracking device and cooling device thereof | |
CN209072824U (en) | Split type dry telecommunication management cabinet | |
CN221310092U (en) | Surface cooler and dehumidifier with heating function | |
KR20170015397A (en) | Cooling-heating-dehumidifier having the same using solar energy | |
CN111510065A (en) | A solar photovoltaic panel cooling device | |
CN220135734U (en) | Low-temperature heat pump water heater | |
CN116104637B (en) | Environment-friendly intelligent generator set |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |