CN111510065A - A solar photovoltaic panel cooling device - Google Patents
A solar photovoltaic panel cooling device Download PDFInfo
- Publication number
- CN111510065A CN111510065A CN202010254387.9A CN202010254387A CN111510065A CN 111510065 A CN111510065 A CN 111510065A CN 202010254387 A CN202010254387 A CN 202010254387A CN 111510065 A CN111510065 A CN 111510065A
- Authority
- CN
- China
- Prior art keywords
- module
- heat
- photovoltaic panel
- pipe
- refrigeration
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000001816 cooling Methods 0.000 title claims abstract description 66
- 239000004530 micro-emulsion Substances 0.000 claims abstract description 42
- 238000005057 refrigeration Methods 0.000 claims abstract description 38
- 238000000926 separation method Methods 0.000 claims abstract description 19
- 238000003795 desorption Methods 0.000 claims abstract description 9
- 230000000694 effects Effects 0.000 claims abstract description 7
- 238000009825 accumulation Methods 0.000 claims abstract 14
- 238000011946 reduction process Methods 0.000 claims abstract 2
- 239000007788 liquid Substances 0.000 claims description 24
- 239000011521 glass Substances 0.000 claims description 15
- 238000009833 condensation Methods 0.000 claims description 13
- 230000005494 condensation Effects 0.000 claims description 13
- 229920001721 polyimide Polymers 0.000 claims description 10
- 239000003463 adsorbent Substances 0.000 claims description 7
- WYTGDNHDOZPMIW-RCBQFDQVSA-N alstonine Natural products C1=CC2=C3C=CC=CC3=NC2=C2N1C[C@H]1[C@H](C)OC=C(C(=O)OC)[C@H]1C2 WYTGDNHDOZPMIW-RCBQFDQVSA-N 0.000 claims description 3
- 238000006243 chemical reaction Methods 0.000 abstract description 5
- 238000000034 method Methods 0.000 description 11
- 229910052782 aluminium Inorganic materials 0.000 description 10
- 238000005516 engineering process Methods 0.000 description 10
- 238000001179 sorption measurement Methods 0.000 description 8
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 7
- 230000008859 change Effects 0.000 description 6
- 230000008569 process Effects 0.000 description 6
- 238000012546 transfer Methods 0.000 description 6
- 238000010586 diagram Methods 0.000 description 4
- 238000010248 power generation Methods 0.000 description 3
- 239000003507 refrigerant Substances 0.000 description 3
- 238000010521 absorption reaction Methods 0.000 description 2
- 239000000112 cooling gas Substances 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 230000017525 heat dissipation Effects 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000004146 energy storage Methods 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000007667 floating Methods 0.000 description 1
- 239000003292 glue Substances 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 239000012782 phase change material Substances 0.000 description 1
- 238000013082 photovoltaic technology Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02S—GENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
- H02S40/00—Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
- H02S40/40—Thermal components
- H02S40/42—Cooling means
- H02S40/425—Cooling means using a gaseous or a liquid coolant, e.g. air flow ventilation, water circulation
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B27/00—Machines, plants or systems, using particular sources of energy
- F25B27/002—Machines, plants or systems, using particular sources of energy using solar energy
- F25B27/007—Machines, plants or systems, using particular sources of energy using solar energy in sorption type systems
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02S—GENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
- H02S40/00—Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
- H02S40/40—Thermal components
- H02S40/44—Means to utilise heat energy, e.g. hybrid systems producing warm water and electricity at the same time
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/60—Thermal-PV hybrids
Landscapes
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Photovoltaic Devices (AREA)
Abstract
Description
技术领域technical field
本发明属于太阳能光伏板冷却技术领域,涉及一种冷却装置,尤其涉及一种太阳能光伏板冷却装置。The invention belongs to the technical field of solar photovoltaic panel cooling, and relates to a cooling device, in particular to a solar photovoltaic panel cooling device.
背景技术Background technique
在能源短缺和环境污染的经济背景下,开发新能源逐渐成为缓解上述问题的有效手段,基于普遍、无害、长久的优点,太阳能成为了最具有发展前景的新能源。作为利用太阳能的核心技术,光伏技术在运行过程中具有无污染、低运行成本、最小的设备维护和最高功率密度的优点。但是光伏系统还存在由于散热不及时导致光伏板表面工作温度过高的问题,对系统的转化效率产生负面影响。太阳能光伏板每升高1℃,输出功率减小0.4%,当温度超过极限温度时,还会加快硅晶电池的老化速率。因此光伏板的冷却研究具有重要意义。Under the economic background of energy shortage and environmental pollution, the development of new energy has gradually become an effective means to alleviate the above problems. Based on the advantages of universal, harmless and long-term, solar energy has become the most promising new energy. As the core technology for utilizing solar energy, photovoltaic technology has the advantages of no pollution, low operating cost, minimal equipment maintenance and highest power density during operation. However, the photovoltaic system still has the problem that the surface temperature of the photovoltaic panel is too high due to the untimely heat dissipation, which has a negative impact on the conversion efficiency of the system. When the solar photovoltaic panel increases by 1°C, the output power decreases by 0.4%. When the temperature exceeds the limit temperature, the aging rate of the silicon cell will also be accelerated. Therefore, the cooling research of photovoltaic panels is of great significance.
自然对流循环冷却、强制对流循环冷却以及液冷等传统光伏板冷却技术虽然操作方便、系统简单,光伏板的转化效率和功率皆有提升,但提升幅度不够明显,传热热阻依旧较大。而浮动跟踪集中冷却、相变材料冷却等新型光伏冷却技术虽然能有效提高光伏板转化效率,但其系统循环稳定性还无法满足实际应用需求。为此,需要开发一种简单、有效、系统循环稳定性高的太阳能光伏板冷却装置。而结合太阳能发热驱动的制冷技术对光伏板进行散热尤为可行。Although the traditional photovoltaic panel cooling technologies such as natural convection circulating cooling, forced convection circulating cooling and liquid cooling are easy to operate, the system is simple, and the conversion efficiency and power of photovoltaic panels have been improved, but the improvement is not obvious enough, and the heat transfer thermal resistance is still large. Although new photovoltaic cooling technologies such as floating tracking centralized cooling and phase change material cooling can effectively improve the conversion efficiency of photovoltaic panels, their system cycle stability cannot meet the needs of practical applications. Therefore, it is necessary to develop a solar photovoltaic panel cooling device that is simple, effective, and has high system cycle stability. It is particularly feasible to dissipate heat from photovoltaic panels in combination with the cooling technology driven by solar heating.
针对太阳能发热驱动的制冷技术,目前主要有太阳能吸收式制冷和太阳能吸附式制冷两种方式。吸收式制冷技术由于效率低、耗电、噪声大、成本较大且易损坏的问题,不适用于太阳能光伏板的散热,而吸附式制冷技术具有能利用低品位热源、无运动部件、无噪声、寿命长等优点。但是,由于吸附式制冷技术需要脱附解吸,存在制冷间隔,使得制冷不连续,循环周期过长,导致其效率比其它制冷方式低,目前仍未发现可行的改良方法。For the cooling technology driven by solar heating, there are mainly two methods: solar absorption refrigeration and solar adsorption refrigeration. Absorption refrigeration technology is not suitable for the heat dissipation of solar photovoltaic panels due to low efficiency, power consumption, high noise, high cost and easy damage. , long life and other advantages. However, since adsorption refrigeration technology requires desorption and desorption, and there are refrigeration intervals, the refrigeration is discontinuous and the cycle period is too long, resulting in lower efficiency than other refrigeration methods, and a feasible improvement method has not yet been found.
发明内容SUMMARY OF THE INVENTION
针对现有太阳能光伏板冷却技术存在的上述不足,本发明结合太阳能吸附式制冷方式能利用低品位热源的特点,采用光热分离技术作为第一级冷却,并利用微乳液改进吸附式制冷技术对太阳能光伏板进行二级冷却,提出了一种太阳能光伏板冷却装置,改善了光伏板冷却效果,从而提高了太阳能板的发电效率。In view of the above-mentioned shortcomings of the existing solar photovoltaic panel cooling technology, the present invention combines the characteristics of the solar adsorption refrigeration method that can utilize the low-grade heat source, adopts the photothermal separation technology as the first stage cooling, and uses the microemulsion to improve the adsorption refrigeration technology. The solar photovoltaic panel performs secondary cooling, and a solar photovoltaic panel cooling device is proposed, which improves the cooling effect of the photovoltaic panel, thereby increasing the power generation efficiency of the solar panel.
本发明所采用的技术方案是:一种太阳能光伏板冷却装置,其特征在于:包括光热分离模块、集热模块、制冷蓄冷模块和微乳液循环模块;The technical scheme adopted in the present invention is: a solar photovoltaic panel cooling device, which is characterized in that it includes a light-heat separation module, a heat collection module, a refrigeration cold storage module and a microemulsion circulation module;
所述光热分离模块和集热模块通过热管连接,所述集热模块和制冷蓄冷模块通过热管连接,所述制冷蓄冷模块和微乳液循环模块通过第一冷却气管和第二冷却气管连接;The light-heat separation module and the heat collection module are connected by a heat pipe, the heat collection module and the refrigeration and cold storage module are connected by a heat pipe, and the refrigeration and cold storage module and the microemulsion circulation module are connected by a first cooling air pipe and a second cooling air pipe;
所述光热分离模块用于在吸收太阳光中的热能之后,通过集热模块为制冷蓄冷模块提供热源;制冷蓄冷模块吸收热量产生制冷效应后为相变微乳液储能制冷,在白天,光伏板的降温过程处于脱附阶段,相变微乳液通过翅片管道为光伏板冷却。The light-heat separation module is used to provide a heat source for the cooling and cold storage module through the heat collection module after absorbing the heat energy in the sunlight; the cooling and cold storage module absorbs heat to produce a cooling effect and stores and cools the phase change microemulsion. During the day, the photovoltaic The cooling process of the panel is in the desorption stage, and the phase change microemulsion cools the photovoltaic panel through the finned pipes.
本发明的有益效果:该装置在实现减小工作温度变化对光伏板发电效率造成的负面影响的同时,在噪声、寿命、成本等方面上都有一定优势。利用低品位热源、提高发电效率,同时降低高温对光伏板寿命的影响,使光伏板于最适宜温度,光电转化效率较高的状态,在温差较大的区域能够得到很好的推广。Beneficial effects of the present invention: the device has certain advantages in noise, lifespan, cost and the like while reducing the negative impact of operating temperature changes on the power generation efficiency of photovoltaic panels. Utilize low-grade heat source, improve power generation efficiency, and reduce the impact of high temperature on the life of photovoltaic panels, so that photovoltaic panels can be well promoted in areas with large temperature differences in a state of optimal temperature and high photoelectric conversion efficiency.
附图说明Description of drawings
图1、2是本发明的整体示意图;1 and 2 are the overall schematic diagrams of the present invention;
图3是光伏板光热分离模块示意图;Figure 3 is a schematic diagram of a photovoltaic panel photothermal separation module;
图4是吸附式制冷模块示意图;4 is a schematic diagram of an adsorption refrigeration module;
图5是微乳液循环模块示意图;Fig. 5 is the schematic diagram of microemulsion circulation module;
图中,1-光热分离模块,2-集热模块,3-制冷蓄冷模块,4-微乳液循环模块, 101-太阳能光伏板,102-Low-e玻璃外罩和聚酰亚胺薄膜,103-导热管,104-铝型材支架,105-铝型材限位板,6-储气室,7-空压机,8-第一冷却气管,9-冷凝室,10-膨胀阀,11-蒸汽室,12-翅片管道,13-第二冷却气管2,14-微乳液管1, 15-控压阀,16-储液室,17-铝型材支撑件,18-微乳液管2,19-型材支架,20-离心泵In the figure, 1-light and heat separation module, 2-heat collection module, 3-refrigeration and cold storage module, 4-microemulsion circulation module, 101-solar photovoltaic panel, 102-Low-e glass cover and polyimide film, 103 -Heat conduction pipe, 104-aluminum profile bracket, 105-aluminum profile limit plate, 6-air storage chamber, 7-air compressor, 8-first cooling air pipe, 9-condensing chamber, 10-expansion valve, 11-steam Chamber, 12-finned pipe, 13-second
具体实施方式Detailed ways
下面对本发明的实施例作详细说明,本实施例在以本发明技术方案为前提下进行实施,为了使本发明的目的、技术方案及优点更加清楚明白,给出了详细的实施方式和具体的操作过程,但本发明的保护范围不限于下述的实施例。以下结合附图及实施例,对本发明进行进一步详细说明。The embodiments of the present invention are described in detail below. This embodiment is implemented on the premise of the technical solutions of the present invention. In order to make the purpose, technical solutions and advantages of the present invention more clear, detailed implementations and specific implementations are provided. operation process, but the protection scope of the present invention is not limited to the following examples. The present invention will be further described in detail below with reference to the accompanying drawings and embodiments.
请见图1、图2,本发明提供的一种太阳能光伏板冷却装置,包括光热分离模块1、集热模块2、制冷蓄冷模块3和微乳液循环模块4;光热分离模块1和集热模块2通过热管连接,集热模块2和制冷蓄冷模块3通过热管连接,制冷蓄冷模块3和微乳液循环模块4通过第一冷却气管8和第二冷却气管13连接;光热分离模块1用于在吸收太阳光中的热能之后,通过集热模块2为制冷蓄冷模块 3提供热源;制冷蓄冷模块3吸收热量产生制冷效应后为相变微乳液储能制冷,在白天,光伏板的降温过程处于脱附阶段,相变微乳液通过翅片管道为光伏板冷却。Please refer to FIGS. 1 and 2 , a solar photovoltaic panel cooling device provided by the present invention includes a
请见图3,本实施例的光热分离模块1包括太阳能光伏板101、Low-e玻璃外罩和聚酰亚胺薄膜102、导热管103、铝型材支架104、铝型材限位板105;太阳能光伏板101固定设置在支架104上,Low-e玻璃外罩和聚酰亚胺薄膜102的 Low-e玻璃外罩覆盖在太阳能光伏板101表面上,聚酰亚胺薄膜于Low-e玻璃外罩表面,并将导热管103包裹,收集Low-e玻璃外罩外表面的热能,通过导热管103传导至制冷蓄冷模块3内冷凝室里设置的吸附剂中。支架104四周边沿上还固定设置有限位板105,用于配合固定太阳能光伏板101。Referring to FIG. 3 , the
本实施例由于聚酰亚胺薄膜透光性较好,不会影响太阳能光伏板的正常工作。In this embodiment, since the polyimide film has good light transmittance, the normal operation of the solar photovoltaic panel will not be affected.
本实施例的Low-e玻璃外罩通过螺钉螺母紧固于光伏板向阳面,聚酰亚胺薄膜通过边缘胶粘固定于Low-e玻璃外罩之外,排空气体使其与玻璃外罩紧密贴合。在一边将聚酰亚胺薄膜与导热管103的导热部分进行包裹并热焊,导热管 103与玻璃外罩通过螺钉紧固连接,确保其稳定性。The Low-e glass cover of this embodiment is fastened to the sun-facing side of the photovoltaic panel by screws and nuts, the polyimide film is fixed outside the Low-e glass cover through edge glue, and the air is exhausted to make it closely fit with the glass cover . On one side, the polyimide film and the heat-conducting portion of the heat-conducting
本实施例的集热模块2为平板集热管,平板集热管由若干导热管组成;平板集热管一端与光热分离模块1内的导热管103连接,另一端与制冷蓄冷模块3 的冷凝室连接,用于给冷凝室内的吸附剂供热。The heat collecting
请见图4,本实施例的制冷蓄冷模块3包括储气室6、空压机7、第一冷却气管8、冷凝室9、膨胀阀10、蒸汽室11;集热模块2的导热管与冷凝室9连通,冷凝室9出口连接膨胀阀10,膨胀阀10的另一出口连接蒸汽室11;空压机7与储气室6直连,储气室6另一端通过管道连接到蒸汽室11;蒸汽室11通过第一冷却气管8和第二冷却气管13与微乳液循环模块4连通。Referring to FIG. 4 , the refrigeration and
下面对吸附式制冷的工作流程进行介绍,分为两个阶段:The following describes the workflow of adsorption refrigeration, which is divided into two stages:
脱附阶段:在白天时,因太阳光的照射,冷凝室9的吸附剂的温度不断升高,制冷剂从吸附剂的微孔中脱附成为蒸汽,当蒸汽压力达到一定值时,在冷凝室9 中制冷剂蒸汽冷凝成液体流入蒸汽室11,在储液室内冷却,再回流至蒸发器;Desorption stage: During the day, the temperature of the adsorbent in the
吸附阶段:在晚上时,太阳辐射强度变弱,冷凝室9开始冷却,其内部压力开始下降,里面的蒸汽因重新被吸附剂吸附,导致蒸汽室11内压力大于冷凝室 9内部压力,制冷剂开始蒸发产生冷量,通过冷却气管在储液室16中进行热交换。Adsorption stage: At night, the intensity of solar radiation becomes weak, the
请见图5,本实施例提供的微乳液循环模块4包括翅片管道12、第二冷却气管13、第一微乳液管14、控压阀15、储液室16、铝型材支撑件17、第二微乳液管18、铝型材支架19、离心泵20;翅片管道12固定设置在光伏板背面,一端通过第一微乳液管14与储液室16连通,另一端通过第二微乳液管18和离心泵20与储液室16连通;储液室16通过第二冷却气管13与制冷蓄冷模块3的蒸汽室11连通;控压阀15固定安装在储液室16上,用于制储液室内压力。微乳液循环模块4固定设置在铝型材支架19上,铝型材支架19上配置有铝型材支撑件17。Referring to FIG. 5, the
本实施例的储液室16、第一微乳液管14、第二微乳液管18和翅片管道12 里充斥有相变微乳液;蒸汽室11中排出的冷空气通过第二冷却气管13进入储液室16,冷空气通过储液室16的空气流通部分与储液部分进行热交换;当光伏板的降温过程进入脱附阶段,蒸汽室11不再制冷,太阳能光伏板101开始工作,此时太阳能光伏板101温度会升高。太阳能光伏板101后盖内温度上升,经过蓄冷达到饱和的相变微乳液在翅片管道12中,与相变微乳液的温度形成温度差,相变微乳液通过翅片管道12对太阳能光伏板101进行吸热制冷。在光伏板的降温过程进行脱附的工程中,由相变微乳液对太阳能光伏板101进行持续冷却制冷。The
本实施例的翅片管道12为蛇形结构,采用蛇形结构直接和太阳能光伏板相连,增大传热面积,减小管径。为增强传热效率,管道使用传热效果良好的翅片管道。储液室的内部空间分为空气流通部分与储液部分,在吸附阶段时进行热交换,实现微乳液的蓄冷效果。The
应理解,上述实施例仅用于说明本发明而不用于限制本发明的范围。此外应理解,在阅读了本发明讲授的内容之后,本领域技术人员可以对本发明作各种改动或修改,而不脱离本发明技术方案的精神和范围,其均应涵盖在本发明的权利要求范围中。It should be understood that the above embodiments are only used to illustrate the present invention and not to limit the scope of the present invention. In addition, it should be understood that after reading the content taught by the present invention, those skilled in the art can make various changes or modifications to the present invention without departing from the spirit and scope of the technical solutions of the present invention, which should be covered by the claims of the present invention. in the range.
Claims (8)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202010254387.9A CN111510065A (en) | 2020-04-02 | 2020-04-02 | A solar photovoltaic panel cooling device |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202010254387.9A CN111510065A (en) | 2020-04-02 | 2020-04-02 | A solar photovoltaic panel cooling device |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| CN111510065A true CN111510065A (en) | 2020-08-07 |
Family
ID=71875900
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN202010254387.9A Pending CN111510065A (en) | 2020-04-02 | 2020-04-02 | A solar photovoltaic panel cooling device |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN111510065A (en) |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN114598258A (en) * | 2021-12-30 | 2022-06-07 | 汉摩尼(江苏)光电科技有限公司 | Photovoltaic device with high light absorption rate |
| CN115987210A (en) * | 2022-12-27 | 2023-04-18 | 东莞理工学院 | A photovoltaic panel cooling and anti-condensation device for centralized photovoltaic power generation system |
Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN206695291U (en) * | 2017-03-21 | 2017-12-01 | 云南师范大学 | A kind of photovoltaic and photothermal comprehensive utilization component and air-conditioning system |
| CN108583603A (en) * | 2018-05-18 | 2018-09-28 | 武汉科技大学 | A kind of train continuous solar based on hot pipe technique is for heating and cooling and hot-water heating system |
| CN208025928U (en) * | 2018-01-26 | 2018-10-30 | 鲁东大学 | A kind of adsorption-type solar refrigeration storage system with cold-storage |
| CN109386990A (en) * | 2018-10-09 | 2019-02-26 | 宁波工程学院 | Absorption refrigeration utensil |
| CN209801868U (en) * | 2019-03-01 | 2019-12-17 | 云南师范大学 | A Solar Flat Honeycomb Adsorption Heat Collector Bed and Adsorption Refrigeration System |
-
2020
- 2020-04-02 CN CN202010254387.9A patent/CN111510065A/en active Pending
Patent Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN206695291U (en) * | 2017-03-21 | 2017-12-01 | 云南师范大学 | A kind of photovoltaic and photothermal comprehensive utilization component and air-conditioning system |
| CN208025928U (en) * | 2018-01-26 | 2018-10-30 | 鲁东大学 | A kind of adsorption-type solar refrigeration storage system with cold-storage |
| CN108583603A (en) * | 2018-05-18 | 2018-09-28 | 武汉科技大学 | A kind of train continuous solar based on hot pipe technique is for heating and cooling and hot-water heating system |
| CN109386990A (en) * | 2018-10-09 | 2019-02-26 | 宁波工程学院 | Absorption refrigeration utensil |
| CN209801868U (en) * | 2019-03-01 | 2019-12-17 | 云南师范大学 | A Solar Flat Honeycomb Adsorption Heat Collector Bed and Adsorption Refrigeration System |
Non-Patent Citations (1)
| Title |
|---|
| 刘怡等: "基于新型吸附式制冷的光伏板降温系统", 《科学与创新》 * |
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN114598258A (en) * | 2021-12-30 | 2022-06-07 | 汉摩尼(江苏)光电科技有限公司 | Photovoltaic device with high light absorption rate |
| CN114598258B (en) * | 2021-12-30 | 2023-03-10 | 汉摩尼(江苏)光电科技有限公司 | Photovoltaic device with high light absorption rate |
| CN115987210A (en) * | 2022-12-27 | 2023-04-18 | 东莞理工学院 | A photovoltaic panel cooling and anti-condensation device for centralized photovoltaic power generation system |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN100453926C (en) | Photovoltaic solar heat pump multifunctional integrated system | |
| CN201062902Y (en) | Solar light concentrating photovoltaic combination system | |
| CN105485906B (en) | A kind of light-volt solar heat pump power generation hot-water heating system | |
| CN210154106U (en) | A heat pipe photovoltaic photothermal system based on dual condensers | |
| CN1862148A (en) | Integrated apparatus of solar heat pump heating and photovoltaic generating | |
| CN101873093A (en) | A solar energy comprehensive utilization system integrating photothermal hybrid power generation and heat utilization | |
| CN201811485U (en) | Solar Working Fluid Energy Storage Continuous Refrigeration Device | |
| CN111306814B (en) | Multifunctional double-cold condenser heat pipe photovoltaic photo-thermal system and method | |
| CN110081618A (en) | A kind of heat pipe photo-thermal system based on double-condenser | |
| CN108332446A (en) | A kind of low-grade solar cold thermoelectricity combined supply system and its operation method | |
| CN107061201A (en) | A kind of photovoltaic and photothermal coupling co-generation unit and method | |
| CN202947235U (en) | Absorption type cooling and solution dehumidification air conditioning system based on solar heat recovery | |
| CN100555676C (en) | Closed-loop capillary solar photovoltaic thermoelectric plate | |
| CN111510065A (en) | A solar photovoltaic panel cooling device | |
| CN114264000B (en) | A distributed energy center application system | |
| CN103528291B (en) | The solar energy regenerative system of the water-soluble anti-icing fluid in frostless heat pump | |
| CN200940974Y (en) | Solar heat pump heating and photovoltaic power generation integrated device | |
| CN106568118A (en) | Condensation solar energy heat pump heating power generation system | |
| CN111953233A (en) | A direct expansion heat pump system combining Fresnel concentrating photovoltaics and thermoelectric power generation sheets | |
| CN117419516A (en) | PV/T solar heat pump combined drying system | |
| CN216946294U (en) | Fresh water preparation device based on Peltier effect | |
| CN216924814U (en) | Photo-thermal evaporator air source heat pump | |
| CN206890915U (en) | A kind of phase-transition heat-storage solar air source double heat source heat pump hot water electric generating apparatus | |
| CN205505485U (en) | Type solar energy absorption formula is refrigerated and heating system in succession | |
| CN212034083U (en) | Special Lambert wall system adopting double-cold-condenser heat pipe type photovoltaic photo-thermal module |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| RJ01 | Rejection of invention patent application after publication |
Application publication date: 20200807 |
|
| RJ01 | Rejection of invention patent application after publication |