CN114250231A - Low-temperature lethal and high-temperature response rice leaf color mutant gene and detection method and application thereof - Google Patents

Low-temperature lethal and high-temperature response rice leaf color mutant gene and detection method and application thereof Download PDF

Info

Publication number
CN114250231A
CN114250231A CN202111370022.3A CN202111370022A CN114250231A CN 114250231 A CN114250231 A CN 114250231A CN 202111370022 A CN202111370022 A CN 202111370022A CN 114250231 A CN114250231 A CN 114250231A
Authority
CN
China
Prior art keywords
temperature
leaf color
rice
leu
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202111370022.3A
Other languages
Chinese (zh)
Inventor
陈瑜
高媛媛
林冬枝
董彦君
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Normal University
Original Assignee
Shanghai Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Normal University filed Critical Shanghai Normal University
Priority to CN202111370022.3A priority Critical patent/CN114250231A/en
Publication of CN114250231A publication Critical patent/CN114250231A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/415Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8242Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
    • C12N15/8243Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine
    • C12N15/825Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine involving pigment biosynthesis

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Biochemistry (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Physics & Mathematics (AREA)
  • Cell Biology (AREA)
  • Nutrition Science (AREA)
  • Plant Pathology (AREA)
  • Botany (AREA)
  • Microbiology (AREA)
  • Medicinal Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

The invention discloses a specific primer capable of specifically amplifying low-temperature lethal and high-temperature response rice leaf color mutant gene fragments, and the low-temperature lethal and high-temperature response rice leaf color mutant genes can be detected by comparing sequences obtained by sequencing after amplification with parents.

Description

Low-temperature lethal and high-temperature response rice leaf color mutant gene and detection method and application thereof
Technical Field
The invention relates to the fields of agriculture, plant biotechnology and the like, in particular to the basic research of rice genetic breeding, gene function, physiology and the like at the molecular level.
Technical Field
The leaves are the main organs of plants for photosynthesis, are rich in types and easy to identify, so that the leaf color is used for distinguishing and judging the growth condition of plants and plant mutationOne of the simplest and intuitive simple criteria. In practical application, the leaf color can be used for breeding novel varieties of ornamental plants, can also be used as the most ideal morphological marker of a plurality of crops such as wheat, rice, corn and the like, and can also be used in genetic breeding, physiological and biochemical mechanisms of plants and cloning and function research of related genes thereof. At present, researchers have created a large number of leaf color mutants of rice by using physical, chemical, biological and other techniques, and the leaf color mutants are classified into leaf color mutants of high temperature expression type, low temperature expression type, temperature insensitive type and the like according to whether the leaf color mutants are regulated by temperature. This study utilizes60Co gamma-ray mutagenesis treatment is carried out on the created low-temperature lethal and high-temperature response rice leaf color gene mutant strain, and a new gene of the low-temperature lethal and high-temperature response rice leaf color mutant gene is positioned by a map-based cloning technology.
Disclosure of Invention
The invention aims to provide a low-temperature lethal and high-temperature response rice leaf color mutant gene, protein coded by the gene, a detection method and application of the gene.
Rice with low-temperature lethal and high-temperature response to leaf color change comes from the channel60The rice character and various agronomic characters are stable after the group progeny generated by the mutagenesis of the japonica rice Jiahua No.1 treated by Co gamma rays is subjected to multiple selfing propagation and selection. F obtained by hybridizing the rice material with indica rice variety through wide-affinity culture of dwarf 64S2The generation segregation population is used as a positioning population, and the gene of the leaf color of the low-temperature sensitive rice is positioned on the No.3 chromosome of the rice by using a DNA molecular marker.
The rice plant carrying the low-temperature lethal and high-temperature response rice leaf color mutant gene shows whitening under the condition of growth below 20 ℃, and then dies after four leaf periods; albinism was observed at 32 ℃ incubation, and survival continued after a trefoil period with greening. The gene has a nucleotide sequence shown in SEQ ID No. 1. The protein coded by the gene has an amino acid sequence shown in SEQ ID No. 2.
A pair of specific primers for detecting the genes, the sequences of which are as follows:
upstream: 5'-GTTTGAAGAGATGAAGAACAGTG-3'
Downstream: 5'-CTTTTTTATGTCACCTTGCTTGC-3'
Namely SEQ ID No.3 and SEQ ID No.4
The method for detecting the low-temperature lethal and high-temperature response rice leaf color mutant gene comprises the step of adopting the specific primers (SEQ ID No.3 and SEQ ID No. 4) to extract DNA of rice and amplifying to obtain a nucleotide sequence of 409 bp. The sequences of SEQ ID No.5 and SEQ ID No.6 are divided into parents and shown in the low-temperature lethal and high-temperature response rice leaf color mutant gene rice. A basic group G is deleted at 172bp in a 408bp fragment obtained by amplifying rice DNA carrying low-temperature lethal and high-temperature response rice leaf color mutant genes.
In the invention, the inventor designs a specific primer capable of specifically amplifying the low-temperature lethal and high-temperature response rice leaf color mutant gene fragment, and the sequence obtained by sequencing after amplification is compared with the parent sequence, so that the low-temperature lethal and high-temperature response rice leaf color mutant gene can be detected.
Drawings
FIG. 1 shows the phenotype of the mutant rice with low-temperature lethal and high-temperature response rice leaf color at 20 deg.C (left) and 32 deg.C (middle) and wild-type (right) seedling stage;
FIG. 2 shows the result of sequence comparison between the PCR primer amplification product and wild rice according to the present invention.
Detailed Description
Example 1 extraction of DNA from Rice
Taking fresh rice leaves in the seedling stage, cutting the leaves into small sections with the length of 0.5cm, putting the small sections into a precooled mortar, adding liquid nitrogen to grind the small sections into powder, transferring the powder into a 2mL centrifuge tube, adding 1mL of 2% CTAB (cell membrane damage) solution preheated at 60 ℃, slightly shaking the solution, then carrying out water bath at 60 ℃ for 45min, and shaking the solution for multiple times.
Taking out the centrifuge tube, cooling to room temperature, centrifuging at 12000r/min at 20 deg.C for 5min, sucking 600 μ L of supernatant, adding equal volume of chloroform-isoamyl alcohol (24: 1) mixture, and mixing well.
The tube containing the solution was equilibrated, centrifuged at 12000r/min at 20 ℃ for 5min, 600. mu.L of the supernatant was aspirated, and 2/3 volumes (400. mu.L) of isopropanol were added thereto, followed by gentle mixing to precipitate nucleic acids.
12000r/min centrifugation at 20 ℃ for 3min to precipitate nucleic acid, and discard the supernatant.
Adding 70% ethanol for washing, centrifuging at 12000r/min at 20 deg.C for 5min, and discarding the supernatant.
Repeat step 5
Dried at room temperature and dissolved in 150. mu.L of sterile water.
Take 2. mu.L for the subsequent PCR amplification reaction.
Example 2
Obtaining the leaf color mutant gene of rice with low-temperature lethal and high-temperature response and the amino acid sequence thereof
The 25 μ L PCR reaction was as follows: 100mM Tris-HCl pH9.0, 100mM KCl, 20mM MgSO4;80mM (NH4)SO42.5Mm Dntp, 10 μ M primer, 5U/. mu.L Taq enzyme, 1 μ L template DNA.
The primer sequence is as follows:
upstream: 5'-ggatcttccagagatCTCCTGTTCCCCTCTGCCTG-3'
Downstream: 5'-ctgccgttcgacgatGGAAAAAAAATAGACTGAAGTATAACTCAGA-3'
And (3) carrying out PCR amplification reaction.
The length of the PCR amplification product is 5627bp, a gene sequence obtained by downloading a Bioxm software and http:// rice. plant biology. msu. edu/webpage is compared with a sequencing result, the result of the fragment is shown as SEQ ID No.1, and the result of the amino acid obtained by translating the sequence is shown as SEQ ID No.2 according to the result.
(II) Gene for detecting leaf color of temperature-regulated rice
A1.25 μ L PCR reaction was as follows: 100mM Tris-HCl pH9.0, 100mM KCl, 20mM MgSO4;80mM (NH4)SO42.5Mm Dntp, 10 μ M primer, 5U/. mu.L Taq enzyme, 1 μ L template DNA.
The specific PCR primer sequences are as follows:
upstream: 5'-GTTTGAAGAGATGAAGAACAGTG-3'
Downstream: 5'-CTTTTTTATGTCACCTTGCTTGC-3'
2. And (3) carrying out PCR amplification reaction.
The resulting amplification product was stained with bromophenol blue, loaded on a 1.5% agarose gel stained with ethidium bromide, electrophoresed, imaged on a UVP gel imager, and a 408bp band appeared and the amplification product was sent for detection. The sequence obtained was compared with the parental sequence using BioXM software, the result is shown in FIG. 2, the sequence is shown in SEQ ID No.6, which is a stretch of SEQ ID No. 1.
Example 4 functional Gene validation
Gene of leaf color mutant rice subjected to low-temperature death and high-temperature response comes from the channel60The filial generation of the group generated by the mutagenesis of the japonica rice Jiahua No.1 treated by Co gamma rays is bred and selected by selfing for a plurality of times, and the mutation character and various agronomic characters are stable. The rice plant carrying the gene shows whitening under the condition of cultivation at 20 ℃, and then dies after four-leaf period; the plant shows albinism under the condition of cultivation at 32 ℃, and survives after the trilobate period with greenish recovery, and has obvious characters of low-temperature sensitive death and high-temperature response revival.
Through60After Co gamma ray treatment, sequencing results show that the gene has base substitution shown in the base sequence of SEQ ID No. 1.
The nucleotide sequence containing the rice self promoter SEQ ID number 7 is applied to an agrobacterium tumefaciens expression vector pCAMBIA1301, and the target gene sequence is verified through sequencing.
The recombinant vector is transformed into a receptor by utilizing an agrobacterium-mediated technology, the receptor is a rice callus containing low-temperature lethal and high-temperature response rice leaf color mutant genes, a positive first-generation transgenic plant is obtained by identification, the leaf color of the positive first-generation transgenic plant is whitened below 20 ℃, and the positive first-generation transgenic plant is transferred to a condition of 32 ℃ and cultured to generate a greening phenomenon in a three-leaf period.
The seeds of the first generation transgenic plants are sown at low temperature, the leaf color of the seeds is separated at the seedling stage, the seeds have green and albino expression, and the Mendelian genetic segregation law is 3: 1.
The rice carrying the temperature-regulated leaf color gene is green in the four-leaf stage of the leaf color at 32 ℃, and dies after the leaf color of the plant in the seedling stage is whitened at 20 ℃, so that the truth of the rice variety can be identified through the phenotypic change, and the purity of the hybrid rice seed is improved.
Sequence listing
<110> Shanghai university of Master
<120> a low-temperature lethal and high-temperature response rice leaf color mutant gene, and detection method and application thereof
<130> none
<160> 7
<170> SIPOSequenceListing 1.0
<210> 1
<211> 5627
<212> DNA
<213> Rice Sequence (Rice Sequence)
<400> 1
ctcctgttcc cctctgcctg ccttcacgga gaacacgccg ccgcacgccc gcaaagttgt 60
cgctccgccg ccgggtcctg cggccacttc ctccctctcc ctgtgcatgc gctctcttcc 120
ccacctgtac tttactttag ctgctcctct gcccagttgc ccacgacctg acgacccgga 180
catggcgcag gctgaggcgg ggacgacgac atcgccggcg ggttgacgca gaaaggagcg 240
accacccgag ggctccgctg gattttcagg tagctgagct gagctgaact gaaccccaat 300
gccccgcgtt tgcgccgccc ctcgggcgcc gccgccgccg tgcccgtgcc atgtcggagt 360
agggccgctt cggccgaggt ggcgcgcctc ccggcacggc cctctccggg cggctggcca 420
ggagcagctc ctcaccgccc tgcgcgagca gccggacccc gacgcggcgc tccggatgct 480
caacgcggcg ctggcgcggg acgacttcgc gcccggcccc gaggtctacg aggagatcat 540
ccgcaagctc ggcgcggtcg gggccctcga cctcatgaag gtgctcgtcg cggagatgcg 600
gcgggagggg caccaggtga aattgggcgt agtccactcc ttcttggaca gctacgaggg 660
gcagcagctg ttcgacgatg ccgtcgacct gattctgaat caactccaac cattgtttgg 720
cattcaggca gacaccgtgg tgtacaatca ccttctcaat gttcttgtgg aggggagcaa 780
aatgaaactc cttgaatcag tgtactcgga gatgggtgct aggggaatca agcctgatgt 840
tgtcacattc aacacactga tgaaggcgtt gtgccgagca catcaggtca ggactgcagt 900
tctcatgctc gaggaaatgt ctagcagagg cgtggcgcct gacgagacga cgtttaccac 960
cctgatgcaa ggatttgtcg aggaggggag catcgaggct gcactgaggg tcaaagccag 1020
gatgttggaa atggggtgct cggcgacgaa ggtgacggtt aatgttttga ttaatgggta 1080
ctgcaagcta gggagggtgg aggatgctct tgggtatata cagcaggaga ttgccgatgg 1140
gtttgagcct gaccagatca catataacac ttttgttaat ggtctctgcc aaaatgatca 1200
tgtcggccat gccctcaaag tcatggatgt gatggttcag gagggccatg atcctgatgt 1260
tttcacctac aatatcgttg tgaattgcct ttgtaaaaat ggacagcttg aagaggcaaa 1320
aggaattctg aatcagatgg tggatcgggg ttgtttgcct gacattacca cattcaacac 1380
tctcattgct gccttatgca cggggaatcg acttgaggaa gccttggacc ttgcacgtca 1440
ggttacagtg aagggagtct ctccagatgt ttatactttc aatattctga ttaacgcgct 1500
ctgcaaagta ggcgatcctc atcttgcact tcgattgttt gaagagatga agaacagtgg 1560
atgcaccccg gatgaagtaa catacaatac tttgattgac aatctttgct cacttgggaa 1620
gcttggtaaa gcattggatt tgttaaaaga tatggagtcc actggttgtc ctcgaagtac 1680
aattacatat aacactataa ttgacgggtt atgcaagaaa atgagaatag aagaagcaga 1740
agaagttttt gatcaaatgg atctgcaagg catttcgagg aatgcaatca cattcaatac 1800
tctcatcgat ggtttgtgca aggacaaaaa gattgatgat gcttttgagc ttattaatca 1860
aatgataagt gaagggttgc aacctaacaa tatcacttac aattctattc taactcatta 1920
ttgcaagcaa ggtgacataa aaaaggctgc ggatatttta gaaactatga ctgcaaatgg 1980
atttgaagtg gatgttgtta cgtacggtac tctgattaac ggtctatgca aggctggtag 2040
gacacaggtt gctttgaagg tactcagagg tatgcggata aaagggatga ggcctactcc 2100
aaaagcttac aatcctgtgc tccagtctct cttcagacgg aataatatca gagatgccct 2160
gagtcttttc agggagatgg cagaggttgg tgagcctcct gatgctttga catataagat 2220
tgtttttcgt gggctctgtc gtggtggagg gcctattaaa gaagcttttg atttcatgtt 2280
ggagatggtt gataaggggt tcataccaga gttctcatcc ttccgtatgc tagctgaagg 2340
tctattaaac ctgggtatgg atgattactt cattagagcc attgaaataa tcatggaaaa 2400
ggtcgacctc agagagtctg atgtttctgc aataagggga tatctcaaga tccgcaaatt 2460
ttatgatgca ttagcaacct ttggccgttt cctggagatc aacaaccctc aatggagtta 2520
ccgatgaagc agaatacata actgggacaa attacttgaa tagtattagg gaaatctcaa 2580
agagtggatg gaatttttgc tggttgctta ggggaatgaa agtcttaaat tgattataat 2640
aggtgattgt gttcattcct cggtagggat gaagtcagag catgaagaag ctcatcttgg 2700
tgcagaaact tagcttattg gaacagaatc taggtgctag gtgctgtctg ctgccagatt 2760
agtacctagc gccttaacga acagtggctg cagatcccat ccgcttattt tgatcaaatc 2820
tgattcattt tctattccct aataaaagcc tgattcatct tcattgcata tggtcgaacc 2880
taaggctatc atgtacagtt agatcccaac ccttcgttct atgagatgtt gtcccataga 2940
agaaatatct tctgagtata tcctagtact ctaaaatgtt cactaatatg ttcaacttaa 3000
ttagttttgt aacctcctaa aatagttcta ttagttttgt aaccttctaa aatatgaatt 3060
agttttgatc tggctgatct tcctttggtt aggtactaca aattcttaat tcagacacat 3120
atttggtttt ctgaaaattt catctatatt tggtcaggct ggcatttgaa gttcttattt 3180
tagtcatata ctttagtttt ttacaatttt catttgttaa agatgataat ttatttgtta 3240
gcacagagca tgtttagaaa tctgaaatat taaaacatgc atgttctcat gaaaataaat 3300
gttagttttg tttaaattcc aatccacata ttttttaatc aatgtcagaa attaccatgc 3360
ttcacttatt gacctagtat atgtatagta tttgatggat catgttgatt tggatttgct 3420
ctactaactt gttcctattc caacaaagat ttatatgcat cttgtgttct aaaaatgcta 3480
catgtgtcaa gttgaaggaa aattctagct atgtggtgtc ctaattttgg tagatggtac 3540
ctagtaatag ataacaattc tgttttatag tgatgagtaa atttgactaa atcgagtcta 3600
gaaagtgata taattttctg gagaagtctt tcttggtgat ttgggaaagg gccattacct 3660
atactgatat gaaatctgga actagaaaga tctgaacatc aatgttctaa agttttttgt 3720
ctgaatttct tgtgcagaat atgaaggaag gtggatctgg aataggtatt tacatgtcct 3780
gttcagattc ctgcaatctg ataaactact gcaatccaat aaactcttga tctattgttt 3840
tctggatttt tttttgggtg tagagtatta ggaaggtatt tgctttgtta caggggttgg 3900
ttggatgttc agaaaaccaa aatctgaata cactaacaca ttagccagtg ttttatttta 3960
gtttatgtta ttctgaccac aacaccagca gcttcaattg gtagtagaac acactctgat 4020
gcaattggta ggtgtacaac agataatttg ccgtgaatgc tacttaattc aaccattttt 4080
tttccataca gtgctataca atggcacaca aacatccttc agttggactc aaatttgttt 4140
cagctttgct attttacagt cacctgcagt tttttctaat ccatcagtcg attttgttgg 4200
cagtagattc tgcttcaaga tctgtgcacg cagtggaggc acatttggtt acaggctgct 4260
tcaccagacc cgttaaccca tgggccatgg atgctcccct agtagcatat gttgtttttt 4320
ccaccaactg cctcttgtaa atcaagatgc tcccctctcc acatttgctg cagacttcct 4380
ccccgtggat ctgagacgaa ctccggcgac cggcggcgtc tacgagccag cgttcaccaa 4440
tttctcaggt atatgagtcg tcatctatgt gcatctgcta cttttttttt ttggctgatt 4500
ggacgggttg agaaggaggt gtttgggggg aagagagcag aataatccca ttgcgaaaca 4560
agcgaggaag gcttgtcgat ggtggcggcg gtggccttga ttatcgaaga tgcatgcgtg 4620
agggaaactg tgtgccaggg aggcaagctt ggtggcacac atcgagtggt atatcttcag 4680
gttactgcta gatcgaagat cctttggtgc ttgatgtgtg ctgttggttt ggtagttttg 4740
gtggtactgt ggcaagtgaa gacacgaaag aggagctagt agaggcttag agtctggagt 4800
cgtaatcgat gtgcaagagc atcaatgcca tcagttcctc tgggcagcac ggctctgcac 4860
ttttcatctg agaaacatat atattttgtt gattctgatt ttgacgaatt atccaaacat 4920
gcagtttttt tgggttccgc gtgcaaagac gattttgatc tcctggcaga tttaagggtg 4980
gtgattttgt ttttgttttg catgtagatg atgcattttg taaatcattt taggttgccc 5040
cttttttttt tgtttttgcg agttcttact gaatttggat aagttctggt tgattggatc 5100
gacattctgt acatttgcaa ggggattcta tgggtttttg cttattgcta atcaaattat 5160
tttgtgagtt ttggtttatt ggatggtgag aaagcaagat tacatggatt ttgcttcatt 5220
gctgattttg tcgaaattta tcaggcatgc ggtttttggt ttcttgaata cgaactacac 5280
ggacagtact cctatattct tggtgatttt gaagtgtatt tgttattttg gggaggtgga 5340
atggttaata ttttgttcaa ggggacactt ctacagatgt atacattact tttgtcattt 5400
tcagcataac aaagagattt ggtagattca gaattcagat ggcaactaca cgtcgaatga 5460
tgtatgcgaa gacatgggga attctgatgc tgattccact gaagaaagct aaacataatt 5520
ttaatttatt taccaactca tttttctgtc aacacatttg ctagatagtt gctacccgat 5580
aaacgacatc ttgaaatctg agttatactt cagtctattt tttttcc 5627
<210> 2
<211> 742
<212> PRT
<213> amino acid Sequence (PRT Sequence)
<400> 2
Met Pro Arg Val Cys Ala Ala Pro Arg Ala Pro Pro Pro Pro Cys Pro
1 5 10 15
Cys His Val Gly Val Gly Pro Leu Arg Pro Arg Trp Arg Ala Ser Arg
20 25 30
His Gly Pro Leu Arg Ala Ala Gly Gln Glu Gln Leu Leu Thr Ala Leu
35 40 45
Arg Glu Gln Pro Asp Pro Asp Ala Ala Leu Arg Met Leu Asn Ala Ala
50 55 60
Leu Ala Arg Asp Asp Phe Ala Pro Gly Pro Glu Val Tyr Glu Glu Ile
65 70 75 80
Ile Arg Lys Leu Gly Ala Val Gly Ala Leu Asp Leu Met Lys Val Leu
85 90 95
Val Ala Glu Met Arg Arg Glu Gly His Gln Val Lys Leu Gly Val Val
100 105 110
His Ser Phe Leu Asp Ser Tyr Glu Gly Gln Gln Leu Phe Asp Asp Ala
115 120 125
Val Asp Leu Ile Leu Asn Gln Leu Gln Pro Leu Phe Gly Ile Gln Ala
130 135 140
Asp Thr Val Val Tyr Asn His Leu Leu Asn Val Leu Val Glu Gly Ser
145 150 155 160
Lys Met Lys Leu Leu Glu Ser Val Tyr Ser Glu Met Gly Ala Arg Gly
165 170 175
Ile Lys Pro Asp Val Val Thr Phe Asn Thr Leu Met Lys Ala Leu Cys
180 185 190
Arg Ala His Gln Val Arg Thr Ala Val Leu Met Leu Glu Glu Met Ser
195 200 205
Ser Arg Gly Val Ala Pro Asp Glu Thr Thr Phe Thr Thr Leu Met Gln
210 215 220
Gly Phe Val Glu Glu Gly Ser Ile Glu Ala Ala Leu Arg Val Lys Ala
225 230 235 240
Arg Met Leu Glu Met Gly Cys Ser Ala Thr Lys Val Thr Val Asn Val
245 250 255
Leu Ile Asn Gly Tyr Cys Lys Leu Gly Arg Val Glu Asp Ala Leu Gly
260 265 270
Tyr Ile Gln Gln Glu Ile Ala Asp Gly Phe Glu Pro Asp Gln Ile Thr
275 280 285
Tyr Asn Thr Phe Val Asn Gly Leu Cys Gln Asn Asp His Val Gly His
290 295 300
Ala Leu Lys Val Met Asp Val Met Val Gln Glu Gly His Asp Pro Asp
305 310 315 320
Val Phe Thr Tyr Asn Ile Val Val Asn Cys Leu Cys Lys Asn Gly Gln
325 330 335
Leu Glu Glu Ala Lys Gly Ile Leu Asn Gln Met Val Asp Arg Gly Cys
340 345 350
Leu Pro Asp Ile Thr Thr Phe Asn Thr Leu Ile Ala Ala Leu Cys Thr
355 360 365
Gly Asn Arg Leu Glu Glu Ala Leu Asp Leu Ala Arg Gln Val Thr Val
370 375 380
Lys Gly Val Ser Pro Asp Val Tyr Thr Phe Asn Ile Leu Ile Asn Ala
385 390 395 400
Leu Cys Lys Val Gly Asp Pro His Leu Ala Leu Arg Leu Phe Glu Glu
405 410 415
Met Lys Asn Ser Gly Cys Thr Pro Asp Glu Val Thr Tyr Asn Thr Leu
420 425 430
Ile Asp Asn Leu Cys Ser Leu Gly Lys Leu Gly Lys Ala Leu Asp Leu
435 440 445
Leu Lys Asp Met Glu Ser Thr Gly Cys Pro Arg Ser Thr Ile Thr Tyr
450 455 460
Asn Thr Ile Ile Asp Gly Leu Cys Lys Lys Met Arg Ile Glu Glu Ala
465 470 475 480
Glu Glu Val Phe Asp Gln Met Asp Leu Gln Gly Ile Ser Arg Asn Ala
485 490 495
Ile Thr Phe Asn Thr Leu Ile Asp Gly Leu Cys Lys Asp Lys Lys Ile
500 505 510
Asp Asp Ala Phe Glu Leu Ile Asn Gln Met Ile Ser Glu Gly Leu Gln
515 520 525
Pro Asn Asn Ile Thr Tyr Asn Ser Ile Leu Thr His Tyr Cys Lys Gln
530 535 540
Gly Asp Ile Lys Lys Ala Ala Asp Ile Leu Glu Thr Met Thr Ala Asn
545 550 555 560
Gly Phe Glu Val Asp Val Val Thr Tyr Gly Thr Leu Ile Asn Gly Leu
565 570 575
Cys Lys Ala Gly Arg Thr Gln Val Ala Leu Lys Val Leu Arg Gly Met
580 585 590
Arg Ile Lys Gly Met Arg Pro Thr Pro Lys Ala Tyr Asn Pro Val Leu
595 600 605
Gln Ser Leu Phe Arg Arg Asn Asn Ile Arg Asp Ala Leu Ser Leu Phe
610 615 620
Arg Glu Met Ala Glu Val Gly Glu Pro Pro Asp Ala Leu Thr Tyr Lys
625 630 635 640
Ile Val Phe Arg Gly Leu Cys Arg Gly Gly Gly Pro Ile Lys Glu Ala
645 650 655
Phe Asp Phe Met Leu Glu Met Val Asp Lys Gly Phe Ile Pro Glu Phe
660 665 670
Ser Ser Phe Arg Met Leu Ala Glu Gly Leu Leu Asn Leu Gly Met Asp
675 680 685
Asp Tyr Phe Ile Arg Ala Ile Glu Ile Ile Met Glu Lys Val Asp Leu
690 695 700
Arg Glu Ser Asp Val Ser Ala Ile Arg Gly Tyr Leu Lys Ile Arg Lys
705 710 715 720
Phe Tyr Asp Ala Leu Ala Thr Phe Gly Arg Phe Leu Glu Ile Asn Asn
725 730 735
Pro Gln Trp Ser Tyr Arg
740
<210> 3
<211> 23
<212> DNA
<213> primers (Primer Sequence)
<400> 3
gtttgaagag atgaagaaca gtg 23
<210> 4
<211> 23
<212> DNA
<213> primers (Primer Sequence)
<400> 4
cttttttatg tcaccttgct tgc 23
<210> 5
<211> 409
<212> DNA
<213> Wild type Rice (Wild type rice Sequence)
<400> 5
gtttgaagag atgaagaaca gtggatgcac cccggatgaa gtaacataca atactttgat 60
tgacaatctt tgctcacttg ggaagcttgg taaagcattg gatttgttaa aagatatgga 120
gtccactggt tgtcctcgaa gtacaattac atataacact ataattgacg ggttatgcaa 180
gaaaatgaga atagaagaag cagaagaagt ttttgatcaa atggatctgc aaggcatttc 240
gaggaatgca atcacattca atactctcat cgatggtttg tgcaaggaca aaaagattga 300
tgatgctttt gagcttatta atcaaatgat aagtgaaggg ttgcaaccta acaatatcac 360
ttacaattct attctaactc attattgcaa gcaaggtgac ataaaaaag 409
<210> 6
<211> 408
<212> DNA
<213> Mutant Gene (Mutant gene Sequence)
<400> 6
gtttgaagag atgaagaaca gtggatgcac cccggatgaa gtaacataca atactttgat 60
tgacaatctt tgctcacttg ggaagcttgg taaagcattg gatttgttaa aagatatgga 120
gtccactggt tgtcctcgaa gtacaattac atataacact ataattgacg gttatgcaag 180
aaaatgagaa tagaagaagc agaagaagtt tttgatcaaa tggatctgca aggcatttcg 240
aggaatgcaa tcacattcaa tactctcatc gatggtttgt gcaaggacaa aaagattgat 300
gatgcttttg agcttattaa tcaaatgata agtgaagggt tgcaacctaa caatatcact 360
tacaattcta ttctaactca ttattgcaag caaggtgaca taaaaaag 408
<210> 7
<211> 5626
<212> DNA
<213> Agrobacterium expression vector Sequence
<400> 7
ctcctgttcc cctctgcctg ccttcacgga gaacacgccg ccgcacgccc gcaaagttgt 60
cgctccgccg ccgggtcctg cggccacttc ctccctctcc ctgtgcatgc gctctcttcc 120
ccacctgtac tttactttag ctgctcctct gcccagttgc ccacgacctg acgacccgga 180
catggcgcag gctgaggcgg ggacgacgac atcgccggcg ggttgacgca gaaaggagcg 240
accacccgag ggctccgctg gattttcagg tagctgagct gagctgaact gaaccccaat 300
gccccgcgtt tgcgccgccc ctcgggcgcc gccgccgccg tgcccgtgcc atgtcggagt 360
agggccgctt cggccgaggt ggcgcgcctc ccggcacggc cctctccggg cggctggcca 420
ggagcagctc ctcaccgccc tgcgcgagca gccggacccc gacgcggcgc tccggatgct 480
caacgcggcg ctggcgcggg acgacttcgc gcccggcccc gaggtctacg aggagatcat 540
ccgcaagctc ggcgcggtcg gggccctcga cctcatgaag gtgctcgtcg cggagatgcg 600
gcgggagggg caccaggtga aattgggcgt agtccactcc ttcttggaca gctacgaggg 660
gcagcagctg ttcgacgatg ccgtcgacct gattctgaat caactccaac cattgtttgg 720
cattcaggca gacaccgtgg tgtacaatca ccttctcaat gttcttgtgg aggggagcaa 780
aatgaaactc cttgaatcag tgtactcgga gatgggtgct aggggaatca agcctgatgt 840
tgtcacattc aacacactga tgaaggcgtt gtgccgagca catcaggtca ggactgcagt 900
tctcatgctc gaggaaatgt ctagcagagg cgtggcgcct gacgagacga cgtttaccac 960
cctgatgcaa ggatttgtcg aggaggggag catcgaggct gcactgaggg tcaaagccag 1020
gatgttggaa atggggtgct cggcgacgaa ggtgacggtt aatgttttga ttaatgggta 1080
ctgcaagcta gggagggtgg aggatgctct tgggtatata cagcaggaga ttgccgatgg 1140
gtttgagcct gaccagatca catataacac ttttgttaat ggtctctgcc aaaatgatca 1200
tgtcggccat gccctcaaag tcatggatgt gatggttcag gagggccatg atcctgatgt 1260
tttcacctac aatatcgttg tgaattgcct ttgtaaaaat ggacagcttg aagaggcaaa 1320
aggaattctg aatcagatgg tggatcgggg ttgtttgcct gacattacca cattcaacac 1380
tctcattgct gccttatgca cggggaatcg acttgaggaa gccttggacc ttgcacgtca 1440
ggttacagtg aagggagtct ctccagatgt ttatactttc aatattctga ttaacgcgct 1500
ctgcaaagta ggcgatcctc atcttgcact tcgattgttt gaagagatga agaacagtgg 1560
atgcaccccg gatgaagtaa catacaatac tttgattgac aatctttgct cacttgggaa 1620
gcttggtaaa gcattggatt tgttaaaaga tatggagtcc actggttgtc ctcgaagtac 1680
aattacatat aacactataa ttgacggtta tgcaagaaaa tgagaataga agaagcagaa 1740
gaagtttttg atcaaatgga tctgcaaggc atttcgagga atgcaatcac attcaatact 1800
ctcatcgatg gtttgtgcaa ggacaaaaag attgatgatg cttttgagct tattaatcaa 1860
atgataagtg aagggttgca acctaacaat atcacttaca attctattct aactcattat 1920
tgcaagcaag gtgacataaa aaaggctgcg gatattttag aaactatgac tgcaaatgga 1980
tttgaagtgg atgttgttac gtacggtact ctgattaacg gtctatgcaa ggctggtagg 2040
acacaggttg ctttgaaggt actcagaggt atgcggataa aagggatgag gcctactcca 2100
aaagcttaca atcctgtgct ccagtctctc ttcagacgga ataatatcag agatgccctg 2160
agtcttttca gggagatggc agaggttggt gagcctcctg atgctttgac atataagatt 2220
gtttttcgtg ggctctgtcg tggtggaggg cctattaaag aagcttttga tttcatgttg 2280
gagatggttg ataaggggtt cataccagag ttctcatcct tccgtatgct agctgaaggt 2340
ctattaaacc tgggtatgga tgattacttc attagagcca ttgaaataat catggaaaag 2400
gtcgacctca gagagtctga tgtttctgca ataaggggat atctcaagat ccgcaaattt 2460
tatgatgcat tagcaacctt tggccgtttc ctggagatca acaaccctca atggagttac 2520
cgatgaagca gaatacataa ctgggacaaa ttacttgaat agtattaggg aaatctcaaa 2580
gagtggatgg aatttttgct ggttgcttag gggaatgaaa gtcttaaatt gattataata 2640
ggtgattgtg ttcattcctc ggtagggatg aagtcagagc atgaagaagc tcatcttggt 2700
gcagaaactt agcttattgg aacagaatct aggtgctagg tgctgtctgc tgccagatta 2760
gtacctagcg ccttaacgaa cagtggctgc agatcccatc cgcttatttt gatcaaatct 2820
gattcatttt ctattcccta ataaaagcct gattcatctt cattgcatat ggtcgaacct 2880
aaggctatca tgtacagtta gatcccaacc cttcgttcta tgagatgttg tcccatagaa 2940
gaaatatctt ctgagtatat cctagtactc taaaatgttc actaatatgt tcaacttaat 3000
tagttttgta acctcctaaa atagttctat tagttttgta accttctaaa atatgaatta 3060
gttttgatct ggctgatctt cctttggtta ggtactacaa attcttaatt cagacacata 3120
tttggttttc tgaaaatttc atctatattt ggtcaggctg gcatttgaag ttcttatttt 3180
agtcatatac tttagttttt tacaattttc atttgttaaa gatgataatt tatttgttag 3240
cacagagcat gtttagaaat ctgaaatatt aaaacatgca tgttctcatg aaaataaatg 3300
ttagttttgt ttaaattcca atccacatat tttttaatca atgtcagaaa ttaccatgct 3360
tcacttattg acctagtata tgtatagtat ttgatggatc atgttgattt ggatttgctc 3420
tactaacttg ttcctattcc aacaaagatt tatatgcatc ttgtgttcta aaaatgctac 3480
atgtgtcaag ttgaaggaaa attctagcta tgtggtgtcc taattttggt agatggtacc 3540
tagtaataga taacaattct gttttatagt gatgagtaaa tttgactaaa tcgagtctag 3600
aaagtgatat aattttctgg agaagtcttt cttggtgatt tgggaaaggg ccattaccta 3660
tactgatatg aaatctggaa ctagaaagat ctgaacatca atgttctaaa gttttttgtc 3720
tgaatttctt gtgcagaata tgaaggaagg tggatctgga ataggtattt acatgtcctg 3780
ttcagattcc tgcaatctga taaactactg caatccaata aactcttgat ctattgtttt 3840
ctggattttt ttttgggtgt agagtattag gaaggtattt gctttgttac aggggttggt 3900
tggatgttca gaaaaccaaa atctgaatac actaacacat tagccagtgt tttattttag 3960
tttatgttat tctgaccaca acaccagcag cttcaattgg tagtagaaca cactctgatg 4020
caattggtag gtgtacaaca gataatttgc cgtgaatgct acttaattca accatttttt 4080
ttccatacag tgctatacaa tggcacacaa acatccttca gttggactca aatttgtttc 4140
agctttgcta ttttacagtc acctgcagtt ttttctaatc catcagtcga ttttgttggc 4200
agtagattct gcttcaagat ctgtgcacgc agtggaggca catttggtta caggctgctt 4260
caccagaccc gttaacccat gggccatgga tgctccccta gtagcatatg ttgttttttc 4320
caccaactgc ctcttgtaaa tcaagatgct cccctctcca catttgctgc agacttcctc 4380
cccgtggatc tgagacgaac tccggcgacc ggcggcgtct acgagccagc gttcaccaat 4440
ttctcaggta tatgagtcgt catctatgtg catctgctac tttttttttt tggctgattg 4500
gacgggttga gaaggaggtg tttgggggga agagagcaga ataatcccat tgcgaaacaa 4560
gcgaggaagg cttgtcgatg gtggcggcgg tggccttgat tatcgaagat gcatgcgtga 4620
gggaaactgt gtgccaggga ggcaagcttg gtggcacaca tcgagtggta tatcttcagg 4680
ttactgctag atcgaagatc ctttggtgct tgatgtgtgc tgttggtttg gtagttttgg 4740
tggtactgtg gcaagtgaag acacgaaaga ggagctagta gaggcttaga gtctggagtc 4800
gtaatcgatg tgcaagagca tcaatgccat cagttcctct gggcagcacg gctctgcact 4860
tttcatctga gaaacatata tattttgttg attctgattt tgacgaatta tccaaacatg 4920
cagttttttt gggttccgcg tgcaaagacg attttgatct cctggcagat ttaagggtgg 4980
tgattttgtt tttgttttgc atgtagatga tgcattttgt aaatcatttt aggttgcccc 5040
tttttttttt gtttttgcga gttcttactg aatttggata agttctggtt gattggatcg 5100
acattctgta catttgcaag gggattctat gggtttttgc ttattgctaa tcaaattatt 5160
ttgtgagttt tggtttattg gatggtgaga aagcaagatt acatggattt tgcttcattg 5220
ctgattttgt cgaaatttat caggcatgcg gtttttggtt tcttgaatac gaactacacg 5280
gacagtactc ctatattctt ggtgattttg aagtgtattt gttattttgg ggaggtggaa 5340
tggttaatat tttgttcaag gggacacttc tacagatgta tacattactt ttgtcatttt 5400
cagcataaca aagagatttg gtagattcag aattcagatg gcaactacac gtcgaatgat 5460
gtatgcgaag acatggggaa ttctgatgct gattccactg aagaaagcta aacataattt 5520
taatttattt accaactcat ttttctgtca acacatttgc tagatagttg ctacccgata 5580
aacgacatct tgaaatctga gttatacttc agtctatttt ttttcc 5626

Claims (7)

1. The low-temperature lethal and high-temperature response rice leaf color mutant gene is characterized by having a nucleotide sequence shown in SEQ ID No. 1.
2. The low temperature lethal and high temperature response rice leaf color mutant gene as claimed in claim 1, wherein the nucleotide sequence thereof is shown in SEQ ID No. 1.
3. The protein encoded by the gene sequence of claim 1 or 2, having 742 amino acid sequences shown in SEQ ID No. 2.
4. The protein of claim 3, wherein the amino acid sequence is set forth in SEQ ID No. 2.
5. A pair of specific PCR primers for detecting the low-temperature lethal and high-temperature responsive rice leaf color mutant genes according to claim 1 or 2, wherein the nucleotide sequences thereof are:
upstream: 5'-GTTTGAAGAGATGAAGAACAGTG-3' (SEQ ID No. 3)
Downstream: 5'-CTTTTTTATGTCACCTTGCTTGC-3' (SEQ ID No. 4).
6. The method for detecting the low-temperature lethal and high-temperature response rice leaf color mutant genes as claimed in claim 1 or 2, which is characterized in that the specific PCR primer as claimed in claim 5 is used for carrying out PCR amplification reaction on DNA extracted from rice seedling stage to obtain nucleotide sequences of 409bp as shown in SEQ ID No.5 (wild type rice) and SEQ ID number 6 (carrying the low-temperature lethal and high-temperature response rice leaf color mutant genes).
7. The detection method as claimed in claim 6, wherein the 408bp fragment obtained by amplifying the DNA of the rice plant carrying the low temperature lethal and high temperature responsive leaf color mutant gene has a change of one base G deletion compared with the 409bp fragment obtained by amplifying the DNA of the parent, indicating that the leaf color gene of the low temperature sensitive rice is contained.
CN202111370022.3A 2021-11-18 2021-11-18 Low-temperature lethal and high-temperature response rice leaf color mutant gene and detection method and application thereof Pending CN114250231A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111370022.3A CN114250231A (en) 2021-11-18 2021-11-18 Low-temperature lethal and high-temperature response rice leaf color mutant gene and detection method and application thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111370022.3A CN114250231A (en) 2021-11-18 2021-11-18 Low-temperature lethal and high-temperature response rice leaf color mutant gene and detection method and application thereof

Publications (1)

Publication Number Publication Date
CN114250231A true CN114250231A (en) 2022-03-29

Family

ID=80790983

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111370022.3A Pending CN114250231A (en) 2021-11-18 2021-11-18 Low-temperature lethal and high-temperature response rice leaf color mutant gene and detection method and application thereof

Country Status (1)

Country Link
CN (1) CN114250231A (en)

Similar Documents

Publication Publication Date Title
CN107164347A (en) Control Culm of Rice rugosity, tiller number, grain number per spike, mass of 1000 kernel and the ideotype gene NPT1 of yield and its application
CN108822194B (en) Plant starch synthesis related protein OsFLO10, and coding gene and application thereof
CN107164401A (en) A kind of method and application that rice Os PIL15 mutant is prepared based on CRISPR/Cas9 technologies
CN110511945A (en) A kind of rice fertility controlling gene and its mutant and application
CN108291234A (en) Multiple sporinite forms gene
CN111254142B (en) Molecular marker of corn seed cadmium low accumulation control gene ZmCD1 and application
CN103443292B (en) The method of the QTL associated with the whole plant field resistance to Sclerotinia and identification to the whole plant field resistance of Sclerotinia
CN107759676A (en) A kind of plant amylose synthesis associated protein Du15 and its encoding gene and application
CN111778265A (en) Mutant gene, mutant, expression vector and application of zearalenone oxidase
CN106754967A (en) A kind of rice grain shape gene OsLG1 and its coded protein and application
CN108642065A (en) A kind of paddy endosperm silty related gene OsSecY2 and its coding protein and application
CN107337720A (en) A kind of plant glutelin transhipment storage GAP-associated protein GAP OsNHX5 and its encoding gene and application
CN108441571A (en) Application of the corn molecular labeling in identifying and regulating and controlling corn rough dwarf resistance trait
CN107326035B (en) Deubiquitinating enzyme gene UBP5 for regulating rice grain shape and leaf color and application thereof
CN112609017B (en) Molecular marker for detecting rice grain shape, corresponding gene and application
CN104628839B (en) A kind of paddy endosperm amyloplast development associated protein and its encoding gene and application
CN106749571B (en) Plant starch synthesis related protein OsNPPR and coding gene and application thereof
CN106589085B (en) Plant starch synthesis related protein OsFLO8, and coding gene and application thereof
CN112175973A (en) Rice scab control gene SPL36 and application thereof
CN109971763A (en) Florescence control gene C MP1 and relevant carrier and its application
CN105925587B (en) Early rice chloroplast development gene subjected to low-temperature response and detection method and application thereof
CN108795949B (en) Rice leaf color regulation related gene OsWSL6 and encoding protein and application thereof
CN111304219B (en) GL1 gene separated from rice WZ1 and application thereof in increasing rice grain length
CN114250231A (en) Low-temperature lethal and high-temperature response rice leaf color mutant gene and detection method and application thereof
CN110407922B (en) Rice cold-resistant gene qSCT11 and application thereof

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination