CN114245823A - 非生物胁迫耐性植物和方法 - Google Patents

非生物胁迫耐性植物和方法 Download PDF

Info

Publication number
CN114245823A
CN114245823A CN201980096653.5A CN201980096653A CN114245823A CN 114245823 A CN114245823 A CN 114245823A CN 201980096653 A CN201980096653 A CN 201980096653A CN 114245823 A CN114245823 A CN 114245823A
Authority
CN
China
Prior art keywords
ala
leu
arg
ser
gly
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201980096653.5A
Other languages
English (en)
Inventor
吕贵华
王国奎
毛冠凡
王昌贵
焦荣荣
张玉
陈光武
王建涛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sinobioway Bio Agriculture Group Co Ltd
Pioneer Overseas Corp
Original Assignee
Sinobioway Bio Agriculture Group Co Ltd
Pioneer Overseas Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sinobioway Bio Agriculture Group Co Ltd, Pioneer Overseas Corp filed Critical Sinobioway Bio Agriculture Group Co Ltd
Publication of CN114245823A publication Critical patent/CN114245823A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/415Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
    • C12N15/8273Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for drought, cold, salt resistance
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8201Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation
    • C12N15/8213Targeted insertion of genes into the plant genome by homologous recombination
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8216Methods for controlling, regulating or enhancing expression of transgenes in plant cells
    • C12N15/8218Antisense, co-suppression, viral induced gene silencing [VIGS], post-transcriptional induced gene silencing [PTGS]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • C12N9/22Ribonucleases RNAses, DNAses

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biomedical Technology (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • Wood Science & Technology (AREA)
  • Molecular Biology (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Cell Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Virology (AREA)
  • Botany (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

本发明发明提供了一些对提高耐旱性、产量和/或氮素胁迫耐性有用的抑制DNA构建体和CRISPR/Cas9DNA构建体。还提供了含有这些构建体的组合物,如植物或种子,以及利用这些构建体的方法。

Description

非生物胁迫耐性植物和方法
技术领域
本发明涉及植物育种和基因,特别是涉及到提高植物对非生物胁迫的耐受性。
发明背景
植物的胁迫可以是有生物的和非生物的因素引起的。例如,生物引发的胁迫包括病菌的感染、昆虫的取食,另一种植物的寄生如榭寄生。非生物胁迫包括,如过量的或不足的可用水、极端温度、和化学合成品如除草剂。
非生物胁迫是造成全球作物损失的主要原因,导致主要作物的平均产量损失超过50%(Boyer,J.S.(1982)Science 218:443-448;Bray,E.A.等(2000)In Biochemistry andMolecular Biology of Plants,由Buchanan,B.B.等人编辑,Amer.Soc.Plant Biol.,第1158-1249页)。
因此,需要开发增加植物对非生物胁迫耐受性的组合物和方法。本发明提供了这样的组合物和方法。
发明概述
以下实施例属于本发明所涵盖的实施例:
在一个实施例中,本发明提供了一种抑制DNA构建体,所述构建体包含至少一个可操作地与抑制元件连接的异源调控元件。其中所述抑制元件减少了一种内源靶向多核苷酸的表达,所述内源靶向多核苷酸编码一个多肽,其包含的氨基酸序列与SEQ ID NO:3、6、9、12、15、18或21有至少90%的序列一致性。在某些实施例中,所述抑制元件包含至少100个连续编码多肽的一种多核苷酸的碱基对,所述多肽的氨基酸序列与SEQ ID NO:3、6、9、12、15、18或21有至少90%的序列一致性。在某些实施例中,所述抑制元件包含SEQ ID NO:51的多核苷酸。
本发明还提供了一种CRISP/Cas构建体,所述CRISP/Cas构建体包含至少一个可操作地连接gRNA的异源调控序列,其中所述gRNA是靶向包含内源BCS1-2、DnaJ7、LNTP10、GH17.2、DUF6、ATAP1或PCL1基因和/或其调控元件的基因组区域,以降低内源BCS1-2、DnaJ7、LNTP10、GH17.2、DUF6、ATAP1或PCL1多肽的表达或活性。在某些实施例中,所述内源基因编码的多肽的氨基酸序列与SEQ ID NO:3、6、9、12、15、18或21有至少90%的一致性。在某些实施例中,所述BCS1-2、DnaJ7、LNTP10、GH17.2、DUF6、ATAP1或PCL1基因包含的多核苷酸的核苷酸序列为SEQ ID NO:1、2、4、5、7、8、10、11、13、14、16、17、19或20或其等位基因变异包括1至约10个的核苷酸变化。在某些实施例中,所述内源调控元件包含一个多核苷酸,其核苷酸序列为SEQ ID NO:74或75。
本发明进一步提供了一种能够减少内源BCS1-2、DnaJ7、LNTP10、GH17.2、DUF6、ATAP1或PCL1多肽的表达或活性的改良植物或种子。在某些实施例中,所述改良的植物或种子包含的一种抑制DNA构建体含有至少一个可操作地连接抑制元件的异源调控元件,其中所述抑制元件减少了所述内源BCS1-2、DnaJ7、LNTP10、GH17.2、DUF6、ATAP1或PCL1多肽的表达。在某些实施例中,所述多肽包含的氨基酸序列与SEQ ID NO:3、6、9、12、15、18或21有至少90%的序列一致性。在某些实施例中,所述抑制元件包含至少100个能够编码氨基酸序列与SEQ ID NO:3、6、9、12、15、18或21有至少90%序列一致性的多核苷酸的连续碱基对。在某些实施例中,所述抑制元件包含的所述多核苷酸为SEQ ID NO:51。
在某些实施例中,所述改良植物或种子在其基因位点上包含有一个靶向基因修饰,所述靶向基因修饰包含一个能编码BCS1-2、DnaJ7、LNTP10、GH17.2、DUF6、ATAP1或PCL1多肽的多核苷酸,其中所述基因修饰能减少所述多肽的表达和/或活性。在某些实施例中,所述多核苷酸编码的多肽的氨基酸序列与SEQ ID NO:3、6、9、12、15、18或21有至少90%的序列一致性。
在某些实施例中,所述改良植物或种子表现出以下至少一种表型:增加的耐旱性、增加的籽粒产量、增加的非生物胁迫耐性、提高的氮素胁迫耐性、或提高的氮素利用效率(NUE)。在某些实施例中,所述改良植物或种子降低BCS1-2、DnaJ7、LNTP10、GH17.2、DUF6、ATAP1或PCL1多肽的表达和/或活性来提高干旱耐性、提高籽粒产量和/或提高非生物胁迫耐性。在某些实施例中,当生长在低氮条件下,所述的改良植物或种子,降低LNTP10、DUF6或ATAP1多肽的表达和/或活性,与对照植物相比较,可提高氮素胁迫耐性、或提高氮素利用效率(NUE)和/或增加籽粒产量。
在某些实施例中,本发明中所述的组合物和方法的植物选自水稻、玉米、大豆、向日葵、高粱、油菜、小麦、苜蓿、棉花、大麦、小米、甘蔗和柳枝稷。
本发明还提供了一种提高植物耐旱性的方法,这种方法包括减少植物中至少一种编码BCS1-2、DnaJ7、LNTP10、GH17.2、DUF6、ATAP1或PCL1多肽的多核苷酸的表达和/或活性。在某些实施例中,所述多肽的氨基酸序列与SEQ ID NO:3、6、9、12、15、18或21有至少80%的序列一致性。
在某些实施例中,所述提高耐旱性的方法保括:(a)向可再生植物细胞引入一个抑制DNA构建体,其中所述抑制DNA构建体包含有至少一个可操作地连接抑制元件的异源调控元件;(b)由可再生植物的细胞再生一个改良植物,其中所述植物包含抑制DNA构建体。在某些实施例中,所述抑制元件减少氨基酸序列与SEQ ID NO:3、6、9、12、15、18或21有至少90%序列一致性的内源靶向多核苷酸的表达。在某些实施例中,所述抑制元件包含至少100个连续的碱基对,其多核苷酸编码的氨基酸序列与SEQ DI NO:3、6、9、12、15、18或21有至少90%的序列一致性。在某些实施例中,所述抑制元件包含的多核苷酸为SEQ ID NO:51。
在某些实施例中,所述提高耐旱性的方法包括:(a)向一个可再生植物细胞的基因组位点引入一个靶向基因修饰,所述靶向基因修饰包含一个编码BCS1-2、DnaJ7、LNTP10、GH17.2、DUF6、ATAP1或PCL1多肽的多核苷酸;和(b)再生这个植物,其中所述植物在其基因组内含有所述引入的基因修饰,并能减少所述多肽的表达和/或活性。在某些实施例中,所述多肽的氨基酸序列与SEQ ID NO:3、6、9、12、15、18或21相比较时有至少80%的序列一致性。在某些实施例中,所述靶向基因修饰使用以下基因组修饰技术被引入:多核苷酸引导的核酸内切酶、CRISPR-Cas核酸内切酶、碱基编辑脱氨酶、锌指核酸酶、转录激活因子样效应核酸酶(TALEN)、工程位点特异性大范围核酸酶或Argonaute。在某些实施例中,所述靶向基因修饰存在于(a)编码区域;(b)非编码区域;(c)调控序列;(d)非翻译区;或(e)基因位点上(a)-(d)任意组合。所述基因位点编码多肽的氨基酸序列和SEQ ID NO:3、6、9、12、15、18或21比较时有至少80%的序列一致性。
在某些实施例中,所述靶向基因修饰通过CRISPR/Cas构建体被引入,所述CRISPR/Cas构建体含有至少一个可操作地连接gRNA的异源调控序列,其中所述gRNA靶向所述内源BCS1-2、DnaJ7、LNTP10、GH17.2、DUF6、ATAP1或PCL1基因和/或它的调控元件。
还提供了一种提高植物氮素胁迫耐性、氮素利用效率和/或籽粒产量的方法,所述方法包括减少植物中编码LNTP10、DUF6或ATAP1多肽的至少一个多核苷酸的表达和/或活性。在某些实施例中,所述多肽的氨基酸序列与SEQ ID NO:9、15或18有至少80%的序列一致性。
在某些实施例中,提高氮素胁迫耐性、氮素利用效率和/或籽粒产量的方法包括:(a)向一个可再生植物细胞引入一个抑制DNA构建体,其中所述抑制DNA构建体含有至少一个可操作地连接抑制元件的异源调控元件;(b)由可再生的植物细胞再生一个改良植物,其中所述植物包含所述抑制DNA构建体。在某些实施例中,所述抑制元件抑制氨基酸序列与SEQ ID NO:9、15或18有至少90%的序列一致性的内源靶多核苷酸的表达。在某些实施例中,所述抑制元件含有至少100个连续的多核苷酸碱基对,其多核苷酸的氨基酸序列与SEQID NO:9、15或18有至少90%的序列一致性。
在某些实施例中,提高氮素胁迫耐性、氮素利用效率和/或籽粒产量的方法包括:(a)向可再生植物细胞的基因位点引入一个靶向基因修饰,其包含一个编码LNTP10、DUF6或ATAP1多肽的多核苷酸;和(b)再生一个植物,其中所述植物在其基因组中包含引入的基因修饰,减少所述多肽的表达和/或活性。在某些实施例中,所述多肽的氨基酸序列与SEQ IDNO:9、15或18比较时,有至少80%的序列一致性。在某些实施例中,所述靶向基因修饰使用以下基因修饰技术被引入:多核苷酸引导的核酸内切酶,CRISPR-Cas核酸内切酶,碱基编辑脱氨酶,锌指核酸酶,转录激活因子样效应核酸酶(TALEN),工程位点特异性大范围核酸酶或Argonaute。在某些实施例中,所述靶向基因修饰存在于:(a)编码区;(b)非编码区;(c)调控序列;(d)非翻译区;或(e)基因位点上(a)-(d)任意的组合。所述基因位点编码的多肽的氨基酸序列在和SEQ ID NO:9、15或18比较时有至少80%的序列一致性。
附图说明及序列表
要全面理解本发明的内容,详见以下详细说明以及构成本申请组成部分的附图和序列列表。本附件中的序列描述和序列列表符合37C.F.R.§§1.821和1.825中规定的专利申请中核苷酸和氨基酸序列披露的规则。序列描述包括37C.F.R.§§1.821和1.825中定义的氨基酸的三个字母代码,其通过引用并入本文。
图1显示了OsBCS1-2基因基因组中sgRNA分布的示意图。
图2显示了OsDnaJ7基因基因组中sgRNA分布的示意图。
图3显示了OsLNTP10基因及其调控元件基因组中sgRNA分布的示意图。
图4显示了OsGH17.2基因及其调控元件基因组中sgRNA分布的示意图。
图5显示了OsDUF6基因基因组中sgRNA分布的示意图。
序列列表详述
Figure BDA0003366542760000051
Figure BDA0003366542760000061
Figure BDA0003366542760000071
详细描述
本发明所述的每个参考文献的公开内容都作为引用并入本文。
在本文中和所附的权利要求中,“一个”、“一种”、“所述”包括复数引用,除非文中另有明确规定。例如,“植物”是指多个这样的植物;“细胞”包括本领域技术人员已知的一个或多个细胞及其它对应物,以此类推。
定义
在本文中,植物的“增加的耐旱性”是指在干旱条件下生长时相对于参照或对照植物测量的生理或物理特征(例如产量)的任何可测量的改善。通常,当在其基因组中包含重组DNA构建体或DNA修饰的植物相对于参照或对照植物表现出增加的耐旱性时,参照或对照植物在其基因组中不包含重组DNA构建体或DNA修饰。
在本文中,植物的“增加的氮胁迫耐受性”是指当在低氮和/或氮限制条件下生长时相对于参照或对照植物测量的生理或物理特征(例如产量)的任何可测量的改善。通常,当在其基因组中包含重组DNA构建体或DNA修饰的植物相对于参照或对照植物表现出增加的氮胁迫耐受性时,参照或对照植物在其基因组中不包含重组DNA构建体或DNA修饰。
在本文中,“氮利用效率(NUE)”是指植物吸收利用的肥料中的氮量与施用的肥料氮量之间的比率。因此,在某些实施方案中,氮利用效率的提高是指任何可检测的植物吸收利用的肥料氮的量和施用的肥料氮的量的增加。本领域普通技术人员可以使用本领域中的常规方法计算氮使用效率。
“农艺性状”是一个可测量的参数,包括但不限于:绿量、籽粒产量、生长速率、总生物量或积累速率、成熟期鲜重、成熟期干重、果实产量、种子产量、植物总氮含量、果实总氮含量、种子总氮含量、营养组织中的氮含量、植物游离氨基酸总含量、果实游离氨基酸含量、种子游离氨基酸含量、营养组织中游离氨基酸含量、植物总蛋白质含量、果实蛋白质含量、种子蛋白质含量、营养组织中的蛋白质含量、耐旱性、氮吸收、根系倒伏、收获指数、茎秆倒伏、株高、穗高、穗长、耐盐性、分蘖数、穗大小、早幼活力和低温下幼苗出苗。
“转基因”是指任何细胞、细胞系、愈伤组织、组织、植物部分或植物,其基因组因异源核酸(例如重组DNA构建体)的存在而改变,包括那些最初的转基因事件以及由最初的转基因事件通过性杂交或无性繁殖产生的事件。本文使用的术语“转基因”不包括通过常规植物育种方法或通过自然发生的事件(例如随机交叉受精、非重组病毒感染、非重组细菌转化)改变基因组(染色体或染色体外)、非重组转座或自发突变。
“对照”、“对照植物”或“对照植物细胞”为测定受测试植物或植物细胞的表型变化提供参考,由于转化,受测植物或植物细胞的基因组改变影响到目的基因。例如,对照植物可以是具有与测试植物相同的遗传背景的植物,二者的差别只在于测试植物或细胞发生了遗传改变。
“植物”包括植物整株、植物器官、植物组织、种子和植物细胞及同一植株的子代。植物细胞包括但不限于种子、悬浮培养物、胚、分生组织、愈伤组织、叶、根、芽、配子体、孢子体、花粉和小孢子的细胞。
“子代”包括植物的任何后续世代。
“修饰的植物”包括在其基因组内包含异源多核苷酸或修饰的基因或启动子的植物。例如异源多核苷酸能够稳定地整合进基因组中,并遗传连续的世代。异源多核苷酸可单独地或作为重组DNA构建体的部分整合进基因组中。
针对序列而言的“异源”意指来自外来物种的序列,或者如果来自相同物种,则指通过蓄意的人为干预而从其天然形式发生了组成和/或基因座的显著改变的序列。
“多核苷酸”、“核酸序列”、“核苷酸序列”或“核酸片段”可互换使用并且是任选含有合成的、非天然的或改变的核苷酸碱基的单链或双链RNA或DNA聚合物。核苷酸(通常以它们的5′-单磷酸形式存在)通过如下它们的单个字母名称来指代:“A”为腺苷酸或脱氧腺苷酸(分别对应RNA或DNA),“C”表示胞苷酸或脱氧胞苷酸,“G”表示鸟苷酸或脱氧鸟苷酸,“U”表示尿苷酸,“T”表示脱氧胸苷酸,“R”表示嘌呤(A或G),“Y”表示嘧啶(C或T),“K”表示G或T,“H”表示A或C或T,“I”表示肌苷,并且“N”表示任何核苷酸。
“多肽”、“肽”、“氨基酸序列”和“蛋白质”在本发明中可互换使用,指氨基酸残基的聚合物。该术语适用于其中一个或多个氨基酸残基是相应的天然存在的氨基酸的人工化学旁系同源基因的氨基酸聚合物,以及适用于天然存在的氨基酸聚合物。术语“多肽”、“肽”、“氨基酸序列”和“蛋白质”还可包括修饰形式,包括但不限于糖基化、脂质连接、硫酸盐化、谷氨酸残基的γ羧化、羟化和ADP-核糖基化。
“重组DNA构建体”指在自然界中通常不会一起存在的核酸片段的组合。因此,重组DNA构建体可包含源于不同来源的调控序列和编码序列,或源于相同来源但以不同于通常天然存在的方式排列的调控序列和编码序列。
“调控元件”指位于编码序列的上游(5'非编码序列)、中间或下游(3'非编码序列),并且影响相关编码序列的转录、RNA 加工或稳定性、或者相关核苷酸序列的翻译。调控序列可包括但不限于启动子、翻译前导序列、内含子和多腺苷酸化识别序列。术语“调控序列”和“调控元件”以及“调控区域”在本文中可互换使用。
“启动子”指能够控制另一核酸片段转录的核酸片段。“植物中有功能启动子”是能够控制植物细胞中基因转录的启动子,无论其是否来源于植物细胞。“组织特异性启动子”和“组织优选启动子”指主要但非必须专一地在一种组织或器官中表达,而且也可在一种特定细胞或细胞型中表达的启动子。“发育调控启动子”指其活性由发育事件决定的启动子。
“可操作地连接”指核酸片段连接成单一片段,使得其中一个核酸片段的功能受到另一个核酸片段的调控。例如,在启动子能够调节核酸片段的转录时,该启动子与该核酸片段进行了可操作地连接。
“表达”指功能产物的产生。例如,核酸片段的表达可指核酸片段的转录(如转录生成mRNA或功能RNA)和/或RNA翻译成前体或成熟蛋白质。
在本文中,“增加的”、“增多的”等是指与对照组(例如,不包含DNA修饰的野生型植物)相比,实验组(例如,具有本文所述的DNA修饰的植物)中任何可检测到的增加。因此,蛋白质表达的增加包括样品中蛋白质总水平的任何可检测出的增加,可以使用本领域的常规方法如Western印迹和ELISA来确定。
在本文中,“产量”是指每单位土地收获的农作物产品的量,并且可以包括指根据谷物收获时经过水分调整后每英亩或每公斤作物的蒲式耳(例如,通常为玉米15%,大米13.5%)。谷物水分是在收获时的谷物中测量的。调整后的谷物测试重量确定为每蒲式耳磅数或每株植物克数的重量,根据收获时的谷物水分水平进行调整。
“抑制DNA构建体”是重组DNA构建体,当其转化或稳定整合到植物的基因组中时能导致植物中靶基因的“沉默”。靶基因可以是植物的内源或转入的基因。
本文所用的关于靶基因“沉默”通常是指抑制靶基因表达的mRNA或蛋白质/酶的数量,和/或酶活性或功能蛋白质的数量。术语“抑制”,“抑制”和“沉默”在本文可互换使用,还包括降低、减少、下降、减少、抑制、消除或预防。
抑制DNA构建体在本领域中是众所周知的,并且一旦选择目的靶基因就可以容易地构建,包括但不限于共抑制构建体、反义构建体、病毒抑制构建体、发夹抑制构建体、茎环抑制构建体、产生双链RNA的构建体、更一般地、RNAi(RNA干扰)构建体和小RNA构建体、例如siRNA(短干扰RNA)构建体和miRNA(microRNA)构建体。
“反义抑制”是指产生能够抑制靶基因或基因产物表达的反义RNA转录物。“共抑制”是指产生能够抑制靶基因或基因产物表达的正义RNA转录物。“正义”RNA是指包含mRNA的RNA转录本,可以在细胞内或体外翻译成蛋白质。另一种变体描述了使用植物病毒序列来指导抑制近端mRNA编码序列(1998年8月20日发表的PCT出版物No.WO 98/36083)。
RNA干扰(RNAi)是指由短干扰RNA(siRNA)介导的动物中序列特异性转录后基因沉默的过程(Fire等,Nature 391:806(1998))。植物中的相应过程通常称为转录后基因沉默(PTGS)或RNA沉默,也被称为真菌中的平息。转录后基因沉默的过程被认为是一种进化上保守的细胞防御机制,用于阻止外源基因的表达,并且通常由不同的植物群和门共享(Fire等,Trends Genet.15:358(1999))。
在本文中,在两个多核苷酸或多肽序列的背景下,“序列同一性”或“同一性”是指在指定的比较窗口内比对以获得最大对应性时相同的两个序列中的残基。当序列同一性百分比用于蛋白质时,人们认识到不完全相同的残基位置往往因保守的氨基酸替代而有所不同,其中氨基酸残基被其他具有相似化学性质(如电荷或疏水性)的氨基酸残基所取代因此不会改变分子的功能特性。当序列在保守取代中不同时,可以向上调整序列同一性百分比以校正取代的保守性质。通过这种保守取代而不同的序列被称为具有“序列相似性”或“相似性”。进行这种调整的手段对于本领域技术人员来说是众所周知的。通常,这涉及将保守取代评分为部分错配而不是完全错配,从而增加序列同一性百分比。因此,例如,在相同氨基酸的得分为1且非保守取代的得分为零的情况下,保守取代的得分为零至1。例如,如在程序PC/GENE(Intelligenetics,Mountain View,California)中实施的那样,计算保守取代的得分。
在本文中,“序列同一性百分比”是通过确定两个序列中出现相同核酸碱基或氨基酸残基的位置数来计算的,以产生匹配位置数,将匹配位置数除以比较窗口中的位置总数,并将结果乘以100。
除非另有说明,否则使用Clustal V比对方法(Higgins和Sharp。(1989)CABIOS.5:151-153)以默认参数(间隙罚分=10,间隙长度罚分=10)。成对比对的默认参数和使用Clustal V方法计算氨基酸序列的同一性百分比是KTUPLE=1,空位罚分=3,窗口=5和保存对角线=5。对于核酸,这些参数是KTUPLE=2,空位罚分=5,窗口=4,保存对角线=4。序列比对后,使用Clustal V程序,可以通过查看同一程序上的“序列距离”表来获得“同一性百分比”和“差异”值;除非另有说明,本文提供和要求保护的百分比同一性和差异以这种方式计算。
组合物
本发明提供了降低BCS1-2、DnaJ7、LNTP10、GH17.2、DUF6、ATAP1或PCL1多肽的表达和/或活性的构建体。
在本发明的一个方面,所述多肽包含的氨基酸序列与SEQ ID NO:3(OsBCS1-2)、SEQ ID NO:6(OsDnaJ7)、SEQ ID NO:9(OsLNTP10)、SEQ ID NO:12(OsGH17.2)、SEQ ID NO:15(OsDUF6)、SEQ ID NO:18(OsATAP1)和SEQ ID NO:21(OsPCL1)中任意氨基酸序列有至少80%(例如81%、82%、83%、84%、85%、86%、87%、88%、89%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或100%)的一致性。
“OsBCS1-2”是过表达时能赋予敏旱表型的水稻多肽。OsBCS1-2多肽(SEQ ID NO:3)由水稻基因座LOC_Os01g42030.1的编码序列(CDS)(SEQ ID NO:2)或核苷酸序列(SEQ IDNO:1)编码,其在TIGR中注释为“线粒体伴侣BCS1,推定,表达”。“BCS1-2多肽”是指OsBCS1-2多肽及其旁系同源基因(如SEQ ID NO:77,由SEQ ID NO:76编码)或其他生物的同源基因,如玉米(由SEQ ID NO:78编码的SEQ ID NO:79)、高粱(由SEQ ID NO:80编码的SEQ ID NO:81)、拟南芥(由SEQ ID NO:82编码的SEQ ID NO:83)或大豆(由SEQ ID NO:84编码的SEQ IDNO:85)。
“OsDnaJ7”是过表达时能赋予敏旱表型的水稻多肽。OsDnaJ7多肽(SEQ ID NO:6)由水稻基因座LOC_Os02g51730.1的编码序列(CDS)(SEQ ID NO:5)或核苷酸序列(SEQ IDNO:4)编码,在TIGR注释为“DnaJ同源亚家族C成员7”,在NCBI注释为“通用应激蛋白结构域蛋白,假定”。“DnaJ7多肽”是指OsDnaJ7多肽及其旁系同源基因(如由SEQ ID NO:86编码的SEQ ID NO:87)或其他生物的同源基因,如玉米(由SEQ ID NO:88编码的SEQ ID NO:89),高粱(由SEQ ID NO:90编码的SEQ ID NO:91),拟南芥(由SEQ ID NO:92编码的SEQ ID NO:93)或大豆(由SEQ ID NO:94编码的SEQ ID NO:95)。
“OsLNTP10”是在过表达时能赋予敏旱表型的水稻多肽。OsLNTP10多肽(SEQ IDNO:9)由水稻基因座LOC_Os05g38940.1的编码序列(CDS)(SEQ ID NO:8)或核苷酸序列(SEQID NO:7)编码,其在TIGR中注释为“表达的蛋白质”。“LNTP10多肽”在本文中是指OsLNTP10多肽及其旁系同源基因(例如,由SEQ ID NO:96编码的SEQ ID NO:97)或来自其他生物的同源基因,例如高粱(由SEQ ID NO:98编码的SEQ ID NO:99)。
“OsGH17.2”是过表达时能赋予敏旱表型的水稻多肽。OsGH17.2多肽(SEQ ID NO:12)由水稻基因座LOC_Os01g58730.1的编码序列(CDS)(SEQ ID NO:11)编码,或核苷酸序列(SEQ ID NO:10)编码,在TIGR中注释为“糖基水解酶家族17,推定,表达”。GH17.2多肽在此指OsGH17.2多肽及其旁系同源基因(例如,由SEQ ID NO:100编码的SEQ ID NO:101)或来自其他生物的同源基因,例如玉米(由SEQ ID NO:102编码的SEQ ID NO:103),高粱(由SEQ IDNO:104编码的SEQ ID NO:105),拟南芥(由SEQ ID NO:106编码的SEQ ID NO:107)或大豆(由SEQ ID NO:108编码的SEQ ID NO:109)。
“OsDUF6”是在过表达时能赋予敏旱表型的水稻多肽。OsDUF6多肽(SEQ ID NO:15)由水稻基因座LOC_Os03g02280.1的编码序列(CDS)(SEQ ID NO:14)或核苷酸序列(SEQ IDNO:13)编码,在TIGR中注释为“DUF584结构域蛋白,假定,表达”。”本文中,DUF6多肽是指OsDUF6多肽及其旁系同源基因(如SEQ ID NO:110编码的SEQ ID NO:111)或其他生物的同源基因,如玉米(SEQ ID NO:112编码的SEQ ID NO:113)、高粱(SEQ ID NO:114编码的SEQID NO:115),拟南芥(由SEQ ID NO:116编码的SEQ ID NO:117)或大豆(由SEQ ID NO:118编码的SEQ ID NO:119)。
“OsATAP1”是过表达时能赋予干旱敏感表型的水稻多肽。OsATAP1多肽(SEQ IDNO:18)由水稻基因座LOC_Os03g02330.1的编码序列(CDS)(SEQ ID NO:17)或核苷酸序列(SEQ ID NO:16)编码,在TIGR注释为“AAA型atp酶家族蛋白,假定,表达”。“ATAP1多肽”是指OsATAP1多肽及其旁系同源基因(如由SEQ ID NO:120编码的SEQ ID NO:121)或其他生物的同源基因,如玉米(由SEQ ID NO:122编码的SEQ ID NO:123)、高粱(由SEQ ID NO:124编码的SEQ ID NO:125),拟南芥(由SEQ ID NO:126编码的SEQ ID NO:127)或大豆(由SEQ IDNO:128编码的SEQ ID NO:129)。
“OsPCL1”是当过表达时能赋予敏旱表型的水稻多肽。OsPCL1多肽(SEQ ID NO:21)由水稻基因座LOC_Os03g02400.1的编码序列(CDS)(SEQ ID NO:20)或核苷酸序列(SEQ IDNO:19)编码,在TIGR中其注释为“含有质体蓝素样结构域的蛋白质,推定,表达”。“PCL1多肽”在本文中指OsPCL1多肽及其旁系同源基因(例如,由SEQ ID NO:130编码的SEQ ID NO:131)或来自其他生物的同源基因,例如玉米(由SEQ ID NO:132编码的SEQ ID NO:133,),高粱(由SEQ ID NO:134编码的SEQ ID NO:135),拟南芥(由SEQ ID NO:136编码的SEQ ID NO:137)或大豆(由SEQ ID NO:138编码的SEQ ID NO:139)。
本领域技术人员应当理解的,本发明内容涵盖的不仅仅是特定的示例性序列。引起在给定位点产生化学等价氨基酸的核酸片段的改变,但是不影响编码多肽的功能特性,在领域内是众所周知的。例如,氨基酸丙氨酸(疏水性氨基酸)的密码子可以被编码另一疏水性较低残基(例如甘氨酸)的密码子或更疏水性残基(例如缬氨酸,亮氨酸,或异亮氨酸)替代。类似地,导致一个带负电荷的残基取代另一个(例如谷氨酸取代天冬氨酸),或另一种带正电荷的残基取代另一个(例如精氨酸取代赖氨酸),也可以预期产生功能上等同的产物。导致多肽分子的N-末端和C-末端部分改变的核苷酸变化也不会改变多肽的活性。所提出的每种修饰都完全在本领域的常规技术范围内,确定编码产物的生物活性的保留也是如此。
抑制DNA构建体和CRISP/Cas构建体
提供了一个能够减少BCS1-2、DnaJ7、LNTP10、GH17.2、DUF6、ATAP1或PCL1多肽表达和/或活性的抑制DNA构建体。在某些实施例中,所述抑制DNA构建体是一种共抑制构建体、反义构建体、病毒抑制构建体、发夹抑制构建体、茎环抑制构建体、双链RNA产生构建体、更一般地、RNAi(RNA干扰)构建体和小RNA构建体如siRNA(短干扰RNA)构建体和miRNA(microRNA)构建体。
在某些实施例中,所述抑制DNA构建体含有至少一个可操作地连接抑制元件的异源调控元件,其中所述抑制元件抑制内源靶向多核苷酸的表达,所述内源性靶向多核苷酸的氨基酸序列与SEQ ID NO:3、6、9、12、15、18或21有至少90%的序列一致性。在某些实施例中,所述抑制元件含有至少100个连续碱基对,其多核苷酸的氨基酸序列与SEQ ID NO:3、6、9、12、15、18或21有至少90%的序列一致性。在某些实施例中,所述抑制元件含有的多核苷酸为SEQ ID NO:51。
本发明中还提供了一个CRISPR/Cas构建体,所述CRISPR/Cas构建体含有至少一个异源调控序列可操作地连接了gRNA,其中所述gRNA的目标是在基因组区域包含有内源BCS1-2、DnaJ7、LNTP10、GH17.2、DUF6、ATAP1或PCL1基因和/或其调控元件能减少内源BCS1-2、DnaJ7、LNTP10、GH17.2、DUF6、ATAP1或PCL1多肽的表达或活性。在某些实施例中,所述内源基因编码的多肽的氨基酸序列与SEQ ID NO:3、6、9、12、15、18或21有至少90%的一致性。进一步,所述BCS1-2、DnaJ7、LNTP10、GH17.2、DUF6、ATAP1或PCL1基因含有的多核苷酸的核苷酸序列为SEQ ID NO:1、2、4、5、7、8、10、11、13、14、16、17、19或20或包含有1到10左右的核苷酸变化的等位基因。在某些实施例中,所述内源调控元件含有的多核苷酸的核苷酸序列为SEQ ID NO:74或75。在某些实施例中,所述gRNA含有的序列包含一个或多个SEQ ID NO:56-66序列。
在某些实施例中,至少一个调控元件是异源调控元件。在某些实施例中,至少一个重组DNA构建体的调控元件包含一个启动子。在某些实施例中,所述启动子是一个异源启动子。
大量启动子可以被用在本发明所述的重组DNA构建体中。所述启动子可以依据期望的结果被挑选,且可以包括组成型、组织特异型、或其它用于在宿主生物体中表达的启动子。
“组成型”启动子是一种启动子,在大多数环境条件下都具有活性。组成型启动子包括例如WO 99/43838和美国专利号6072050中公开的Rsyn7启动子的核心启动子和其他组成型启动子、核心CaMV 35S启动子(Odell等(1985)Nature313:810-812)、水稻肌动蛋白(McElroy等(1990)Plant Cell 2:163-171)、泛素(Christensen等(1989)PlantMol.Biol.12:619-632和Christensen等(1992)Plant Mol.Biol.18:675-689)、pEMU(Last等(1991)Theor.Appl.Genet.81:581-588)、MAS(Velten等(1984)EMBO J.3:2723-2730)、ALS启动子(美国专利号5659026)等。其他组成型启动子包括例如美国专利号5608149、5,608,144、5,604,121、5,569,597、5,466,785、5,399,680、5,268,463、5,608,142和6177611。
组织特异性或发育调节的启动子是一种DNA序列,能选择性地调节植物细胞/组织中DNA序列的表达,例如对穗发育、种子成熟或对两者都至关重要的那些细胞/组织中的DNA序列,并且通常将这种DNA序列的表达限制在植物中期望的发育期(例如穗发育或种子成熟)。引起所需时间和空间表达的任何可识别的启动子可以用于本发明的方法中。
本领域已知许多叶片优选的启动子(Yamamoto等(1997)Plant J.12(2):255-265;Kwon等(1994)Plant Physiol.105:357-367;Yamamoto等(1994)Plant Cell Physiol.35(5):773-778;Gotor等(1993)Plant J.3:509-518;Orozco等(1993)Plant Mol.Biol.23(6):1129-1138;和Matsuoka等(1993)Proc.Natl.Acad.Sci.USA90(20):9586-9590)。
种子或胚胎特异性且可用于公开的启动子包括大豆Kunitz胰蛋白酶抑制剂(Kti3,Jofuku和Goldberg。(1989)植物细胞1:1079-1093)、convicilin、vicilin和豆科植物(豌豆子叶)(Rerie,W.G。等人(1991)Mol.Gen.Genet.259:149-157;Newbigin,E.J。等人(1990)Planta 180:461-470;Higgins,T.J.V。等人(1988)Plant.Mol.Biol.11:683-695)、玉米醇溶蛋白(玉米胚乳)(Schemthaner,J.P。等人(1988)EMBO J.7:1249-1255),菜豆蛋白(豆子叶)(Segupta-Gopalan,C。等人(1985)Proc.Natl.Acad.Sci.82:3320-3324)、植物血凝素(豆子叶)(Voelker,T。等人(1987)EMBO J.6:3571-3577)、B-伴大豆球蛋白和大豆球蛋白(大豆子叶)(Chen,Z-L等(1988)EMBO J.7:297-302)、谷蛋白(水稻胚乳)、大麦醇溶蛋白(大麦胚乳)(Marris,C.,et al。(1988)Plant Mol.Biol.10:359-366)、谷蛋白和麦醇溶蛋白(小麦胚乳)(Colot,V。等(1987)EMBO J.6:3559-3564)。与嵌合基因构建中的异源编码区可操作连接的种子特异性基因的启动子在转基因植物中维持其时间和空间表达模式。这些实例包括拟南芥2S种子贮藏蛋白基因启动子以在拟南芥和甘蓝型油菜种子中表达脑啡肽(Vanderkerckhove等人(1989)Bio/Technology 7:L929-932),豆凝集素和豆β-菜豆蛋白启动子以表达荧光素酶(Riggs等(1989)Plant Sci.63:47-57),和小麦谷蛋白启动子表达氯霉素乙酰转移酶(Colot等(1987)EMBO J 6:3559-3564)。
诱导型启动子选择性表达可操作连接的DNA序列以响应内源或外源刺激的出现,例如通过化合物(化学诱导剂)或响应于环境、激素、化学和/或发育信号。诱导型或调节型启动子包括例如由光、热、胁迫、洪水或干旱、植物激素、伤口或化学物质如乙醇、茉莉酮酸盐、水杨酸盐或安全剂调节的启动子。
还考虑了合成启动子,其包括一种或多种异源调节元件的组合。
本发明的抑制DNA的启动子构建体可以是本领域已知的任何类型或类别的启动子,使得许多启动子中的任何一个可以用于表达本文公开的各种多核苷酸序列,包括天然启动子的目的多核苷酸序列。用于本发明的抑制DNA构建体的启动子可以基于期望的结果进行选择。
本发明的抑制性DNA构建体还可以包括其他调控元件,包括但不限于翻译前导序列、内含子和聚腺苷酸化识别序列。在某些实施例中,抑制DNA构建体还包含增强子或沉默子。
可以将内含子序列添加到5'非翻译区、蛋白质编码区或3'非翻译区,以增加在胞质溶胶中积累的成熟信息的量。已经在植物和动物表达构建体中的转录单元中包含可剪接的内含子可使mRNA和蛋白质水平的基因表达增加高达1000倍(Buchman和Berg。(1988)Mol.Cell Biol.8:4395-4405;Callis等(1987)Genes Dev.1:1183-1200)。
植物和植物细胞
提供了一种植物、植物细胞、植物组织、种子和籽粒,在其基因组中包含本文所述的任何抑制DNA构建体。因而所述植物、植物细胞、植物组织、种子和/或籽粒减少了编码多肽的表达。
还提供了一种植物、植物细胞、植物组织、种子和籽粒,在其基因位点含有引入的编码本文所述多肽的基因修饰。在某些实施例中,所述多肽含有的氨基酸与SEQ ID NO:3、6、9、12、15、18或21这些氨基酸序列有至少80%的一致性。在某些实施例中,所述基因修饰降低编码多肽的活性。在某些实施例中,所述基因修饰减少编码多肽的水平。在某些实施例中,所述基因修饰同时降低编码多肽的水平和活性。
所述植物可以是单子叶或双子叶植物,例如,水稻或玉米或大豆植物,就像是玉米杂交植物或玉米自交植物。所述植物同样可以是向日葵、高粱、油菜、小麦、苜蓿、棉花、大麦、小米、甘蔗或柳枝稷。
在某些实施例中,所述植物当和对照植物比较时表现出增加的干旱耐性和/或氮素胁迫耐性。在某些实施例中,所述植物和对照植物相比较时表现出至少一个农艺性状的改变。
本领域普通技术人员熟悉模拟干旱条件和评估经受模拟或自然发生的干旱条件的植物的耐旱性的方案。例如,人们可以通过给予植物比通常需要的水少或一段时间内没有水来模拟干旱条件,并且可以通过寻找生理和/或物理条件的差异来评估耐旱性,包括(但不限于)活力、生长、大小或根长,或特别是叶色或叶面积大小。评估耐旱性的其他技术包括测量叶绿素荧光、光合速率和气体交换速率。
其它目的性状的堆叠
在某些实施例中,本发明公开的创新的多核苷酸被设计成分子堆栈。这样,本发明中多种宿主细胞、植物、植物细胞、植物组织、种子和/或籽粒能进一步包含一种或多种期望性状。在某些实施例中,为了创造出拥有期望性状组合的植物,所述宿主细胞、植物、植物细胞、植物组织、种子和/或籽粒可以被堆栈成任何期望的多核苷酸序列的组合。在本文中,术语“性状堆叠”是指在同一植物或期望的生物体中存在多种性状。例如,“性状堆叠”可以包含序列在物理上彼此相邻的分子堆叠。在本文中,性状是指来源于特定序列或序列组的表型。在一个实例中,所述分子堆叠包含有至少一个能赋予草甘膦耐性的多核苷酸。能赋予草甘膦耐性的多核苷酸在本领域内是已知的。
在某些实施例中,所述分子堆叠包含有至少一个能赋予草甘膦耐性的多核苷酸和至少一个能赋予第二除草剂耐性的补充核苷酸。
在某些实施例中,具有本发明的多核苷酸序列的植物、植物细胞、种子和/或籽粒可以与一个或多个序列堆叠并赋予耐受性如:ALS抑制剂、HPPD抑制剂、2,4-D、其他苯氧基生长素除草剂、芳氧基苯氧基丙酸除草剂、麦草畏、草铵膦除草剂、靶向protox酶的除草剂(也称为“protox抑制剂”)。
包含有本文描述的减少多肽表达和/或活性的植物、植物细胞、植物组织、种子和/或籽粒也可以与至少一个其它性状进行结合,进一步产生包含有多种期望性状组合的植物。例如,植物、植物细胞、植物组织、种子和/或籽粒可以堆叠能编码具有杀虫和/或杀虫活性的多肽的多核苷酸,或具有本发明的多核苷酸序列植物、植物细胞、植物组织、种子和/或籽粒可以与植物抗病基因组合。
这些堆叠的组合物的产生可以由以下任一方法,包括但不限于,任何常规育种或遗传转化培育植物。如果所述序列通过遗传转化堆叠在植物中,期望的多核苷酸序列可以在任何时间以任何目的结合。所述性状可以由转化盒的任何组合提供的期望多核苷酸的共转化协议同时被引入。例如,如果两个序列将被引入,则两个序列可以包含在单独的转化盒(反式)中或包含在相同的转化盒(顺式)中。序列的表达可以由相同的启动子或不同的启动子驱动。在某些情况下,可能需要引入抑制目的多核苷酸表达的转化盒。这可以与其他抑制盒或过表达盒的任何组合物结合以产生植物中所需的性状组合。进一步认识到,可以使用位点特异性重组系统将多核苷酸序列堆叠在所需的基因组位置。参见例如WO99/25821,WO99/25854,WO99/25840,WO99/25855和WO99/25853,所有这些都通过引用并入本文。
方法
增加植物耐旱性、籽粒产量和/或氮素利用效率的方法
为植物提供了一种增加耐旱性、提高籽粒产量和/或提高氮素利用效率的方法,包括减少至少一种多核苷酸编码的BCS1-2、DnaJ7、LNTP10、GH17.2、DUF6、ATAP1或PCL1多肽的表达和/或活性。在某些实施例中,多核苷酸编码的多肽的氨基酸序列与SEQ ID NO:3、6、9、12、15、18或21有至少80%(比如,80%、81%、82%、83%、84%、85%、86%、87%、88%、89%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或100%)的序列一致性。
在某些实施例中,所述方法包括:(a)在一个可再生植物细胞中表达本文中所述的抑制DNA构建体;和(b)再生所述植物,其基因组中含有所述抑制DNA构建体。在某些实施例中所述调控元件是一种异源启动子。
在某些实施例中,所述方法包括:(a)向一个可再生植物细胞的基因位点上引入一个靶向基因修饰来编码所述多肽;和(b)再生所述植物,植物中所述编码多肽的水平和/或活性是降低的。在某些实施例中,引入所述靶向基因修饰所使用的基因组修饰技术如下:多核苷酸引导的核酸内切酶、CRISPR-Cas核酸内切酶、碱基编辑脱氨酶、锌指核酸酶、转录激活因子样效应核酸酶(TALEN)、工程位点特异性大范围核酸酶或Argonaute。在某些实施例中,所述靶向基因修饰存在于基因组位点的(a)编码区;(b)非编码区;(c)调控序列;(d)非转录区;或(e)任意(a)-(d)的组合,且编码多肽的氨基酸序列与SEQ ID NO:3、6、9、12、15、18或21这些序列的一致性至少为80%。
使用本发明中方法的植物可以是本文描述的的任何种类的植物。在某些实施例中,所述植物是玉米、大豆或水稻。
多种方法可以用于将期望序列引入植物、植物部分、植物细胞、种子和/或籽粒中。“引入”意味着把本发明中的多核苷酸或以这种方式产生的多肽给植物、植物细胞、种子和/或籽粒,这样序列得以进入植物细胞的内部。本发明所述的方法不依靠特别的向植物、植物细胞、种子和/或籽粒中引入序列的方法,仅依靠所述多核苷酸或获得的多肽进入至少一个植物细胞的内部。
和向植物引入多肽或多核苷酸序列的协议一样的转化协议,可以取决于植物或植物细胞的种类(即,单子叶植物或双子叶植物)有针对性地转化。合适的引入植物细胞多肽和多核苷酸的方法包括显微注射(Crossway等(1986)Biotechniques 4:320-334)、电穿孔(Riggs等人(1986)Proc.Natl.Acad.Sci.USA83:5602-5606,农杆菌介导的转化(美国专利号5563055和美国专利号5981840)、直接基因转移(Paszkowski等人(1984)EMBO J.3:2717-2722)和弹道粒子加速度(参见例如美国专利号4945050、美国专利号5879918、美国专利号5886244和5932782;Tomes等人(1995)在植物细胞、组织和器官培养中:基本方法,编辑Gamborg和Phillips(Springer-Verlag,Berlin);McCabe等人(1988)Biotechnology 6:923926)和Lec1转化(WO 00/28058)参见Weissinger等人(1988)Ann.Rev.Genet.22:421 477;Sanford等人(1987)Particulate Science and Technology5:27 37(洋葱);Christou等人(1988)Plant Physiol.87:671 674(大豆);McCabe等人(1988)Bio/Technology 6:923 926(大豆);Finer和McMullen(1991)In Vitro Cell Dev.Biol.27P:175-182(大豆);Singh等人1998)Theor.Appl.Genet.96:319-324(大豆);Datta等人(1990)Biotechnology 8:736740(水稻);Klein等人(1988)Proc.Natl.Acad.Sci.USA 85:4305 4309(玉米);Klein等人(1988)Biotechnology6:559 563(玉米);美国专利号5240855;5322783;和5324646;Klein等人(1988)Plant Physiol.91:440 444(玉米);Fromm等人(1990)生物技术8:833 839(玉米);Hooykaas Van Slogteren等(1984)Nature(London)311:763-764;美国专利号5736369(谷物);Bytebier等(1987)Proc.Natl.Acad.Sci.USA 84:5345-5349(百合科);De Wet等(1985)在胚珠组织的实验操作中,ed.Chapman等(Longman,New York),第197-209页(花粉);Kaeppler等(1990)Plant Cell Reports 9:415-418and Kaeppler等(1992)Theor.Appl.Genet.84:560-566(whisker-mediated transformation);D'Halluin等(1992)Plant Cell 4:1495-1505(electroporation);Li等(1993)Plant Cell Reports12:250-255and Christou and Ford(1995)Annals of Botany 75:407-413(rice);Osjoda等(1996)Nature Biotechnology 14:745-750(通过根癌土壤杆菌的玉米);所有这些都通过参考并入本文。
在其他的实施例中,本发明中创造性的多核苷酸可以通过用病毒或病毒核酸接触植物被引入植株。通常,这些方法涉及将公开的核苷酸构建体合并入DNA或RNA分子中。应当认识到,所述创造性的多核苷酸序列可以开始作为病毒多蛋白的一部分合成,所述病毒多蛋白之后可以在体内或体外进行蛋白水解处理以产生所需的重组蛋白。应该进一步认识到,本文披露的启动子还包括用于病毒RNA聚合酶转录的启动子。向植物引入多核苷酸并在其中进行编码表达蛋白,相关的病毒DNA或RNA分子在领域内是已知的。参见例如美国专利号5889191、5889190、5866785、5589367、5316931和Porta等(1996)MolecularBiotechnology5:209-221;在此通过引用并入本文中。
已经转化的细胞可以按照常规方式生长成植物。参见,例如,McCormick等人(1986)Plant Cell Reports 5:81-84。然后这些植物可以生长,并用相同的转化菌株或不同的菌株授粉,并鉴定所得后代是否具有所需表型特征的组成型表达。可以生长两代或更多代以确保所需表型特征的表达被稳定维持和遗传,然后收获种子以确保已经实现所需表型特征的表达。以这种方式,本发明提供了具有本文公开的多核苷酸的转化种子(也称为“转基因种子”),例如,作为表达盒的一部分,稳定地掺入其基因组中。
可以培养通过植物转化技术衍生的转化植物细胞,包括上面讨论的那些,以再生具有转化基因型(即本发明的多核苷酸)并因此具有所需表型的整株植物,例如增加的产量。对于玉米的转化和再生,参见Gordon Kamm等,The Plant Cell,2:603-618(1990)。
可以使用各种方法在植物、植物部分、植物细胞、种子和/或籽粒的基因组位点处引入遗传修饰,并编码本文公开的多肽。在某些实施例中,靶向DNA修饰有以下基因修饰技术:多核苷酸引导的内切核酸酶、CRISPR-Cas内切核酸酶、碱基编辑脱氨酶、锌指核酸酶、转录激活物样效应核酸酶(TALEN)、工程位点特异性大范围核酸酶或Argonaute。
在一些实施例中,可以通过在基因组中靠近所需改变的限定位置诱导双链断裂(DSB)或单链断裂来促进基因组修饰。可以使用任何可用的DSB诱导剂诱导DSB,包括但不限于TALEN、大范围核酸酶、锌指核酸酶、Cas9-gRNA系统(基于细菌CRISPR-Cas系统)、引导的cpf1内切核酸酶系统等。在一些实施方案中,DSB的引入可以与引入多核苷酸修饰模板组合。
多核苷酸修饰模板可以通过本领域已知的任何方法引入细胞,例如但不限于瞬时引入方法、转染、电穿孔、显微注射、颗粒介导的递送、局部应用、晶须介导的递送、通过细胞穿透肽递送、或介孔二氧化硅纳米粒子(MSN)介导的直接递送。
多核苷酸修饰模板可以作为单链多核苷酸分子、双链多核苷酸分子或作为环状DNA(载体DNA)的一部分引入细胞中。多核苷酸修饰模板也可以连接到向导RNA和/或Cas内切核酸酶。
“修饰的核苷酸”或“编辑的核苷酸”是指与未修饰的核苷酸序列相比包含至少一个目的核苷酸序列的改变。这种“改变”包括,例如:(i)至少一个核苷酸的替换、(ii)至少一个核苷酸的缺失、(iii)至少一个核苷酸的插入、或(iv)任何(i)-(iii)的组合。
术语“多核苷酸修饰模板”包括一个多核苷酸,其与未编辑的核苷酸序列相比包含至少一个核苷酸修饰。核苷酸修饰可以是至少一个核苷酸的取代、添加或缺失。任选地,多核苷酸修饰模板可以进一步包含一个同源核苷酸序列,同源基因连接至少一个核苷酸修饰,其中同源基因同源核苷酸序列与待编辑的所需核苷酸序列提供足够的同源基因。
编辑结合DSB和修饰模板的基因组序列的过程通常包括:向宿主细胞提供识别染色体中靶序列的DSB诱导剂或编码DSB诱导剂的核酸序列,并能够在基因组序列中诱导DSB。与待编辑的核苷酸序列相比,至少一个多核苷酸修饰模板中包含有至少一个核苷酸的改变。多核苷酸修饰模板可以进一步包含位于至少一个核苷酸改变同源基因的核苷酸序列,其中同源基因序列与DSB同源基因的染色体区域基本同源。
核酸内切酶可以通过本领域已知的任何方法提供给细胞,例如但不限于瞬时引入方法、转染、显微注射和/或局部应用或间接通过重组构建体。内切核酸酶可以作为蛋白质或向导多核苷酸复合物,直接提供给细胞或通过重组构建体间接提供。内切核酸酶可以瞬时引入细胞中,或者可以使用本领域已知的任何方法掺入宿主细胞的基因组中。在CRISPR-Cas系统的情况下,如2016年5月12日公布的WO2016073433中所述,可以用细胞穿透肽(CPP)促进内切核酸酶和/或引导的多核苷酸摄入细胞。
除了通过双链断裂技术进行修饰之外,使用碱基编辑技术实现对没有这种双链断裂的一个或多个碱基的修饰,参见例如Gaudelli等,(2017)可编程碱基编辑基因组DNA中的a*T至g*C而没有DNA切割。自然551(7681):464-471;Komor等,(2016)基因组DNA中靶碱基的可编程编辑,无需双链DNA切割,Nature 533(7603):420-4。
这些融合物含有dCas9或Cas9切口酶以及合适的脱氨酶,它们可以将例如胞嘧啶转化为尿嘧啶而不诱导靶向DNA的双链断裂。然后通过DNA复制或修复将尿嘧啶转化为胸腺嘧啶。具有目标灵活性和特异性的改进的基础编辑器用于编辑内源基因位点以产生目标变异并提高谷物产量。同样,腺嘌呤碱基编辑器可使腺嘌呤变为肌苷,然后通过修复或复制将其转化为鸟嘌呤。因此,目标碱基改变,即C·G到T·A转换和A·T到G·C转换在使用适当的站点特定基础编辑器的多个位置进行。
在一个实施例中,碱基编辑是一种基因组编辑方法,能够在目标基因组位点将一个碱基对直接转化为另一个碱基对,而不需要双链DNA断裂(DSBs)、同源定向修复(HDR)过程、或外部供体DNA模板。在一个实施例中,碱基编辑器包括(i)催化受损的CRISPR-Cas9突变体,其突变使得其核酸酶结构域之一不能形成DSB;(ii)单链特异性胞苷/腺嘌呤脱氨酶,其在由Cas9产生的单链DNA泡中的适当核苷酸窗口内将C转化为U或a转化为G;(iii)阻碍尿嘧啶切除的尿嘧啶糖基化酶抑制剂(UGI)和降低碱基编辑效率和产物纯度的下游过程;(iv)切口酶活性以切割未编辑的DNA链,然后进行细胞DNA修复过程以替换含G的DNA链。
如本文所用,“基因组区域”是细胞基因组中染色体的区段,其存在于靶位点的任一侧,或者还包含靶位点的一部分。基因组区域可至少包含5-10、5-15、5-20、5-25、5-25、5-30、5-35、5-40、5-45、5-45、5-50、5-55、5-55、5-60、5-60、5-65、5-70、5-75、5-80、5-85、5-90、5-95、5-100、5-200、5-100、5-200、5-300、5-400、5-500、5-10、5-15、5-15、5-15、5-15、5-15、5-15、5-15、5-15、5-15、5-15、5-15、5-15-20、5-20、5-20、5-25、5-25、5-25、5-25、5--1800、5-1900、5-2000、5-2100、5-2200、5-2300、5-2400、5-2500、5-2600,5-2700、5-2800.5-2900、5-3000、5-3100或更多碱基,以使基因组区域具有足够的同源性,以与相应的同源性区域进行同源重组。
TAL效应核酸酶(TALEN)是一类序列特异性核酸酶,可用于在植物或其他生物基因组的特定靶序列上产生双链断裂(Miller等(2011)Nature Biotechnology 29:143-148)。
内切核酸酶是切割多核苷酸链内的磷酸二酯键的酶。核酸内切酶包括在特定位点切割DNA而不破坏碱基的限制性内切酶,以及与限制性内切酶一样在特定识别位点结合和切割的大范围核酸酶(也称为归巢核酸内切酶(HEase)),但是大范围核酸酶的识别位点通常更长,约18bp或更多(专利申请PCT/US12/30061,于2012年3月22日提交)。大范围核酸酶根据保守序列基序分为四个家族,这些家族是LAGLIDADG,GIY-YIG,H-N-H和His-Cys-box家族,这些基序参与金属离子的配位和磷酸二酯键的水解。酶因其长识别位点和耐受某些序列而著称大范围核酸酶的命名约定与其他限制性核酸内切酶的命名约定相似,大范围核酸酶的特征还在于前缀F-,I-或PI-,分别由独立的ORF,内含子和内含子编码。重组过程的一步涉及多核苷酸在识别位点处或附近切割。切割活性可用于产生双链断裂。对于位点特异性重组酶及其识别位点的综述,参见Sauer(1994)Curr Op Biotechnol 5:521-7;和Sadowski(1993)FASEB 7:760-7。在一些实例中,重组酶来自整合酶或分解酶家族。
锌指核酸酶(ZFN)是由锌指DNA结合结构域和双链断裂诱导剂结构域组成的工程化双链断裂诱导剂。识别位点特异性由锌指结构域赋予,其通常包含两个、三个或四个锌指,例如具有C2H2结构,然而其他锌指结构锌指结构域适用于设计特异性结合所选多核苷酸识别序列的多肽.ZFN包括与非特异性内切核酸酶结构域连接的工程化DNA结合锌指结构域,例如来自类型的核酸酶结构域IIs内切核酸酶,如FokI.Addi功能性功能可以与锌指结合结构域融合,包括转录激活因子结构域、转录抑制因子结构域和甲基化酶。在一些实例中,核酸酶结构域的二聚化是切割活性所必需的。在目标DNA每个锌指识别三个连续的碱基对。例如,3-指结构域识别9个具有核酸酶的二聚化要求的、连续核苷酸的序列,使用两组锌指三联体结合18个核苷酸的识别序列。
使用DSB诱导剂(例如Cas9-gRNA复合物)进行基因组编辑已被描述,例如2015年3月19日发布的美国专利申请US 2015-0082478 A1,2015年2月26日发布的WO2015/026886A1,2016年1月14日发布的WO2016007347和2016年2月18日发布的WO201625131,所有这些都是在此作为参考并合并入本文中。
实例
以下是本发明某些方面的具体实施例的实例。这些实例仅用于说明目的,并不以任何方式显示本发明的范围。
实例1
敏旱基因的克隆和载体构建
使用含有来自花椰菜花叶病毒35S(CaMV 35S)启动子的四个多聚增强子元件的双元构建体,并且水稻激活标签群体(ATLs)由四个粳稻(Oryza sativa ssp.japonica)品种(中花11、超优1号、台中65和日本晴)通过农杆菌介导的转化方法转化产生,如Lin和Zhang((2005)Plant Cell Rep.23:540-547)所述。产生的转基因株系成长并收获转基因种子以形成水稻激活标签群体。
敏旱标签株系(ATLs)在田间重复试验中得到证实,其T-DNA插入位点通过连接介导的巢式PCR(OsBCS1-2、OsLNTP10)或质粒拯救法(OsGH17.2、OsATAP1、OsDnaJ7、OsDUF6)或反向PCR方法(OsPCL1)来测定。克隆T-DNA左边界和右边界附近的基因,并通过田间筛选重现功能基因。本文仅显示了概括的功能基因。并基于表2中所示基因的LOC ID,设计引物用于克隆水稻干旱敏感基因OsBCS1-2、OsDnaJ7、OsLNTP10、OsGH17.2、OsDUF6、OsATAP1、OsPCL1。
表2.水稻基因名称、基因IDs(来自于TIGR)和构建体IDs
Figure BDA0003366542760000251
Figure BDA0003366542760000261
使用柱试剂盒在琼脂糖凝胶电泳后提取PCR扩增产物,然后与TA克隆载体连接。通过测序确认这些构建体中的序列和方向。将每个基因克隆到植物双元构建体中。
实例2
转基因水稻株系的转化和基因表达分析
如Lin和Zhang((2005)Plant Cell Rep.23:540-547)所述,通过农杆菌介导的转化,用实施例1中制备的载体或空载体(DP0158)转化中花11号(Oryza sativa L.)。将转化实验室产生的转基因幼苗(T0)移植到田间以获得T1种子。筛选T1和随后的T2种子以确认转化,并将阳性鉴定的转基因种子用于接下来的性状筛选。
通过RT-PCR测定转基因水稻植物叶中的基因表达水平。设计引物用于过表达转基因水稻中OsBCS1-2、OsDnaJ7、OsLNTP10、OsGH17.2、OsDUF6、OsATAP1和OsPCL1基因的RT-PCR。将ZH11-TC(组织培养的ZH11水稻)中的表达水平设定为1.00,并将转基因植物中的表达水平与ZH11-TC进行比较。基于EF-1αmRNA水平对基因表达进行标准化,并且基因表达分析的结果在下表3中提供。
表3.转基因水稻植株中相对表达水平增幅
基因名称 构建体ID 相对表达水平增幅
OsBCS1-2 DP0962 从38.25到4456.27
OsDnaJ7 DP0396 从6.4到4052.74
OsLNTP10 DP0866 从0.43到237.78
OsGH17.2 DP0334 从37794.93到446767
OsDUF6 DP0786 从1.59到125.82
OsATAP1 DP0329 从2.01到17.67
OsPCL1 DP0780 从1.75到1994.24
实例3
转基因水稻植株的表型
实例2中的转基因水稻和ZH11-TC以及DP0158水稻植株需测定以下指标:(a)耐旱性、(b)水充足条件下的籽粒产量、(c)低氮胁迫/氮素利用效率。
实例2植物产生的T2种子在32℃温度下经800ppm多菌灵处理8小时并清洗3-5次后,在32℃温度下,在水中浸泡16小时,然后在35-37℃的烘箱中催芽18小时。发芽的种子用于以下测定:
耐旱-发芽的种子种植在苗床中。在三叶期,将幼苗移植到测试田中,每个转基因株系重复4次,每次重复种植10株,并将4个重复种植在同一田块中。ZH11-TC和DP0158幼苗在同一区块的转基因株系附近,并在统计分析中用作对照。水稻植物通过常规做法使用杀虫剂和肥料进行管理。在穗开始阶段停止浇水,以便根据天气条件(温度和湿度)在开花阶段给予干旱胁迫。使用TDR30(Spectrum Technologies,Inc。)以每块约10个位点每4天测量土壤水含量。在实验期间观察并记录植物表型。表型包括抽穗期、卷叶度、干旱敏感性和耐旱性。中午特别注意卷叶度。在生长季节结束时,从每行的中间收获每个转基因株系的6株代表性植物,并测量每株植物的籽粒产量。使用混合线性模型对谷物产量数据进行统计分析。
水分充足条件下的籽粒产量-将发芽的种子种植在苗床中。在三叶期,将幼苗移植到试验田中,每个转基因株系重复4次,每个重复种植40株,并将4个重复种植在同一田块中。ZH11-TC、DP0158和阴性幼苗在同一区块的转基因株系附近,并在统计分析中用作对照。水稻植物通过常规做法使用杀虫剂和肥料进行管理。在生长季节结束时,从每行的中间收获每个转基因株系的代表性植物,并测量每株植物的籽粒产量。使用混合线性模型对籽粒产量数据进行统计分析。
低氮耐性/氮利用效率-一个氮水平:实验中设定N-0(使用无氮肥料)。将发芽的种子种植在苗床中。在三叶期,将幼苗移植到试验田中,每个转基因株系重复4次,每次重复种植10株,并将4个重复种植在同一田块中。将ZH11-TC、DP0158和阴性植物种植在同一块转基因株系附近,并用作统计分析中的对照。水稻试验采用常规农药管理,但施用磷肥和钾肥进行N-0处理。
在季节结束时,从每行的中间收获每个转基因品系的6个代表性植物,并测量每株植物的籽粒产量。通过ASReml程序使用混合线性模型统计分析每株植物的籽粒产量数据。基于分析选择阳性转基因株系(P<0.1)。
这些研究的结果在表4中提供,其提供了每种构建体的转基因系的组合数据。
表4.转基因水稻植株的农艺性状
Figure BDA0003366542760000281
DP0962-转基因水稻植株两年分别在海南和宁夏进行了五次测试。其中四次试验表明,与对照相比,DP0962-转基因水稻在田间干旱条件下单株平均产量下降。在OsBCS1-2高表达株系中观察到卷叶表型,而OsBCS1-2低表达株系表现出良好的结实率,且没有卷叶表型。这些结果表明,DP0962-转基因植物的产量和干旱敏感表型与OsBCS1-2基因表达水平相关。如表4所示,宁夏田间12个事件中有9个显示单株产量显著下降(P<0.1)。这12个事件的单株平均产量分别比ZH11-TC和DP0158对照低60%和40%。产量和表型观察一致表明OsBCS1-2是水稻干旱敏感基因。
DP0396-转基因水稻两年内在海南、北京和宁夏进行了四次测试。所有实验一致表明,在田间干旱条件下,DP0396-转基因水稻单株平均产量下降,OsDnaJ7高表达株系也可观察到卷叶表型。在海南田间试验中,6个OsDnaJ7高表达株系中的3个表现出单株植物的产量明显低于ZH11-TC和DP0158对照。这3个事件的平均单株产量分别比ZH11-TC和DP0158对照低68%和56%。但另外3个OsDnaJ7低表达株系的单株产量比DP0158对照高,这3个事件的单株平均产量分别比ZH11-TC和DP0158对照高15%和58%(表4)。产量和表型观察一致表明OsDnaJ7是水稻干旱敏感基因。
DP0866-转基因水稻植株两年内在海南和宁夏进行了三次测试。所有实验一致表明,在田间干旱条件下,OsLNTP10高表达株系单株平均产量下降,而OsLNTP10低表达株系单株平均产量增加。在海南田间试验中,9个低表达株系中有5个观察到良好的结实率,并且单株植物的产量明显高于对照ZH11-TC和DP0158。这5个低表达株系的平均产量分别比ZH11-TC和DP0158对照高52%和89%。另外4个高表达株系单株植物的产量比ZH11-TC和DP0158对照低,平均产量分别比ZH11-TC和DP0158对照低29%和11%。这4个低表达株系的平均单株植物的产量显示在表4中。在田间低氮条件下,DP0866-转基因水稻植株在北京进行了三次测试。所有实验均获得一致的结果。在北京的第一年,9个高表达株系中有4个的单株产量低于ZH11-TC和DP0158对照。这4个高表达事件的平均产量分别比ZH11-TC和DP0158对照低36%和23%。另外5个低表达株系单株产量相对于对照是增加的。这5个低表达系的单株平均产量分别比ZH11-TC和DP0158对照高2%和24%(表4)。产量和表型观察一致表明,OsLNTP10是水稻干旱敏感和低氮敏感基因。
DP0334-转基因水稻植株一年内在海南和宁夏进行了两次测试。所有实验一致表明,在田间干旱条件下,在DP0334-转基因株系中过表达OsGH17.2基因降低了单株植物的产量。在宁夏田间,观察到12个株系的卷叶表型,平均单株产量显著低于ZH11-TC和DP0158对照。这12个株系的平均单株产量分别比ZH11-TC和DP0158对照低77%和66%(表4)。产量和表型观察一致表明OsGH17.2是水稻干旱敏感基因。
DP0786-转基因水稻植株两年内在海南和宁夏的田间干旱条件下进行了三次测试。所有实验一致表明,在田间干旱条件下,DP0786-转基因株系中OsDUF6基因的过表达降低了单株植物的产量。在宁夏田间,6个株系中有3个株系的单株产量显著低于ZH11-TC和DP0158对照。这3个阳性株系的平均单株产量分别比ZH11-TC和DP0158对照低72%和70%(表4)。在田间低氮条件下,DP0786-转基因株系在北京进行了两次测试。两次实验都获得了一致的结果。在北京的第二年,所有12个株系的单株产量均低于ZH11-TC和DP0158对照。12个株系中的9个弹株植物的产量显著低于ZH11-TC和DP0158对照。这12个株系的平均单株产量分别比ZH11-TC和DP0158对照低72%和70%(表4)。这些数据一致表明OsDUF6是一种水稻干旱敏感和低氮敏感基因。
DP0329-转基因水稻植物一年内分别在海南和宁夏进行了两次测试。两次实验一致表明,OsATAP1的过表达降低了田间干旱条件下每株植物的平均产量。在海南田间实验中,12个株系中有10个株系的单株产量显著低于ZH11-TC和DP0158对照。如表4所示,这10个株系的单株平均产量分别比ZH11-TC和DP0158对照低67%和55%。在田间低氮条件下,DP0329-转基因株系在北京进行了一次测试。如表4中的结果,DP0329-转基因植物的单株植物的平均产量明显低于ZH11-TC和DP0158对照的平均产量。12个事件中的9个表现出平均单株产量显著低于ZH11-TC对照,并且12个株系中的3个表现出平均单株植物产量明显低于DP0158对照。这些数据一致表明OsATAP1是一种水稻干旱敏感和低氮敏感基因。
DP0780-转基因水稻植株两年分别在海南和宁夏进行了三次测试。所有实验一致表明,OsPCL1基因的过表达降低了田间干旱条件下单株植物的产量。在海南田间试验中,7个株系中有2个株系的单株产量明显低于ZH11-TC和DP0158对照。如表4所示,这7个株系的平均产量分别比ZH11-TC和DP0158对照低21%和30%。这些数据一致表明OsPCL1是一种水稻干旱敏感基因。
总之,这些结果表明OsBCS1-2、OsDnaJ7、OsLNTP10、OsGH17.2、OsDUF6、OsATAP1和OsPCL1转基因水稻植株在营养生长期受到干旱胁迫后,表现出干旱敏感表型,且单株产量低于对照。转基因水稻植株的产量和干旱敏感表型分别与OsBCS1-2、OsDnaJ7和OsGH17.2基因表达水平相关。OsBCS1-2、OsDnaJ7和OsGH17.2高表达株系单株平均产量下降,而OsBCS1-2、OsDnaJ7和OsGH17.2低表达株系单株平均产量增加。OsLNTP10、OsDUF6和OsATAP1转基因水稻植株对田间低氮胁迫敏感。
实例4
RNAi和CRISP/Cas9载体构建体和转化
RNAi构建体的构建:
使用模板(SEQ ID NO:51)和引物(SEQ ID NO:52-55)克隆OsPCL1基因的正向cDNA片段和反向cDNA片段。然后将正向cDNA片段、内含子(SEQ ID NO:50)和反向cDNA片段连接在一起,并与pMD19GW载体(SEQ ID NO:72)连接。通过测序确认构建体中的序列和方向后,将RNAi结构片段(正向cDNA内含子反向cDNA)克隆到pCAMBIA1300DsRed-35S-GW构建体(SEQID NO:73)中以获得RNAi构建体(DP3022)。
CRISPR/Cas9构建体的构建:
在CRISPR-Cas9系统中,玉米Ubi启动子(SEQ ID NO:67)驱动Cas9蛋白的优化编码序列(SEQ ID NO:68);CaMV35S 3'-UTR(SEQ ID NO:69)提高Cas9蛋白的表达水平;水稻U6启动子(SEQ ID NO:70)驱动gRNA的表达(gRNA支架,SEQ ID NO:71)。
使用可用工具分析靶基因组序列以产生候选sgRNA序列。sgRNA序列也可以由其他网络工具生成,包括但不限于,网站cbi.hzau.edu.cn/crispr/和crispr-PLANT,可在线获得。
分析OsBCS1-2(SEQ ID NO:1和SEQ ID NO:2)、OsDnaJ7(SEQ ID NO:4和SEQ IDNO:5)、OsLNTP10(SEQ ID NO:7和SEQ ID NO:8)、OsGH17.2(SEQ ID NO:10和SEQ ID NO:11)和OsDUF6(SEQ ID NO:13和SEQ ID NO:14)基因的序列以产生sgRNA序列。sgRNA序列列于SEQ ID NO:56-66中。
一个sgRNA可用于制备基因组编辑构建体;sgRNA可以选自片段的任何区域,例如启动子、外显子、内含子和UTR。单个sgRNA可以将Cas9酶引导至靶区域并在靶向DNA序列处产生双链断裂,触发非同源末端连接(NHEJ)修复机制和同源定向修复(HDR),并且它经常在目标点诱导随机插入、删除和替换。例如,该编辑可以去除调节元件区域中的表达元件以降低mRNA水平,或者可以引起多肽的结构变化,这可能导致蛋白质活性降低。
两个sgRNA可用于制备基因组编辑构建体。可以从片段的任何区域选择两个或更多个sgRNA,例如启动子、外显子、内含子和UTR。该构建体可导致片段缺失或点突变(小插入、缺失和取代)。
表5显示了OsBCS1-2、OsDnaJ7、OsLNTP10、OsGH17.2和OsDUF6基因及其调控元件的基因组编辑的靶基因、靶位点和特异性链。DP3039和DP2801分别是用于编辑OsLNTP10和OsGH17.2的一个目标位点的构建体。DP2805、DP3092和DP3093分别是用于编辑OsBCS1-2、OsDnaJ7和OsDUF6的两个目标位点的构建体。DP3041是用于编辑OsLNTP10基因的三个靶位点的构建体。为了编辑一个靶位点,首先将靶引物退火以形成短双链片段,然后将该片段插入pHSG396GW-URS-UC-mpCas9&rU6-DsRed构建体中。在确认sgRNA片段的核苷酸序列后,将sgRNA片段与pCAMBIA1300DsRed-GW-Adv.ccdB的表达载体连接。同时,为了编辑两个或多个靶位点,不同的引物应首先退火以形成双链片段,然后堆叠在一起并插入pHSG396GW-URS-UC-mpCas9和rU6-DsRed构建体中,然后与pCAMBIA1300DsRed-GW-Adv.ccdB verctor。
表5.用于构建CRISPR/Cas9构建体的gRNAs
Figure BDA0003366542760000321
Figure BDA0003366542760000331
如实例2所述,将RNAi和CRISPR/Cas9构建体转化到水稻植物中。
实例5
鉴定基因组编辑水稻植株中的切割位点和干旱敏感基因的修饰
设计引物以使用转化幼苗的基因组DNA作为模板扩增基因组编辑靶位点附近的靶序列。对扩增的靶序列进行测序以确认编辑结果。产生修饰,如插入至少一个核苷酸、缺失至少一个核苷酸、替换至少一个核苷酸,这导致编码序列的提前终止,翻译移位和/或缺失至少一个氨基酸残基。
在DP2805水稻植株中,在预期的位点鉴定了10个修饰。9个突变体导致ORF提前终止,进一步导致长度为147至387个氨基酸的残基;1个突变体导致27个核苷酸的缺失和7个氨基酸残基的缺失。
在DP3092水稻植株中,在预期的位点鉴定了6个修饰。两个突变体导致翻译移位,但翻译并未在原始终止密码站点停止;1个突变体导致翻译移位,但翻译在原始终止密码站点停止;2个突变体导致ORF提前终止,进一步导致长度为553个氨基酸的残基;1个突变体导致插入一个核苷酸并缺失169个核苷酸,最后终止于原始的终止密码位点并导致56个氨基酸残基的缺失。
在DP3039水稻植株中,在预期的位点鉴定了5个修饰。三个突变体导致翻译移位,但翻译并未在原始终止密码站点停止;1个突变体通过20个核苷酸的替换导致ORF的早期终止,并进一步导致长度为74个氨基酸的残基;1个突变体导致ORF提前终止,并进一步导致长度为28个氨基酸的残基。
在DP3041水稻植株中,在预期的位点鉴定出29个修饰。六个突变体导致翻译移位,但翻译并未在原始终止密码站点停止;6个突变体导致ORF提前终止,进一步导致29个氨基酸残基的长度;在启动子和/或UTR区域编辑了17个突变体。
在DP2801水稻植株中,在预期的位点鉴定出17个修饰。十个突变体导致UTR区缺失1至732个核苷酸;3个突变体导致在UTR区插入一个核苷酸;4个突变体导致UTR区核苷酸片段置换。
在DP3093水稻植株中,在预期的位点鉴定了9个修饰。所有突变体均导致移码突变,并且未在原始终止密码位点停止。
基因组编辑的纯合水稻植物用于以下功能测试。
实例6
基因表达抑制或基因组编辑水稻植株的特征
在田间筛选T2种子以验证降低基因表达是否可以增强基因表达抑制或基因组编辑的水稻植物的耐旱性。筛选方法在实施例3中有描述。ZH11-TC、DP0158或基因组编辑的阴性水稻植物在同一块中的改良株系附近,并在统计分析中用作对照。表6提供了这些研究的结果。
表6.基因表达抑制或基因编辑水稻植株的农艺性状
Figure BDA0003366542760000341
Figure BDA0003366542760000351
OsBCS1-2基因编辑植物(DP2805)两年内在宁夏和海南的田间干旱和水分充足条件下进行了三次测试。所有实验一致表明,在田间干旱和水分充足的条件下,DP2805植物的单株平均产量增加。在海南田间干旱条件下,11个品系中有8个产量显著高于DP0158对照。这8个阳性系的单株平均产量比DP0158对照高53%。在海南田间水分充足的条件下,15个品系中有8个品系的单株产量显著高于DP0158对照。这8个阳性系的单株平均产量比DP0158对照高27%。所有这些来自海南田间试验的结果如表6所示。
OsDnaJ7基因编辑植物(DP3092)分别在宁夏和海南的田间干旱和水分充足条件下,一年内进行了两次测试。两个实验一致表明,在田间干旱和水分充足的条件下,DP3092植物提高了单株植物的平均产量。在宁夏田间干旱条件下,19个品系中有5个品系的单株产量显著高于ZH11-TC和DP0158对照。这19个品系的单株平均产量分别比ZH11-TC和DP0158对照高10%。在宁夏田间水分充足的条件下,18个品系中有7个品系的单株产量明显高于ZH11-TC和DP0158对照。这18个品系的单株平均产量分别比ZH11-TC和DP0158对照高3%和21%。宁夏田间试验的所有这些结果如表6所示。
OsLNTP10基因编辑的植物(DP3039)在海南的田间干旱和水分充足的条件下进行了一次测试。实验表明,DP3039植株在田间干旱和水分充足条件下提高了单株平均产量。在田间干旱条件下,8个品系中的6个显示出比ZH11-TC和DP0158对照显著增加的单株产量。这8个品系的单株平均产量分别比ZH11-TC和DP0158对照高9%和45%。在田间水分充足的条件下,10个品系中的6个显示出比ZH11-TC和DP0158对照明显增加的单株产量。这10个品系的单株平均产量分别比ZH11-TC和DP0158对照高5%和22%。所有这些来自海南田间试验的结果如表6所示。
OsLNTP10基因编辑的植物(DP3041)在海南的田间干旱和水分充足的条件下进行了一次测试。实验表明,DP3041植物在田间干旱和充分浇水条件下提高了单株平均产量。在田间干旱条件下,11个品系中的7个显示出比ZH11-TC和DP0158对照明显增加的单株产量。这11个品系的单株平均产量分别比ZH11-TC和DP0158对照高5%和39%。在田间充分浇水的条件下,13个品系中的6个显示出比ZH11-TC和DP0158对照明显增加的单株产量。这13个品系的单株平均产量分别比ZH11-TC和DP0158对照高5%和21%。所有这些来自海南田间试验的结果如表6所示。
OsGH17.2基因编辑植物(DP2801)在宁夏田间干旱和水分充足的条件下进行了一次测试。实验表明,DP2801植株提高了单株平均产量。在田间干旱条件下,19个品系中的5个显示出比ZH11-TC和DP0158对照显著增加的单株产量。这19个品系的单株平均产量均比ZH11-TC和DP0158对照高10%。在田间充分浇水的条件下,18个品系中的7个分别显示出比ZH11-TC和DP0158对照明显增加的单株产量。这18个品系的单株平均产量分别比ZH11-TC和DP0158对照高20%和7%。宁夏田间试验的所有这些结果如表6所示。
OsDUF6基因编辑植物(DP3093)在宁夏田间干旱条件下进行了一次测试。实验表明,DP3093植株提高了单株平均产量。在田间干旱条件下,10个品系中的4个显示出比ZH11-TC和DP0158对照明显增加的单株产量。这10个品系的单株平均产量分别比ZH11-TC和DP0158对照高6%和13%。宁夏田间试验的所有这些结果如表6所示。
OsPCL1基因抑制植物(DP3022)在宁夏和海南的田间干旱条件下进行了两次测试。实验表明,DP3022植株提高了单株平均产量。在宁夏田间,7个品系中有5个品系的单株产量显著高于ZH11-TC和DP0158对照。如表6所示,这7个品系的单株平均产量分别比ZH11-TC和DP0158对照高18%和20%。
总之,这些结果表明OsBCS1-2、OsDnaJ7、OsLNTP10、OsGH17.2、OsDUF6、OsATAP1和OsPCL1基因编辑或基因抑制水稻植株在干旱胁迫和/或正常条件下,比对照表现出营养期耐旱性和单株产量的增加。
实例7
玉米中水稻同源敏旱基因表达减少的转化和评估
如本文所述,可以修饰玉米植物(例如抑制DNA构建体或靶向遗传修饰)以降低来自玉米同源基因的表达和/或活性。抑制元件在玉米转化载体中的表达可以在组成型启动子例如玉米泛素启动子的控制下(Christensen等人(1989)Plant Mol.Biol.12:619-632和Christensen等人(1992))Plant Mol.Biol.18:675-689)或在另一个启动子的控制下,例如应激反应性启动子或组织优选的启动子。基本上如国际专利公开WO2009/006276中所述,可以通过粒子轰击将抑制DNA构建体引入玉米细胞中。或者,玉米植物可以通过农杆菌介导的转化用抑制性DNA构建体转化,基本上如Zhao等人在Meth.Mol.Biol.318:315-323(2006)和Zhao等人,Mol.Breed.8:323-333(2001)和1999年11月9日发布的美国专利号5981840中所述。或者,可以使用本领域已知的方法在编码同源蛋白的基因组基因位点处引入靶向遗传修饰。
再生植物的后代,例如T1植物,可以经受基于土壤的干旱胁迫。使用图像分析,可以在干旱胁迫之前和期间多次测量植物面积、体积、生长速率和颜色。相对于对照,干旱胁迫期间萎或叶面积减少,黄色积累减少和/或生长速率增加的显着延迟将被认为是该基因在玉米中起作用以增强耐旱性的证据。
实例8
高粱中水稻同源敏旱基因表达减少的评估
如本文所述,高粱可以被修饰(例如抑制DNA构建体或靶向遗传修饰)以降低来自高粱的同源基因的表达和/或活性。
再生植物的后代,例如T1植物,可以经受基于土壤的干旱胁迫。使用图像分析,可以在干旱胁迫之前和期间多次测量植物面积,体积,生长速率和颜色。相对于对照,干旱胁迫期间叶片萎蔫或叶面积减少、黄色积累减少和/或生长速率增加等的显著延迟被认为是该基因在高粱中起作用并增强耐旱性的证据。
实例9
大豆中水稻同源敏旱基因表达减少的评估
如本文所述,大豆植物可以通过修饰(例如,抑制DNA构建体或靶向遗传修饰)以降低来自大豆的同源基因的表达和/或活性。
再生植物的后代,例如T1植物,可以经受基于土壤的干旱胁迫。使用图像分析,可以在干旱胁迫之前和期间多次测量植物面积、体积、生长速率和颜色。相对于对照,干旱胁迫期间叶片萎蔫或叶面积减少、黄色积累减少和/或生长速率增加等的性状延迟将被认为是该基因在大豆中起作用以增强耐旱性的证据。
实例10
拟南芥中水稻敏旱基因的实验室干旱筛选
为了解水稻抗旱基因是否能提高双子叶植物的耐旱性或其他性状,本文所述的水稻载体可以通过农杆菌介导的转化程序使用花浸法转化到拟南芥(哥伦比亚)中,并鉴定转基因植物(Clough,S.T.和Bent,A.F.(1998)The Plant Journal 16,735-743;Zhang,X.等(2006)Nature Protocols 1:641-646)。
再生植物的后代,如T1植物,可以受到基于土壤的干旱胁迫。使用图像分析,可以在干旱胁迫之前和期间多次测量植物面积、体积、生长速率和颜色。相对于对照,干旱胁迫期间叶片萎蔫或叶面积减少、黄色积累减少和/或生长速率增加等的性状延迟被认为是该基因在双子叶植物中起作用以增强耐旱性的证据。
序列表
<110> 未名生物农业集团有限公司
先锋海外公司
<120> 非生物胁迫耐性植物和方法
<130> P20193104
<160> 139
<170> PatentIn version 3.5
<210> 1
<211> 1540
<212> DNA
<213> Oryza sativa
<400> 1
gttttcagag acgtaccaga gccaacagca gcagtaggct cgccggacgg ccagccagcc 60
atggcgtcct acgacaaggc catcgagtcg tacaagaggg ccgtcaccac ggcggcgtcc 120
ctggcggcgt cggcgatgct ggtgcgcggc gtcgtgaacg agctggtgcc gtacgaggtg 180
cgggacctgc tcttctccgg cgtcgggtac ctgcggtcgc gcatgtcgtc ccagcacatg 240
gtcatcatcg aggagaccga gggctggacc aacaaccagc tctacgacgc cgtcaggacg 300
tacctcgcca ccaggatcaa caccgacatg cagcgcctcc gggtcagccg cgtcgacgag 360
accaagagca tgatgttcag catggaggag ggcgaggaga tggccgacgt ccatgagggc 420
tccgagttca ggtggcgcct cgtctgccgc gacaactcca gcagcagcaa cggcaacggc 480
aacggccgtg gcgggaacgg caactaccgg ctcgaggtcc ggtccttcga gatgagcttc 540
cacaagaagc acaaggacaa ggccctcaac tcttacctcc ctcacatcct ggccactgca 600
aagaagatca aggatcagga caggacgctg aagatctaca tgaacgaagg tgagtcgtgg 660
ttcgccatcg acctccacca cccctcgacc ttcaccacgc tcgccatgga tcacaagcag 720
aagcagtcag ttatggatga tcttgagagg ttcatcaagc gaaaggaata ctacaagaag 780
attggcaaag catggaaacg ggggtacctt ctgtatggcc cacctggaac tggcaagtcc 840
agcttgattg cagccatggc caattacctc aagttcgacg tatatgatct cgagctgact 900
gaggtcaact ggaactcaac ccttcgacgg ttgctcatcg ggatgaccaa caggtcaatc 960
ctagttatag aagatatcga ctgcactcta gagctacaac aacgggagga aggtcaagag 1020
agttccaaat ccaatccttc agaggacaag gtaacactat ctgggctact caacttcgtg 1080
gatgggcttt ggtcaacaag tggggaggag agaataattg tcttcacgac aaactacaag 1140
gagaggctcg accctgcgct tctgcgtcct ggcaggatgg acatgcatgt ccatatgggt 1200
tactgctgcc cagagtcatt tagaattctg gcctctaact accactccat tgataaccat 1260
gccacatacc cagagataga agagttgatc aaggaggtca tggtgacacc agcagaggta 1320
gctgaggtgc tcatgaggaa tgatgacact gatgttgccc ttgaaggcct tattcagttc 1380
ctcaagagaa agaaagatgt tggcaaggaa ggcaaagctg aaaatgtgga gcaggtggtg 1440
aaggcagaag aaacagagaa agggatgatg aagaaaaatg atgtcccaga gaatcaagat 1500
ccccaagatg caagcaaata atgatgctta aacagtgtgc 1540
<210> 2
<211> 1461
<212> DNA
<213> Oryza sativa
<400> 2
atggcgtcct acgacaaggc catcgagtcg tacaagaggg ccgtcaccac ggcggcgtcc 60
ctggcggcgt cggcgatgct ggtgcgcggc gtcgtgaacg agctggtgcc gtacgaggtg 120
cgggacctgc tcttctccgg cgtcgggtac ctgcggtcgc gcatgtcgtc ccagcacatg 180
gtcatcatcg aggagaccga gggctggacc aacaaccagc tctacgacgc cgtcaggacg 240
tacctcgcca ccaggatcaa caccgacatg cagcgcctcc gggtcagccg cgtcgacgag 300
accaagagca tgatgttcag catggaggag ggcgaggaga tggccgacgt ccatgagggc 360
tccgagttca ggtggcgcct cgtctgccgc gacaactcca gcagcagcaa cggcaacggc 420
aacggccgtg gcgggaacgg caactaccgg ctcgaggtcc ggtccttcga gatgagcttc 480
cacaagaagc acaaggacaa ggccctcaac tcttacctcc ctcacatcct ggccactgca 540
aagaagatca aggatcagga caggacgctg aagatctaca tgaacgaagg tgagtcgtgg 600
ttcgccatcg acctccacca cccctcgacc ttcaccacgc tcgccatgga tcacaagcag 660
aagcagtcag ttatggatga tcttgagagg ttcatcaagc gaaaggaata ctacaagaag 720
attggcaaag catggaaacg ggggtacctt ctgtatggcc cacctggaac tggcaagtcc 780
agcttgattg cagccatggc caattacctc aagttcgacg tatatgatct cgagctgact 840
gaggtcaact ggaactcaac ccttcgacgg ttgctcatcg ggatgaccaa caggtcaatc 900
ctagttatag aagatatcga ctgcactcta gagctacaac aacgggagga aggtcaagag 960
agttccaaat ccaatccttc agaggacaag gtaacactat ctgggctact caacttcgtg 1020
gatgggcttt ggtcaacaag tggggaggag agaataattg tcttcacgac aaactacaag 1080
gagaggctcg accctgcgct tctgcgtcct ggcaggatgg acatgcatgt ccatatgggt 1140
tactgctgcc cagagtcatt tagaattctg gcctctaact accactccat tgataaccat 1200
gccacatacc cagagataga agagttgatc aaggaggtca tggtgacacc agcagaggta 1260
gctgaggtgc tcatgaggaa tgatgacact gatgttgccc ttgaaggcct tattcagttc 1320
ctcaagagaa agaaagatgt tggcaaggaa ggcaaagctg aaaatgtgga gcaggtggtg 1380
aaggcagaag aaacagagaa agggatgatg aagaaaaatg atgtcccaga gaatcaagat 1440
ccccaagatg caagcaaata a 1461
<210> 3
<211> 486
<212> PRT
<213> Oryza sativa
<400> 3
Met Ala Ser Tyr Asp Lys Ala Ile Glu Ser Tyr Lys Arg Ala Val Thr
1 5 10 15
Thr Ala Ala Ser Leu Ala Ala Ser Ala Met Leu Val Arg Gly Val Val
20 25 30
Asn Glu Leu Val Pro Tyr Glu Val Arg Asp Leu Leu Phe Ser Gly Val
35 40 45
Gly Tyr Leu Arg Ser Arg Met Ser Ser Gln His Met Val Ile Ile Glu
50 55 60
Glu Thr Glu Gly Trp Thr Asn Asn Gln Leu Tyr Asp Ala Val Arg Thr
65 70 75 80
Tyr Leu Ala Thr Arg Ile Asn Thr Asp Met Gln Arg Leu Arg Val Ser
85 90 95
Arg Val Asp Glu Thr Lys Ser Met Met Phe Ser Met Glu Glu Gly Glu
100 105 110
Glu Met Ala Asp Val His Glu Gly Ser Glu Phe Arg Trp Arg Leu Val
115 120 125
Cys Arg Asp Asn Ser Ser Ser Ser Asn Gly Asn Gly Asn Gly Arg Gly
130 135 140
Gly Asn Gly Asn Tyr Arg Leu Glu Val Arg Ser Phe Glu Met Ser Phe
145 150 155 160
His Lys Lys His Lys Asp Lys Ala Leu Asn Ser Tyr Leu Pro His Ile
165 170 175
Leu Ala Thr Ala Lys Lys Ile Lys Asp Gln Asp Arg Thr Leu Lys Ile
180 185 190
Tyr Met Asn Glu Gly Glu Ser Trp Phe Ala Ile Asp Leu His His Pro
195 200 205
Ser Thr Phe Thr Thr Leu Ala Met Asp His Lys Gln Lys Gln Ser Val
210 215 220
Met Asp Asp Leu Glu Arg Phe Ile Lys Arg Lys Glu Tyr Tyr Lys Lys
225 230 235 240
Ile Gly Lys Ala Trp Lys Arg Gly Tyr Leu Leu Tyr Gly Pro Pro Gly
245 250 255
Thr Gly Lys Ser Ser Leu Ile Ala Ala Met Ala Asn Tyr Leu Lys Phe
260 265 270
Asp Val Tyr Asp Leu Glu Leu Thr Glu Val Asn Trp Asn Ser Thr Leu
275 280 285
Arg Arg Leu Leu Ile Gly Met Thr Asn Arg Ser Ile Leu Val Ile Glu
290 295 300
Asp Ile Asp Cys Thr Leu Glu Leu Gln Gln Arg Glu Glu Gly Gln Glu
305 310 315 320
Ser Ser Lys Ser Asn Pro Ser Glu Asp Lys Val Thr Leu Ser Gly Leu
325 330 335
Leu Asn Phe Val Asp Gly Leu Trp Ser Thr Ser Gly Glu Glu Arg Ile
340 345 350
Ile Val Phe Thr Thr Asn Tyr Lys Glu Arg Leu Asp Pro Ala Leu Leu
355 360 365
Arg Pro Gly Arg Met Asp Met His Val His Met Gly Tyr Cys Cys Pro
370 375 380
Glu Ser Phe Arg Ile Leu Ala Ser Asn Tyr His Ser Ile Asp Asn His
385 390 395 400
Ala Thr Tyr Pro Glu Ile Glu Glu Leu Ile Lys Glu Val Met Val Thr
405 410 415
Pro Ala Glu Val Ala Glu Val Leu Met Arg Asn Asp Asp Thr Asp Val
420 425 430
Ala Leu Glu Gly Leu Ile Gln Phe Leu Lys Arg Lys Lys Asp Val Gly
435 440 445
Lys Glu Gly Lys Ala Glu Asn Val Glu Gln Val Val Lys Ala Glu Glu
450 455 460
Thr Glu Lys Gly Met Met Lys Lys Asn Asp Val Pro Glu Asn Gln Asp
465 470 475 480
Pro Gln Asp Ala Ser Lys
485
<210> 4
<211> 3391
<212> DNA
<213> Oryza sativa
<400> 4
ctcctccaaa aatattccca ccccaacctc gcaaccccgc cgttcgttgc cagccaggag 60
ccaacgcccg cgctccctcg tcctcgtcgt gacccccttc cccgcctccc ggtgcgcgcg 120
ctcgccacga cgcggcacga cacaacggcc ggagcgggcg cgcggccgcg gacgtcgccg 180
gtcgccatga cggagtcgcg ccgcccgccg tccggctgcg cgatgttcgg catctacagc 240
ggcatgttcc ggcgacgccg gtcaaactcc atgtcctcca tcgcccgcat caacggggtc 300
ccacccgcca ccgccgagca cgagcacgag gccgaggcca aggcggcctc cgcgccggcg 360
aaccaggcgc accggaaggg cggcggcgtc cacgacgact cgtccctcgc gcaccgcccg 420
gccaagccgc tcccagggac gaacaacggc gcgcagcgtg cccatgcacc ggcaagcgac 480
agggccgtac acgcgacgaa ggcggcgaac ggcggggcga ggaatgcggc gtcggcggca 540
ccggccgcgg agtacaccgg gatggcagcg gagctcgaca agatgatcct cgatcaccag 600
agggtcaagg gcaccacgca gctggtgcgc gcaacctccg gcaacatgat gctccaccgc 660
aacctcggca acctcaatgc cggcgtcccc ggcgcgtcgg cgcggagctc gctggaacgc 720
aaccccgcca acaagccggc gaacgagcgg aaggccacca acgggtacgc gttctccggc 780
ctcgggaaca tcgtcaagga gccgagggcg ccgccggcgt cgtccgagct gtgccgcgcg 840
ctgtcgcacc ggacggaccc cgagaagctc aaggagatgg gcaacgagga gtaccgggag 900
gggcattacg cggaggcggt ggcgctctac gaccaggcca tcatggtgga tccaacgcgg 960
ccggcgtact ggagcaacaa ggccgccgcg ctcgccgcgc tcggccgcct catcgaggcc 1020
gtcggcgact gcagggaggc tgtccggatc gacccgtcgt acggccgcgc gcaccaccgc 1080
ctcggcgggc tgtatctcag gtacgcgcat tccgcatttg ggcgttcaga ttgttcatca 1140
ccaatgtcat tagtgcaatt gaaatcttta ggaatccggc aaaagaaatg aaattaacta 1200
gtatttgcac aggaattctt aaggacactg atcaactgga attaggtctt tagtaaaaaa 1260
aaactggaat taggtcagtt catatcgtga cttgatttgg aaatcagatt tgactagcac 1320
catagttata gtagcatgat ctaattctat tggaaaaggg atttgatcat ggcttttgac 1380
aagacgacaa ctgattgttc aactttaccc actaatattt cgtaggcaat tattttggcc 1440
gaaaataggt gcaccaaatt tagatgttgg ggaattagtt aatggaatgg ctaatttgca 1500
tcagcattgg ctctttgtca atgatgactt attcattttt ttttgaaaga aatgaattca 1560
tggttgagta ggggtactgc tattctttct tggaaatctc aaacttttcc cttaagaaat 1620
ggaattaccc attgtttgtg attaggcaat agtacaattt gatacatgtg ctcctttgga 1680
acatttgatc atttgatcat tggtttagca ggtcaagcaa gaccttctgc cgtaaattac 1740
tctagccatt tccgatcaca ttgatgattg gtaattccaa tagctaatca cttcctcgac 1800
aagcattctc acacttcttt ttgaagagaa tgattgcagc actagcttag tactagcttg 1860
ttgaattttg cgatctgtca gagaacaagt ccacacacac ttcatttttc tactgcctac 1920
tctgtactga gtactgacat tgttttgttt acacaacacc acgatgattt ttatcgatag 1980
taaacttaca ccgtttttag ttccaaaata attcttcaaa cttctaactt tttcatcaca 2040
tcaaaacttt cctacacaca taaactttca atttttctgt catatcgttc caatttcaac 2100
caaacttcta attttggtgt gaactaaaca cagccattgc tgttattgct cagattagga 2160
gaacctgaca aggcaatcca ccacttcaag caatcggcga acgactcgac gggcgcggac 2220
gtgtcgcgcg cacagtcggt caagagccgc gtcgccaagt gcggcgacgc gcgcaagctg 2280
aggaactgga tcacggtgct gcaggaatcg caggccgccg tcgccgacgg cgccgactgc 2340
gccccacagg tgagcgtccc tcgcgccacg tgaaagaaaa agaaaaagaa aaggaaagaa 2400
aacgtttacg cgacacgacc agcatccgat caaatgcagc gatctgatca tacgtctctg 2460
tcacgatgga atttttttct ggaaggtcat ggcgttgcaa gccgaggccc tggtgaagct 2520
gagccggcac gacgaggccg acgctgtgct gggcggcgcg ccgcggttcg gcgtcgacga 2580
atcgaccaag ttcttcggca ccgtcgccca tgcctacgtc ctcatgatcc gtgctcaggt 2640
cgacatggct gctgggaggt tcgttctcaa cgttgttttt tatttttttt cctcttcctc 2700
gatcaaatgg agatcagcag agatgagatg gctgtattct gatgccgtcg tgttcatgct 2760
ggatgtgtga aggtttgagg acgcggtggc gacggcgcag acggcgtgcc agctcgaccc 2820
gagcaaccgg gagatcgcga acgtgcaccg gcgggccaag gtggtggcgt cggcgaggct 2880
gcgcgggaac gacctcttca aggcgtccag gttcgccgag gcgtgcgccg cctactgcga 2940
gggcctcgac agggagaccg gcaacgccgt gctgctctgc aaccgcgccg cgtgccacgc 3000
gaggctcgcg cggtacgaga aggccgtcga ggactgcaac ggcgcgctcg ccatgcggcc 3060
ggcgtacagc aaggcgcgcc tcaggagggc cgactgcaac gtcaaggttc gctgcctccg 3120
ccgtgccgga aattttcatc gccatacctg acatgaatgc gcgatctcat ttttgtcaac 3180
gaactttttg tctgtgtttt tgtgatcagc tggagagatg ggaagcgtcg ttgcgagatt 3240
accaggtgct gatccaagaa ctcccggaga acgaggacat gaagaaggcg ctgtccgagg 3300
tcgaagccaa gctccggagc cagaggaatg ggggcattgc aagcagatca caacagtgac 3360
gccatgtaac cacagctagc cttaccaatt c 3391
<210> 5
<211> 1767
<212> DNA
<213> Oryza sativa
<400> 5
atgacggagt cgcgccgccc gccgtccggc tgcgcgatgt tcggcatcta cagcggcatg 60
ttccggcgac gccggtcaaa ctccatgtcc tccatcgccc gcatcaacgg ggtcccaccc 120
gccaccgccg agcacgagca cgaggccgag gccaaggcgg cctccgcgcc ggcgaaccag 180
gcgcaccgga agggcggcgg cgtccacgac gactcgtccc tcgcgcaccg cccggccaag 240
ccgctcccag ggacgaacaa cggcgcgcag cgtgcccatg caccggcaag cgacagggcc 300
gtacacgcga cgaaggcggc gaacggcggg gcgaggaatg cggcgtcggc ggcaccggcc 360
gcggagtaca ccgggatggc agcggagctc gacaagatga tcctcgatca ccagagggtc 420
aagggcacca cgcagctggt gcgcgcaacc tccggcaaca tgatgctcca ccgcaacctc 480
ggcaacctca atgccggcgt ccccggcgcg tcggcgcgga gctcgctgga acgcaacccc 540
gccaacaagc cggcgaacga gcggaaggcc accaacgggt acgcgttctc cggcctcggg 600
aacatcgtca aggagccgag ggcgccgccg gcgtcgtccg agctgtgccg cgcgctgtcg 660
caccggacgg accccgagaa gctcaaggag atgggcaacg aggagtaccg ggaggggcat 720
tacgcggagg cggtggcgct ctacgaccag gccatcatgg tggatccaac gcggccggcg 780
tactggagca acaaggccgc cgcgctcgcc gcgctcggcc gcctcatcga ggccgtcggc 840
gactgcaggg aggctgtccg gatcgacccg tcgtacggcc gcgcgcacca ccgcctcggc 900
gggctgtatc tcagattagg agaacctgac aaggcaatcc accacttcaa gcaatcggcg 960
aacgactcga cgggcgcgga cgtgtcgcgc gcacagtcgg tcaagagccg cgtcgccaag 1020
tgcggcgacg cgcgcaagct gaggaactgg atcacggtgc tgcaggaatc gcaggccgcc 1080
gtcgccgacg gcgccgactg cgccccacag gtcatggcgt tgcaagccga ggccctggtg 1140
aagctgagcc ggcacgacga ggccgacgct gtgctgggcg gcgcgccgcg gttcggcgtc 1200
gacgaatcga ccaagttctt cggcaccgtc gcccatgcct acgtcctcat gatccgtgct 1260
caggtcgaca tggctgctgg gaggtttgag gacgcggtgg cgacggcgca gacggcgtgc 1320
cagctcgacc cgagcaaccg ggagatcgcg aacgtgcacc ggcgggccaa ggtggtggcg 1380
tcggcgaggc tgcgcgggaa cgacctcttc aaggcgtcca ggttcgccga ggcgtgcgcc 1440
gcctactgcg agggcctcga cagggagacc ggcaacgccg tgctgctctg caaccgcgcc 1500
gcgtgccacg cgaggctcgc gcggtacgag aaggccgtcg aggactgcaa cggcgcgctc 1560
gccatgcggc cggcgtacag caaggcgcgc ctcaggaggg ccgactgcaa cgtcaagctg 1620
gagagatggg aagcgtcgtt gcgagattac caggtgctga tccaagaact cccggagaac 1680
gaggacatga agaaggcgct gtccgaggtc gaagccaagc tccggagcca gaggaatggg 1740
ggcattgcaa gcagatcaca acagtga 1767
<210> 6
<211> 588
<212> PRT
<213> Oryza sativa
<400> 6
Met Thr Glu Ser Arg Arg Pro Pro Ser Gly Cys Ala Met Phe Gly Ile
1 5 10 15
Tyr Ser Gly Met Phe Arg Arg Arg Arg Ser Asn Ser Met Ser Ser Ile
20 25 30
Ala Arg Ile Asn Gly Val Pro Pro Ala Thr Ala Glu His Glu His Glu
35 40 45
Ala Glu Ala Lys Ala Ala Ser Ala Pro Ala Asn Gln Ala His Arg Lys
50 55 60
Gly Gly Gly Val His Asp Asp Ser Ser Leu Ala His Arg Pro Ala Lys
65 70 75 80
Pro Leu Pro Gly Thr Asn Asn Gly Ala Gln Arg Ala His Ala Pro Ala
85 90 95
Ser Asp Arg Ala Val His Ala Thr Lys Ala Ala Asn Gly Gly Ala Arg
100 105 110
Asn Ala Ala Ser Ala Ala Pro Ala Ala Glu Tyr Thr Gly Met Ala Ala
115 120 125
Glu Leu Asp Lys Met Ile Leu Asp His Gln Arg Val Lys Gly Thr Thr
130 135 140
Gln Leu Val Arg Ala Thr Ser Gly Asn Met Met Leu His Arg Asn Leu
145 150 155 160
Gly Asn Leu Asn Ala Gly Val Pro Gly Ala Ser Ala Arg Ser Ser Leu
165 170 175
Glu Arg Asn Pro Ala Asn Lys Pro Ala Asn Glu Arg Lys Ala Thr Asn
180 185 190
Gly Tyr Ala Phe Ser Gly Leu Gly Asn Ile Val Lys Glu Pro Arg Ala
195 200 205
Pro Pro Ala Ser Ser Glu Leu Cys Arg Ala Leu Ser His Arg Thr Asp
210 215 220
Pro Glu Lys Leu Lys Glu Met Gly Asn Glu Glu Tyr Arg Glu Gly His
225 230 235 240
Tyr Ala Glu Ala Val Ala Leu Tyr Asp Gln Ala Ile Met Val Asp Pro
245 250 255
Thr Arg Pro Ala Tyr Trp Ser Asn Lys Ala Ala Ala Leu Ala Ala Leu
260 265 270
Gly Arg Leu Ile Glu Ala Val Gly Asp Cys Arg Glu Ala Val Arg Ile
275 280 285
Asp Pro Ser Tyr Gly Arg Ala His His Arg Leu Gly Gly Leu Tyr Leu
290 295 300
Arg Leu Gly Glu Pro Asp Lys Ala Ile His His Phe Lys Gln Ser Ala
305 310 315 320
Asn Asp Ser Thr Gly Ala Asp Val Ser Arg Ala Gln Ser Val Lys Ser
325 330 335
Arg Val Ala Lys Cys Gly Asp Ala Arg Lys Leu Arg Asn Trp Ile Thr
340 345 350
Val Leu Gln Glu Ser Gln Ala Ala Val Ala Asp Gly Ala Asp Cys Ala
355 360 365
Pro Gln Val Met Ala Leu Gln Ala Glu Ala Leu Val Lys Leu Ser Arg
370 375 380
His Asp Glu Ala Asp Ala Val Leu Gly Gly Ala Pro Arg Phe Gly Val
385 390 395 400
Asp Glu Ser Thr Lys Phe Phe Gly Thr Val Ala His Ala Tyr Val Leu
405 410 415
Met Ile Arg Ala Gln Val Asp Met Ala Ala Gly Arg Phe Glu Asp Ala
420 425 430
Val Ala Thr Ala Gln Thr Ala Cys Gln Leu Asp Pro Ser Asn Arg Glu
435 440 445
Ile Ala Asn Val His Arg Arg Ala Lys Val Val Ala Ser Ala Arg Leu
450 455 460
Arg Gly Asn Asp Leu Phe Lys Ala Ser Arg Phe Ala Glu Ala Cys Ala
465 470 475 480
Ala Tyr Cys Glu Gly Leu Asp Arg Glu Thr Gly Asn Ala Val Leu Leu
485 490 495
Cys Asn Arg Ala Ala Cys His Ala Arg Leu Ala Arg Tyr Glu Lys Ala
500 505 510
Val Glu Asp Cys Asn Gly Ala Leu Ala Met Arg Pro Ala Tyr Ser Lys
515 520 525
Ala Arg Leu Arg Arg Ala Asp Cys Asn Val Lys Leu Glu Arg Trp Glu
530 535 540
Ala Ser Leu Arg Asp Tyr Gln Val Leu Ile Gln Glu Leu Pro Glu Asn
545 550 555 560
Glu Asp Met Lys Lys Ala Leu Ser Glu Val Glu Ala Lys Leu Arg Ser
565 570 575
Gln Arg Asn Gly Gly Ile Ala Ser Arg Ser Gln Gln
580 585
<210> 7
<211> 317
<212> DNA
<213> Oryza sativa
<400> 7
caactgagca agaactgaag aaaatagaga gagagaagcc atggagcagg ggtacggctg 60
ctacagctac taccagcagt acaagagcag cggcagtttc atcagtggca aggagaagag 120
gccgccgctg aagagggggc agctgaagcg gcagattgtg aggacgctca gcaacctcat 180
ggcgccggcg acgaggagca gcggcgacgc tgctgctgct gcagactcca agaagaaggc 240
agcggatcgc agcagcttca ggagagaagc cagctacaac tgaatcgatc caatcgaaca 300
gcaacatcat catcatc 317
<210> 8
<211> 243
<212> DNA
<213> Oryza sativa
<400> 8
atggagcagg ggtacggctg ctacagctac taccagcagt acaagagcag cggcagtttc 60
atcagtggca aggagaagag gccgccgctg aagagggggc agctgaagcg gcagattgtg 120
aggacgctca gcaacctcat ggcgccggcg acgaggagca gcggcgacgc tgctgctgct 180
gcagactcca agaagaaggc agcggatcgc agcagcttca ggagagaagc cagctacaac 240
tga 243
<210> 9
<211> 80
<212> PRT
<213> Oryza sativa
<400> 9
Met Glu Gln Gly Tyr Gly Cys Tyr Ser Tyr Tyr Gln Gln Tyr Lys Ser
1 5 10 15
Ser Gly Ser Phe Ile Ser Gly Lys Glu Lys Arg Pro Pro Leu Lys Arg
20 25 30
Gly Gln Leu Lys Arg Gln Ile Val Arg Thr Leu Ser Asn Leu Met Ala
35 40 45
Pro Ala Thr Arg Ser Ser Gly Asp Ala Ala Ala Ala Ala Asp Ser Lys
50 55 60
Lys Lys Ala Ala Asp Arg Ser Ser Phe Arg Arg Glu Ala Ser Tyr Asn
65 70 75 80
<210> 10
<211> 1115
<212> DNA
<213> Oryza sativa
<400> 10
gaggagtcgg aaaggagata cagttctcag atagtttctg ctacctttgc tgccgcgcgc 60
tgcagaagat cggcgagatg gatgctgtgt tggttaccgc cgccatcttc gggttgctgc 120
tctgcggctg ctcggtttca ggagtggaag gtatcggtgt gaactatggc atgatcggca 180
acaacctccc gtcgccggac aaggtcatcg ccctgtacag agccagcaac atcaccgaca 240
tccgcctctt ccacccggac accaccgtgc tcgccgcgct ccgcggctcg ggcctcggcg 300
tcgtgctcgg cacgctcaac gaggacctgg cacgcctcgc caccgacgcc tcgttcgcgg 360
cgtcgtgggt ccagtcgtac gtgcagccct tcgccggcgc cgtccgcttc cgctacatca 420
acgccggcaa cgaggtcatc cctggggacg aggcggcgag cgtcctcccg gccatgagga 480
acctccagtc ggcgctgcgc gccgcggggc tcggcgtgcc ggtcacgacg gtcgtcgcga 540
cgtcggtgct gggctcctcg tacccgccgt cgcagggcgc gttctccgag gccgcgctgc 600
cgacggtggc gccgatcgtc tccttcctgg cgtcgagcgg gacgcccctg ctggtgaacg 660
tgtacccgta cttcgcctac tccgccgacc cgtcgtcggt gcggctcgac tacgcgctgc 720
tgtcgccgtc gacgtcggcg gccgtgacgg acggcggtgt cacgtacacc aacatgttcg 780
acgccatcct ggacgcggtg tacgcggcgc tggagaaggc gggcgggcag ggcctggagg 840
tggtggtgtc ggagaccggg tggccgtcgg gcggcggcgg ggccggcgcc agcgtggaga 900
acgcggcggc gtacagcaac aacctggtgc gccacgtcgg gcgcggcacg ccgcggcggc 960
ccgggaaggc cgtggagacg tacatcttcg ccatgttcaa cgagaaccag aagcccgagg 1020
gcgtggagca gaacttcggc ctgttccacc cggacatgag cgcggtctac cacgtcgact 1080
tctcggcgtg atcatcttaa tcaggcagcg acggc 1115
<210> 11
<211> 1014
<212> DNA
<213> Oryza sativa
<400> 11
atggatgctg tgttggttac cgccgccatc ttcgggttgc tgctctgcgg ctgctcggtt 60
tcaggagtgg aaggtatcgg tgtgaactat ggcatgatcg gcaacaacct cccgtcgccg 120
gacaaggtca tcgccctgta cagagccagc aacatcaccg acatccgcct cttccacccg 180
gacaccaccg tgctcgccgc gctccgcggc tcgggcctcg gcgtcgtgct cggcacgctc 240
aacgaggacc tggcacgcct cgccaccgac gcctcgttcg cggcgtcgtg ggtccagtcg 300
tacgtgcagc ccttcgccgg cgccgtccgc ttccgctaca tcaacgccgg caacgaggtc 360
atccctgggg acgaggcggc gagcgtcctc ccggccatga ggaacctcca gtcggcgctg 420
cgcgccgcgg ggctcggcgt gccggtcacg acggtcgtcg cgacgtcggt gctgggctcc 480
tcgtacccgc cgtcgcaggg cgcgttctcc gaggccgcgc tgccgacggt ggcgccgatc 540
gtctccttcc tggcgtcgag cgggacgccc ctgctggtga acgtgtaccc gtacttcgcc 600
tactccgccg acccgtcgtc ggtgcggctc gactacgcgc tgctgtcgcc gtcgacgtcg 660
gcggccgtga cggacggcgg tgtcacgtac accaacatgt tcgacgccat cctggacgcg 720
gtgtacgcgg cgctggagaa ggcgggcggg cagggcctgg aggtggtggt gtcggagacc 780
gggtggccgt cgggcggcgg cggggccggc gccagcgtgg agaacgcggc ggcgtacagc 840
aacaacctgg tgcgccacgt cgggcgcggc acgccgcggc ggcccgggaa ggccgtggag 900
acgtacatct tcgccatgtt caacgagaac cagaagcccg agggcgtgga gcagaacttc 960
ggcctgttcc acccggacat gagcgcggtc taccacgtcg acttctcggc gtga 1014
<210> 12
<211> 337
<212> PRT
<213> Oryza sativa
<400> 12
Met Asp Ala Val Leu Val Thr Ala Ala Ile Phe Gly Leu Leu Leu Cys
1 5 10 15
Gly Cys Ser Val Ser Gly Val Glu Gly Ile Gly Val Asn Tyr Gly Met
20 25 30
Ile Gly Asn Asn Leu Pro Ser Pro Asp Lys Val Ile Ala Leu Tyr Arg
35 40 45
Ala Ser Asn Ile Thr Asp Ile Arg Leu Phe His Pro Asp Thr Thr Val
50 55 60
Leu Ala Ala Leu Arg Gly Ser Gly Leu Gly Val Val Leu Gly Thr Leu
65 70 75 80
Asn Glu Asp Leu Ala Arg Leu Ala Thr Asp Ala Ser Phe Ala Ala Ser
85 90 95
Trp Val Gln Ser Tyr Val Gln Pro Phe Ala Gly Ala Val Arg Phe Arg
100 105 110
Tyr Ile Asn Ala Gly Asn Glu Val Ile Pro Gly Asp Glu Ala Ala Ser
115 120 125
Val Leu Pro Ala Met Arg Asn Leu Gln Ser Ala Leu Arg Ala Ala Gly
130 135 140
Leu Gly Val Pro Val Thr Thr Val Val Ala Thr Ser Val Leu Gly Ser
145 150 155 160
Ser Tyr Pro Pro Ser Gln Gly Ala Phe Ser Glu Ala Ala Leu Pro Thr
165 170 175
Val Ala Pro Ile Val Ser Phe Leu Ala Ser Ser Gly Thr Pro Leu Leu
180 185 190
Val Asn Val Tyr Pro Tyr Phe Ala Tyr Ser Ala Asp Pro Ser Ser Val
195 200 205
Arg Leu Asp Tyr Ala Leu Leu Ser Pro Ser Thr Ser Ala Ala Val Thr
210 215 220
Asp Gly Gly Val Thr Tyr Thr Asn Met Phe Asp Ala Ile Leu Asp Ala
225 230 235 240
Val Tyr Ala Ala Leu Glu Lys Ala Gly Gly Gln Gly Leu Glu Val Val
245 250 255
Val Ser Glu Thr Gly Trp Pro Ser Gly Gly Gly Gly Ala Gly Ala Ser
260 265 270
Val Glu Asn Ala Ala Ala Tyr Ser Asn Asn Leu Val Arg His Val Gly
275 280 285
Arg Gly Thr Pro Arg Arg Pro Gly Lys Ala Val Glu Thr Tyr Ile Phe
290 295 300
Ala Met Phe Asn Glu Asn Gln Lys Pro Glu Gly Val Glu Gln Asn Phe
305 310 315 320
Gly Leu Phe His Pro Asp Met Ser Ala Val Tyr His Val Asp Phe Ser
325 330 335
Ala
<210> 13
<211> 661
<212> DNA
<213> Oryza sativa
<400> 13
gattgatccg tggctgctcc gtggggggcg atggcgatgc cgcggtcgcc gggcgcgggc 60
tcgctccggt ttcttggcct cctgaagcag ccggagtcgg ggcccgacgg cgcggcgccg 120
ccgttcgagc tcgacgagag cgacgtggtg tggccggccg gcggtgtcgg ggacgacggt 180
tactgctgcc cggcgccgcc acacccggag ggcccaccgc gcgcgccccg ccgcgcccac 240
acggtgccgc agagcttcgg gctgtcgtcg ctgctcgcca acggggggcg cggcggcggc 300
agcgacgacg ggcgtcagga tggagtggcc gtgcccgtga gggccgcggc ggcgccgggt 360
ggaggcgccg cggcaccgag gcggtcggca ccggtgaggg tcccgatgtg gccgggcaag 420
ggcgccgccg ccaacaacgt cgtcggcggc gaggagtccg acgacaacga ggacgacgag 480
atggtgccgc cgcacgtggt ggcggcgcgg cggcacgcgc ggtcgtcgtc ggtgctggag 540
ggcgccggga ggacgctcaa ggggcgcgac ctccgccgcg tccgcaacgc cgtgctccgg 600
cagaccggat tcctcgacct ctgaagaatc caaagcatcc catcgccatc atcatatctt 660
g 661
<210> 14
<211> 594
<212> DNA
<213> Oryza sativa
<400> 14
atggcgatgc cgcggtcgcc gggcgcgggc tcgctccggt ttcttggcct cctgaagcag 60
ccggagtcgg ggcccgacgg cgcggcgccg ccgttcgagc tcgacgagag cgacgtggtg 120
tggccggccg gcggtgtcgg ggacgacggt tactgctgcc cggcgccgcc acacccggag 180
ggcccaccgc gcgcgccccg ccgcgcccac acggtgccgc agagcttcgg gctgtcgtcg 240
ctgctcgcca acggggggcg cggcggcggc agcgacgacg ggcgtcagga tggagtggcc 300
gtgcccgtga gggccgcggc ggcgccgggt ggaggcgccg cggcaccgag gcggtcggca 360
ccggtgaggg tcccgatgtg gccgggcaag ggcgccgccg ccaacaacgt cgtcggcggc 420
gaggagtccg acgacaacga ggacgacgag atggtgccgc cgcacgtggt ggcggcgcgg 480
cggcacgcgc ggtcgtcgtc ggtgctggag ggcgccggga ggacgctcaa ggggcgcgac 540
ctccgccgcg tccgcaacgc cgtgctccgg cagaccggat tcctcgacct ctga 594
<210> 15
<211> 197
<212> PRT
<213> Oryza sativa
<400> 15
Met Ala Met Pro Arg Ser Pro Gly Ala Gly Ser Leu Arg Phe Leu Gly
1 5 10 15
Leu Leu Lys Gln Pro Glu Ser Gly Pro Asp Gly Ala Ala Pro Pro Phe
20 25 30
Glu Leu Asp Glu Ser Asp Val Val Trp Pro Ala Gly Gly Val Gly Asp
35 40 45
Asp Gly Tyr Cys Cys Pro Ala Pro Pro His Pro Glu Gly Pro Pro Arg
50 55 60
Ala Pro Arg Arg Ala His Thr Val Pro Gln Ser Phe Gly Leu Ser Ser
65 70 75 80
Leu Leu Ala Asn Gly Gly Arg Gly Gly Gly Ser Asp Asp Gly Arg Gln
85 90 95
Asp Gly Val Ala Val Pro Val Arg Ala Ala Ala Ala Pro Gly Gly Gly
100 105 110
Ala Ala Ala Pro Arg Arg Ser Ala Pro Val Arg Val Pro Met Trp Pro
115 120 125
Gly Lys Gly Ala Ala Ala Asn Asn Val Val Gly Gly Glu Glu Ser Asp
130 135 140
Asp Asn Glu Asp Asp Glu Met Val Pro Pro His Val Val Ala Ala Arg
145 150 155 160
Arg His Ala Arg Ser Ser Ser Val Leu Glu Gly Ala Gly Arg Thr Leu
165 170 175
Lys Gly Arg Asp Leu Arg Arg Val Arg Asn Ala Val Leu Arg Gln Thr
180 185 190
Gly Phe Leu Asp Leu
195
<210> 16
<211> 1819
<212> DNA
<213> Oryza sativa
<400> 16
cgacgcgaca cgggagcaag cagcgcgcgc gcgctactcc gaaccgaagg cccacgcggc 60
gccatgctgc tgggtgccat gagcggcggc ggcgtcgtcg tcgccgtcgc cgtcgcctac 120
gccgccctgg ccgtggtggc gctgcggatg gcgctgtcgt acaagtcggc gctgtacgcg 180
gtgcggcggc tgtggcggtg ggccgacgag tgggcgcagg cgtaccagta ccacgaggtg 240
ccacgcttcg cgtgcgacgg cggcggcgcc gagaacccgc tgttccgcaa ggcggcgcag 300
tacgtggcgg tgctgccgtc gctcgaggac gccgacgccg cctccgtgct gtcgtccgcg 360
tcgaggacca acggcggctt ctccctgcag cttgggccag gccacaccgc gcgcgacgcc 420
ttcctcggcg cgcgcctcgc gtggacaaac cggggcgacg tgctggttct gcgcgtgcgc 480
cgccatgacc ggacgcgcgt gctgcggccc tacctgcagc acgtcgagtc cgttgccgat 540
gagatggagc tccggcgacg cgagctgcgg ctgttcgcca acaccggcgt ggacgggagc 600
accgggacgc cgaggtgggc gtcggcgccg ttcacccacc cggcgacgct tgacacggtg 660
gccatggacc ccgacctcaa ggctcgcgtc cgcgccgacc tcgagaactt cctcaagggc 720
cgcgcctact accaccgcct cgggcgggtg tggcgccgga gctacctcct ctacggcccg 780
ctgggcaccg gcaagtcgac cttcgcggcg gccatggctc ggttcttggg ctacgacatc 840
tacgacgtcg atctctcccg cgccggcagc gacgacctcc gcgcgctgct cctgcacacc 900
accccgcggt ccctcatcct cgtggaggac ctcgaccggt tcctccaggg cggcggggcc 960
ggggacgcgg aggcgagggc ggcgagggtg ctgagcttca tggacggcgt cgcgtcgtgc 1020
tgtggcgagg agcgggtgat ggtgttcacg atgcgcggcg gcaaggaggg cgtggacgcg 1080
gcggtggtgc ggccggggag gctggacgtg cacatccact tcacgctctg cgacttcgag 1140
gcgttcaagg cgctggccag caactacctc ggcctcaagg accacaagct gtacccgcag 1200
gtggaggaga gcttccatgg cggcgcgcgc ctcagccccg ccgagctcgg cgagatcatg 1260
ctcgccaacc gctcgtcgcc gagccgcgcg ctgcgcaacg tcatcacgaa gctccagcac 1320
gtgtccgggg cggcggcggc gccgcggccg ccgcacaggc ggaacacgag ctggtccggc 1380
gcgggcgggc catgggagga gcaggccgcg cgcgccagcg cggacgcggc ggacggcggc 1440
gaggaggcga tcacggcgac ggcggcgtgc ggggtgttcg cgaaggacgc gccgatgagg 1500
gagttcaaga agctgtacgg gctgatcaag atcaggagcc ggaaggaggg ctccagcggg 1560
ttcatgccct tgcacggcgg cgaagcgccg tcgccggcaa acgggcgggg cagcgagcac 1620
gacaaggagc ggtgattaat taggcgatgg tagtagaccc cgtcaaacaa gaaaaatatt 1680
tttgattttt tgtccgtgct tttttacttc gtgttaggct agtaggagta ctacgtagtt 1740
gtagttagtt cactttttaa ttgtggatgg aagaaatcaa acacgaaatg gaggatgata 1800
atgggattgg gtgatgtac 1819
<210> 17
<211> 1572
<212> DNA
<213> Oryza sativa
<400> 17
atgctgctgg gtgccatgag cggcggcggc gtcgtcgtcg ccgtcgccgt cgcctacgcc 60
gccctggccg tggtggcgct gcggatggcg ctgtcgtaca agtcggcgct gtacgcggtg 120
cggcggctgt ggcggtgggc cgacgagtgg gcgcaggcgt accagtacca cgaggtgcca 180
cgcttcgcgt gcgacggcgg cggcgccgag aacccgctgt tccgcaaggc ggcgcagtac 240
gtggcggtgc tgccgtcgct cgaggacgcc gacgccgcct ccgtgctgtc gtccgcgtcg 300
aggaccaacg gcggcttctc cctgcagctt gggccaggcc acaccgcgcg cgacgccttc 360
ctcggcgcgc gcctcgcgtg gacaaaccgg ggcgacgtgc tggttctgcg cgtgcgccgc 420
catgaccgga cgcgcgtgct gcggccctac ctgcagcacg tcgagtccgt tgccgatgag 480
atggagctcc ggcgacgcga gctgcggctg ttcgccaaca ccggcgtgga cgggagcacc 540
gggacgccga ggtgggcgtc ggcgccgttc acccacccgg cgacgcttga cacggtggcc 600
atggaccccg acctcaaggc tcgcgtccgc gccgacctcg agaacttcct caagggccgc 660
gcctactacc accgcctcgg gcgggtgtgg cgccggagct acctcctcta cggcccgctg 720
ggcaccggca agtcgacctt cgcggcggcc atggctcggt tcttgggcta cgacatctac 780
gacgtcgatc tctcccgcgc cggcagcgac gacctccgcg cgctgctcct gcacaccacc 840
ccgcggtccc tcatcctcgt ggaggacctc gaccggttcc tccagggcgg cggggccggg 900
gacgcggagg cgagggcggc gagggtgctg agcttcatgg acggcgtcgc gtcgtgctgt 960
ggcgaggagc gggtgatggt gttcacgatg cgcggcggca aggagggcgt ggacgcggcg 1020
gtggtgcggc cggggaggct ggacgtgcac atccacttca cgctctgcga cttcgaggcg 1080
ttcaaggcgc tggccagcaa ctacctcggc ctcaaggacc acaagctgta cccgcaggtg 1140
gaggagagct tccatggcgg cgcgcgcctc agccccgccg agctcggcga gatcatgctc 1200
gccaaccgct cgtcgccgag ccgcgcgctg cgcaacgtca tcacgaagct ccagcacgtg 1260
tccggggcgg cggcggcgcc gcggccgccg cacaggcgga acacgagctg gtccggcgcg 1320
ggcgggccat gggaggagca ggccgcgcgc gccagcgcgg acgcggcgga cggcggcgag 1380
gaggcgatca cggcgacggc ggcgtgcggg gtgttcgcga aggacgcgcc gatgagggag 1440
ttcaagaagc tgtacgggct gatcaagatc aggagccgga aggagggctc cagcgggttc 1500
atgcccttgc acggcggcga agcgccgtcg ccggcaaacg ggcggggcag cgagcacgac 1560
aaggagcggt ga 1572
<210> 18
<211> 523
<212> PRT
<213> Oryza sativa
<400> 18
Met Leu Leu Gly Ala Met Ser Gly Gly Gly Val Val Val Ala Val Ala
1 5 10 15
Val Ala Tyr Ala Ala Leu Ala Val Val Ala Leu Arg Met Ala Leu Ser
20 25 30
Tyr Lys Ser Ala Leu Tyr Ala Val Arg Arg Leu Trp Arg Trp Ala Asp
35 40 45
Glu Trp Ala Gln Ala Tyr Gln Tyr His Glu Val Pro Arg Phe Ala Cys
50 55 60
Asp Gly Gly Gly Ala Glu Asn Pro Leu Phe Arg Lys Ala Ala Gln Tyr
65 70 75 80
Val Ala Val Leu Pro Ser Leu Glu Asp Ala Asp Ala Ala Ser Val Leu
85 90 95
Ser Ser Ala Ser Arg Thr Asn Gly Gly Phe Ser Leu Gln Leu Gly Pro
100 105 110
Gly His Thr Ala Arg Asp Ala Phe Leu Gly Ala Arg Leu Ala Trp Thr
115 120 125
Asn Arg Gly Asp Val Leu Val Leu Arg Val Arg Arg His Asp Arg Thr
130 135 140
Arg Val Leu Arg Pro Tyr Leu Gln His Val Glu Ser Val Ala Asp Glu
145 150 155 160
Met Glu Leu Arg Arg Arg Glu Leu Arg Leu Phe Ala Asn Thr Gly Val
165 170 175
Asp Gly Ser Thr Gly Thr Pro Arg Trp Ala Ser Ala Pro Phe Thr His
180 185 190
Pro Ala Thr Leu Asp Thr Val Ala Met Asp Pro Asp Leu Lys Ala Arg
195 200 205
Val Arg Ala Asp Leu Glu Asn Phe Leu Lys Gly Arg Ala Tyr Tyr His
210 215 220
Arg Leu Gly Arg Val Trp Arg Arg Ser Tyr Leu Leu Tyr Gly Pro Leu
225 230 235 240
Gly Thr Gly Lys Ser Thr Phe Ala Ala Ala Met Ala Arg Phe Leu Gly
245 250 255
Tyr Asp Ile Tyr Asp Val Asp Leu Ser Arg Ala Gly Ser Asp Asp Leu
260 265 270
Arg Ala Leu Leu Leu His Thr Thr Pro Arg Ser Leu Ile Leu Val Glu
275 280 285
Asp Leu Asp Arg Phe Leu Gln Gly Gly Gly Ala Gly Asp Ala Glu Ala
290 295 300
Arg Ala Ala Arg Val Leu Ser Phe Met Asp Gly Val Ala Ser Cys Cys
305 310 315 320
Gly Glu Glu Arg Val Met Val Phe Thr Met Arg Gly Gly Lys Glu Gly
325 330 335
Val Asp Ala Ala Val Val Arg Pro Gly Arg Leu Asp Val His Ile His
340 345 350
Phe Thr Leu Cys Asp Phe Glu Ala Phe Lys Ala Leu Ala Ser Asn Tyr
355 360 365
Leu Gly Leu Lys Asp His Lys Leu Tyr Pro Gln Val Glu Glu Ser Phe
370 375 380
His Gly Gly Ala Arg Leu Ser Pro Ala Glu Leu Gly Glu Ile Met Leu
385 390 395 400
Ala Asn Arg Ser Ser Pro Ser Arg Ala Leu Arg Asn Val Ile Thr Lys
405 410 415
Leu Gln His Val Ser Gly Ala Ala Ala Ala Pro Arg Pro Pro His Arg
420 425 430
Arg Asn Thr Ser Trp Ser Gly Ala Gly Gly Pro Trp Glu Glu Gln Ala
435 440 445
Ala Arg Ala Ser Ala Asp Ala Ala Asp Gly Gly Glu Glu Ala Ile Thr
450 455 460
Ala Thr Ala Ala Cys Gly Val Phe Ala Lys Asp Ala Pro Met Arg Glu
465 470 475 480
Phe Lys Lys Leu Tyr Gly Leu Ile Lys Ile Arg Ser Arg Lys Glu Gly
485 490 495
Ser Ser Gly Phe Met Pro Leu His Gly Gly Glu Ala Pro Ser Pro Ala
500 505 510
Asn Gly Arg Gly Ser Glu His Asp Lys Glu Arg
515 520
<210> 19
<211> 869
<212> DNA
<213> Oryza sativa
<400> 19
cgagagctaa gcgaggaagg atgcgtgggg cgtcggcatt ggcatctctc gtcgccgcgg 60
cggcggtggc gctgctcctc ctcatcgacg gctgcggcgg cgccatgtac aaggttggcg 120
acctcgacgc ctggggcatc ccgccgccgt ccaagcccga cgtctactcg cgctgggcca 180
aatccatcca cttcgcgctc ggcgactcca tctgtaagca ctggatcatc gcgattagag 240
gcctcgtctt tttcttatgt ttgtacttat caaccgaaat ttaaattttt caacttcaga 300
tttaaagctg attttaaaat ttttttcatc gaaatttatt tttcagactt tgtttttagc 360
tgattataaa aattttactc ttaaattatt tttcgtttgt aaatacgccg taactcatct 420
tcttcactgg gtatgattca cgcagggttt ctgtacccgc cgagccagga ctcggtggtg 480
caggtgacgc cggtggcgtt cgccgcctgc caggcgtcgg acccggtgct gaagctcgac 540
gacggcaact ccgtcttcaa cctcaccacg cccggccgcg tctactacat cagcgccgcg 600
ctgggacact gccggaaggg ccagaggctg gccgtcgacg tgcccatggc caacggcacc 660
tacctgccgc ccaccgccaa cgacctcgcc gccttcgcgc cgatgccggc cgaggcgccg 720
gcggggttcg agtcggcggc gctcggcccc gccggagcgc gacagtcggc ggcgccccga 780
gccgccgccg ccggcggagc tggatccgtc cttcttgctg ctcttgcctt cgccgtcttc 840
ttgctgtgag agcatcttgt tgattgtgg 869
<210> 20
<211> 597
<212> DNA
<213> Oryza sativa
<400> 20
atgcgtgggg cgtcggcatt ggcatctctc gtcgccgcgg cggcggtggc gctgctcctc 60
ctcatcgacg gctgcggcgg cgccatgtac aaggttggcg acctcgacgc ctggggcatc 120
ccgccgccgt ccaagcccga cgtctactcg cgctgggcca aatccatcca cttcgcgctc 180
ggcgactcca tctggtttct gtacccgccg agccaggact cggtggtgca ggtgacgccg 240
gtggcgttcg ccgcctgcca ggcgtcggac ccggtgctga agctcgacga cggcaactcc 300
gtcttcaacc tcaccacgcc cggccgcgtc tactacatca gcgccgcgct gggacactgc 360
cggaagggcc agaggctggc cgtcgacgtg cccatggcca acggcaccta cctgccgccc 420
accgccaacg acctcgccgc cttcgcgccg atgccggccg aggcgccggc ggggttcgag 480
tcggcggcgc tcggccccgc cggagcgcga cagtcggcgg cgccccgagc cgccgccgcc 540
ggcggagctg gatccgtcct tcttgctgct cttgccttcg ccgtcttctt gctgtga 597
<210> 21
<211> 198
<212> PRT
<213> Oryza sativa
<400> 21
Met Arg Gly Ala Ser Ala Leu Ala Ser Leu Val Ala Ala Ala Ala Val
1 5 10 15
Ala Leu Leu Leu Leu Ile Asp Gly Cys Gly Gly Ala Met Tyr Lys Val
20 25 30
Gly Asp Leu Asp Ala Trp Gly Ile Pro Pro Pro Ser Lys Pro Asp Val
35 40 45
Tyr Ser Arg Trp Ala Lys Ser Ile His Phe Ala Leu Gly Asp Ser Ile
50 55 60
Trp Phe Leu Tyr Pro Pro Ser Gln Asp Ser Val Val Gln Val Thr Pro
65 70 75 80
Val Ala Phe Ala Ala Cys Gln Ala Ser Asp Pro Val Leu Lys Leu Asp
85 90 95
Asp Gly Asn Ser Val Phe Asn Leu Thr Thr Pro Gly Arg Val Tyr Tyr
100 105 110
Ile Ser Ala Ala Leu Gly His Cys Arg Lys Gly Gln Arg Leu Ala Val
115 120 125
Asp Val Pro Met Ala Asn Gly Thr Tyr Leu Pro Pro Thr Ala Asn Asp
130 135 140
Leu Ala Ala Phe Ala Pro Met Pro Ala Glu Ala Pro Ala Gly Phe Glu
145 150 155 160
Ser Ala Ala Leu Gly Pro Ala Gly Ala Arg Gln Ser Ala Ala Pro Arg
165 170 175
Ala Ala Ala Ala Gly Gly Ala Gly Ser Val Leu Leu Ala Ala Leu Ala
180 185 190
Phe Ala Val Phe Leu Leu
195
<210> 22
<211> 26
<212> DNA
<213> Artificial Sequence
<220>
<223> Forward primer for cloning cDNA of OsBCS1-2 gene
<400> 22
gttttcagag acgtaccaga gccaac 26
<210> 23
<211> 26
<212> DNA
<213> Artificial Sequence
<220>
<223> Reverse primer for cloning cDNA of OsBCS1-2 gene
<400> 23
gcacactgtt taagcatcat tatttg 26
<210> 24
<211> 30
<212> DNA
<213> Artificial Sequence
<220>
<223> Forward primer for cloning gDNA of OsDnaJ7 gene
<400> 24
ctcctccaaa aatattccca ccccaacctc 30
<210> 25
<211> 26
<212> DNA
<213> Artificial Sequence
<220>
<223> Reverse primer for cloning gDNA of OsDnaJ7 gene
<400> 25
gaattggtaa ggctagctgt ggttac 26
<210> 26
<211> 29
<212> DNA
<213> Artificial Sequence
<220>
<223> Forward primer for cloning gDNA of OsLNTP10 gene
<400> 26
caactgagca agaactgaag aaaatagag 29
<210> 27
<211> 27
<212> DNA
<213> Artificial Sequence
<220>
<223> Reverse primer for cloning gDNA of OsLNTP10 gene
<400> 27
gatgatgatg atgttgctgt tcgattg 27
<210> 28
<211> 26
<212> DNA
<213> Artificial Sequence
<220>
<223> Forward primer for cloning cDNA of OsGH17.2 gene
<400> 28
gaggagtcgg aaaggagata cagttc 26
<210> 29
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Reverse primer for cloning cDNA of OsGH17.2 gene
<400> 29
gccgtcgctg cctgattaag atg 23
<210> 30
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Forward primer for cloning gDNA of OsDUF6 gene
<400> 30
gattgatccg tggctgctcc gtg 23
<210> 31
<211> 27
<212> DNA
<213> Artificial Sequence
<220>
<223> Reverse primer for cloning gDNA of OsDUF6 gene
<400> 31
caagatatga tgatggcgat gggatgc 27
<210> 32
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Forward primer for cloning cDNA of OsATAP1 gene
<400> 32
cgacgcgaca cgggagcaag cag 23
<210> 33
<211> 30
<212> DNA
<213> Artificial Sequence
<220>
<223> Reverse primer for cloning cDNA of OsATAP1 gene
<400> 33
gtacatcacc caatcccatt atcatcctcc 30
<210> 34
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Forward primer for cloning gDNA of OsPCL1 gene
<400> 34
cgagagctaa gcgaggaagg atgc 24
<210> 35
<211> 26
<212> DNA
<213> Artificial Sequence
<220>
<223> Reverse primer for cloning gDNA of OsPCL1 gene
<400> 35
ccacaatcaa caagatgctc tcacag 26
<210> 36
<211> 21
<212> DNA
<213> Artificial Sequence
<220>
<223> Forward primer for real-time PCR analysis of OsBCS1-2 gene
<400> 36
ggcaaagctg aaaatgtgga g 21
<210> 37
<211> 21
<212> DNA
<213> Artificial Sequence
<220>
<223> Reverse primer for real-time PCR analysis of OsBCS1-2 gene
<400> 37
gggatcttga ttctctggga c 21
<210> 38
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Forward primer for real-time PCR analysis of OsDnaJ7 gene
<400> 38
agatgggaag cgtcgttg 18
<210> 39
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Reverse primer for real-time PCR analysis of OsDnaJ7 gene
<400> 39
cttcttcatg tcctcgttct cc 22
<210> 40
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Forward primer for real-time PCR analysis of OsLNTP10 gene
<400> 40
cagtggcaag gagaagaggc 20
<210> 41
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Reverse primer for real-time PCR analysis of OsLNTP10 gene
<400> 41
gttgtagctg gcttctctcc tg 22
<210> 42
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Forward primer for real-time PCR analysis of OsGH17.2 gene
<400> 42
catcttcgcc atgttcaacg 20
<210> 43
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Reverse primer for real-time PCR analysis of OsGH17.2 gene
<400> 43
catgtccggg tggaacag 18
<210> 44
<211> 19
<212> DNA
<213> Artificial Sequence
<220>
<223> Forward primer for real-time PCR analysis of OsDUF6 gene
<400> 44
cacggtgccg cagagcttc 19
<210> 45
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Reverse primer for real-time PCR analysis of OsDUF6 gene
<400> 45
ggcaccatct cgtcgtcctc 20
<210> 46
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Forward primer for real-time PCR analysis of OsATAP1 gene
<400> 46
tcaaggacca caagctgtac 20
<210> 47
<211> 19
<212> DNA
<213> Artificial Sequence
<220>
<223> Reverse primer for real-time PCR analysis of OsATAP1 gene
<400> 47
ggttggcgag catgatctc 19
<210> 48
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Forward primer for real-time PCR analysis of OsPCL1 gene
<400> 48
gtttctgtac ccgccgag 18
<210> 49
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Reverse primer for real-time PCR analysis of OsPCL1 gene
<400> 49
tgaggttgaa gacggagttg 20
<210> 50
<211> 199
<212> DNA
<213> Artificial Sequence
<220>
<223> The nucleotide sequence of intron used for constructing RNAi
construct
<400> 50
gtacggaccg tactactcta ttcgtttcaa tatatttatt tgtttcagct gactgcaaga 60
ttcaaaaatt tctttattat tttaaatttt gtgtcactca aaaccagata aacaatttga 120
tatagaggca ctatatatat acatattctc gattatatat gtaaatgagt taaccttttt 180
ttccacttaa attatatag 199
<210> 51
<211> 177
<212> DNA
<213> Oryza sativa
<400> 51
cattggcatc tctcgtcgcc gcggcggcgg tggcgctgct cctcctcatc gacggctgcg 60
gcggcgccat gtacaaggtt ggcgacctcg acgcctgggg catcccgccg ccgtccaagc 120
ccgacgtcta ctcgcgctgg gccaaatcca tccacttcgc gctcggcgac tccatct 177
<210> 52
<211> 28
<212> DNA
<213> Artificial Sequence
<220>
<223> Forward primer for cloning sense strand cDNA of OsPCL1 gene for
constructing RNAi construct
<400> 52
ctgctgaggc attggcatct ctcgtcgc 28
<210> 53
<211> 28
<212> DNA
<213> Artificial Sequence
<220>
<223> Reverse primer for cloning sense strand cDNA of OsPCL1 gene for
constructing RNAi construct
<400> 53
gcttgctgag gagatggagt cgccgagc 28
<210> 54
<211> 28
<212> DNA
<213> Artificial Sequence
<220>
<223> Forward primer for cloning antisense strand cDNA of OsPCL1 gene
for constructing RNAi construct
<400> 54
ccgctgaggc attggcatct ctcgtcgc 28
<210> 55
<211> 28
<212> DNA
<213> Artificial Sequence
<220>
<223> Reverse primer for cloning antisense strand cDNA of OsPCL1 gene
for constructing RNAi construct
<400> 55
gcctgctgag gagatggagt cgccgagc 28
<210> 56
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Nucleotide sequence of gRNA1 for target site sequence for
OsBCS1-2 gene
<400> 56
acctgaactc ggagccctca 20
<210> 57
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Nucleotide sequence of gRNA3 for target site sequence for
OsBCS1-2 gene
<400> 57
atctgggcta ctcaacttcg 20
<210> 58
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Nucleotide sequence of gRNA3 for target site sequence for OsDnaJ7
gene
<400> 58
agcgtcgttg cgagattacc 20
<210> 59
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Nucleotide sequence of gRNA4 for target site sequence for OsDnaJ7
gene
<400> 59
tcgcgatctc ccggttgctc 20
<210> 60
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Nucleotide sequence of gRNA9 for target site sequence for
OsLNTP10 gene
<400> 60
taccagcagt acaagagcag 20
<210> 61
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Nucleotide sequence of gRNA6 for target site sequence for
OsLNTP10 gene
<400> 61
caaacctccc ggcccagaag 20
<210> 62
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Nucleotide sequence of gRNA8 for target site sequence for
OsLNTP10 gene
<400> 62
gcaggttcta gtttagtgtg 20
<210> 63
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Nucleotide sequence of gRNA10 for target site sequence for
OsLNTP10 gene
<400> 63
tgccgctgct cttgtactgc 20
<210> 64
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Nucleotide sequence of gRNA1 for target site sequence for
OsGH17.2 gene
<400> 64
tcggcgtgat catcttaatc 20
<210> 65
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Nucleotide sequence of gRNA3 for target site sequence for OsDUF6
gene
<400> 65
ggtcgaggaa tccggtctgc 20
<210> 66
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Nucleotide sequence of gRNA4 for target site sequence for OsDUF6
gene
<400> 66
aaccggagcg agcccgcgcc 20
<210> 67
<211> 1934
<212> DNA
<213> Zea mays
<400> 67
cagtgcagcg tgacccggtc gtgcccctct ctagagataa tgagcattgc atgtctaagt 60
tataaaaaat taccacatat tttttttgtc acacttgttt gaagtgcagt ttatctatct 120
ttatacatat atttaaactt tactctacga ataatataat ctatagtact acaataatat 180
cagtgtttta gagaatcata taaatgaaca gttagacatg gtctaaagga caattgagta 240
ttttgacaac aggactctac agttttatct ttttagtgtg catgtgttct cctttttttt 300
tgcaaatagc ttcacctata taatacttca tccattttat tagtacatcc atttagggtt 360
tagggttaat ggtttttata gactaatttt tttagtacat ctattttatt ctattttagc 420
ctctaaatta agaaaactaa aactctattt tagttttttt atttaataat ttagatataa 480
aatagaataa aataaagtga ctaaaaatta aacaaatacc ctttaagaaa ttaaaaaaac 540
taaggaaaca tttttcttgt ttcgagtaga taatgccagc ctgttaaacg ccgtcgacga 600
gtctaacgga caccaaccag cgaaccagca gcgtcgcgtc gggccaagcg aagcagacgg 660
cacggcatct ctgtcgctgc ctctggaccc ctctcgagag ttccgctcca ccgttggact 720
tgctccgctg tcggcatcca gaaattgcgt ggcggagcgg cagacgtgag ccggcacggc 780
aggcggcctc ctcctcctct cacggcaccg gcagctacgg gggattcctt tcccaccgct 840
ccttcgcttt cccttcctcg cccgccgtaa taaatagaca ccccctccac accctctttc 900
cccaacctcg tgttgttcgg agcgcacaca cacacaacca gatctccccc aaatccaccc 960
gtcggcacct ccgcttcaag gtacgccgct cgtcctcccc cccccccctc tctaccttct 1020
ctagatcggc gttccggtcc atggttaggg cccggtagtt ctacttctgt tcatgtttgt 1080
gttagatccg tgtttgtgtt agatccgtgc tgctagcgtt cgtacacgga tgcgacctgt 1140
acgtcagaca cgttctgatt gctaacttgc cagtgtttct cttggggaat cctgggatgg 1200
ctctagccgt tccgcagacg ggatcgattt catgattttt tttgtttcgt tgcatagggt 1260
ttggtttgcc cttttccttt atttcaatat atgccgtgca cttgtttgtc gggtcatctt 1320
ttcatgcttt tttttgtctt ggttgtgatg atgtggtctg gttgggcggt cgttctagat 1380
cggagtagaa ttctgtttca aactacctgg tggatttatt aattttggat ctgtatgtgt 1440
gtgccataca tattcatagt tacgaattga agatgatgga tggaaatatc gatctaggat 1500
aggtatacat gttgatgcgg gttttactga tgcatataca gagatgcttt ttgttcgctt 1560
ggttgtgatg atgtggtgtg gttgggcggt cgttcattcg ttctagatcg gagtagaata 1620
ctgtttcaaa ctacctggtg tatttattaa ttttggaact gtatgtgtgt gtcatacatc 1680
ttcatagtta cgagtttaag atggatggaa atatcgatct aggataggta tacatgttga 1740
tgtgggtttt actgatgcat atacatgatg gcatatgcag catctattca tatgctctaa 1800
ccttgagtac ctatctatta taataaacaa gtatgtttta taattatttt gatcttgata 1860
tacttggatg atggcatatg cagcagctat atgtggattt ttttagccct gccttcatac 1920
gctatttatt tgct 1934
<210> 68
<211> 4206
<212> DNA
<213> Artificial Sequence
<220>
<223> The nucleotide sequence of nuclear localization sequence and Cas9
gene
<400> 68
atggccccta agaagaagag aaaggtcggt attcacggcg ttcctgcggc gatggacaag 60
aagtatagta ttggtctgga cattgggacg aattccgttg gctgggccgt gatcaccgat 120
gagtacaagg tcccttccaa gaagtttaag gttctgggga acaccgatcg gcacagcatc 180
aagaagaatc tcattggagc cctcctgttc gactcaggcg agaccgccga agcaacaagg 240
ctcaagagaa ccgcaaggag acggtataca agaaggaaga ataggatctg ctacctgcag 300
gagattttca gcaacgaaat ggcgaaggtg gacgattcgt tctttcatag attggaggag 360
agtttcctcg tcgaggaaga taagaagcac gagaggcatc ctatctttgg caacattgtc 420
gacgaggttg cctatcacga aaagtacccc acaatctatc atctgcggaa gaagcttgtg 480
gactcgactg ataaggcgga ccttagattg atctacctcg ctctggcaca catgattaag 540
ttcaggggcc attttctgat cgagggggat cttaacccgg acaatagcga tgtggacaag 600
ttgttcatcc agctcgtcca aacctacaat cagctctttg aggaaaaccc aattaatgct 660
tcaggcgtcg acgccaaggc gatcctgtct gcacgccttt caaagtctcg ccggcttgag 720
aacttgatcg ctcaactccc gggcgaaaag aagaacggct tgttcgggaa tctcattgca 780
ctttcgttgg ggctcacacc aaacttcaag agtaattttg atctcgctga ggacgcaaag 840
ctgcagcttt ccaaggacac ttatgacgat gacctggata accttttggc ccaaatcggc 900
gatcagtacg cggacttgtt cctcgccgcg aagaatttgt cggacgcgat cctcctgagt 960
gatattctcc gcgtgaacac cgagattaca aaggccccgc tctcggcgag tatgatcaag 1020
cgctatgacg agcaccatca ggatctgacc cttttgaagg ctttggtccg gcagcaactc 1080
ccagagaagt acaaggaaat cttctttgat caatccaaga acggctacgc tggttatatt 1140
gacggcgggg catcgcagga ggaattctac aagtttatca agccaattct ggagaagatg 1200
gatggcacag aggaactcct ggtgaagctc aatagggagg accttttgcg gaagcaaaga 1260
actttcgata acggcagcat ccctcaccag attcatctcg gggagctgca cgccatcctg 1320
agaaggcagg aagacttcta cccctttctt aaggataacc gggagaagat cgaaaagatt 1380
ctgacgttca gaattccgta ctatgtcgga ccactcgccc ggggtaattc cagatttgcg 1440
tggatgacca gaaagagcga ggaaaccatc acaccttgga acttcgagga agtggtcgat 1500
aagggcgctt ccgcacagag cttcattgag cgcatgacaa attttgacaa gaacctgcct 1560
aatgagaagg tccttcccaa gcattccctc ctgtacgagt atttcactgt ttataacgaa 1620
ctcacgaagg tgaagtatgt gaccgaggga atgcgcaagc ccgccttcct gagcggcgag 1680
caaaagaagg cgatcgtgga ccttttgttt aagaccaatc ggaaggtcac agttaagcag 1740
ctcaaggagg actacttcaa gaagattgaa tgcttcgatt ccgttgagat cagcggcgtg 1800
gaagacaggt ttaacgcgtc actggggact taccacgatc tcctgaagat cattaaggat 1860
aaggacttct tggacaacga ggaaaatgag gatatcctcg aagacattgt cctgactctt 1920
acgttgtttg aggataggga aatgatcgag gaacgcttga agacgtatgc ccatctcttc 1980
gatgacaagg ttatgaagca gctcaagaga agaagataca ccggatgggg aaggctgtcc 2040
cgcaagctta tcaatggcat tagagacaag caatcaggga agacaatcct tgactttttg 2100
aagtctgatg gcttcgcgaa caggaatttt atgcagctga ttcacgatga ctcacttact 2160
ttcaaggagg atatccagaa ggctcaagtg tcgggacaag gtgacagtct gcacgagcat 2220
atcgccaacc ttgcgggatc tcctgcaatc aagaagggta ttctgcagac agtcaaggtt 2280
gtggatgagc ttgtgaaggt catgggacgg cataagcccg agaacatcgt tattgagatg 2340
gccagagaaa atcagaccac acaaaagggt cagaagaact cgagggagcg catgaagcgc 2400
atcgaggaag gcattaagga gctggggagt cagatcctta aggagcaccc ggtggaaaac 2460
acgcagttgc aaaatgagaa gctctatctg tactatctgc aaaatggcag ggatatgtat 2520
gtggaccagg agttggatat taaccgcctc tcggattacg acgtcgatca tatcgttcct 2580
cagtccttcc ttaaggatga cagcattgac aataaggttc tcaccaggtc cgacaagaac 2640
cgcgggaagt ccgataatgt gcccagcgag gaagtcgtta agaagatgaa gaactactgg 2700
aggcaacttt tgaatgccaa gttgatcaca cagaggaagt ttgataacct cactaaggcc 2760
gagcgcggag gtctcagcga actggacaag gcgggcttca ttaagcggca actggttgag 2820
actagacaga tcacgaagca cgtggcgcag attctcgatt cacgcatgaa cacgaagtac 2880
gatgagaatg acaagctgat ccgggaagtg aaggtcatca ccttgaagtc aaagctcgtt 2940
tctgacttca ggaaggattt ccaattttat aaggtgcgcg agatcaacaa ttatcaccat 3000
gctcatgacg catacctcaa cgctgtggtc ggaacagcat tgattaagaa gtacccgaag 3060
ctcgagtccg aattcgtgta cggtgactat aaggtttacg atgtgcgcaa gatgatcgcc 3120
aagtcagagc aggaaattgg caaggccact gcgaagtatt tcttttactc taacattatg 3180
aatttcttta agactgagat cacgctggct aatggcgaaa tccggaagag accacttatt 3240
gagaccaacg gcgagacagg ggaaatcgtg tgggacaagg ggagggattt cgccacagtc 3300
cgcaaggttc tctctatgcc tcaagtgaat attgtcaaga agactgaagt ccagacgggc 3360
gggttctcaa aggaatctat tctgcccaag cggaactcgg ataagcttat cgccagaaag 3420
aaggactggg acccgaagaa gtatggaggt ttcgactcac caacggtggc ttactctgtc 3480
ctggttgtgg caaaggtgga gaagggaaag tcaaagaagc tcaagtctgt caaggagctc 3540
ctgggtatca ccattatgga gaggtccagc ttcgaaaaga atccgatcga ttttctcgag 3600
gcgaagggat ataaggaagt gaagaaggac ctgatcatta agcttccaaa gtacagtctt 3660
ttcgagttgg aaaacggcag gaagcgcatg ttggcttccg caggagagct ccagaagggt 3720
aacgagcttg ctttgccgtc caagtatgtg aacttcctct atctggcatc ccactacgag 3780
aagctcaagg gcagcccaga ggataacgaa cagaagcaac tgtttgtgga gcaacacaag 3840
cattatcttg acgagatcat tgaacagatt tcggagttca gtaagcgcgt catcctcgcc 3900
gacgcgaatt tggataaggt tctctcagcc tacaacaagc accgggacaa gcctatcaga 3960
gagcaggcgg aaaatatcat tcatctcttc accctgacaa accttggggc tcccgctgca 4020
ttcaagtatt ttgacactac gattgatcgg aagagataca cttctacgaa ggaggtgctg 4080
gatgcaaccc ttatccacca atcgattact ggcctctacg agacgcggat cgacttgagt 4140
cagctcgggg gggataagag accagcggca accaagaagg caggacaagc gaagaagaag 4200
aagtag 4206
<210> 69
<211> 367
<212> DNA
<213> Cauliflower mosaic virus
<400> 69
cggtacgctg aaatcaccag tctctctcta caaatctatc tctctctatt ttctccataa 60
ataatgtgtg agtagtttcc cgataaggga aattagggtt cttatagggt ttcgctcatg 120
tgttgagcat ataagaaacc cttagtatgt atttgtattt gtaaaatact tctatcaata 180
aaatttctaa ttcctaaaac caaaatccag tactaaaatc cagatctcct aaagtcccta 240
tagatctttg tcgtgaatat aaaccagaca cgagacgact aaacctggag cccagacgcc 300
gttcgaagct agaagtaccg cttaggcagg aggccgttag ggaaaagatg ctaaggcagg 360
gttggtt 367
<210> 70
<211> 742
<212> DNA
<213> Oryza sativa
<400> 70
ctcattagcg gtatgcatgt tggtagaagt cggagatgta aataattttc attatataaa 60
aaaggtactt cgagaaaaat aaatgcatac gaattaattc tttttatgtt ttttaaacca 120
agtatataga atttattgat ggttaaaatt tcaaaaatat gacgagagaa aggttaaacg 180
tacggcatat acttctgaac agagagggaa tatggggttt ttgttgctcc caacaattct 240
taagcacgta aaggaaaaaa gcacattatc cacattgtac ttccagagat atgtacagca 300
ttacgtaggt acgttttctt tttcttcccg gagagatgat acaataatca tgtaaaccca 360
gaatttaaaa aatattcttt actataaaaa ttttaattag ggaacgtatt attttttaca 420
tgacaccttt tgagaaagag ggacttgtaa tatgggacaa atgaacaatt tctaagaaat 480
gggcatatga ctctcagtac aatggaccaa attccctcca gtcggcccag caatacaaag 540
ggaaagaaat gagggggccc acaggccacg gcccactttt ctccgtggtg gggagatcca 600
gctagaggtc cggcccacaa gtggcccttg ccccgtggga cggtgggatt gcagagcgcg 660
tgggcggaaa caacagttta gtaccacctc gctcacgcaa cgacgcgacc acttgcttat 720
aagctgctgc gctgaggctc ag 742
<210> 71
<211> 83
<212> DNA
<213> Artificial Sequence
<220>
<223> The nucleotide sequence of gRNA scaffold
<400> 71
gttttagagc tagaaatagc aagttaaaat aaggctagtc cgttatcaac ttgaaaaagt 60
ggcaccgagt cggtgctttt ttt 83
<210> 72
<211> 3378
<212> DNA
<213> Artificial Sequence
<220>
<223> The nucleotide sequence of pMD19GW-Adv.BstX vector
<400> 72
tcgcgcgttt cggtgatgac ggtgaaaacc tctgacacat gcagctcccg gagacggtca 60
cagcttgtct gtaagcggat gccgggagca gacaagcccg tcagggcgcg tcagcgggtg 120
ttggcgggtg tcggggctgg cttaactatg cggcatcaga gcagattgta ctgagagtgc 180
accatatgcg gtgtgaaata ccgcacagat gcgtaaggag aaaataccgc atcaggcgcc 240
attcgccatt caggctgcgc aactgttggg aagggcgatc ggtgcgggcc tcttcgctat 300
tacgccagct ggcgaaaggg ggatgtgctg caaggcgatt aagttgggta acgccagggt 360
tttcccagtc acgacgttgt aaaacgacgg ccagtgaatt cgagctcggt acccggggat 420
cctctagaga ttcaaataat gattttattt tgactgatag tgacctgttc gttgcaacaa 480
attgataagc aatgcttttt tataatgcca actttgtaca aaaaagcagg ctgccacgat 540
tccatctgct tggctcgacg gagcctgaca tttatattcc ccagaacatc aggttaatgg 600
cgtttttgat gtcattttcg cggtggctga gatcagccac ttcttccccg ataacggaga 660
ccggcacact ggccatatcg gtggtcatca tgcgccagct ttcatccccg atatgcacca 720
ccgggtaaag ttcacgggag actttatctg acagcagacg tgcactggcc agggggatca 780
ccatccgtcg cccgggcgtg tcaataatat cactctgtac atccacaaac agacgataac 840
ggctctctct tttataggtg taaaccttaa actgcatctc gagagcatac ctctttttga 900
catacttcgg gtatacatat cagtatatat tcttataccg caaaaatcag cgcgcaaata 960
cgcatactgt tatctggctt ttagtaagcc ggatctccaa gcggctggaa tcttggaccc 1020
agctttcttg tacaaagttg gcattataag aaagcattgc ttatcaattt gttgcaacga 1080
acaggtcact atcagtcaaa ataaaatcat tatttgaatc gtcgacctgc aggcatgcaa 1140
gcttggcgta atcatggtca tagctgtttc ctgtgtgaaa ttgttatccg ctcacaattc 1200
cacacaacat acgagccgga agcataaagt gtaaagcctg cggtgcctaa tgagtgagct 1260
aactcacatt aattgcgttg cgctcactgc ccgctttcca gtcgggaaac ctgtcgtgcc 1320
agctgcatta atgaatcggc caacgcgcgg ggagaggcgg tttgcgtatt gggcgctctt 1380
ccgcttcctc gctcactgac tcgctgcgct cggtcgttcg gctgcggcga gcggtatcag 1440
ctcactcaaa ggcggtaata cggttatcca cagaatcagg ggataacgca ggaaagaaca 1500
tgtgagcaaa aggccagcaa aaggccagga accgtaaaaa ggccgcgttg ctggcgtttt 1560
tccataggct ccgcccccct gacgagcatc acaaaaatcg acgctcaagt cagaggtggc 1620
gaaacccgac aggactataa agataccagg cgtttccccc tggaagctcc ctcgtgcgct 1680
ctcctgttcc gaccctgccg cttaccggat acctgtccgc ctttctccct tcgggaagcg 1740
tggcgctttc tcatagctca cgctgtaggt atctcagttc ggtgtaggtc gttcgctcca 1800
agctgggctg tgtgcacgaa ccccccgttc agcccgaccg ctgcgcctta tccggtaact 1860
atcgtcttga gtccaacccg gtaagacacg acttatcgcc actggcagca gccactggta 1920
acaggattag cagagcgagg tatgtaggcg gtgctacaga gttcttgaag tggtggccta 1980
actacggcta cactagaaga acagtatttg gtatctgcgc tctgctgaag ccagttacct 2040
tcggaaaaag agttggtagc tcttgatccg gcaaacaaac caccgctggt agcggtggtt 2100
tttttgtttg caagcagcag attacgcgca gaaaaaaagg atctcaagaa gatcctttga 2160
tcttttctac ggggtctgac gctcagtgga acgaaaactc acgttaaggg attttggtca 2220
tgagattatc aaaaaggatc ttcacctaga tccttttaaa ttaaaaatga agttttaaat 2280
caatctaaag tatatatgag taaacttggt ctgacagtta ccaatgctta atcagtgagg 2340
cacctatctc agcgatctgt ctatttcgtt catccatagt tgcctgactc cccgtcgtgt 2400
agataactac gatacgggag ggcttaccat ctggccccag tgctgcaatg ataccgcgag 2460
acccacgctc accggctcca gatttatcag caataaacca gccagccgga agggccgagc 2520
gcagaagtgg tcctgcaact ttatccgcct ccatccagtc tattaattgt tgccgggaag 2580
ctagagtaag tagttcgcca gttaatagtt tgcgcaacgt tgttgccatt gctacaggca 2640
tcgtggtgtc acgctcgtcg tttggtatgg cttcattcag ctccggttcc caacgatcaa 2700
ggcgagttac atgatccccc atgttgtgca aaaaagcggt tagctccttc ggtcctccga 2760
tcgttgtcag aagtaagttg gccgcagtgt tatcactcat ggttatggca gcactgcata 2820
attctcttac tgtcatgcca tccgtaagat gcttttctgt gactggtgag tactcaacca 2880
agtcattctg agaatagtgt atgcggcgac cgagttgctc ttgcccggcg tcaatacggg 2940
ataataccgc gccacatagc agaactttaa aagtgctcat cattggaaaa cgttcttcgg 3000
ggcgaaaact ctcaaggatc ttaccgctgt tgagatccag ttcgatgtaa cccactcgtg 3060
cacccaactg atcttcagca tcttttactt tcaccagcgt ttctgggtga gcaaaaacag 3120
gaaggcaaaa tgccgcaaaa aagggaataa gggcgacacg gaaatgttga atactcatac 3180
tcttcctttt tcaatattat tgaagcattt atcagggtta ttgtctcatg agcggataca 3240
tatttgaatg tatttagaaa aataaacaaa tgggggttcc gcgcacattt ccccgaaaag 3300
tgccacctga cgtctaagaa accattatta tcatgacatt aacctataaa aataggcgta 3360
tcacgaggcc ctttcgtc 3378
<210> 73
<211> 12705
<212> DNA
<213> Artificial Sequence
<220>
<223> The nucleotide sequence of pCAMBIA1300DsRed-35S-GW vector
<400> 73
gatctggtac cgagctcaca agtttgtaca aaaaagctga acgagaaacg taaaatgata 60
taaatatcaa tatattaaat tagattttgc ataaaaaaca gactacataa tactgtaaaa 120
cacaacatat ccagtcacta tggcggccgc attaggcacc ccaggcttta cactttatgc 180
ttccggctcg tataatgtgt ggattttgag ttaggatccg gcttactaaa agccagataa 240
cagtatgcgt atttgcgcgc tgatttttgc ggtataagaa tatatactga tatgtatacc 300
cgaagtatgt caaaaagagg tatgctctcg agatgcagtt taaggtttac acctataaaa 360
gagagagccg ttatcgtctg tttgtggatg tacagagtga tattattgac acgcccgggc 420
gacggatggt gatccccctg gccagtgcac gtctgctgtc agataaagtc tcccgtgaac 480
tttacccggt ggtgcatatc ggggatgaaa gctggcgcat gatgaccacc gatatggcca 540
gtgtgccggt ctccgttatc ggggaagaag tggctgatct cagccaccgc gaaaatgaca 600
tcaaaaacgc cattaacctg atgttctggg gaatataaat gtcaggctcc gtcgaccata 660
gtgactggat atgttgtgtt ttacagtatt atgtagtctg ttttttatgc aaaatctaat 720
ttaatatatt gatatttata tcattttacg tttctcgttc agctttcttg tacaaagtgg 780
tgcctcgacc tccaagctgg gccacaactg aagcggccgc gtttcttaag attgaatcct 840
gttgccggtc ttgcgatgat tatcatataa tttctgttga attacgttaa gcatgtaata 900
attaacatgt aatgcatgac gttatttatg agatgggttt ttatgattag agtcccgcaa 960
ttatacattt aatacgcgat agaaaacaaa atatagcgcg caaactagga taaattatcg 1020
cgcgcggtgt catctatgtt actagatcgg gactagagaa ttcgtaatca tgtcatagct 1080
gtttcctgtg tgaaattgtt atccgctcac aattccacac aacatacgag ccggaagcat 1140
aaagtgtaaa gcctggggtg cctaatgagt gagctaactc acattaattg cgttgcgctc 1200
actgcccgct ttccagtcgg gaaacctgtc gtgccagctg cattaatgaa tcggccaacg 1260
cgcggggaga ggcggtttgc gtattggcta gagcagcttg ccaacatggt ggagcacgac 1320
actctcgtct actccaagaa tatcaaagat acagtctcag aagaccaaag ggctattgag 1380
acttttcaac aaagggtaat atcgggaaac ctcctcggat tccattgccc agctatctgt 1440
cacttcatca aaaggacagt agaaaaggaa ggtggcacct acaaatgcca tcattgcgat 1500
aaaggaaagg ctatcgttca agatgcctct gccgacagtg gtcccaaaga tggaccccca 1560
cccacgagga gcatcgtgga aaaagaagac gttccaacca cgtcttcaaa gcaagtggat 1620
tgatgtgata acatggtgga gcacgacact ctcgtctact ccaagaatat caaagataca 1680
gtctcagaag accaaagggc tattgagact tttcaacaaa gggtaatatc gggaaacctc 1740
ctcggattcc attgcccagc tatctgtcac ttcatcaaaa ggacagtaga aaaggaaggt 1800
ggcacctaca aatgccatca ttgcgataaa ggaaaggcta tcgttcaaga tgcctctgcc 1860
gacagtggtc ccaaagatgg acccccaccc acgaggagca tcgtggaaaa agaagacgtt 1920
ccaaccacgt cttcaaagca agtggattga tgtgatatct ccactgacgt aagggatgac 1980
gcacaatccc actatccttc gcaagacctt cctctatata aggaagttca tttcatttgg 2040
agaggacacg ctgaaatcac cagtctctct ctacaaatct atctctctcg agctttcgca 2100
gatcccgggg ggcaatgaga tatgaaaaag cctgaactca ccgcgacgtc tgtcgagaag 2160
tttctgatcg aaaagttcga cagcgtctcc gacctgatgc agctctcgga gggcgaagaa 2220
tctcgtgctt tcagcttcga tgtaggaggg cgtggatatg tcctgcgggt aaatagctgc 2280
gccgatggtt tctacaaaga tcgttatgtt tatcggcact ttgcatcggc cgcgctcccg 2340
attccggaag tgcttgacat tggggagttt agcgagagcc tgacctattg catctcccgc 2400
cgttcacagg gtgtcacgtt gcaagacctg cctgaaaccg aactgcccgc tgttctacaa 2460
ccggtcgcgg aggctatgga tgcgatcgct gcggccgatc ttagccagac gagcgggttc 2520
ggcccattcg gaccgcaagg aatcggtcaa tacactacat ggcgtgattt catatgcgcg 2580
attgctgatc cccatgtgta tcactggcaa actgtgatgg acgacaccgt cagtgcgtcc 2640
gtcgcgcagg ctctcgatga gctgatgctt tgggccgagg actgccccga agtccggcac 2700
ctcgtgcacg cggatttcgg ctccaacaat gtcctgacgg acaatggccg cataacagcg 2760
gtcattgact ggagcgaggc gatgttcggg gattcccaat acgaggtcgc caacatcttc 2820
ttctggaggc cgtggttggc ttgtatggag cagcagacgc gctacttcga gcggaggcat 2880
ccggagcttg caggatcgcc acgactccgg gcgtatatgc tccgcattgg tcttgaccaa 2940
ctctatcaga gcttggttga cggcaatttc gatgatgcag cttgggcgca gggtcgatgc 3000
gacgcaatcg tccgatccgg agccgggact gtcgggcgta cacaaatcgc ccgcagaagc 3060
gcggccgtct ggaccgatgg ctgtgtagaa gtactcgccg atagtggaaa ccgacgcccc 3120
agcactcgtc cgagggcaaa gaaatagagt agatgccgac cggatctgtc gatcgacaag 3180
ctcgagtttc tccataataa tgtgtgagta gttcccagat aagggaatta gggttcctat 3240
agggtttcgc tcatgtgttg agcatataag aaacccttag tatgtatttg tatttgtaaa 3300
atacttctat caataaaatt tctaattcct aaaaccaaaa tccagtacta aaatccagat 3360
cccccgaatt aattcggcgt taattcagta cattaaaaac gtccgcaatg tgttattaag 3420
ttgtctaagc gtcaatttgt ttacaccaca atatatcctg ccaccagcca gccaacagct 3480
ccccgaccgg cagctcggca caaaatcacc actcgataca ggcagcccat cagtccggga 3540
cggcgtcagc gggagagccg ttgtaaggcg gcagactttg ctcatgttac cgatgctatt 3600
cggaagaacg gcaactaagc tgccgggttt gaaacacgga tgatctcgcg gagggtagca 3660
tgttgattgt aacgatgaca gagcgttgct gcctgtgatc accgcggttt caaaatcggc 3720
tccgtcgata ctatgttata cgccaacttt gaaaacaact ttgaaaaagc tgttttctgg 3780
tatttaaggt tttagaatgc aaggaacagt gaattggagt tcgtcttgtt ataattagct 3840
tcttggggta tctttaaata ctgtagaaaa gaggaaggaa ataataaatg gctaaaatga 3900
gaatatcacc ggaattgaaa aaactgatcg aaaaataccg ctgcgtaaaa gatacggaag 3960
gaatgtctcc tgctaaggta tataagctgg tgggagaaaa tgaaaaccta tatttaaaaa 4020
tgacggacag ccggtataaa gggaccacct atgatgtgga acgggaaaag gacatgatgc 4080
tatggctgga aggaaagctg cctgttccaa aggtcctgca ctttgaacgg catgatggct 4140
ggagcaatct gctcatgagt gaggccgatg gcgtcctttg ctcggaagag tatgaagatg 4200
aacaaagccc tgaaaagatt atcgagctgt atgcggagtg catcaggctc tttcactcca 4260
tcgacatatc ggattgtccc tatacgaata gcttagacag ccgcttagcc gaattggatt 4320
acttactgaa taacgatctg gccgatgtgg attgcgaaaa ctgggaagaa gacactccat 4380
ttaaagatcc gcgcgagctg tatgattttt taaagacgga aaagcccgaa gaggaacttg 4440
tcttttccca cggcgacctg ggagacagca acatctttgt gaaagatggc aaagtaagtg 4500
gctttattga tcttgggaga agcggcaggg cggacaagtg gtatgacatt gccttctgcg 4560
tccggtcgat cagggaggat atcggggaag aacagtatgt cgagctattt tttgacttac 4620
tggggatcaa gcctgattgg gagaaaataa aatattatat tttactggat gaattgtttt 4680
agtacctaga atgcatgacc aaaatccctt aacgtgagtt ttcgttccac tgagcgtcag 4740
accccgtaga aaagatcaaa ggatcttctt gagatccttt ttttctgcgc gtaatctgct 4800
gcttgcaaac aaaaaaacca ccgctaccag cggtggtttg tttgccggat caagagctac 4860
caactctttt tccgaaggta actggcttca gcagagcgca gataccaaat actgtccttc 4920
tagtgtagcc gtagttaggc caccacttca agaactctgt agcaccgcct acatacctcg 4980
ctctgctaat cctgttacca gtggctgctg ccagtggcga taagtcgtgt cttaccgggt 5040
tggactcaag acgatagtta ccggataagg cgcagcggtc gggctgaacg gggggttcgt 5100
gcacacagcc cagcttggag cgaacgacct acaccgaact gagataccta cagcgtgagc 5160
tatgagaaag cgccacgctt cccgaaggga gaaaggcgga caggtatccg gtaagcggca 5220
gggtcggaac aggagagcgc acgagggagc ttccaggggg aaacgcctgg tatctttata 5280
gtcctgtcgg gtttcgccac ctctgacttg agcgtcgatt tttgtgatgc tcgtcagggg 5340
ggcggagcct atggaaaaac gccagcaacg cggccttttt acggttcctg gccttttgct 5400
ggccttttgc tcacatgttc tttcctgcgt tatcccctga ttctgtggat aaccgtatta 5460
ccgcctttga gtgagctgat accgctcgcc gcagccgaac gaccgagcgc agcgagtcag 5520
tgagcgagga agcggaagag cgcctgatgc ggtattttct ccttacgcat ctgtgcggta 5580
tttcacaccg catatggtgc actctcagta caatctgctc tgatgccgca tagttaagcc 5640
agtatacact ccgctatcgc tacgtgactg ggtcatggct gcgccccgac acccgccaac 5700
acccgctgac gcgccctgac gggcttgtct gctcccggca tccgcttaca gacaagctgt 5760
gaccgtctcc gggagctgca tgtgtcagag gttttcaccg tcatcaccga aacgcgcgag 5820
gcagggtgcc ttgatgtggg cgccggcggt cgagtggcga cggcgcggct tgtccgcgcc 5880
ctggtagatt gcctggccgt aggccagcca tttttgagcg gccagcggcc gcgataggcc 5940
gacgcgaagc ggcggggcgt agggagcgca gcgaccgaag ggtaggcgct ttttgcagct 6000
cttcggctgt gcgctggcca gacagttatg cacaggccag gcgggtttta agagttttaa 6060
taagttttaa agagttttag gcggaaaaat cgcctttttt ctcttttata tcagtcactt 6120
acatgtgtga ccggttccca atgtacggct ttgggttccc aatgtacggg ttccggttcc 6180
caatgtacgg ctttgggttc ccaatgtacg tgctatccac aggaaagaga ccttttcgac 6240
ctttttcccc tgctagggca atttgcccta gcatctgctc cgtacattag gaaccggcgg 6300
atgcttcgcc ctcgatcagg ttgcggtagc gcatgactag gatcgggcca gcctgccccg 6360
cctcctcctt caaatcgtac tccggcaggt catttgaccc gatcagcttg cgcacggtga 6420
aacagaactt cttgaactct ccggcgctgc cactgcgttc gtagatcgtc ttgaacaacc 6480
atctggcttc tgccttgcct gcggcgcggc gtgccaggcg gtagagaaaa cggccgatgc 6540
cgggatcgat caaaaagtaa tcggggtgaa ccgtcagcac gtccgggttc ttgccttctg 6600
tgatctcgcg gtacatccaa tcagctagct cgatctcgat gtactccggc cgcccggttt 6660
cgctctttac gatcttgtag cggctaatca aggcttcacc ctcggatacc gtcaccaggc 6720
ggccgttctt ggccttcttc gtacgctgca tggcaacgtg cgtggtgttt aaccgaatgc 6780
aggtttctac caggtcgtct ttctgctttc cgccatcggc tcgccggcag aacttgagta 6840
cgtccgcaac gtgtggacgg aacacgcggc cgggcttgtc tcccttccct tcccggtatc 6900
ggttcatgga ttcggttaga tgggaaaccg ccatcagtac caggtcgtaa tcccacacac 6960
tggccatgcc ggccggccct gcggaaacct ctacgtgccc gtctggaagc tcgtagcgga 7020
tcacctcgcc agctcgtcgg tcacgcttcg acagacggaa aacggccacg tccatgatgc 7080
tgcgactatc gcgggtgccc acgtcataga gcatcggaac gaaaaaatct ggttgctcgt 7140
cgcccttggg cggcttccta atcgacggcg caccggctgc cggcggttgc cgggattctt 7200
tgcggattcg atcagcggcc gcttgccacg attcaccggg gcgtgcttct gcctcgatgc 7260
gttgccgctg ggcggcctgc gcggccttca acttctccac caggtcatca cccagcgccg 7320
cgccgatttg taccgggccg gatggtttgc gaccgtcacg ccgattcctc gggcttgggg 7380
gttccagtgc cattgcaggg ccggcagaca acccagccgc ttacgcctgg ccaaccgccc 7440
gttcctccac acatggggca ttccacggcg tcggtgcctg gttgttcttg attttccatg 7500
ccgcctcctt tagccgctaa aattcatcta ctcatttatt catttgctca tttactctgg 7560
tagctgcgcg atgtattcag atagcagctc ggtaatggtc ttgccttggc gtaccgcgta 7620
catcttcagc ttggtgtgat cctccgccgg caactgaaag ttgacccgct tcatggctgg 7680
cgtgtctgcc aggctggcca acgttgcagc cttgctgctg cgtgcgctcg gacggccggc 7740
acttagcgtg tttgtgcttt tgctcatttt ctctttacct cattaactca aatgagtttt 7800
gatttaattt cagcggccag cgcctggacc tcgcgggcag cgtcgccctc gggttctgat 7860
tcaagaacgg ttgtgccggc ggcggcagtg cctgggtagc tcacgcgctg cgtgatacgg 7920
gactcaagaa tgggcagctc gtacccggcc agcgcctcgg caacctcacc gccgatgcgc 7980
gtgcctttga tcgcccgcga cacgacaaag gccgcttgta gccttccatc cgtgacctca 8040
atgcgctgct taaccagctc caccaggtcg gcggtggccc atatgtcgta agggcttggc 8100
tgcaccggaa tcagcacgaa gtcggctgcc ttgatcgcgg acacagccaa gtccgccgcc 8160
tggggcgctc cgtcgatcac tacgaagtcg cgccggccga tggccttcac gtcgcggtca 8220
atcgtcgggc ggtcgatgcc gacaacggtt agcggttgat cttcccgcac ggccgcccaa 8280
tcgcgggcac tgccctgggg atcggaatcg actaacagaa catcggcccc ggcgagttgc 8340
agggcgcggg ctagatgggt tgcgatggtc gtcttgcctg acccgccttt ctggttaagt 8400
acagcgataa ccttcatgcg ttccccttgc gtatttgttt atttactcat cgcatcatat 8460
acgcagcgac cgcatgacgc aagctgtttt actcaaatac acatcacctt tttagacggc 8520
ggcgctcggt ttcttcagcg gccaagctgg ccggccaggc cgccagcttg gcatcagaca 8580
aaccggccag gatttcatgc agccgcacgg ttgagacgtg cgcgggcggc tcgaacacgt 8640
acccggccgc gatcatctcc gcctcgatct cttcggtaat gaaaaacggt tcgtcctggc 8700
cgtcctggtg cggtttcatg cttgttcctc ttggcgttca ttctcggcgg ccgccagggc 8760
gtcggcctcg gtcaatgcgt cctcacggaa ggcaccgcgc cgcctggcct cggtgggcgt 8820
cacttcctcg ctgcgctcaa gtgcgcggta cagggtcgag cgatgcacgc caagcagtgc 8880
agccgcctct ttcacggtgc ggccttcctg gtcgatcagc tcgcgggcgt gcgcgatctg 8940
tgccggggtg agggtagggc gggggccaaa cttcacgcct cgggccttgg cggcctcgcg 9000
cccgctccgg gtgcggtcga tgattaggga acgctcgaac tcggcaatgc cggcgaacac 9060
ggtcaacacc atgcggccgg ccggcgtggt ggtgtcggcc cacggctctg ccaggctacg 9120
caggcccgcg ccggcctcct ggatgcgctc ggcaatgtcc agtaggtcgc gggtgctgcg 9180
ggccaggcgg tctagcctgg tcactgtcac aacgtcgcca gggcgtaggt ggtcaagcat 9240
cctggccagc tccgggcggt cgcgcctggt gccggtgatc ttctcggaaa acagcttggt 9300
gcagccggcc gcgtgcagtt cggcccgttg gttggtcaag tcctggtcgt cggtgctgac 9360
gcgggcatag cccagcaggc cagcggcggc gctcttgttc atggcgtaat gtctccggtt 9420
ctagtcgcaa gtattctact ttatgcgact aaaacacgcg acaagaaaac gccaggaaaa 9480
gggcagggcg gcagcctgtc gcgtaactta ggacttgtgc gacatgtcgt tttcagaaga 9540
cggctgcact gaacgtcaga agccgactgc actatagcag cggaggggtt ggatcaaagt 9600
actttgatcc cgaggggaac cctgtggttg gcatgcacat acaaatggac gaacggataa 9660
accttttcac gcccttttaa atatccgatt attctaataa acgctctttt ctcttaggtt 9720
tacccgccaa tatatcctgt caaacactga tagtttaaac tgaaggcggg aaacgacaat 9780
ctgatccaag ctcaagctgc tctagcattc gccattcagg ctgcgcaact gttgggaagg 9840
gcgatcggtg cgggcctctt cgctattacg ccagctggcg aaagggggat gtgctgcaag 9900
gcgattaagt tgggtaacgc cagggttttc ccagtcacga cgttgtaaaa cgacggccag 9960
tgccaagctt cgaagctggc cgctctagaa ctagtggatc tcgatgtgta gtctacgaga 10020
agggttaacc gtctcttcgt gagaataacc gtggcctaaa aataagccga tgaggataaa 10080
taaaatgtgg tggtacagta cttcaagagg tttactcatc aagaggatgc ttttccgatg 10140
agctctagta gtacatcgga cctcacatac ctccattgtg gtgaaatatt ttgtgctcat 10200
ttagtgatgg gtaaattttg tttatgtcac tctaggtttt gacatttcag ttttgccact 10260
cttaggtttt gacaaataat ttccattccg cggcaaaagc aaaacaattt tattttactt 10320
ttaccactct tagctttcac aatgtatcac aaatgccact ctagaaattc tgtttatgcc 10380
acagaatgtg aaaaaaaaca ctcacttatt tgaagccaag gtgttcatgg catggaaatg 10440
tgacataaag taacgttcgt gtataagaaa aaattgtact cctcgtaaca agagacggaa 10500
acatcatgag acaatcgcgt ttggaaggct ttgcatcacc tttggatgat gcgcatgaat 10560
ggagtcgtct gcttgctagc cttcgcctac cgcccactga gtccgggcgg caactaccat 10620
cggcgaacga cccagctgac ctctaccgac cggacttgaa tgcgctacct tcgtcagcga 10680
cgatggccgc gtacgctggc gacgtgcccc cgcatgcatg gcggcacatg gcgagctcag 10740
accgtgcgtg gctggctaca aatacgtacc ccgtgagtgc cctagctaga aacttacacc 10800
tgcaactgcg agagcgagcg tgtgagtgta gccgagtaga tcctcgccac catggcctcc 10860
tccgagaacg tcatcaccga gttcatgcgc ttcaaggtgc gcatggaggg caccgtgaac 10920
ggccacgagt tcgagatcga gggcgagggc gagggccgcc cctacgaggg ccacaacacc 10980
gtgaagctga aggtgacgaa gggcggcccc ctgcccttcg cctgggacat cctgtccccc 11040
cagttccagt acggctccaa ggtgtacgtg aagcaccccg ccgacatccc cgactacaag 11100
aagctgtcct tccccgaggg cttcaagtgg gagcgcgtga tgaacttcga ggacggcggc 11160
gtggcgaccg tgacccagga ctcctccctg caggacggct gcttcatcta caaggtgaag 11220
ttcatcggcg tgaacttccc ctccgacggc cccgtgatgc agaagaagac catgggctgg 11280
gaggcctcca ccgagcgcct gtacccccgc gacggcgtgc tgaagggcga gacccacaag 11340
gccctgaagc tgaaggacgg cggccactac ctggtggagt tcaagtccat ctacatggcc 11400
aagaagcccg tgcagctgcc cggctactac tacgtggacg ccaagctgga catcacctcc 11460
cacaacgagg actacaccat cgtggagcag tacgagcgca ccgagggccg ccaccacctg 11520
ttcctgtagc ggcccatgga tattcgaacg cgtaggtacc acatggttaa cctagacttg 11580
tccatcttct ggattggcca acttaattaa tgtatgaaat aaaaggatgc acacatagtg 11640
acatgctaat cactataatg tgggcatcaa agttgtgtgt tatgtgtaat tactagttat 11700
ctgaataaaa gagaaagaga tcatccatat ttcttatcct aaatgaatgt cacgtgtctt 11760
tataattctt tgatgaacca gatgcatttc attaaccaaa tccatataca tataaatatt 11820
aatcatatat aattaatatc aattgggtta gcaaaacaaa tctagtctag gtgtgttttg 11880
cgaatgcggc ccgccaaagc ttagagcagc ttggcaacat ggtggagcac gacactctcg 11940
tctactccaa gaatatcaaa gatacagtct cagaagacca aagggctatt gagacttttc 12000
aacaaagggt aatatcggga aacctcctcg gattccattg cccagctatc tgtcacttca 12060
tcaaaaggac agtagaaaag gaaggtggca cctacaaatg ccatcattgc gataaaggaa 12120
aggctatcgt tcaagatgcc tctgccgaca gtggtcccaa agatggaccc ccacccacga 12180
ggagcatcgt ggaaaaagaa gacgttccaa ccacgtcttc aaagcaagtg gattgatgtg 12240
aacatggtgg agcacgacac tctcgtctac tccaagaata tcaaagatac agtctcagaa 12300
gaccaaaggg ctattgagac ttttcaacaa agggtaatat cgggaaacct cctcggattc 12360
cattgcccag ctatctgtca cttcatcaaa aggacagtag aaaaggaagg tggcacctac 12420
aaatgccatc attgcgataa aggaaaggct atcgttcaag atgcctctgc cgacagtggt 12480
cccaaagatg gacccccacc cacgaggagc atcgtggaaa aagaagacgt tccaaccacg 12540
tcttcaaagc aagtggattg atgtgatatc tccactgacg taagggatga cgcacaatcc 12600
cactatcctt cgcaagaccc ttcctctata taaggaagtt catttcattt ggagaggaca 12660
cgctgaaatc accagtctct ctctacaaat ctatctctct gcaga 12705
<210> 74
<211> 2003
<212> DNA
<213> Oryza sativa
<400> 74
tctgcttgcc gccgcccggc accatgaggt tgctcaaggt cctcgcgatc tgccgcttga 60
gctgacctct cctcggtggc ggcctcttct ccttcatgct gttggtgtac tggtggtggc 120
actccaccat ggtctcttaa ttactatctt taattaagag ctcttctttt tttttccttc 180
cagaaactcc ctcttaatta tgatttgctc tgccataact atatcagtat atatgttctt 240
tgtgatggaa agtaggatgg aatttttagg tgagggctct tgcagtctag tgcaagtttc 300
actagctata gcctgcaggt taatttgatg catgcatgct gttaattttt ttcttgtttt 360
tcctttgcag gagaataaat tgactgcttt aaggtcagta cttaaagacc gggtcccatg 420
atgtttatgg gtgtgaaacc tgggaatttt acgcccaaaa actcacggct gcaatgagtt 480
tggtcactaa tacgagcatc attagctata taggcaagtt gggcgtgtgg atcagggagg 540
gtactgtgta tcactcagca aaagcatatg tgaaaactaa caaattatat tacagtgtgc 600
tagaatgtat agatgctgtg atgtctctct tattagagtc ttattatata gagagagagc 660
gcagtgcttt acttttgtta gttactgaga atgtcttttc aaccaacaaa atgctatacc 720
tatctttccc aaaagtataa catagataat taattaagct agttcattag gcagaactca 780
ttaactcaag gctttgaacg gtggatagat cgccagaaac atctatggca tctgatcttt 840
ctcctagata tccagagttt tgagtgacat cgacatcatg taaaagtaaa catgttattc 900
ctgaatccct ctctttaatt tgttcatctt cagacaatgc ctttgcaact agctcttttc 960
tctaaaaaaa acagaaaaca ttaattacat gacaaaacga ttatcaatca caattctttt 1020
ccgataatga tcaacatgca tcacatggat aataggtgca caagctagct cgtcagaaga 1080
agcatgcgat aaggtcaaag caatcaaagc aaagccaaag ctatttcggc cggcggattg 1140
ctgatcaagg tgtccatcgt tgagcgggtt gcatgctgcg agagagccag tgacactgac 1200
acctcaagct cgatcgtcag agtcccccct caggtcaaac agtgaccaca ttctctgaac 1260
cttgaagcta agctagctgc tgctaccgct cttaattcgt cagaagaagc agccgtcagt 1320
tattgatcag cacgtgttct tcttcttctt aacccagctt aatcaagatg tcaatcgatt 1380
aatcgatctg tcactcgatg atagagcaaa tgaaatggca aatcgactcc tatttttgac 1440
agcaatgtct cggagagact gtttggtcag ttggtcacgt ccatgatgag cacgaacaga 1500
aagaagcaaa tatgtgcgga cagtggtaga catcaggtag aaatttttgc ctgatataat 1560
taagcacgtt aaccttgccc tccaggtagt agtaatcaat tgtcatttct gtcgttttca 1620
gggcatagat gcccttatta gtgccatgat cacatcacaa acctcccggc ccagaagtgg 1680
tcaagttgtt ccttcaaaga atagtaaaaa aacacacacc cgccccggct gatgcaaagt 1740
tacaaccgag attaaattaa ttaacatgtg cggcaacaga acagcatgac acttcagatc 1800
actccgccta taaatacttc ttgccttctc aatttctcaa atcatctcca cacactaaac 1860
tagaacctgc ttcacaacac aacacaacta ctacctgttc aactgctact actgcaacga 1920
gagagaaaaa acaatttcag tttcagaaga gagaaaggag caactgagca agaactgaag 1980
aaaatagaga gagagaagcc atg 2003
<210> 75
<211> 225
<212> DNA
<213> Oryza sativa
<400> 75
cggtctacca cgtcgacttc tcggcgtgat catcttaatc aggcagcgac ggcgggggcg 60
acgctccatg gatttggact catcgtgtgc atgagttact taagtaccaa ttttaggaag 120
ttagtagtat gattacaata ttggacaaag atatttgaca tcgatatgta tatgattccg 180
ctgcatttct gattaattac cagcattcac ctgtttctct gattc 225
<210> 76
<211> 1602
<212> DNA
<213> Oryza sativa
<400> 76
atggctgcca cggcggcgga gaccgccgcc gccgccaccg ccaccgccgg cggctgcagg 60
gtcgtgcggt ggcggcgctg gacgttcgcc agcctgggcg cgctgctgtc caacctcggc 120
ccggtgtggt tcctcatcgc gccgctgctc gccgcgtacg cgccgcggcg gctgctcctg 180
acctacttca acctcgtcct ccgccgccgg gcgcgccgcc tgctcgccgc cgtcgacccc 240
tacgtcaccg tcgacatccc cgaccccggc gccgccgacg cgcaccagca gtactaccac 300
caccgctcca ggctcggcgg ccgccgcgcc ggcgacaacg cgtacgagga ggtgaaggcg 360
tacctgagcg ccgcgtgctc gtcggaggcc cgcgagctcc gcgccgaggc cgcggcggag 420
ggccgcggcc tcgtcgtcag catgcgcgac gggcaggacg tcgccgacga gttccgcggc 480
gccaccatgt ggtggtcgtc ggtggacgag gagcagcagg gcggcggcgc gcggcggcgc 540
agccagcggc tcacgttcca ccagctccac cggcggctcg tcgtcgacga gtacctcccc 600
cacgtccgcc gccgcggccg cgagctcctc ttccacaacc gccgccgccg cctctacacc 660
aacaacaaga gcctcagcta cagcagcgtc taccacaagg cgtggagcta cgtcaacttc 720
gaccacccga ccacgttcga gacgctggcc atggagccgg ccaagaaggc ggcgatcatg 780
gacgacctcg acgcgttccg gcgaagcggg gagttctacc gccgcgccgg caagccgtgg 840
aagagggggt acctcctgca cggcccgccc ggcaccggca agtccaccat gatcgcctcc 900
atggccaact acctcgacta cgacatctac gacgtcgagc tcaccatggt gagcgacaac 960
aacgacctcc gcaagctgct gatcgagacg acgagcaagt ccatcgtcgt catcgaggac 1020
atcgactgct ccctcgacct caccggagac cgcgccacgc ggcgtcccgg cgagatccgc 1080
ggcggcggca gcatggtcac cctctccggc ctgctcaact tcatcgacgg gctctggtcg 1140
gcgagcggcg gcgagcgcgt cgtcgtgttc accaccaacc acgtcgagaa gctggacccg 1200
gcgctcatcc gccgcggccg catggacatg cacatcgaga tgtcctactg ccgcgccgcc 1260
gcgttcagga cgctggccaa gaactacctc gacgtcgacg cccaccacct gttcgacgcc 1320
gtggacgaca tactggacaa ggaggacatc acgccggccg acgtcgccga gtgcctcatg 1380
gcggccaagc gctcctccga ctccgacgtg acctcctccc tcgagttctt ggtcgacgag 1440
ctcaacaaga gagcaatgga gaacgccaag gcggtggccg aagcgaaggc gagggcggag 1500
gcggaggcgg aagccaaggc aatggctgac gacgactcgg aggaagacga cgaccattat 1560
tcggatgatt acactgacga cgacgactac gacgacgatt ga 1602
<210> 77
<211> 533
<212> PRT
<213> Oryza sativa
<400> 77
Met Ala Ala Thr Ala Ala Glu Thr Ala Ala Ala Ala Thr Ala Thr Ala
1 5 10 15
Gly Gly Cys Arg Val Val Arg Trp Arg Arg Trp Thr Phe Ala Ser Leu
20 25 30
Gly Ala Leu Leu Ser Asn Leu Gly Pro Val Trp Phe Leu Ile Ala Pro
35 40 45
Leu Leu Ala Ala Tyr Ala Pro Arg Arg Leu Leu Leu Thr Tyr Phe Asn
50 55 60
Leu Val Leu Arg Arg Arg Ala Arg Arg Leu Leu Ala Ala Val Asp Pro
65 70 75 80
Tyr Val Thr Val Asp Ile Pro Asp Pro Gly Ala Ala Asp Ala His Gln
85 90 95
Gln Tyr Tyr His His Arg Ser Arg Leu Gly Gly Arg Arg Ala Gly Asp
100 105 110
Asn Ala Tyr Glu Glu Val Lys Ala Tyr Leu Ser Ala Ala Cys Ser Ser
115 120 125
Glu Ala Arg Glu Leu Arg Ala Glu Ala Ala Ala Glu Gly Arg Gly Leu
130 135 140
Val Val Ser Met Arg Asp Gly Gln Asp Val Ala Asp Glu Phe Arg Gly
145 150 155 160
Ala Thr Met Trp Trp Ser Ser Val Asp Glu Glu Gln Gln Gly Gly Gly
165 170 175
Ala Arg Arg Arg Ser Gln Arg Leu Thr Phe His Gln Leu His Arg Arg
180 185 190
Leu Val Val Asp Glu Tyr Leu Pro His Val Arg Arg Arg Gly Arg Glu
195 200 205
Leu Leu Phe His Asn Arg Arg Arg Arg Leu Tyr Thr Asn Asn Lys Ser
210 215 220
Leu Ser Tyr Ser Ser Val Tyr His Lys Ala Trp Ser Tyr Val Asn Phe
225 230 235 240
Asp His Pro Thr Thr Phe Glu Thr Leu Ala Met Glu Pro Ala Lys Lys
245 250 255
Ala Ala Ile Met Asp Asp Leu Asp Ala Phe Arg Arg Ser Gly Glu Phe
260 265 270
Tyr Arg Arg Ala Gly Lys Pro Trp Lys Arg Gly Tyr Leu Leu His Gly
275 280 285
Pro Pro Gly Thr Gly Lys Ser Thr Met Ile Ala Ser Met Ala Asn Tyr
290 295 300
Leu Asp Tyr Asp Ile Tyr Asp Val Glu Leu Thr Met Val Ser Asp Asn
305 310 315 320
Asn Asp Leu Arg Lys Leu Leu Ile Glu Thr Thr Ser Lys Ser Ile Val
325 330 335
Val Ile Glu Asp Ile Asp Cys Ser Leu Asp Leu Thr Gly Asp Arg Ala
340 345 350
Thr Arg Arg Pro Gly Glu Ile Arg Gly Gly Gly Ser Met Val Thr Leu
355 360 365
Ser Gly Leu Leu Asn Phe Ile Asp Gly Leu Trp Ser Ala Ser Gly Gly
370 375 380
Glu Arg Val Val Val Phe Thr Thr Asn His Val Glu Lys Leu Asp Pro
385 390 395 400
Ala Leu Ile Arg Arg Gly Arg Met Asp Met His Ile Glu Met Ser Tyr
405 410 415
Cys Arg Ala Ala Ala Phe Arg Thr Leu Ala Lys Asn Tyr Leu Asp Val
420 425 430
Asp Ala His His Leu Phe Asp Ala Val Asp Asp Ile Leu Asp Lys Glu
435 440 445
Asp Ile Thr Pro Ala Asp Val Ala Glu Cys Leu Met Ala Ala Lys Arg
450 455 460
Ser Ser Asp Ser Asp Val Thr Ser Ser Leu Glu Phe Leu Val Asp Glu
465 470 475 480
Leu Asn Lys Arg Ala Met Glu Asn Ala Lys Ala Val Ala Glu Ala Lys
485 490 495
Ala Arg Ala Glu Ala Glu Ala Glu Ala Lys Ala Met Ala Asp Asp Asp
500 505 510
Ser Glu Glu Asp Asp Asp His Tyr Ser Asp Asp Tyr Thr Asp Asp Asp
515 520 525
Asp Tyr Asp Asp Asp
530
<210> 78
<211> 1392
<212> DNA
<213> Zea mays
<400> 78
atggcgacct acgacaaggc gatcgagtcc tacaagaagg cggtgaccac ggcggcgtcg 60
ctggcggcgt cggcgatgct ggtgcgcggc gtggtgaacg agctggtccc ctacgaggtg 120
cgggacctgc tcttctccgg cctgggctac ctgcggtcgc gcatgtcgtc gcggcacacg 180
gtggtgatcg aggagacgga ggggtggacc agcaaccagc tgtacgacgc ggcgcgcacg 240
tacctggcca cccggatcaa caccgacatg cagcgcctcc gcgtcagccg cgtcgacgag 300
ggcaagagcc tcatgttcag catggaggag ggcgaggaga tggccgacgt gcacgccggc 360
gccgagttca ggtggcgcct cgtctgccgc gacggagccg gcaacggcgt gggcaacggc 420
ggcggcaacg gccacggcca cggccacgcc cgcggcggca gctaccgcgt cgaggtccgc 480
tccttcgaga tgagcttcca caggcggcac aaggagaagg ccatcgcgtc ctacctcccg 540
cacatcctcg ccgaggccaa gaagatcaag gaccaggacc ggacgctcaa gatctacatg 600
aacgagggcg agtcctggtt cgccatcgac ctccaccacc cgtccacctt caccacgctc 660
gccatggacc gcaagatgaa gcgggccgtc atggacgacc tcgagaggtt cgtcaggagg 720
aaggagtact acaggcggat cggcaaggcc tggaaacggg gctacctgct ctacggcccg 780
cccgggaccg gcaagtccag cctcattgcc gccatggcca actacctcaa gttcgacgtc 840
tacgatctcg agctcaccga ggtcaactgg aactccacgc tccggaggtt gctcatcggg 900
atgaccaacc gctccatcct cgtcatcgag gacatcgact gctcgctcga tctgcaacaa 960
cgtgcagacg aagctcagga tgctggtacc aaatccaatc cttcagagga caaggtgaca 1020
ctctctgggc tgctcaactt cgtggacggc ctctggtcaa caagcggaga ggagaggatc 1080
atcatcttca cgaccaacta caaggagcgg ctcgacccgg cgctgcttcg gcccggcagg 1140
atggacatgc acatccacat ggggtactgc tgcccagagt cgttcaggat cctggcctcc 1200
aactaccact ccatcaccga ccacgacacg taccctgaga tagaagccct gatcacggag 1260
gtgatggtga ccccagcaga ggtcgctgaa gtgctcatga ggaatgaaga caccgacgtc 1320
gcgcttgagg gcctcatcca gttcctcaat gggaagaaag accacgccaa ggatgatagt 1380
cgtcaaggtt aa 1392
<210> 79
<211> 463
<212> PRT
<213> Zea mays
<400> 79
Met Ala Thr Tyr Asp Lys Ala Ile Glu Ser Tyr Lys Lys Ala Val Thr
1 5 10 15
Thr Ala Ala Ser Leu Ala Ala Ser Ala Met Leu Val Arg Gly Val Val
20 25 30
Asn Glu Leu Val Pro Tyr Glu Val Arg Asp Leu Leu Phe Ser Gly Leu
35 40 45
Gly Tyr Leu Arg Ser Arg Met Ser Ser Arg His Thr Val Val Ile Glu
50 55 60
Glu Thr Glu Gly Trp Thr Ser Asn Gln Leu Tyr Asp Ala Ala Arg Thr
65 70 75 80
Tyr Leu Ala Thr Arg Ile Asn Thr Asp Met Gln Arg Leu Arg Val Ser
85 90 95
Arg Val Asp Glu Gly Lys Ser Leu Met Phe Ser Met Glu Glu Gly Glu
100 105 110
Glu Met Ala Asp Val His Ala Gly Ala Glu Phe Arg Trp Arg Leu Val
115 120 125
Cys Arg Asp Gly Ala Gly Asn Gly Val Gly Asn Gly Gly Gly Asn Gly
130 135 140
His Gly His Gly His Ala Arg Gly Gly Ser Tyr Arg Val Glu Val Arg
145 150 155 160
Ser Phe Glu Met Ser Phe His Arg Arg His Lys Glu Lys Ala Ile Ala
165 170 175
Ser Tyr Leu Pro His Ile Leu Ala Glu Ala Lys Lys Ile Lys Asp Gln
180 185 190
Asp Arg Thr Leu Lys Ile Tyr Met Asn Glu Gly Glu Ser Trp Phe Ala
195 200 205
Ile Asp Leu His His Pro Ser Thr Phe Thr Thr Leu Ala Met Asp Arg
210 215 220
Lys Met Lys Arg Ala Val Met Asp Asp Leu Glu Arg Phe Val Arg Arg
225 230 235 240
Lys Glu Tyr Tyr Arg Arg Ile Gly Lys Ala Trp Lys Arg Gly Tyr Leu
245 250 255
Leu Tyr Gly Pro Pro Gly Thr Gly Lys Ser Ser Leu Ile Ala Ala Met
260 265 270
Ala Asn Tyr Leu Lys Phe Asp Val Tyr Asp Leu Glu Leu Thr Glu Val
275 280 285
Asn Trp Asn Ser Thr Leu Arg Arg Leu Leu Ile Gly Met Thr Asn Arg
290 295 300
Ser Ile Leu Val Ile Glu Asp Ile Asp Cys Ser Leu Asp Leu Gln Gln
305 310 315 320
Arg Ala Asp Glu Ala Gln Asp Ala Gly Thr Lys Ser Asn Pro Ser Glu
325 330 335
Asp Lys Val Thr Leu Ser Gly Leu Leu Asn Phe Val Asp Gly Leu Trp
340 345 350
Ser Thr Ser Gly Glu Glu Arg Ile Ile Ile Phe Thr Thr Asn Tyr Lys
355 360 365
Glu Arg Leu Asp Pro Ala Leu Leu Arg Pro Gly Arg Met Asp Met His
370 375 380
Ile His Met Gly Tyr Cys Cys Pro Glu Ser Phe Arg Ile Leu Ala Ser
385 390 395 400
Asn Tyr His Ser Ile Thr Asp His Asp Thr Tyr Pro Glu Ile Glu Ala
405 410 415
Leu Ile Thr Glu Val Met Val Thr Pro Ala Glu Val Ala Glu Val Leu
420 425 430
Met Arg Asn Glu Asp Thr Asp Val Ala Leu Glu Gly Leu Ile Gln Phe
435 440 445
Leu Asn Gly Lys Lys Asp His Ala Lys Asp Asp Ser Arg Gln Gly
450 455 460
<210> 80
<211> 1494
<212> DNA
<213> Sorghum bicolor
<400> 80
atggcgacct acgacaaggc gatggagtcg tacaagaagg cggtgacgac ggtggcgtcg 60
ctggcggcgt cggcgatgct ggtgcgcggc gtggtgaacg agctggtccc ctacgaggtg 120
cgggagttcc tcttctccgg cctgggctac ctccggtcgc gcatgtcgtc gcagcacacg 180
gtggtgatcg aggagacgga agggtgggcg agcaaccagc tgtacgacgc ggcgcgcacg 240
tacctggcga cgcggatcaa caccgacatg cagcgcctcc gcgtgagccg cgtcgacgag 300
ggcaagagcc tcatgttcag catggaggaa ggcgaggaga tggccgacgt ccacgccggc 360
gccgagttca ggtggcgcct cgtctgccgc gacggcggcg gcgccggcgc cggcaacggc 420
ggccacgccc acgcccacgc ccgcggcggc ggcggcggcg gcagctaccg cttcgaggtc 480
cgctccttcg agatgagctt ccacaggcgg cacaaggaca aggccatcgc ctcctacctc 540
ccgcacatcc tcgccgaggc caagaagatc aaggaccagg acaggacgct caagatctac 600
atgaacgaag gcgagtcctg gttcgccatc gacctccacc acccttccac cttcaccacg 660
ctcgccatgg accgcgacat gaagcgctcc gtcatggacg acctcgagag gttcgtcagg 720
aggaaagagt actacaagag gatcggcaag gcctggaagc gagggtacct gctccacggc 780
ccgcctggga ccggcaagtc cagcctcatt gccgccatgg ccaactacct caagttcgac 840
gtctacgatc tcgagctcac agaggtgaac tggaattcca cgctgaggag gctgctcatc 900
gggatgacca acaggtccat cctcgtcatc gaggacatcg actgctccgt cgatctgcag 960
cagcgtgcag aggaaggtca ggatggtggt acaaaatcca gtcctcctcc ttcagaggac 1020
aaggtgacat tatctgggct actcaacttc gtggatggtc tgtggtcaac aagtggggag 1080
gagaggatca tcatcttcac gacgaactac aaggagcggc tcgacccggc gctgcttcgg 1140
ccaggcagga tggacatgca catccacatg ggttactgct gcccggagtc attcagaatc 1200
ctggcctcca actaccactc catcactgac cacgacacat accctgagat agaagcactg 1260
atcaaggagg cgatggtgac tccagcagag gtcgcggagg tgctcatgag gaacgacgac 1320
accgacatcg cgctccaggg ccttattcgg ttcctcaagg gaaagaaggg tgatgccaag 1380
aacagccaag gcgaaaacgt ggagcacgtg accaaagagg aggagaaaga gatgatgccg 1440
acaaaaaaag atgacccagt cgatcaaaat ctcaatgatg caggcaagca atga 1494
<210> 81
<211> 497
<212> PRT
<213> Sorghum bicolor
<400> 81
Met Ala Thr Tyr Asp Lys Ala Met Glu Ser Tyr Lys Lys Ala Val Thr
1 5 10 15
Thr Val Ala Ser Leu Ala Ala Ser Ala Met Leu Val Arg Gly Val Val
20 25 30
Asn Glu Leu Val Pro Tyr Glu Val Arg Glu Phe Leu Phe Ser Gly Leu
35 40 45
Gly Tyr Leu Arg Ser Arg Met Ser Ser Gln His Thr Val Val Ile Glu
50 55 60
Glu Thr Glu Gly Trp Ala Ser Asn Gln Leu Tyr Asp Ala Ala Arg Thr
65 70 75 80
Tyr Leu Ala Thr Arg Ile Asn Thr Asp Met Gln Arg Leu Arg Val Ser
85 90 95
Arg Val Asp Glu Gly Lys Ser Leu Met Phe Ser Met Glu Glu Gly Glu
100 105 110
Glu Met Ala Asp Val His Ala Gly Ala Glu Phe Arg Trp Arg Leu Val
115 120 125
Cys Arg Asp Gly Gly Gly Ala Gly Ala Gly Asn Gly Gly His Ala His
130 135 140
Ala His Ala Arg Gly Gly Gly Gly Gly Gly Ser Tyr Arg Phe Glu Val
145 150 155 160
Arg Ser Phe Glu Met Ser Phe His Arg Arg His Lys Asp Lys Ala Ile
165 170 175
Ala Ser Tyr Leu Pro His Ile Leu Ala Glu Ala Lys Lys Ile Lys Asp
180 185 190
Gln Asp Arg Thr Leu Lys Ile Tyr Met Asn Glu Gly Glu Ser Trp Phe
195 200 205
Ala Ile Asp Leu His His Pro Ser Thr Phe Thr Thr Leu Ala Met Asp
210 215 220
Arg Asp Met Lys Arg Ser Val Met Asp Asp Leu Glu Arg Phe Val Arg
225 230 235 240
Arg Lys Glu Tyr Tyr Lys Arg Ile Gly Lys Ala Trp Lys Arg Gly Tyr
245 250 255
Leu Leu His Gly Pro Pro Gly Thr Gly Lys Ser Ser Leu Ile Ala Ala
260 265 270
Met Ala Asn Tyr Leu Lys Phe Asp Val Tyr Asp Leu Glu Leu Thr Glu
275 280 285
Val Asn Trp Asn Ser Thr Leu Arg Arg Leu Leu Ile Gly Met Thr Asn
290 295 300
Arg Ser Ile Leu Val Ile Glu Asp Ile Asp Cys Ser Val Asp Leu Gln
305 310 315 320
Gln Arg Ala Glu Glu Gly Gln Asp Gly Gly Thr Lys Ser Ser Pro Pro
325 330 335
Pro Ser Glu Asp Lys Val Thr Leu Ser Gly Leu Leu Asn Phe Val Asp
340 345 350
Gly Leu Trp Ser Thr Ser Gly Glu Glu Arg Ile Ile Ile Phe Thr Thr
355 360 365
Asn Tyr Lys Glu Arg Leu Asp Pro Ala Leu Leu Arg Pro Gly Arg Met
370 375 380
Asp Met His Ile His Met Gly Tyr Cys Cys Pro Glu Ser Phe Arg Ile
385 390 395 400
Leu Ala Ser Asn Tyr His Ser Ile Thr Asp His Asp Thr Tyr Pro Glu
405 410 415
Ile Glu Ala Leu Ile Lys Glu Ala Met Val Thr Pro Ala Glu Val Ala
420 425 430
Glu Val Leu Met Arg Asn Asp Asp Thr Asp Ile Ala Leu Gln Gly Leu
435 440 445
Ile Arg Phe Leu Lys Gly Lys Lys Gly Asp Ala Lys Asn Ser Gln Gly
450 455 460
Glu Asn Val Glu His Val Thr Lys Glu Glu Glu Lys Glu Met Met Pro
465 470 475 480
Thr Lys Lys Asp Asp Pro Val Asp Gln Asn Leu Asn Asp Ala Gly Lys
485 490 495
Gln
<210> 82
<211> 1518
<212> DNA
<213> Arabidopsis thaliana
<400> 82
atgtttttct ctaaggatct tccttcacct acttcggttt tcacagctta cgcatcaatg 60
gcgggttaca tgatgatgat aagatcaatg gctcacgagc taatcccagc tcccctccaa 120
gatttcatct acaggactct ccggtctctc ttcttccgtt cttcttcctc cactttgacg 180
ctaaccatcg atgacgacaa catgggtatg aacaacgaga tctaccgagc tgctcagact 240
tatctctcca ccaagatcag tcctgatgca gtcaggctca gaataagtaa aggccataag 300
gataaacatg tcaacttgta tctcagcgac ggagaaatcg tcaacgatgt gtacgaagat 360
gtgcagctag tatggaggtt tgttactgac ggtggagaca agaaaggagg cggcggagga 420
gtaggaggaa gaggaggagg aggaggaaga agaggtggta tggacgatga cggtaaaagc 480
gagtacttcg agctgagttt cgacaagaaa cataaagatt tgatattgaa ctcttatgtg 540
ccttacatcg agagtaaagc taaagagata agagacgaga gaagaatctt gatgctgcat 600
tctctcaaca gtcttagatg ggaatcagtt attcttgaac acccttcgac ctttgagaca 660
atggctatgg aagatgatct caaacgtgac gtcatcgagg atcttgatcg gttcataaga 720
aggaaagagt tttacaagag agtagggaaa gcttggaaga ggggttactt gttgtacggt 780
ccaccgggta cggggaagtc tagtcttgtt gcagccatgg ctaattacct caagtttgat 840
gtttatgatc ttcagcttgc gagtgtgatg cgtgactctg atctaaggag gctcttacta 900
gctacacgta accggtcgat tcttgtcata gaagatatcg attgtgcagt ggatttaccc 960
aacagaattg agcagcctgt tgaaggcaag aaccgtggcg agtctcaggg accattgacg 1020
ttatcggggc tgctgaattt catagacgga ctatggtcaa gctgtggaga cgagcggatt 1080
ataatattca caacaaacca taaagatagg cttgacccgg cattgcttag accaggacgt 1140
atggatatgc acatttacat gggacattgc tcttttcaag gattcaagac tttagcttct 1200
aactacttgg gtttgagtga tgctgcgatg ccacaccgtc tatttccgga gattgagcgt 1260
ttgattgacg gggaagtaat gacgccggca caagtagcag aggagctgat gaagagtgag 1320
gatgctgacg tggcgctaga gggtttggtg aatgttttag agaaaatgag gctaaaatct 1380
aaggaatcga atccggtgat gatgaagcag aaagagagta gactggagat ggaggagatg 1440
agactaaaga gtgatactga gggttctccg aggaagaaca gcaaaagatt taagaagctt 1500
gtattgtttt ggacataa 1518
<210> 83
<211> 505
<212> PRT
<213> Arabidopsis thaliana
<400> 83
Met Phe Phe Ser Lys Asp Leu Pro Ser Pro Thr Ser Val Phe Thr Ala
1 5 10 15
Tyr Ala Ser Met Ala Gly Tyr Met Met Met Ile Arg Ser Met Ala His
20 25 30
Glu Leu Ile Pro Ala Pro Leu Gln Asp Phe Ile Tyr Arg Thr Leu Arg
35 40 45
Ser Leu Phe Phe Arg Ser Ser Ser Ser Thr Leu Thr Leu Thr Ile Asp
50 55 60
Asp Asp Asn Met Gly Met Asn Asn Glu Ile Tyr Arg Ala Ala Gln Thr
65 70 75 80
Tyr Leu Ser Thr Lys Ile Ser Pro Asp Ala Val Arg Leu Arg Ile Ser
85 90 95
Lys Gly His Lys Asp Lys His Val Asn Leu Tyr Leu Ser Asp Gly Glu
100 105 110
Ile Val Asn Asp Val Tyr Glu Asp Val Gln Leu Val Trp Arg Phe Val
115 120 125
Thr Asp Gly Gly Asp Lys Lys Gly Gly Gly Gly Gly Val Gly Gly Arg
130 135 140
Gly Gly Gly Gly Gly Arg Arg Gly Gly Met Asp Asp Asp Gly Lys Ser
145 150 155 160
Glu Tyr Phe Glu Leu Ser Phe Asp Lys Lys His Lys Asp Leu Ile Leu
165 170 175
Asn Ser Tyr Val Pro Tyr Ile Glu Ser Lys Ala Lys Glu Ile Arg Asp
180 185 190
Glu Arg Arg Ile Leu Met Leu His Ser Leu Asn Ser Leu Arg Trp Glu
195 200 205
Ser Val Ile Leu Glu His Pro Ser Thr Phe Glu Thr Met Ala Met Glu
210 215 220
Asp Asp Leu Lys Arg Asp Val Ile Glu Asp Leu Asp Arg Phe Ile Arg
225 230 235 240
Arg Lys Glu Phe Tyr Lys Arg Val Gly Lys Ala Trp Lys Arg Gly Tyr
245 250 255
Leu Leu Tyr Gly Pro Pro Gly Thr Gly Lys Ser Ser Leu Val Ala Ala
260 265 270
Met Ala Asn Tyr Leu Lys Phe Asp Val Tyr Asp Leu Gln Leu Ala Ser
275 280 285
Val Met Arg Asp Ser Asp Leu Arg Arg Leu Leu Leu Ala Thr Arg Asn
290 295 300
Arg Ser Ile Leu Val Ile Glu Asp Ile Asp Cys Ala Val Asp Leu Pro
305 310 315 320
Asn Arg Ile Glu Gln Pro Val Glu Gly Lys Asn Arg Gly Glu Ser Gln
325 330 335
Gly Pro Leu Thr Leu Ser Gly Leu Leu Asn Phe Ile Asp Gly Leu Trp
340 345 350
Ser Ser Cys Gly Asp Glu Arg Ile Ile Ile Phe Thr Thr Asn His Lys
355 360 365
Asp Arg Leu Asp Pro Ala Leu Leu Arg Pro Gly Arg Met Asp Met His
370 375 380
Ile Tyr Met Gly His Cys Ser Phe Gln Gly Phe Lys Thr Leu Ala Ser
385 390 395 400
Asn Tyr Leu Gly Leu Ser Asp Ala Ala Met Pro His Arg Leu Phe Pro
405 410 415
Glu Ile Glu Arg Leu Ile Asp Gly Glu Val Met Thr Pro Ala Gln Val
420 425 430
Ala Glu Glu Leu Met Lys Ser Glu Asp Ala Asp Val Ala Leu Glu Gly
435 440 445
Leu Val Asn Val Leu Glu Lys Met Arg Leu Lys Ser Lys Glu Ser Asn
450 455 460
Pro Val Met Met Lys Gln Lys Glu Ser Arg Leu Glu Met Glu Glu Met
465 470 475 480
Arg Leu Lys Ser Asp Thr Glu Gly Ser Pro Arg Lys Asn Ser Lys Arg
485 490 495
Phe Lys Lys Leu Val Leu Phe Trp Thr
500 505
<210> 84
<211> 1497
<212> DNA
<213> Glycine max
<400> 84
atgtccttct tttcctcctc caacctggcc accgccaaga cggtgctctc ggcggcggcc 60
tcggtggctg ccaccgcaat ggtggtccgc tccgtggcga gcgacctcct tccgtcggag 120
ctccggtcct acatcaccaa cggcatccac agcatgttct ggcgcttctc ctccgagata 180
accctggtca tcgacgagtt cgacggcctc ctcaacaacc aaatctacga ggccgccgaa 240
acctacctcg gcgccaaaat ctctcccaac acacgcagac ttaaagtcag caagcccgag 300
acagacacaa ccttcgccct cacaatggag cgcaacgagt ccttaaccga cgttttcaga 360
agcatgaaat ttaactgggt tctcgtctgc cgtcaggtcg agtccagagg cttccacaac 420
cctcgcgacc tcaacgccac catgaaatcc gaggttcgct ccctcgaact cacttttaac 480
aagaagcata aagacatggt gctccaaacc tatcttccct atatcctcaa cgaagccaag 540
tccatgaaac aagctacaaa agcgcttaag atcttcacag tcgactacca gaacatgtac 600
ggcaacatca gcgacgcgtg ggtggggatg aagctggacc atcccgccac gttcgacacg 660
ctggcgatgg agcgtggcgc gaaggagttt gtcatgaggg acttggagag gttcgtaaag 720
aggaaggagt attataggag agttgggaag gcgtggaaga gagggtattt gctgtatggt 780
cctcccggca ccgggaaatc gagcttgatt gctgccatgg cgaattactt gaagtttgat 840
gtgtatgatt tggagctgac ggagctgaat gctaactcgg agctcaggag gttgctcatt 900
gcaatggcga ataggtccat tcttgttgtg gaggacattg attgcactgt tgagtttcat 960
gatcggagag ctgaggccag agctgcttct ggacataaca acgacagaca ggttacacta 1020
tcgggtttgc ttaatttcat tgatgggtta tggtcaagtt gtggggatga gaggatcata 1080
gtgttcacaa caaaccacaa ggacaagctt gaccctgcat tgctgcgccc tggtcgaatg 1140
gatgttcaca ttcacatgtc ctattgcact ccctgtggtt tcaggcagct agcttccaat 1200
tacctcggaa tcaaagagca ttctctcttc gaaaagatcg aggaagagat gcagaaaacc 1260
caggtgactc ctgctgaggt agcagaacag cttctgaaga gcagccacat cgaaactagc 1320
ctcgaacagc ttatagattt catgagaaag aagaaagaaa ctcagaaatt ggaggctaaa 1380
aagaaggaac aagaggccaa agaggaacag cagaggaagg aaattgatga tggtggtaaa 1440
ggagaaaaag ttgacagtga tgataacaat aatgaaaaga aaagtattac tacctag 1497
<210> 85
<211> 498
<212> PRT
<213> Glycine max
<400> 85
Met Ser Phe Phe Ser Ser Ser Asn Leu Ala Thr Ala Lys Thr Val Leu
1 5 10 15
Ser Ala Ala Ala Ser Val Ala Ala Thr Ala Met Val Val Arg Ser Val
20 25 30
Ala Ser Asp Leu Leu Pro Ser Glu Leu Arg Ser Tyr Ile Thr Asn Gly
35 40 45
Ile His Ser Met Phe Trp Arg Phe Ser Ser Glu Ile Thr Leu Val Ile
50 55 60
Asp Glu Phe Asp Gly Leu Leu Asn Asn Gln Ile Tyr Glu Ala Ala Glu
65 70 75 80
Thr Tyr Leu Gly Ala Lys Ile Ser Pro Asn Thr Arg Arg Leu Lys Val
85 90 95
Ser Lys Pro Glu Thr Asp Thr Thr Phe Ala Leu Thr Met Glu Arg Asn
100 105 110
Glu Ser Leu Thr Asp Val Phe Arg Ser Met Lys Phe Asn Trp Val Leu
115 120 125
Val Cys Arg Gln Val Glu Ser Arg Gly Phe His Asn Pro Arg Asp Leu
130 135 140
Asn Ala Thr Met Lys Ser Glu Val Arg Ser Leu Glu Leu Thr Phe Asn
145 150 155 160
Lys Lys His Lys Asp Met Val Leu Gln Thr Tyr Leu Pro Tyr Ile Leu
165 170 175
Asn Glu Ala Lys Ser Met Lys Gln Ala Thr Lys Ala Leu Lys Ile Phe
180 185 190
Thr Val Asp Tyr Gln Asn Met Tyr Gly Asn Ile Ser Asp Ala Trp Val
195 200 205
Gly Met Lys Leu Asp His Pro Ala Thr Phe Asp Thr Leu Ala Met Glu
210 215 220
Arg Gly Ala Lys Glu Phe Val Met Arg Asp Leu Glu Arg Phe Val Lys
225 230 235 240
Arg Lys Glu Tyr Tyr Arg Arg Val Gly Lys Ala Trp Lys Arg Gly Tyr
245 250 255
Leu Leu Tyr Gly Pro Pro Gly Thr Gly Lys Ser Ser Leu Ile Ala Ala
260 265 270
Met Ala Asn Tyr Leu Lys Phe Asp Val Tyr Asp Leu Glu Leu Thr Glu
275 280 285
Leu Asn Ala Asn Ser Glu Leu Arg Arg Leu Leu Ile Ala Met Ala Asn
290 295 300
Arg Ser Ile Leu Val Val Glu Asp Ile Asp Cys Thr Val Glu Phe His
305 310 315 320
Asp Arg Arg Ala Glu Ala Arg Ala Ala Ser Gly His Asn Asn Asp Arg
325 330 335
Gln Val Thr Leu Ser Gly Leu Leu Asn Phe Ile Asp Gly Leu Trp Ser
340 345 350
Ser Cys Gly Asp Glu Arg Ile Ile Val Phe Thr Thr Asn His Lys Asp
355 360 365
Lys Leu Asp Pro Ala Leu Leu Arg Pro Gly Arg Met Asp Val His Ile
370 375 380
His Met Ser Tyr Cys Thr Pro Cys Gly Phe Arg Gln Leu Ala Ser Asn
385 390 395 400
Tyr Leu Gly Ile Lys Glu His Ser Leu Phe Glu Lys Ile Glu Glu Glu
405 410 415
Met Gln Lys Thr Gln Val Thr Pro Ala Glu Val Ala Glu Gln Leu Leu
420 425 430
Lys Ser Ser His Ile Glu Thr Ser Leu Glu Gln Leu Ile Asp Phe Met
435 440 445
Arg Lys Lys Lys Glu Thr Gln Lys Leu Glu Ala Lys Lys Lys Glu Gln
450 455 460
Glu Ala Lys Glu Glu Gln Gln Arg Lys Glu Ile Asp Asp Gly Gly Lys
465 470 475 480
Gly Glu Lys Val Asp Ser Asp Asp Asn Asn Asn Glu Lys Lys Ser Ile
485 490 495
Thr Thr
<210> 86
<211> 2079
<212> DNA
<213> Oryza sativa
<400> 86
atgtcggagg cggaccggat acgggtgcgc gcggcggcgc tggcgctgga cggcggcggc 60
ggcggcgcgg tgcgggacaa gccggacgcg aaggcggacg tgttcgccga tcttggctcg 120
ccggtgtccc cgctgcgggc gcgggcgagc gtggcgacgt cgtcgtcgtc gtcgtccggg 180
tcggctaagt cgccggcgcc gtcgaatgcc ggggcgctgg cgctggcggg cgggaggagc 240
cactccggcg agctgacggc ggagagcacg cccccgcggc tgcccgggca ccggcggtgc 300
ggatctggcc cgttgatatt ctccggtggg agcagcggcg ggagcggcgg cggcggcggg 360
gaccgcggga gcacggcgag ctcgccgatg actaatgcgc tccccgcagg taacatctgc 420
ccgtccgggc gcgtccccgt cgcggcggcc gcgccgcccc cgccgcgctc ccgcccggac 480
gtgctcggat ccggcaccgg caactacggc cacgggagca tcatgcgcgg cggcggcggc 540
atggcccccg cgaggagcag cattgactcc tcgtcgtttc ttggacacgc tccgagatct 600
ccggcgacct tcccggcggc gtcgtcggcg agcagcggga gcctccagga tgtgacccgc 660
ctgggcaacg agtggtacaa gaagggcaag cacgccgagg cgctgcggca ctacgaccgc 720
gccgtggccc tctgccccga gagcgccgcg tgccgcggga accgcgccgc cgcgctcgcc 780
ggcctcggcc gcctcgccga cgcgctccgc gactgcgagg aggcagtccg cctcgatccg 840
gccaacggcc gcgcccacag ccgcctcgcc ggcctctgcc tccggttggg gatgattagc 900
aaggcgagga ggcacttaac gcaggctggg catctccatc aatctgatcc ttcggagtgg 960
gagaagctgc aggaggtgga gatgcatcag ggaagaagca tagatgccag gaaagtcggg 1020
gattggaaga gcgcgctgag ggaagctgat gctgccattg ctgctggagc tgactcctct 1080
cggctgcttc ttgcgataag gtcagaagca cttctccgtc tccacaagtt ggaggaggct 1140
gactcgactc ttgcaagttt gctgaaattg gacagcgtgt tgctgtatcg gatgggagcc 1200
aacccgtcag gcatgctagc tgagtcatat gtctctattg tccgagccca agtcgacatg 1260
gcattgggaa ggtttgatgc tgctgtggag gcagctgata atgctagatt tattgatcct 1320
ggaaatgcgg aagttggaat gattctaaat aatgtcaaat tagttgcaaa ggctcgagcc 1380
caaggaaatg agctctataa agctgccaag ttttctgatg catctatagc atatagtgaa 1440
gggctcaaat atgagccctc aaatccagtg ctctattgca atcgagcagc atgctggggg 1500
aagctagagc ggtgggaaaa ggctgttgat gactgtaacg aagcattaag aatacaacct 1560
aattacacaa aggcgctttt aaggcgagct tcatcctatg ccaagctcga gcgttgggct 1620
gattgtgtgc gggactatga ggtgcttcat aaagagcttc ctgctgatac agaggttgca 1680
gaagcactgt tccatgctca agttgcattg aagacaactc gtggtgagga tgtatcgaat 1740
atgaaatttg gaggagaggt tgagatggta accagtgtag aacaactccg tgctgccata 1800
ggatcaccag gggtgtctgt tgtttacttc atgtcaatca tgaatcagca gtgcacacta 1860
attacacctt cggtgaactc cctttgcagc gaatgcccct cgctgaattt cctaaaggta 1920
aatgttgaag atagccctat ggtcgcgaag gcggagaacg tgcggatagt cccaacattc 1980
aagatataca aagatggggt gaaggtgaag gaaatgatct gcccaagctt gcatgttctg 2040
cgctactcag taaggcacta tgccgtatct agttcttga 2079
<210> 87
<211> 692
<212> PRT
<213> Oryza sativa
<400> 87
Met Ser Glu Ala Asp Arg Ile Arg Val Arg Ala Ala Ala Leu Ala Leu
1 5 10 15
Asp Gly Gly Gly Gly Gly Ala Val Arg Asp Lys Pro Asp Ala Lys Ala
20 25 30
Asp Val Phe Ala Asp Leu Gly Ser Pro Val Ser Pro Leu Arg Ala Arg
35 40 45
Ala Ser Val Ala Thr Ser Ser Ser Ser Ser Ser Gly Ser Ala Lys Ser
50 55 60
Pro Ala Pro Ser Asn Ala Gly Ala Leu Ala Leu Ala Gly Gly Arg Ser
65 70 75 80
His Ser Gly Glu Leu Thr Ala Glu Ser Thr Pro Pro Arg Leu Pro Gly
85 90 95
His Arg Arg Cys Gly Ser Gly Pro Leu Ile Phe Ser Gly Gly Ser Ser
100 105 110
Gly Gly Ser Gly Gly Gly Gly Gly Asp Arg Gly Ser Thr Ala Ser Ser
115 120 125
Pro Met Thr Asn Ala Leu Pro Ala Gly Asn Ile Cys Pro Ser Gly Arg
130 135 140
Val Pro Val Ala Ala Ala Ala Pro Pro Pro Pro Arg Ser Arg Pro Asp
145 150 155 160
Val Leu Gly Ser Gly Thr Gly Asn Tyr Gly His Gly Ser Ile Met Arg
165 170 175
Gly Gly Gly Gly Met Ala Pro Ala Arg Ser Ser Ile Asp Ser Ser Ser
180 185 190
Phe Leu Gly His Ala Pro Arg Ser Pro Ala Thr Phe Pro Ala Ala Ser
195 200 205
Ser Ala Ser Ser Gly Ser Leu Gln Asp Val Thr Arg Leu Gly Asn Glu
210 215 220
Trp Tyr Lys Lys Gly Lys His Ala Glu Ala Leu Arg His Tyr Asp Arg
225 230 235 240
Ala Val Ala Leu Cys Pro Glu Ser Ala Ala Cys Arg Gly Asn Arg Ala
245 250 255
Ala Ala Leu Ala Gly Leu Gly Arg Leu Ala Asp Ala Leu Arg Asp Cys
260 265 270
Glu Glu Ala Val Arg Leu Asp Pro Ala Asn Gly Arg Ala His Ser Arg
275 280 285
Leu Ala Gly Leu Cys Leu Arg Leu Gly Met Ile Ser Lys Ala Arg Arg
290 295 300
His Leu Thr Gln Ala Gly His Leu His Gln Ser Asp Pro Ser Glu Trp
305 310 315 320
Glu Lys Leu Gln Glu Val Glu Met His Gln Gly Arg Ser Ile Asp Ala
325 330 335
Arg Lys Val Gly Asp Trp Lys Ser Ala Leu Arg Glu Ala Asp Ala Ala
340 345 350
Ile Ala Ala Gly Ala Asp Ser Ser Arg Leu Leu Leu Ala Ile Arg Ser
355 360 365
Glu Ala Leu Leu Arg Leu His Lys Leu Glu Glu Ala Asp Ser Thr Leu
370 375 380
Ala Ser Leu Leu Lys Leu Asp Ser Val Leu Leu Tyr Arg Met Gly Ala
385 390 395 400
Asn Pro Ser Gly Met Leu Ala Glu Ser Tyr Val Ser Ile Val Arg Ala
405 410 415
Gln Val Asp Met Ala Leu Gly Arg Phe Asp Ala Ala Val Glu Ala Ala
420 425 430
Asp Asn Ala Arg Phe Ile Asp Pro Gly Asn Ala Glu Val Gly Met Ile
435 440 445
Leu Asn Asn Val Lys Leu Val Ala Lys Ala Arg Ala Gln Gly Asn Glu
450 455 460
Leu Tyr Lys Ala Ala Lys Phe Ser Asp Ala Ser Ile Ala Tyr Ser Glu
465 470 475 480
Gly Leu Lys Tyr Glu Pro Ser Asn Pro Val Leu Tyr Cys Asn Arg Ala
485 490 495
Ala Cys Trp Gly Lys Leu Glu Arg Trp Glu Lys Ala Val Asp Asp Cys
500 505 510
Asn Glu Ala Leu Arg Ile Gln Pro Asn Tyr Thr Lys Ala Leu Leu Arg
515 520 525
Arg Ala Ser Ser Tyr Ala Lys Leu Glu Arg Trp Ala Asp Cys Val Arg
530 535 540
Asp Tyr Glu Val Leu His Lys Glu Leu Pro Ala Asp Thr Glu Val Ala
545 550 555 560
Glu Ala Leu Phe His Ala Gln Val Ala Leu Lys Thr Thr Arg Gly Glu
565 570 575
Asp Val Ser Asn Met Lys Phe Gly Gly Glu Val Glu Met Val Thr Ser
580 585 590
Val Glu Gln Leu Arg Ala Ala Ile Gly Ser Pro Gly Val Ser Val Val
595 600 605
Tyr Phe Met Ser Ile Met Asn Gln Gln Cys Thr Leu Ile Thr Pro Ser
610 615 620
Val Asn Ser Leu Cys Ser Glu Cys Pro Ser Leu Asn Phe Leu Lys Val
625 630 635 640
Asn Val Glu Asp Ser Pro Met Val Ala Lys Ala Glu Asn Val Arg Ile
645 650 655
Val Pro Thr Phe Lys Ile Tyr Lys Asp Gly Val Lys Val Lys Glu Met
660 665 670
Ile Cys Pro Ser Leu His Val Leu Arg Tyr Ser Val Arg His Tyr Ala
675 680 685
Val Ser Ser Ser
690
<210> 88
<211> 828
<212> DNA
<213> Zea mays
<400> 88
atgaagcaat cctccaacga atccgcgggc gcagacgttt cccgtgcgca atcggtgaag 60
agccgcatcg ccaggagcaa cgacgcgcgc aggctcaaga actggatcac ggtgctccag 120
gaagcgcagg ccgccgtggc cgacggcgcc gactgtgctc cgcaggtgat ggcgttgcaa 180
gccgaggcgt tgctgaggct gcaacggcac gacgaagccg actcgcttct cagcggcgcc 240
ggcgcgccaa ggttcggggt cgacgagtcg accaagttct tcggcacctt cggccacgcc 300
tacttcctca tcgtgcgagc tcaggtcgac atggctgctg gaaggttcga ggacgcggtg 360
gcgacggcgc agacggcgtt tcagctggac ccaagcaacc gggaggtctc ggtcgttcag 420
aggagggcca aggcggcggc cgcggcgcgg ctgcgtggca acgacctctt caaggccgcc 480
aagttcgcgg aggcgtgcgc cgcgtacggc gagggcctcg acagggagcc cggcaacgcc 540
gtgctgctct gcaaccgcgc ggcgtgccac gccaagctcg ggcggcacga gaaggccgtc 600
gaggactgca gcgccgcgct cgacgtgcgc ccctcgtaca gcaaggcgcg gctcaggagg 660
gcggactgca acgtcaagct ggagaggtgg gaagcgtcct tgagagatta ccaggtgctg 720
gtccaagaac tgccggagaa tgaggacgtg aagaaggctc tctctgaggt cgaagccaag 780
ctcaagggcc aaaggcatgg ggccgcagca gccagatctc agcactga 828
<210> 89
<211> 275
<212> PRT
<213> Zea mays
<400> 89
Met Lys Gln Ser Ser Asn Glu Ser Ala Gly Ala Asp Val Ser Arg Ala
1 5 10 15
Gln Ser Val Lys Ser Arg Ile Ala Arg Ser Asn Asp Ala Arg Arg Leu
20 25 30
Lys Asn Trp Ile Thr Val Leu Gln Glu Ala Gln Ala Ala Val Ala Asp
35 40 45
Gly Ala Asp Cys Ala Pro Gln Val Met Ala Leu Gln Ala Glu Ala Leu
50 55 60
Leu Arg Leu Gln Arg His Asp Glu Ala Asp Ser Leu Leu Ser Gly Ala
65 70 75 80
Gly Ala Pro Arg Phe Gly Val Asp Glu Ser Thr Lys Phe Phe Gly Thr
85 90 95
Phe Gly His Ala Tyr Phe Leu Ile Val Arg Ala Gln Val Asp Met Ala
100 105 110
Ala Gly Arg Phe Glu Asp Ala Val Ala Thr Ala Gln Thr Ala Phe Gln
115 120 125
Leu Asp Pro Ser Asn Arg Glu Val Ser Val Val Gln Arg Arg Ala Lys
130 135 140
Ala Ala Ala Ala Ala Arg Leu Arg Gly Asn Asp Leu Phe Lys Ala Ala
145 150 155 160
Lys Phe Ala Glu Ala Cys Ala Ala Tyr Gly Glu Gly Leu Asp Arg Glu
165 170 175
Pro Gly Asn Ala Val Leu Leu Cys Asn Arg Ala Ala Cys His Ala Lys
180 185 190
Leu Gly Arg His Glu Lys Ala Val Glu Asp Cys Ser Ala Ala Leu Asp
195 200 205
Val Arg Pro Ser Tyr Ser Lys Ala Arg Leu Arg Arg Ala Asp Cys Asn
210 215 220
Val Lys Leu Glu Arg Trp Glu Ala Ser Leu Arg Asp Tyr Gln Val Leu
225 230 235 240
Val Gln Glu Leu Pro Glu Asn Glu Asp Val Lys Lys Ala Leu Ser Glu
245 250 255
Val Glu Ala Lys Leu Lys Gly Gln Arg His Gly Ala Ala Ala Ala Arg
260 265 270
Ser Gln His
275
<210> 90
<211> 1764
<212> DNA
<213> Sorghum bicolor
<400> 90
atgacggagc cgcgcgaccc gccgccgccg accggctgcg ccatgttcgg catctacagc 60
ggcatgttcc gccgccgccg atccgcatcc atgacctccc tccaccggat caacggggca 120
tcctcgcccg ccgaggccga ggccgcggcg ccggcgaacc cggcgcatca tcggaagccc 180
ggcgtgctcc acgactcctc ctccctcgtg cgccgcccca acgccatgcc cgtgccggcg 240
ccggcgcaga acggcgccgt ctcccgcgcc gcgccaccgg cggcgaacga taggagtagg 300
ccggccacca aggtggcgaa cggcggcgtc ggcggcccga gacccgccgt ggagccggcg 360
gcggagtaca ccggcatggc cgcggagctg gacaagatga tcctcgacca ccagagggtc 420
aagggcacca cgcagctggt gcgcgccacg tccggcaaca tgatgctgca ccgcaacctc 480
ggcaacctca acgcgggggg cggcgcgccg gcgcgcaact ccgtggagcg cggcgccaag 540
gcggcgaacg agcggaaggc ccccaacggg tacgcgttct cgggaatggg gaacatcgtc 600
aaggagccca ggccggcggc ggggggcagc gagctgtgcc gggcgctgtc gcaccgcacg 660
gatcccgaga agctcaagga gatgggcaac gaggagtacc ggcaggggca ttacacggag 720
gcggtggcgc tctacgacca ggccatcatg atggacgcca ggcggccggc gtactggagc 780
aacaaggcgg ccgcgctcgc cgcgctcgga cggctcatcg aggccgtcgg cgactgcaag 840
gaggccgtgc ggatcgaccc tgcgtacgat cgcgctcacc accggcttgg cggcttgtac 900
ctcagattag gagaacctga caaagccatc taccacttga agcaatcttg caatgaatcc 960
gcgggcgcag acgttgctcg tgcgcagtcg gtgaagagcc gcatcgccaa gagcagcgac 1020
gcgcgcaggc tcaagaactg gatcacggtg ctccaggaag cgcaggccgc cgtgtccgac 1080
ggcgccgact gcgctccaca ggtgatggcg ttgcaagccg aggcgttgct gaggctgcag 1140
cggcacgacg acgcggactc gcttctcagc agcgccgccg cgccaaggtt cggcgtcgac 1200
gagtcgacca agttcttcgg caccttcggc cacgcctact tcctcatcgt gcgagctcag 1260
gtcgacatgg ctgctggaag gttcgaggac gcggtggcga cggcgcagac ggcgtttcag 1320
ctggacccga gcaaccggga ggtgacggtc gtgcagagga gggccaaggc ggcggccgcg 1380
gcgcggctgc gtggcaacga cctcttcaag gccgccaagt tcgtggaggc gtgcgccgcc 1440
tacggcgagg gcctcgacag ggagcccagc aacgccgtgc tgctctgcaa ccgcgccgcg 1500
tgccacgcca agctcgggcg gcacgagaag gccgtcgagg actgcagcgc cgcgctcgcc 1560
gtgcgcccct cgtacagcaa ggcgcggctc aggagggcgg actgcaacgt caagctggag 1620
aggtgggaag cgtccttgag agactaccag gtgctgatcc aagaactgcc ggagaacgag 1680
gacgtgaaga agtctctttc tgaggtcgaa gccaagctca agagccaaag gaatggcggc 1740
gcagcagcca gatctcagca ctga 1764
<210> 91
<211> 587
<212> PRT
<213> Sorghum bicolor
<400> 91
Met Thr Glu Pro Arg Asp Pro Pro Pro Pro Thr Gly Cys Ala Met Phe
1 5 10 15
Gly Ile Tyr Ser Gly Met Phe Arg Arg Arg Arg Ser Ala Ser Met Thr
20 25 30
Ser Leu His Arg Ile Asn Gly Ala Ser Ser Pro Ala Glu Ala Glu Ala
35 40 45
Ala Ala Pro Ala Asn Pro Ala His His Arg Lys Pro Gly Val Leu His
50 55 60
Asp Ser Ser Ser Leu Val Arg Arg Pro Asn Ala Met Pro Val Pro Ala
65 70 75 80
Pro Ala Gln Asn Gly Ala Val Ser Arg Ala Ala Pro Pro Ala Ala Asn
85 90 95
Asp Arg Ser Arg Pro Ala Thr Lys Val Ala Asn Gly Gly Val Gly Gly
100 105 110
Pro Arg Pro Ala Val Glu Pro Ala Ala Glu Tyr Thr Gly Met Ala Ala
115 120 125
Glu Leu Asp Lys Met Ile Leu Asp His Gln Arg Val Lys Gly Thr Thr
130 135 140
Gln Leu Val Arg Ala Thr Ser Gly Asn Met Met Leu His Arg Asn Leu
145 150 155 160
Gly Asn Leu Asn Ala Gly Gly Gly Ala Pro Ala Arg Asn Ser Val Glu
165 170 175
Arg Gly Ala Lys Ala Ala Asn Glu Arg Lys Ala Pro Asn Gly Tyr Ala
180 185 190
Phe Ser Gly Met Gly Asn Ile Val Lys Glu Pro Arg Pro Ala Ala Gly
195 200 205
Gly Ser Glu Leu Cys Arg Ala Leu Ser His Arg Thr Asp Pro Glu Lys
210 215 220
Leu Lys Glu Met Gly Asn Glu Glu Tyr Arg Gln Gly His Tyr Thr Glu
225 230 235 240
Ala Val Ala Leu Tyr Asp Gln Ala Ile Met Met Asp Ala Arg Arg Pro
245 250 255
Ala Tyr Trp Ser Asn Lys Ala Ala Ala Leu Ala Ala Leu Gly Arg Leu
260 265 270
Ile Glu Ala Val Gly Asp Cys Lys Glu Ala Val Arg Ile Asp Pro Ala
275 280 285
Tyr Asp Arg Ala His His Arg Leu Gly Gly Leu Tyr Leu Arg Leu Gly
290 295 300
Glu Pro Asp Lys Ala Ile Tyr His Leu Lys Gln Ser Cys Asn Glu Ser
305 310 315 320
Ala Gly Ala Asp Val Ala Arg Ala Gln Ser Val Lys Ser Arg Ile Ala
325 330 335
Lys Ser Ser Asp Ala Arg Arg Leu Lys Asn Trp Ile Thr Val Leu Gln
340 345 350
Glu Ala Gln Ala Ala Val Ser Asp Gly Ala Asp Cys Ala Pro Gln Val
355 360 365
Met Ala Leu Gln Ala Glu Ala Leu Leu Arg Leu Gln Arg His Asp Asp
370 375 380
Ala Asp Ser Leu Leu Ser Ser Ala Ala Ala Pro Arg Phe Gly Val Asp
385 390 395 400
Glu Ser Thr Lys Phe Phe Gly Thr Phe Gly His Ala Tyr Phe Leu Ile
405 410 415
Val Arg Ala Gln Val Asp Met Ala Ala Gly Arg Phe Glu Asp Ala Val
420 425 430
Ala Thr Ala Gln Thr Ala Phe Gln Leu Asp Pro Ser Asn Arg Glu Val
435 440 445
Thr Val Val Gln Arg Arg Ala Lys Ala Ala Ala Ala Ala Arg Leu Arg
450 455 460
Gly Asn Asp Leu Phe Lys Ala Ala Lys Phe Val Glu Ala Cys Ala Ala
465 470 475 480
Tyr Gly Glu Gly Leu Asp Arg Glu Pro Ser Asn Ala Val Leu Leu Cys
485 490 495
Asn Arg Ala Ala Cys His Ala Lys Leu Gly Arg His Glu Lys Ala Val
500 505 510
Glu Asp Cys Ser Ala Ala Leu Ala Val Arg Pro Ser Tyr Ser Lys Ala
515 520 525
Arg Leu Arg Arg Ala Asp Cys Asn Val Lys Leu Glu Arg Trp Glu Ala
530 535 540
Ser Leu Arg Asp Tyr Gln Val Leu Ile Gln Glu Leu Pro Glu Asn Glu
545 550 555 560
Asp Val Lys Lys Ser Leu Ser Glu Val Glu Ala Lys Leu Lys Ser Gln
565 570 575
Arg Asn Gly Gly Ala Ala Ala Arg Ser Gln His
580 585
<210> 92
<211> 1782
<212> DNA
<213> Arabidopsis thaliana
<400> 92
atggaggaga acacggcggt ggctgcggcg gagagaagat caggttgtgg tttattgagt 60
gtaatgtttg gtagacgtgg cttgtggtcc aagaaatcta ccgctgtcga taacggtagc 120
cagaaaagca catctacggc tgcgaccgca acaagcaaca ttcaattcac taaatctccg 180
ggcaccgagt taaagaagcc gcgtgatgat cagaaagttt ccgctgagcc aatccagaat 240
aacaagatcc agaacaacca aaatcacaac cagagatccg tagttccatc aaaaccctcg 300
tcaaatcagt accctaataa ccatcaatta gggacttacg agaatcacca acgaagtagt 360
tataacaaca atagtaatag tgttgatcca tatcgaggag gaggaggaca gaggaaagtg 420
ccaagagaag ccattggttt atcgggtgag cttgaaagca tgatcacgga tcatcagaaa 480
gcaaaaggaa ccaatggatt ggttcgtgca tcttctagca atataatgtt atatggtaat 540
cttggcaatt tgaatcagac tggacctgta actgcgggtg taaattacgg taataacaat 600
ggatatggcg tgaagaggac gacaatgggg gctgcaacgg cgacgacaac aaagagtcaa 660
gatcaatcag gatctttgtg tagagcaatc tcaacaagaa tggatccgga aactttgaag 720
atcatgggga atgaagatta caagaatggg aatttcgcag aggctttagc attgtatgat 780
gcagccattg caattgatcc aaacaaagct gcttaccgta gcaacaagag cgcggctttg 840
accgccctag ggagaatcct tgacgcggtt tttgaatgca gagaagcaat cagaattgag 900
cctcattacc acagagcaca tcataggttg ggtaacttgt acctcaggtt aggagaagtg 960
gagaaatcga tatatcattt caaacattcg ggtcccgaag ctgatcgtga agacattgca 1020
aaggcgaaaa cggtacagac acatctcaac aaatgcacag aagctaagag attacgagat 1080
tggaatggtt tgattacgga gacaacaaac acaatctctt caggagctga tgcagcccct 1140
caggtctatg cattgcaagc agaagctttg ttgaagacac atagacatca agaagctgat 1200
gatgctttgt ctagatgtcc ggttttcgat attgatgcta gtactaggta ctacggaccg 1260
gtcggttatg ctggtttctt ggtcgtccgt gctcaggttc acttagcgtc tggcagattc 1320
gacgaggcgg tggaggcgat ccaacgcgcc gggaagctgg acgggaataa ccgagaggtg 1380
attatgattt cacgacgggc acaagcggtg actgaagctc ggtttaaagg aaacgagctg 1440
tttaaatctg gacggttcca agaggcgtgc gccgcttatg gtgagggatt agatcacgat 1500
ccacgaaact ctgttttgct ctgtaaccgc gcggcttgtc ggtcaaaatt gggtcaattt 1560
gataaatcta tagaggattg cacggcggct ctctccgtcc ggccgggata tggtaaggct 1620
cgcctcagaa gagccgattg taacgccaag atcgaaaagt gggaattagc ggtgggtgac 1680
tacgagatat tgaaaaagga gtcgccggag gatgagcaag ttatcagagg attatcagag 1740
gctcaacaac aactcatgaa acgtagtgga caagactctt ga 1782
<210> 93
<211> 593
<212> PRT
<213> Arabidopsis thaliana
<400> 93
Met Glu Glu Asn Thr Ala Val Ala Ala Ala Glu Arg Arg Ser Gly Cys
1 5 10 15
Gly Leu Leu Ser Val Met Phe Gly Arg Arg Gly Leu Trp Ser Lys Lys
20 25 30
Ser Thr Ala Val Asp Asn Gly Ser Gln Lys Ser Thr Ser Thr Ala Ala
35 40 45
Thr Ala Thr Ser Asn Ile Gln Phe Thr Lys Ser Pro Gly Thr Glu Leu
50 55 60
Lys Lys Pro Arg Asp Asp Gln Lys Val Ser Ala Glu Pro Ile Gln Asn
65 70 75 80
Asn Lys Ile Gln Asn Asn Gln Asn His Asn Gln Arg Ser Val Val Pro
85 90 95
Ser Lys Pro Ser Ser Asn Gln Tyr Pro Asn Asn His Gln Leu Gly Thr
100 105 110
Tyr Glu Asn His Gln Arg Ser Ser Tyr Asn Asn Asn Ser Asn Ser Val
115 120 125
Asp Pro Tyr Arg Gly Gly Gly Gly Gln Arg Lys Val Pro Arg Glu Ala
130 135 140
Ile Gly Leu Ser Gly Glu Leu Glu Ser Met Ile Thr Asp His Gln Lys
145 150 155 160
Ala Lys Gly Thr Asn Gly Leu Val Arg Ala Ser Ser Ser Asn Ile Met
165 170 175
Leu Tyr Gly Asn Leu Gly Asn Leu Asn Gln Thr Gly Pro Val Thr Ala
180 185 190
Gly Val Asn Tyr Gly Asn Asn Asn Gly Tyr Gly Val Lys Arg Thr Thr
195 200 205
Met Gly Ala Ala Thr Ala Thr Thr Thr Lys Ser Gln Asp Gln Ser Gly
210 215 220
Ser Leu Cys Arg Ala Ile Ser Thr Arg Met Asp Pro Glu Thr Leu Lys
225 230 235 240
Ile Met Gly Asn Glu Asp Tyr Lys Asn Gly Asn Phe Ala Glu Ala Leu
245 250 255
Ala Leu Tyr Asp Ala Ala Ile Ala Ile Asp Pro Asn Lys Ala Ala Tyr
260 265 270
Arg Ser Asn Lys Ser Ala Ala Leu Thr Ala Leu Gly Arg Ile Leu Asp
275 280 285
Ala Val Phe Glu Cys Arg Glu Ala Ile Arg Ile Glu Pro His Tyr His
290 295 300
Arg Ala His His Arg Leu Gly Asn Leu Tyr Leu Arg Leu Gly Glu Val
305 310 315 320
Glu Lys Ser Ile Tyr His Phe Lys His Ser Gly Pro Glu Ala Asp Arg
325 330 335
Glu Asp Ile Ala Lys Ala Lys Thr Val Gln Thr His Leu Asn Lys Cys
340 345 350
Thr Glu Ala Lys Arg Leu Arg Asp Trp Asn Gly Leu Ile Thr Glu Thr
355 360 365
Thr Asn Thr Ile Ser Ser Gly Ala Asp Ala Ala Pro Gln Val Tyr Ala
370 375 380
Leu Gln Ala Glu Ala Leu Leu Lys Thr His Arg His Gln Glu Ala Asp
385 390 395 400
Asp Ala Leu Ser Arg Cys Pro Val Phe Asp Ile Asp Ala Ser Thr Arg
405 410 415
Tyr Tyr Gly Pro Val Gly Tyr Ala Gly Phe Leu Val Val Arg Ala Gln
420 425 430
Val His Leu Ala Ser Gly Arg Phe Asp Glu Ala Val Glu Ala Ile Gln
435 440 445
Arg Ala Gly Lys Leu Asp Gly Asn Asn Arg Glu Val Ile Met Ile Ser
450 455 460
Arg Arg Ala Gln Ala Val Thr Glu Ala Arg Phe Lys Gly Asn Glu Leu
465 470 475 480
Phe Lys Ser Gly Arg Phe Gln Glu Ala Cys Ala Ala Tyr Gly Glu Gly
485 490 495
Leu Asp His Asp Pro Arg Asn Ser Val Leu Leu Cys Asn Arg Ala Ala
500 505 510
Cys Arg Ser Lys Leu Gly Gln Phe Asp Lys Ser Ile Glu Asp Cys Thr
515 520 525
Ala Ala Leu Ser Val Arg Pro Gly Tyr Gly Lys Ala Arg Leu Arg Arg
530 535 540
Ala Asp Cys Asn Ala Lys Ile Glu Lys Trp Glu Leu Ala Val Gly Asp
545 550 555 560
Tyr Glu Ile Leu Lys Lys Glu Ser Pro Glu Asp Glu Gln Val Ile Arg
565 570 575
Gly Leu Ser Glu Ala Gln Gln Gln Leu Met Lys Arg Ser Gly Gln Asp
580 585 590
Ser
<210> 94
<211> 1674
<212> DNA
<213> Glycine max
<400> 94
atgacagcag tatttagacg aaataatcca tggtcacgca aatcagtctc tgcaggttct 60
tctcctatgg cccacaattt tgaaaaacca tctaacactc aagattcaaa acggagacat 120
ggaggatcta atgattttgt tccaattaaa gaatcttcac ataataataa caacaatgat 180
gttacaaact actcttctcg ttctgtcccc aatcctcaaa ggccaacaac accacatgtt 240
gtaagccaaa ggaaaccaca acaaaatcgc gatgaaacaa caatgggaaa agggtcttca 300
ccttcaccca ctcagggcta tatcaaccaa ggcaaaaggg taccaaaaga agctgttgga 360
atctctggtg aacttgaaag catgatcaat gaacacctaa agtccaaggg aagtagtacc 420
cttggtaatt taggtaacct taggcaagga ggagtaggac caaaacatca caatgcttac 480
agtgaaatgg attactatgc tagtaatgtt gctagtggag gacacacaaa tcaaatcaca 540
ggacgtgaat atgataaaac tagtttttat ggcaaggaag ctaaaccaag caaggaacaa 600
tcaggttcac tgtgtagggc tgtgtctaca cgaatggatc ctgaacaatt gaagataatg 660
ggcaatgagg attacaagaa tggaaggttt gcagaggcat tggctttgta tgatgctgcc 720
atcgcaattg acccgaataa ggcttcttat aggagcaata gaagtgctgc attaactgct 780
cttggaaggc ttttggaggc tgtttttgaa tgtagagaag ctattcggat tgagtctcat 840
taccaaaggg cccatcatcg gttgggaaat ttgaacttaa gattaggaga aacagacaaa 900
gctttatatc attataaaca agcaggacca gacgctgatc cagatgagat tgttaaagca 960
aagacactcc aagtatatct aaacaaatgc accgaggctc gtaggttcgg cgattggatc 1020
acacttataa ctgcaaccaa caatgctata tcatctggtg cagactctgc tccacaaata 1080
tatgcattac aagccgaagc cttgctaaag cttcatagac atcaagatgc agacaaagta 1140
atgtcaaggt gccctaaatt tgatgttgat cagtgtacta ggttctttgg acctattggt 1200
aatgcaaatt tgttggtgac acgggctcaa gttgatttag ttgctggcag atttgaagaa 1260
gctctggagg cagcacagaa agctactagg ttggattcta atagtagaga agcaaataag 1320
gtgatgagaa aggctcgagc tttgacaagt gctcgtgcaa agggaaatga gcttttcaag 1380
gcatcaaatt ttcatgaggc ttgcattgcc tatggagaag gccttgacca tgatccatat 1440
aactctgttt tactatgcaa cagagctgct tgtagatcaa agctaggcca atttgagaaa 1500
gcaatagatg attgcaatac tgcccttaac ttacgcccgt cttacatcaa ggccaggttg 1560
agaagggcag attgtaatgc taagttggaa agatgggaag cttcaataca agactatgaa 1620
attttactaa aagagacacc ggaagatgaa gaagtaaagc gagcattgat ggag 1674
<210> 95
<211> 558
<212> PRT
<213> Glycine max
<400> 95
Met Thr Ala Val Phe Arg Arg Asn Asn Pro Trp Ser Arg Lys Ser Val
1 5 10 15
Ser Ala Gly Ser Ser Pro Met Ala His Asn Phe Glu Lys Pro Ser Asn
20 25 30
Thr Gln Asp Ser Lys Arg Arg His Gly Gly Ser Asn Asp Phe Val Pro
35 40 45
Ile Lys Glu Ser Ser His Asn Asn Asn Asn Asn Asp Val Thr Asn Tyr
50 55 60
Ser Ser Arg Ser Val Pro Asn Pro Gln Arg Pro Thr Thr Pro His Val
65 70 75 80
Val Ser Gln Arg Lys Pro Gln Gln Asn Arg Asp Glu Thr Thr Met Gly
85 90 95
Lys Gly Ser Ser Pro Ser Pro Thr Gln Gly Tyr Ile Asn Gln Gly Lys
100 105 110
Arg Val Pro Lys Glu Ala Val Gly Ile Ser Gly Glu Leu Glu Ser Met
115 120 125
Ile Asn Glu His Leu Lys Ser Lys Gly Ser Ser Thr Leu Gly Asn Leu
130 135 140
Gly Asn Leu Arg Gln Gly Gly Val Gly Pro Lys His His Asn Ala Tyr
145 150 155 160
Ser Glu Met Asp Tyr Tyr Ala Ser Asn Val Ala Ser Gly Gly His Thr
165 170 175
Asn Gln Ile Thr Gly Arg Glu Tyr Asp Lys Thr Ser Phe Tyr Gly Lys
180 185 190
Glu Ala Lys Pro Ser Lys Glu Gln Ser Gly Ser Leu Cys Arg Ala Val
195 200 205
Ser Thr Arg Met Asp Pro Glu Gln Leu Lys Ile Met Gly Asn Glu Asp
210 215 220
Tyr Lys Asn Gly Arg Phe Ala Glu Ala Leu Ala Leu Tyr Asp Ala Ala
225 230 235 240
Ile Ala Ile Asp Pro Asn Lys Ala Ser Tyr Arg Ser Asn Arg Ser Ala
245 250 255
Ala Leu Thr Ala Leu Gly Arg Leu Leu Glu Ala Val Phe Glu Cys Arg
260 265 270
Glu Ala Ile Arg Ile Glu Ser His Tyr Gln Arg Ala His His Arg Leu
275 280 285
Gly Asn Leu Asn Leu Arg Leu Gly Glu Thr Asp Lys Ala Leu Tyr His
290 295 300
Tyr Lys Gln Ala Gly Pro Asp Ala Asp Pro Asp Glu Ile Val Lys Ala
305 310 315 320
Lys Thr Leu Gln Val Tyr Leu Asn Lys Cys Thr Glu Ala Arg Arg Phe
325 330 335
Gly Asp Trp Ile Thr Leu Ile Thr Ala Thr Asn Asn Ala Ile Ser Ser
340 345 350
Gly Ala Asp Ser Ala Pro Gln Ile Tyr Ala Leu Gln Ala Glu Ala Leu
355 360 365
Leu Lys Leu His Arg His Gln Asp Ala Asp Lys Val Met Ser Arg Cys
370 375 380
Pro Lys Phe Asp Val Asp Gln Cys Thr Arg Phe Phe Gly Pro Ile Gly
385 390 395 400
Asn Ala Asn Leu Leu Val Thr Arg Ala Gln Val Asp Leu Val Ala Gly
405 410 415
Arg Phe Glu Glu Ala Leu Glu Ala Ala Gln Lys Ala Thr Arg Leu Asp
420 425 430
Ser Asn Ser Arg Glu Ala Asn Lys Val Met Arg Lys Ala Arg Ala Leu
435 440 445
Thr Ser Ala Arg Ala Lys Gly Asn Glu Leu Phe Lys Ala Ser Asn Phe
450 455 460
His Glu Ala Cys Ile Ala Tyr Gly Glu Gly Leu Asp His Asp Pro Tyr
465 470 475 480
Asn Ser Val Leu Leu Cys Asn Arg Ala Ala Cys Arg Ser Lys Leu Gly
485 490 495
Gln Phe Glu Lys Ala Ile Asp Asp Cys Asn Thr Ala Leu Asn Leu Arg
500 505 510
Pro Ser Tyr Ile Lys Ala Arg Leu Arg Arg Ala Asp Cys Asn Ala Lys
515 520 525
Leu Glu Arg Trp Glu Ala Ser Ile Gln Asp Tyr Glu Ile Leu Leu Lys
530 535 540
Glu Thr Pro Glu Asp Glu Glu Val Lys Arg Ala Leu Met Glu
545 550 555
<210> 96
<211> 321
<212> DNA
<213> Oryza sativa
<400> 96
atgacgactc caactcggcc caggctgcag atcatcgcaa cagcttcatc aggagagaag 60
caagctacaa taataactag atgtgtgttc ttgcagttgc actacatata cttccttagt 120
ttgtgttctt ctctaatgct ctggtactgt gcaaatagat gcatatgcta ttttgattct 180
ccatcatgtc tgtctctact ctctgctact atacagagca gctgttcatt tcttggcttg 240
aatgaagaca agggaaatgg atccgtctgc caagttcgat atgtgtatat aaatgtatta 300
gagatgtata aatacaagta a 321
<210> 97
<211> 106
<212> PRT
<213> Oryza sativa
<400> 97
Met Thr Thr Pro Thr Arg Pro Arg Leu Gln Ile Ile Ala Thr Ala Ser
1 5 10 15
Ser Gly Glu Lys Gln Ala Thr Ile Ile Thr Arg Cys Val Phe Leu Gln
20 25 30
Leu His Tyr Ile Tyr Phe Leu Ser Leu Cys Ser Ser Leu Met Leu Trp
35 40 45
Tyr Cys Ala Asn Arg Cys Ile Cys Tyr Phe Asp Ser Pro Ser Cys Leu
50 55 60
Ser Leu Leu Ser Ala Thr Ile Gln Ser Ser Cys Ser Phe Leu Gly Leu
65 70 75 80
Asn Glu Asp Lys Gly Asn Gly Ser Val Cys Gln Val Arg Tyr Val Tyr
85 90 95
Ile Asn Val Leu Glu Met Tyr Lys Tyr Lys
100 105
<210> 98
<211> 213
<212> DNA
<213> Sorghum bicolor
<400> 98
atggagtact acgcctacca gcacggcaac agcagcagcg gcaacttgag ctcatcaaag 60
gagaagaggc cgccactgaa gagggggcag ctcaagcggc agatcgtgag gaccatcagc 120
aacctcgtgg tgccgaggaa cgccgctgct gctggtgctg gtgctggctc tgcctcaagg 180
gagaaattca gcagagggcc gagctacaac tga 213
<210> 99
<211> 70
<212> PRT
<213> Sorghum bicolor
<400> 99
Met Glu Tyr Tyr Ala Tyr Gln His Gly Asn Ser Ser Ser Gly Asn Leu
1 5 10 15
Ser Ser Ser Lys Glu Lys Arg Pro Pro Leu Lys Arg Gly Gln Leu Lys
20 25 30
Arg Gln Ile Val Arg Thr Ile Ser Asn Leu Val Val Pro Arg Asn Ala
35 40 45
Ala Ala Ala Gly Ala Gly Ala Gly Ser Ala Ser Arg Glu Lys Phe Ser
50 55 60
Arg Gly Pro Ser Tyr Asn
65 70
<210> 100
<211> 1053
<212> DNA
<213> Oryza sativa
<400> 100
atgtctggtg gtgtgatcag catggtggtc gcgccatgga ttctcgcttg cgggttcttg 60
ctctgctcat cctccttcct cggagctgaa ggcgccattg gtgtgaacta cggcatgctg 120
gggaacaacc tgccgtcgcc ggcgcaggtg atctccatgt acaaggccaa gaacatcaac 180
tacgtccgcc tcttccaccc ggacaccgcc gtcctcgccg cgctccgcaa ctccggcatc 240
ggcgtcgtcc tcggcacgta caacgaggac ctcgcccgcc tcgcctccga cccctcgttt 300
gccgcctcct gggtcagctc ctacgtccag cccttcgccg gcgccgtcag cttccgctac 360
atcaacgccg gcaacgaggt catccccggc gaccccgccg ccaacgtcct cccggccatg 420
cgcaacctcg acgccgcgct caaggccgcc gggatcagcg gcatcccggt caccaccgcc 480
gtcgccacgt ccgtgctcgg cgtctcgtac ccgccgtcgc agggcgcgtt ctcggaggcg 540
gcgtcgccgt acatggcgcc gatcgtcgcc tacctcgcgt ccaggggcgc gccgctgctg 600
gtgaacgtgt acccctactt cgcgtacgcc gcggacgcgg agcgcgtgca gctcgggtac 660
gcgctgctgt cggcgtcgca gtcggcgtcg gtgaccgacg gcggcgtgac atacaccaac 720
atgttcgacg cgatcgtgga cgcggcgcac gcggcggtgg agaaggcgac gggcgggcag 780
gcggtggagc tggtggtgtc ggagaccggc tggccgtccg gtggcggcgg cgtgggcgcc 840
accgtggaga acgcggcggc gtacaacaac aacctgatcc gccacgtctc cggcggcgcc 900
gggacgccgc ggcggccggg gaagccggtg gagacgtacc tgttcgccat gttcaacgag 960
aaccagaagc ccgagggcgt ggagcagcat ttcggcctct tccagcccga catgaccgaa 1020
gtctaccatg tcgacttcgc ggcctccagc tag 1053
<210> 101
<211> 350
<212> PRT
<213> Oryza sativa
<400> 101
Met Ser Gly Gly Val Ile Ser Met Val Val Ala Pro Trp Ile Leu Ala
1 5 10 15
Cys Gly Phe Leu Leu Cys Ser Ser Ser Phe Leu Gly Ala Glu Gly Ala
20 25 30
Ile Gly Val Asn Tyr Gly Met Leu Gly Asn Asn Leu Pro Ser Pro Ala
35 40 45
Gln Val Ile Ser Met Tyr Lys Ala Lys Asn Ile Asn Tyr Val Arg Leu
50 55 60
Phe His Pro Asp Thr Ala Val Leu Ala Ala Leu Arg Asn Ser Gly Ile
65 70 75 80
Gly Val Val Leu Gly Thr Tyr Asn Glu Asp Leu Ala Arg Leu Ala Ser
85 90 95
Asp Pro Ser Phe Ala Ala Ser Trp Val Ser Ser Tyr Val Gln Pro Phe
100 105 110
Ala Gly Ala Val Ser Phe Arg Tyr Ile Asn Ala Gly Asn Glu Val Ile
115 120 125
Pro Gly Asp Pro Ala Ala Asn Val Leu Pro Ala Met Arg Asn Leu Asp
130 135 140
Ala Ala Leu Lys Ala Ala Gly Ile Ser Gly Ile Pro Val Thr Thr Ala
145 150 155 160
Val Ala Thr Ser Val Leu Gly Val Ser Tyr Pro Pro Ser Gln Gly Ala
165 170 175
Phe Ser Glu Ala Ala Ser Pro Tyr Met Ala Pro Ile Val Ala Tyr Leu
180 185 190
Ala Ser Arg Gly Ala Pro Leu Leu Val Asn Val Tyr Pro Tyr Phe Ala
195 200 205
Tyr Ala Ala Asp Ala Glu Arg Val Gln Leu Gly Tyr Ala Leu Leu Ser
210 215 220
Ala Ser Gln Ser Ala Ser Val Thr Asp Gly Gly Val Thr Tyr Thr Asn
225 230 235 240
Met Phe Asp Ala Ile Val Asp Ala Ala His Ala Ala Val Glu Lys Ala
245 250 255
Thr Gly Gly Gln Ala Val Glu Leu Val Val Ser Glu Thr Gly Trp Pro
260 265 270
Ser Gly Gly Gly Gly Val Gly Ala Thr Val Glu Asn Ala Ala Ala Tyr
275 280 285
Asn Asn Asn Leu Ile Arg His Val Ser Gly Gly Ala Gly Thr Pro Arg
290 295 300
Arg Pro Gly Lys Pro Val Glu Thr Tyr Leu Phe Ala Met Phe Asn Glu
305 310 315 320
Asn Gln Lys Pro Glu Gly Val Glu Gln His Phe Gly Leu Phe Gln Pro
325 330 335
Asp Met Thr Glu Val Tyr His Val Asp Phe Ala Ala Ser Ser
340 345 350
<210> 102
<211> 1146
<212> DNA
<213> Zea mays
<400> 102
atgttcttat gtatatgtat atgtttgttt gcttgtgcct gttcatcttc gcttcgcgtg 60
cgattatatc gcgattcgtt tctgagcttt gaggaatcga cgatcaagca tggcgacaaa 120
gtgatcgaac tcttcgagtt ctacgagatc gaagaccctg agcatctgtt tggtgaagga 180
gctgaaggcg cgattggcgt gaactacggc atggtcgcca acaacctgcc ggcgccggag 240
caggtcgtct ccatgtacaa ggccaagaac atcagctacg tgcggctctt ccacccggac 300
acggacgcgt tgaacgcgct ccgcggctcc ggcgtcggcg tcgtcctggg cacgctgaac 360
gaggacctcc cgcgcctggc gtccgacccg tccttcgccg cgtcgtgggt ggccacgaac 420
gtgcagccct tcgccggcgc cgtccagttc cggtacatca acgccggcaa cgaggtcatc 480
ccgggggacg ccgcggcgcg ggtgctcccg gccatgcaga acctggagtc ggcgctccgg 540
tccgcggggg tcacgggcgt ccccgtcacc acggccgtgg ccaccagcgt gctcggcgcc 600
tcgtacccgc cgtcccaggg cgcattctcc gaggcggccg cgtcggtgat ggcgcccatc 660
gtctcgtacc tgtcgtcgaa gggcgcgccg ctgctggtca acgtataccc gtacttcgcc 720
tactcgagca gcggcgggca ggtggcgctc gggtacgcgc tgctgtcggc ggacgccggc 780
gcggcgtcgt cggtcacgga cgccggggtg gtctacacca acatgttcga cgctatcgtg 840
gacgcgacgc acgccgcggt ggagaaagcc ggggtccagg ggctggagct ggtggtgtcg 900
gagaccggct ggccgtcggc cggcggcgag ggcgccaccg tggagaatgc cgcggcgtac 960
aacaacaacg tggtgcggca cgtcggcggc ggtaccccgc gccggccagg gaaggccgtg 1020
gagacgtacc ttttcgccat gttcaacgag aacggcaagg ccgagggcgt ggagcagcac 1080
ttcggcctct tccagccgga catgagcgag gtctaccacg tcgacttcac ggcgggatcc 1140
ccctag 1146
<210> 103
<211> 381
<212> PRT
<213> Zea mays
<400> 103
Met Phe Leu Cys Ile Cys Ile Cys Leu Phe Ala Cys Ala Cys Ser Ser
1 5 10 15
Ser Leu Arg Val Arg Leu Tyr Arg Asp Ser Phe Leu Ser Phe Glu Glu
20 25 30
Ser Thr Ile Lys His Gly Asp Lys Val Ile Glu Leu Phe Glu Phe Tyr
35 40 45
Glu Ile Glu Asp Pro Glu His Leu Phe Gly Glu Gly Ala Glu Gly Ala
50 55 60
Ile Gly Val Asn Tyr Gly Met Val Ala Asn Asn Leu Pro Ala Pro Glu
65 70 75 80
Gln Val Val Ser Met Tyr Lys Ala Lys Asn Ile Ser Tyr Val Arg Leu
85 90 95
Phe His Pro Asp Thr Asp Ala Leu Asn Ala Leu Arg Gly Ser Gly Val
100 105 110
Gly Val Val Leu Gly Thr Leu Asn Glu Asp Leu Pro Arg Leu Ala Ser
115 120 125
Asp Pro Ser Phe Ala Ala Ser Trp Val Ala Thr Asn Val Gln Pro Phe
130 135 140
Ala Gly Ala Val Gln Phe Arg Tyr Ile Asn Ala Gly Asn Glu Val Ile
145 150 155 160
Pro Gly Asp Ala Ala Ala Arg Val Leu Pro Ala Met Gln Asn Leu Glu
165 170 175
Ser Ala Leu Arg Ser Ala Gly Val Thr Gly Val Pro Val Thr Thr Ala
180 185 190
Val Ala Thr Ser Val Leu Gly Ala Ser Tyr Pro Pro Ser Gln Gly Ala
195 200 205
Phe Ser Glu Ala Ala Ala Ser Val Met Ala Pro Ile Val Ser Tyr Leu
210 215 220
Ser Ser Lys Gly Ala Pro Leu Leu Val Asn Val Tyr Pro Tyr Phe Ala
225 230 235 240
Tyr Ser Ser Ser Gly Gly Gln Val Ala Leu Gly Tyr Ala Leu Leu Ser
245 250 255
Ala Asp Ala Gly Ala Ala Ser Ser Val Thr Asp Ala Gly Val Val Tyr
260 265 270
Thr Asn Met Phe Asp Ala Ile Val Asp Ala Thr His Ala Ala Val Glu
275 280 285
Lys Ala Gly Val Gln Gly Leu Glu Leu Val Val Ser Glu Thr Gly Trp
290 295 300
Pro Ser Ala Gly Gly Glu Gly Ala Thr Val Glu Asn Ala Ala Ala Tyr
305 310 315 320
Asn Asn Asn Val Val Arg His Val Gly Gly Gly Thr Pro Arg Arg Pro
325 330 335
Gly Lys Ala Val Glu Thr Tyr Leu Phe Ala Met Phe Asn Glu Asn Gly
340 345 350
Lys Ala Glu Gly Val Glu Gln His Phe Gly Leu Phe Gln Pro Asp Met
355 360 365
Ser Glu Val Tyr His Val Asp Phe Thr Ala Gly Ser Pro
370 375 380
<210> 104
<211> 1092
<212> DNA
<213> Sorghum bicolor
<400> 104
atgacggcgt gcggtggtgg tgtgaggatg gcggttgctg cggcggcggc ggcgaagatg 60
gctgcgccat gggttcttgg ttgcagcttg ctgctctgct tggcgacctt tcagggagct 120
gagtgtgcga tcggcgtgaa ctacggcatg gtcgccaaca acctgccggc gccggagcag 180
gtgatctcca tgtacaaggc caagaacatc aactacgtgc gcctcttcca cccggacacg 240
tcggtgctga acgcgctccg gggctccggc atcggcgttg tcctgggcac gctgaacgag 300
gacctccagc gtctggcgtc cgacccgtcc tacgccgcgt cgtgggtggc caccaacgtg 360
cagcccttcg ccggcgccgt ccagttccgg tacatcaacg ccggcaacga ggtcatcccg 420
ggggacgccg cggcgcaggt gctcccggcc atgcagaacc tggagtcggc gctccggtcc 480
gcgggggtca ctggcgtccc cgtcacgacg gccgtggcca cgagcgtgct cggcacgtcg 540
tacccgccgt cccagggcgc cttctccgag gcggcggcgc cggtgatggc gcccatcgtc 600
tcgtacctgt cgtcgaaggg cgcgccgctg ctggtgaacg tgtacccgta cttcgcctac 660
tcgggcagcg gcgggcaggt ggcgctcggg tacgcgctgt tgtcgtcgga cgccagcgcg 720
gcgtcgtcgt cgtcggtgac ggacggcggg gtggtgtaca ccaacatgtt cgacgcgatc 780
gtggacgcga cgcacgcggc ggtggagaag gccggggtgc agggactgga gctggtggtg 840
tcggagaccg ggtggccgtc gggcggcggc ggcgacggcg ccaccgtgga gaacgcggcg 900
gcgtacaaca acaacgtggt gcggcacgtc ggcggaggca ccccgcggcg gccagggaag 960
gccgtggaga cgtacctgtt cgccatgttc aacgagaacg gcaaggccga gggcgtggag 1020
cagcacttcg gcctcttcca gccggacatg agcgaggtct accacgtcga cttcacggcg 1080
gcttcttcct ag 1092
<210> 105
<211> 363
<212> PRT
<213> Sorghum bicolor
<400> 105
Met Thr Ala Cys Gly Gly Gly Val Arg Met Ala Val Ala Ala Ala Ala
1 5 10 15
Ala Ala Lys Met Ala Ala Pro Trp Val Leu Gly Cys Ser Leu Leu Leu
20 25 30
Cys Leu Ala Thr Phe Gln Gly Ala Glu Cys Ala Ile Gly Val Asn Tyr
35 40 45
Gly Met Val Ala Asn Asn Leu Pro Ala Pro Glu Gln Val Ile Ser Met
50 55 60
Tyr Lys Ala Lys Asn Ile Asn Tyr Val Arg Leu Phe His Pro Asp Thr
65 70 75 80
Ser Val Leu Asn Ala Leu Arg Gly Ser Gly Ile Gly Val Val Leu Gly
85 90 95
Thr Leu Asn Glu Asp Leu Gln Arg Leu Ala Ser Asp Pro Ser Tyr Ala
100 105 110
Ala Ser Trp Val Ala Thr Asn Val Gln Pro Phe Ala Gly Ala Val Gln
115 120 125
Phe Arg Tyr Ile Asn Ala Gly Asn Glu Val Ile Pro Gly Asp Ala Ala
130 135 140
Ala Gln Val Leu Pro Ala Met Gln Asn Leu Glu Ser Ala Leu Arg Ser
145 150 155 160
Ala Gly Val Thr Gly Val Pro Val Thr Thr Ala Val Ala Thr Ser Val
165 170 175
Leu Gly Thr Ser Tyr Pro Pro Ser Gln Gly Ala Phe Ser Glu Ala Ala
180 185 190
Ala Pro Val Met Ala Pro Ile Val Ser Tyr Leu Ser Ser Lys Gly Ala
195 200 205
Pro Leu Leu Val Asn Val Tyr Pro Tyr Phe Ala Tyr Ser Gly Ser Gly
210 215 220
Gly Gln Val Ala Leu Gly Tyr Ala Leu Leu Ser Ser Asp Ala Ser Ala
225 230 235 240
Ala Ser Ser Ser Ser Val Thr Asp Gly Gly Val Val Tyr Thr Asn Met
245 250 255
Phe Asp Ala Ile Val Asp Ala Thr His Ala Ala Val Glu Lys Ala Gly
260 265 270
Val Gln Gly Leu Glu Leu Val Val Ser Glu Thr Gly Trp Pro Ser Gly
275 280 285
Gly Gly Gly Asp Gly Ala Thr Val Glu Asn Ala Ala Ala Tyr Asn Asn
290 295 300
Asn Val Val Arg His Val Gly Gly Gly Thr Pro Arg Arg Pro Gly Lys
305 310 315 320
Ala Val Glu Thr Tyr Leu Phe Ala Met Phe Asn Glu Asn Gly Lys Ala
325 330 335
Glu Gly Val Glu Gln His Phe Gly Leu Phe Gln Pro Asp Met Ser Glu
340 345 350
Val Tyr His Val Asp Phe Thr Ala Ala Ser Ser
355 360
<210> 106
<211> 1035
<212> DNA
<213> Arabidopsis thaliana
<400> 106
atggattgtc atagaaagac gttcttgttg aagtttttgt gcgtggcatt tctgttaaac 60
tacagcaatg ttggctttgt agacgcagca acaaacattg gcttgaacta cggcctcctt 120
ggagacaacc tcccgcctcc atctgaagtt atcaacctct acaagtcctt aagtgttacc 180
aatattcgga tcttcgacac aactacggat gtccttaacg cctttcgagg gaatcgcaat 240
atcggagtta tggtagacgt gaagaaccaa gacttagagg ctctttcggt cagcgaagaa 300
gctgttaaca cctggttcgt gaccaacatt gagccttact tagctgatgt caacatcacg 360
ttcattgctg tcgggaacga agtcatccca ggggaaatcg gctcttatgt gctacccgtc 420
atgaaatctc tcaccaacat tgtcaagtcg aggagtctcc cgatcttgat cagcaccacg 480
gtggctatga ccaaccttgg ccagtcatat ccaccttcgg ccggagattt catgcctcaa 540
gcacgtgaac aacttacccc ggtgctgaag tttttgtctc aaacaaatac gcctatcctc 600
gtcaacatct acccctactt cgcatatgct gctgatccta tcaacattca gctcgactat 660
gccatcttca acaccaacaa ggtcgtggtc caagacgggc cacttggtta tacaaacatg 720
ttcgatgtga tatttgatgc gttcgtatgg gcaatggaga aagaaggtgt gaaggattta 780
ccaatggtgg taacagaaac tggatggcca tctgctggta acggaaactt aacgactcca 840
gatatcgcat ctatatacaa taccaatttt gttaaacatg tggaaagcgg taaagggacg 900
ccaaagagac caaagagtgg cattagtgga tttctatttg cgacgttcaa tgagaatcaa 960
aagccagcgg gaaccgaaca aaattttggg ttatataatc caacagatat gaagcccatc 1020
tacaagatgt tttga 1035
<210> 107
<211> 344
<212> PRT
<213> Arabidopsis thaliana
<400> 107
Met Asp Cys His Arg Lys Thr Phe Leu Leu Lys Phe Leu Cys Val Ala
1 5 10 15
Phe Leu Leu Asn Tyr Ser Asn Val Gly Phe Val Asp Ala Ala Thr Asn
20 25 30
Ile Gly Leu Asn Tyr Gly Leu Leu Gly Asp Asn Leu Pro Pro Pro Ser
35 40 45
Glu Val Ile Asn Leu Tyr Lys Ser Leu Ser Val Thr Asn Ile Arg Ile
50 55 60
Phe Asp Thr Thr Thr Asp Val Leu Asn Ala Phe Arg Gly Asn Arg Asn
65 70 75 80
Ile Gly Val Met Val Asp Val Lys Asn Gln Asp Leu Glu Ala Leu Ser
85 90 95
Val Ser Glu Glu Ala Val Asn Thr Trp Phe Val Thr Asn Ile Glu Pro
100 105 110
Tyr Leu Ala Asp Val Asn Ile Thr Phe Ile Ala Val Gly Asn Glu Val
115 120 125
Ile Pro Gly Glu Ile Gly Ser Tyr Val Leu Pro Val Met Lys Ser Leu
130 135 140
Thr Asn Ile Val Lys Ser Arg Ser Leu Pro Ile Leu Ile Ser Thr Thr
145 150 155 160
Val Ala Met Thr Asn Leu Gly Gln Ser Tyr Pro Pro Ser Ala Gly Asp
165 170 175
Phe Met Pro Gln Ala Arg Glu Gln Leu Thr Pro Val Leu Lys Phe Leu
180 185 190
Ser Gln Thr Asn Thr Pro Ile Leu Val Asn Ile Tyr Pro Tyr Phe Ala
195 200 205
Tyr Ala Ala Asp Pro Ile Asn Ile Gln Leu Asp Tyr Ala Ile Phe Asn
210 215 220
Thr Asn Lys Val Val Val Gln Asp Gly Pro Leu Gly Tyr Thr Asn Met
225 230 235 240
Phe Asp Val Ile Phe Asp Ala Phe Val Trp Ala Met Glu Lys Glu Gly
245 250 255
Val Lys Asp Leu Pro Met Val Val Thr Glu Thr Gly Trp Pro Ser Ala
260 265 270
Gly Asn Gly Asn Leu Thr Thr Pro Asp Ile Ala Ser Ile Tyr Asn Thr
275 280 285
Asn Phe Val Lys His Val Glu Ser Gly Lys Gly Thr Pro Lys Arg Pro
290 295 300
Lys Ser Gly Ile Ser Gly Phe Leu Phe Ala Thr Phe Asn Glu Asn Gln
305 310 315 320
Lys Pro Ala Gly Thr Glu Gln Asn Phe Gly Leu Tyr Asn Pro Thr Asp
325 330 335
Met Lys Pro Ile Tyr Lys Met Phe
340
<210> 108
<211> 957
<212> DNA
<213> Glycine max
<400> 108
gcacttaacc tattgttgtg tttgaggata ctaaatttca tccagctgaa attacgggca 60
caattccaat ccgtgggtgt gtgttatgga ggaaaaggaa acaacctacc aaaaatgcaa 120
gcagtggtgg atttatacaa atcaaaccga attgacaaaa tccgtttata ccatccagac 180
gaaggagccc ttcaagccct cagaggttca aacatagagg tgatcctcgg tgtccctaat 240
gaccaacttc aatctctcat caatgttgca aatgccacaa attgggtcaa caagtacgtg 300
aaagcatact cacaaaacgt gaaattcaag tacattgcag ttgcacttga aaacattcag 360
aacgcaattt ctgccgccaa tttacaatgc caagtcaagg tgtcaacagc aatagacacc 420
actttacttg gctactctta cccaccaaac gttgccgttt tcagcagtag tgcaagttca 480
tacataagac caattgtaaa ctttttagct agaaatggag ctccacttct cgcaaacgtg 540
tacccttact tcgcctatgt taacgaccaa caaagcatta gtcttgacta tgccttgttt 600
actgaacatg gtaacaacga ggctgggtac caaaacctgt ttgatgcatt gttggattct 660
ctatacgctg ctcttgagaa agtaggggca cccaatgtga cggttgttgt gtctgagagt 720
gggtggccat ctgaaggtgg agcagtagca gccactgttc aaaacgcagg aacctattac 780
cgcaacttga ttagccatgc caagggtgga accccaaaga ggcctaatgg tcccatagag 840
atttatctct atgccatgtt tgatgaaaac cagaagcagg gtcaagaaat tcagcaacac 900
ttcggtctct tcagacttga caaatcacct ttaaatatga aaaatttggt cctctaa 957
<210> 109
<211> 318
<212> PRT
<213> Glycine max
<400> 109
Ala Leu Asn Leu Leu Leu Cys Leu Arg Ile Leu Asn Phe Ile Gln Leu
1 5 10 15
Lys Leu Arg Ala Gln Phe Gln Ser Val Gly Val Cys Tyr Gly Gly Lys
20 25 30
Gly Asn Asn Leu Pro Lys Met Gln Ala Val Val Asp Leu Tyr Lys Ser
35 40 45
Asn Arg Ile Asp Lys Ile Arg Leu Tyr His Pro Asp Glu Gly Ala Leu
50 55 60
Gln Ala Leu Arg Gly Ser Asn Ile Glu Val Ile Leu Gly Val Pro Asn
65 70 75 80
Asp Gln Leu Gln Ser Leu Ile Asn Val Ala Asn Ala Thr Asn Trp Val
85 90 95
Asn Lys Tyr Val Lys Ala Tyr Ser Gln Asn Val Lys Phe Lys Tyr Ile
100 105 110
Ala Val Ala Leu Glu Asn Ile Gln Asn Ala Ile Ser Ala Ala Asn Leu
115 120 125
Gln Cys Gln Val Lys Val Ser Thr Ala Ile Asp Thr Thr Leu Leu Gly
130 135 140
Tyr Ser Tyr Pro Pro Asn Val Ala Val Phe Ser Ser Ser Ala Ser Ser
145 150 155 160
Tyr Ile Arg Pro Ile Val Asn Phe Leu Ala Arg Asn Gly Ala Pro Leu
165 170 175
Leu Ala Asn Val Tyr Pro Tyr Phe Ala Tyr Val Asn Asp Gln Gln Ser
180 185 190
Ile Ser Leu Asp Tyr Ala Leu Phe Thr Glu His Gly Asn Asn Glu Ala
195 200 205
Gly Tyr Gln Asn Leu Phe Asp Ala Leu Leu Asp Ser Leu Tyr Ala Ala
210 215 220
Leu Glu Lys Val Gly Ala Pro Asn Val Thr Val Val Val Ser Glu Ser
225 230 235 240
Gly Trp Pro Ser Glu Gly Gly Ala Val Ala Ala Thr Val Gln Asn Ala
245 250 255
Gly Thr Tyr Tyr Arg Asn Leu Ile Ser His Ala Lys Gly Gly Thr Pro
260 265 270
Lys Arg Pro Asn Gly Pro Ile Glu Ile Tyr Leu Tyr Ala Met Phe Asp
275 280 285
Glu Asn Gln Lys Gln Gly Gln Glu Ile Gln Gln His Phe Gly Leu Phe
290 295 300
Arg Leu Asp Lys Ser Pro Leu Asn Met Lys Asn Leu Val Leu
305 310 315
<210> 110
<211> 630
<212> DNA
<213> Oryza sativa
<400> 110
atgtccaagc ccgatcgccg ctccggcgcc gccacgtccc cgtcgctccg cttcctcggc 60
ctcctcaagc agcccgacga cggcagcggc gaccacgagc tggagctcga cgagcgcgac 120
gtcgtctggt cgtcgtcgtc gtcgtcgaac acctcgccct cctcgtgggc ctcctcaacc 180
aattcctcgc cgtccctcac cccgtccgcg tccgcgggcg tgggcgtccg ccggccgctg 240
tcgtcgtccc acgccttccc cgccgccggc agcgtcggcc tgtccgccct cctcgccgac 300
gatcacgccc ccacggcgtc catcccggcc aaggcacgcc cggagaggca gcagcccccg 360
cagccgtacc accagtcggc gccggtcgcc gtgccggcct ggcccaaggc cacggacagc 420
gacaggcgtc gccgtggtgt gcagcacgag gccctcaacg acgaggagga cgatgacgac 480
gagctcgtgg tgccgccgca cgagatggcc gcgcgccgcg ccgcggcggc ggcgtcggtg 540
atggagggcg ccgggcggac gctgaaaggg cgcgacctcc ggcgcgtgcg caacgcggtg 600
tggcgcacca ccggcttcct cgacctgtga 630
<210> 111
<211> 209
<212> PRT
<213> Oryza sativa
<400> 111
Met Ser Lys Pro Asp Arg Arg Ser Gly Ala Ala Thr Ser Pro Ser Leu
1 5 10 15
Arg Phe Leu Gly Leu Leu Lys Gln Pro Asp Asp Gly Ser Gly Asp His
20 25 30
Glu Leu Glu Leu Asp Glu Arg Asp Val Val Trp Ser Ser Ser Ser Ser
35 40 45
Ser Asn Thr Ser Pro Ser Ser Trp Ala Ser Ser Thr Asn Ser Ser Pro
50 55 60
Ser Leu Thr Pro Ser Ala Ser Ala Gly Val Gly Val Arg Arg Pro Leu
65 70 75 80
Ser Ser Ser His Ala Phe Pro Ala Ala Gly Ser Val Gly Leu Ser Ala
85 90 95
Leu Leu Ala Asp Asp His Ala Pro Thr Ala Ser Ile Pro Ala Lys Ala
100 105 110
Arg Pro Glu Arg Gln Gln Pro Pro Gln Pro Tyr His Gln Ser Ala Pro
115 120 125
Val Ala Val Pro Ala Trp Pro Lys Ala Thr Asp Ser Asp Arg Arg Arg
130 135 140
Arg Gly Val Gln His Glu Ala Leu Asn Asp Glu Glu Asp Asp Asp Asp
145 150 155 160
Glu Leu Val Val Pro Pro His Glu Met Ala Ala Arg Arg Ala Ala Ala
165 170 175
Ala Ala Ser Val Met Glu Gly Ala Gly Arg Thr Leu Lys Gly Arg Asp
180 185 190
Leu Arg Arg Val Arg Asn Ala Val Trp Arg Thr Thr Gly Phe Leu Asp
195 200 205
Leu
<210> 112
<211> 516
<212> DNA
<213> Zea mays
<400> 112
atggcgatgc cgagggcggc gggcgcgggg tcgctccgct tcctgggcct gctgaagcag 60
ccggagtccg acgccgccgc cccattcgag ctcgacgagc gcgacgtgtt gtggccggcg 120
ggcggggggc agcaggacgg ttgtgccgcc ccgccggcga ggcgtcgtcg cgcgcacgcc 180
gtgccgctgt acagcttcgg gctgtcgtcg ctgctcgccg aaggctgcgg cggcggggtg 240
cccgtgcccg tgcccgtgcc ggggagggcg atggcgccga gcgccgcgcc gaggcagtcg 300
gcgccggtgc gcgtgccggc gccgtggcca ggcggcagga gggccgacga ggacgaggag 360
gacggcgagg aggtggtgcc gccgcacgtg gtcgcggcgc ggcgccacgc gcggtcgtcg 420
tccgtgctgg agggcgccgg gcgcacgctc aagggccgcg acctccgtag cgtccgcaac 480
gccgtgctcc ggcagaccgg gttcttggac ctgtga 516
<210> 113
<211> 171
<212> PRT
<213> Zea mays
<400> 113
Met Ala Met Pro Arg Ala Ala Gly Ala Gly Ser Leu Arg Phe Leu Gly
1 5 10 15
Leu Leu Lys Gln Pro Glu Ser Asp Ala Ala Ala Pro Phe Glu Leu Asp
20 25 30
Glu Arg Asp Val Leu Trp Pro Ala Gly Gly Gly Gln Gln Asp Gly Cys
35 40 45
Ala Ala Pro Pro Ala Arg Arg Arg Arg Ala His Ala Val Pro Leu Tyr
50 55 60
Ser Phe Gly Leu Ser Ser Leu Leu Ala Glu Gly Cys Gly Gly Gly Val
65 70 75 80
Pro Val Pro Val Pro Val Pro Gly Arg Ala Met Ala Pro Ser Ala Ala
85 90 95
Pro Arg Gln Ser Ala Pro Val Arg Val Pro Ala Pro Trp Pro Gly Gly
100 105 110
Arg Arg Ala Asp Glu Asp Glu Glu Asp Gly Glu Glu Val Val Pro Pro
115 120 125
His Val Val Ala Ala Arg Arg His Ala Arg Ser Ser Ser Val Leu Glu
130 135 140
Gly Ala Gly Arg Thr Leu Lys Gly Arg Asp Leu Arg Ser Val Arg Asn
145 150 155 160
Ala Val Leu Arg Gln Thr Gly Phe Leu Asp Leu
165 170
<210> 114
<211> 582
<212> DNA
<213> Sorghum bicolor
<400> 114
atgccgaggg cgccgggcgc gggctcgctc cgcttcctgg gcctcctgaa gcagccggag 60
tcagcagggc ccgacgccgc cgcgccccta gacgagcgcg acgtcgtgtg gccggcgggc 120
ggggggcagc aggacgggtg ggccaccccg ccggcgtcgg cgccacaggc ggcgaggcgg 180
cgcgcgcacg ccgtgccgca cagcttcggg ctgtcgtccc tgctcgccga caacggcggc 240
ggcggcggag tggccgtgcc agtgcacgtg cccgtgaggg cggtggcgcc gagcgccgcg 300
ccgaggcagt cggcgccggt gcgggtgccg gcgccgtggc cggggaaggc ggcgggcgag 360
cgccgcgcgg gggaggacgg ccgcggaggc gggggcggca gcagaagggc cgacgaggac 420
gaggaggacg gcgacgagat ggtgccgccg cacgtggtcg cggcgcggcg ccacgcgcgg 480
tcgtcgtccg tgctggaggg cgccgggcgc acgctcaagg gccgcgacct ccgccgcgtc 540
cgcaacgccg tgctccggca gaccgggttc ctggacctct ga 582
<210> 115
<211> 193
<212> PRT
<213> Sorghum bicolor
<400> 115
Met Pro Arg Ala Pro Gly Ala Gly Ser Leu Arg Phe Leu Gly Leu Leu
1 5 10 15
Lys Gln Pro Glu Ser Ala Gly Pro Asp Ala Ala Ala Pro Leu Asp Glu
20 25 30
Arg Asp Val Val Trp Pro Ala Gly Gly Gly Gln Gln Asp Gly Trp Ala
35 40 45
Thr Pro Pro Ala Ser Ala Pro Gln Ala Ala Arg Arg Arg Ala His Ala
50 55 60
Val Pro His Ser Phe Gly Leu Ser Ser Leu Leu Ala Asp Asn Gly Gly
65 70 75 80
Gly Gly Gly Val Ala Val Pro Val His Val Pro Val Arg Ala Val Ala
85 90 95
Pro Ser Ala Ala Pro Arg Gln Ser Ala Pro Val Arg Val Pro Ala Pro
100 105 110
Trp Pro Gly Lys Ala Ala Gly Glu Arg Arg Ala Gly Glu Asp Gly Arg
115 120 125
Gly Gly Gly Gly Gly Ser Arg Arg Ala Asp Glu Asp Glu Glu Asp Gly
130 135 140
Asp Glu Met Val Pro Pro His Val Val Ala Ala Arg Arg His Ala Arg
145 150 155 160
Ser Ser Ser Val Leu Glu Gly Ala Gly Arg Thr Leu Lys Gly Arg Asp
165 170 175
Leu Arg Arg Val Arg Asn Ala Val Leu Arg Gln Thr Gly Phe Leu Asp
180 185 190
Leu
<210> 116
<211> 447
<212> DNA
<213> Arabidopsis thaliana
<400> 116
atggcgacag cgacgagaaa gagctattac caacgcccga gtcatcgctt ccttccaaca 60
gatcggactt acaacgtcac cggagattca gaattcgagt tcgacgagtc tgatctatac 120
tctaaccgct ccgattcgcc tgaatttcgt cggaaactca tcacatcaaa ccgtaaatcg 180
tctccggcaa ccgtaaccac cactacagta gcttcttcac ttccgatgaa cgtacagaac 240
tggtctaaga ttctcgggaa agagaatcgg aaaagcatcg aaaacgatga cgatggcggc 300
gaaggaaaat tgccgccgca tgagtatttg gcgaagacga gaatggcttc gttctctgtg 360
catgaaggaa ttgggaggac attgaaagga agagatatga gtagggtgag aaatgcaatt 420
ttggaaaaga ctgggttctt agattaa 447
<210> 117
<211> 148
<212> PRT
<213> Arabidopsis thaliana
<400> 117
Met Ala Thr Ala Thr Arg Lys Ser Tyr Tyr Gln Arg Pro Ser His Arg
1 5 10 15
Phe Leu Pro Thr Asp Arg Thr Tyr Asn Val Thr Gly Asp Ser Glu Phe
20 25 30
Glu Phe Asp Glu Ser Asp Leu Tyr Ser Asn Arg Ser Asp Ser Pro Glu
35 40 45
Phe Arg Arg Lys Leu Ile Thr Ser Asn Arg Lys Ser Ser Pro Ala Thr
50 55 60
Val Thr Thr Thr Thr Val Ala Ser Ser Leu Pro Met Asn Val Gln Asn
65 70 75 80
Trp Ser Lys Ile Leu Gly Lys Glu Asn Arg Lys Ser Ile Glu Asn Asp
85 90 95
Asp Asp Gly Gly Glu Gly Lys Leu Pro Pro His Glu Tyr Leu Ala Lys
100 105 110
Thr Arg Met Ala Ser Phe Ser Val His Glu Gly Ile Gly Arg Thr Leu
115 120 125
Lys Gly Arg Asp Met Ser Arg Val Arg Asn Ala Ile Leu Glu Lys Thr
130 135 140
Gly Phe Leu Asp
145
<210> 118
<211> 450
<212> DNA
<213> Glycine max
<400> 118
atgaccaaca ttcgaagagc aacctatcgc tttctccctg ccatggacac agattctttc 60
tccgattcca acttcgaatt ccaggaatcc gatctctaca actccgctcg cgctaactct 120
cccgaatttc gcaaatccgt acgcgcctcc agatttcaca actactcttc ctccggcggc 180
cgcgtcggta ctccggtgtc gcttccggtg aacgtgccgg actggtcgaa gattctcggc 240
gacgagttcg gacggaacca gaggaggaac tacgacgaag cgcagagcga tgaggaagat 300
ggagatggga gagtgcctcc gcacgagttt ctggcgaaga cgggaatcgc ttcgttctcg 360
gtgcacgaag gagttggaag gactctcaaa ggacgcgatc tcagtagggt tcgaaacgcg 420
atttgggcta aaacaggatt ccaggactag 450
<210> 119
<211> 149
<212> PRT
<213> Glycine max
<400> 119
Met Thr Asn Ile Arg Arg Ala Thr Tyr Arg Phe Leu Pro Ala Met Asp
1 5 10 15
Thr Asp Ser Phe Ser Asp Ser Asn Phe Glu Phe Gln Glu Ser Asp Leu
20 25 30
Tyr Asn Ser Ala Arg Ala Asn Ser Pro Glu Phe Arg Lys Ser Val Arg
35 40 45
Ala Ser Arg Phe His Asn Tyr Ser Ser Ser Gly Gly Arg Val Gly Thr
50 55 60
Pro Val Ser Leu Pro Val Asn Val Pro Asp Trp Ser Lys Ile Leu Gly
65 70 75 80
Asp Glu Phe Gly Arg Asn Gln Arg Arg Asn Tyr Asp Glu Ala Gln Ser
85 90 95
Asp Glu Glu Asp Gly Asp Gly Arg Val Pro Pro His Glu Phe Leu Ala
100 105 110
Lys Thr Gly Ile Ala Ser Phe Ser Val His Glu Gly Val Gly Arg Thr
115 120 125
Leu Lys Gly Arg Asp Leu Ser Arg Val Arg Asn Ala Ile Trp Ala Lys
130 135 140
Thr Gly Phe Gln Asp
145
<210> 120
<211> 1599
<212> DNA
<213> Oryza sativa
<400> 120
atgacgccgc gggagggcgg cggcggcggc ggaggcggcg tggtggggtt ggtagcgtac 60
gcggcgctgg cggtggtggc gctgcgggtg gtgctgtcgt acaagtcggt ggcgcacgcg 120
gtgcggagga tgtggcggtg ggcggacgag tgggcgcagg cgtaccagta ctacgaggtg 180
ccgcggttcg gcggcggcgg cggcgagggg gtggagaatc cgctgttcag gaaggcggcg 240
gcgtacgtgg cggcgctgcc gtcgctggag gacgcggacg cggcgtgcgt gctgtcgtcg 300
gcgtgcaaga ccaacgactt ctcgctgcag ctcgggccgg ggcacacggc gcacgacgcg 360
ttcctcggcg cccgcctcgc gtggaccaac gccgggccgg cgggcgacgg cggcggcggc 420
cgcgagcgcc tggtgttgcg tgtgcgtcga catgacagga cgcgcgtgct gcgcccgtac 480
ctgcagcatg tcgagtcggt cgccgacgag atggagctcc gccggcgcga gctgaggctg 540
tacgcgaaca ccggcggcga tggcgccccc tcgccgaagt ggacgtcggc gccgttcacc 600
cacccggcca cgctggagac ggtggccatg gacccggagc tcaaggcccg cgtccgcgcc 660
gacctggaga gcttcctcaa gggcagggcg tactaccatc ggctcggtcg cgcgtggcgc 720
cggagctacc tgctctacgg cccgtccggc accgggaagt ccacgttcgc cgcggcgatg 780
gcgaggttct tggtgtacga cgtctacgac atcgacatgt cccgcggcgg ctgcgacgac 840
ctccgcgcgc tgctcctgga gaccaccccg cggtcgctca tcctcgtgga ggacctggac 900
cggtatctcc gcggcggcgg cgatggggag acgtccgccg cgaggacgtc gaggatgctc 960
agcttcatgg acgggctctc gtcgtgctgc ggcgaggagc gcgtcatggt gttcaccatg 1020
agcggcgaca aggacggcgt ggacccggcc atcctgcggc cggggaggct ggacgtgcac 1080
atccacttca ccatgtgcga cttcgagggg ttcaagactc tggccagcaa ctacctcggc 1140
ctcaaggacc acaagctgta cccgcaggtg gaggagggct tccacgccgc cggcgcgcgc 1200
ctcagccccg ccgagctcgg cgagatcatg ctcgccaacc gcgggtcccc gagccgcgcg 1260
ctccgcacgg tcatcaacgc gctgcagcac gtggcgccgg ccccggcgcc gccgcagcag 1320
cagccccggg cgagctccgc gtcgcggccg ccgcccaggc tgaccgcgag atggtccggt 1380
cacctcgacg aggcaagcgc ggcggacgca agcgcggcca accaatcgcc gggcggcggc 1440
ggcgggggat tcgggaagga cgcgccgatg agggagttca agaagctcta cgggctgatc 1500
aagatcagga gccgcaagga cggcggcgtc gttcccgtcg acgacacggc gtcggcgaac 1560
ggccggggca gtgacgtcag cgccgataag gaccggtga 1599
<210> 121
<211> 532
<212> PRT
<213> Oryza sativa
<400> 121
Met Thr Pro Arg Glu Gly Gly Gly Gly Gly Gly Gly Gly Val Val Gly
1 5 10 15
Leu Val Ala Tyr Ala Ala Leu Ala Val Val Ala Leu Arg Val Val Leu
20 25 30
Ser Tyr Lys Ser Val Ala His Ala Val Arg Arg Met Trp Arg Trp Ala
35 40 45
Asp Glu Trp Ala Gln Ala Tyr Gln Tyr Tyr Glu Val Pro Arg Phe Gly
50 55 60
Gly Gly Gly Gly Glu Gly Val Glu Asn Pro Leu Phe Arg Lys Ala Ala
65 70 75 80
Ala Tyr Val Ala Ala Leu Pro Ser Leu Glu Asp Ala Asp Ala Ala Cys
85 90 95
Val Leu Ser Ser Ala Cys Lys Thr Asn Asp Phe Ser Leu Gln Leu Gly
100 105 110
Pro Gly His Thr Ala His Asp Ala Phe Leu Gly Ala Arg Leu Ala Trp
115 120 125
Thr Asn Ala Gly Pro Ala Gly Asp Gly Gly Gly Gly Arg Glu Arg Leu
130 135 140
Val Leu Arg Val Arg Arg His Asp Arg Thr Arg Val Leu Arg Pro Tyr
145 150 155 160
Leu Gln His Val Glu Ser Val Ala Asp Glu Met Glu Leu Arg Arg Arg
165 170 175
Glu Leu Arg Leu Tyr Ala Asn Thr Gly Gly Asp Gly Ala Pro Ser Pro
180 185 190
Lys Trp Thr Ser Ala Pro Phe Thr His Pro Ala Thr Leu Glu Thr Val
195 200 205
Ala Met Asp Pro Glu Leu Lys Ala Arg Val Arg Ala Asp Leu Glu Ser
210 215 220
Phe Leu Lys Gly Arg Ala Tyr Tyr His Arg Leu Gly Arg Ala Trp Arg
225 230 235 240
Arg Ser Tyr Leu Leu Tyr Gly Pro Ser Gly Thr Gly Lys Ser Thr Phe
245 250 255
Ala Ala Ala Met Ala Arg Phe Leu Val Tyr Asp Val Tyr Asp Ile Asp
260 265 270
Met Ser Arg Gly Gly Cys Asp Asp Leu Arg Ala Leu Leu Leu Glu Thr
275 280 285
Thr Pro Arg Ser Leu Ile Leu Val Glu Asp Leu Asp Arg Tyr Leu Arg
290 295 300
Gly Gly Gly Asp Gly Glu Thr Ser Ala Ala Arg Thr Ser Arg Met Leu
305 310 315 320
Ser Phe Met Asp Gly Leu Ser Ser Cys Cys Gly Glu Glu Arg Val Met
325 330 335
Val Phe Thr Met Ser Gly Asp Lys Asp Gly Val Asp Pro Ala Ile Leu
340 345 350
Arg Pro Gly Arg Leu Asp Val His Ile His Phe Thr Met Cys Asp Phe
355 360 365
Glu Gly Phe Lys Thr Leu Ala Ser Asn Tyr Leu Gly Leu Lys Asp His
370 375 380
Lys Leu Tyr Pro Gln Val Glu Glu Gly Phe His Ala Ala Gly Ala Arg
385 390 395 400
Leu Ser Pro Ala Glu Leu Gly Glu Ile Met Leu Ala Asn Arg Gly Ser
405 410 415
Pro Ser Arg Ala Leu Arg Thr Val Ile Asn Ala Leu Gln His Val Ala
420 425 430
Pro Ala Pro Ala Pro Pro Gln Gln Gln Pro Arg Ala Ser Ser Ala Ser
435 440 445
Arg Pro Pro Pro Arg Leu Thr Ala Arg Trp Ser Gly His Leu Asp Glu
450 455 460
Ala Ser Ala Ala Asp Ala Ser Ala Ala Asn Gln Ser Pro Gly Gly Gly
465 470 475 480
Gly Gly Gly Phe Gly Lys Asp Ala Pro Met Arg Glu Phe Lys Lys Leu
485 490 495
Tyr Gly Leu Ile Lys Ile Arg Ser Arg Lys Asp Gly Gly Val Val Pro
500 505 510
Val Asp Asp Thr Ala Ser Ala Asn Gly Arg Gly Ser Asp Val Ser Ala
515 520 525
Asp Lys Asp Arg
530
<210> 122
<211> 1542
<212> DNA
<213> Zea mays
<400> 122
atgatggggc aggacggcgt cggcggaggg gtgatcgggg ccctgctcta cgccgcgctg 60
gcggtgctgg cgctgcgtct ggtgctgtcg tacaagtcgg cggcgcacgc ggtgcggcgg 120
gcgtggcggt gggcggacga gtgggcgcag gcgtaccagt actacgaggt gccgcgcctc 180
gccgtcgacg gcgcggagaa cccgctgttc cggaaggcgg cggcgtacgt ggcgtcgctg 240
ccgtcgctcg aggacgcgga cgccgcctgc gtgctgtcgt cggcggccaa gagcaacgac 300
ttcgcgctgc agctggggcc gggccacacc gcgcgggacg cgttcctcgg cgcgcgcctc 360
gcgtggacca acgccggcgg cgacggccgc ctcgtgctcc gcgtgcgccg ccacgaccgc 420
acccgcgtgc tgcggcccta cctgcagcac ctcgagtccg tcgccgacga gatggaggcg 480
cgccgccgcg agctgcgggt ccacgccaac gccggcggtg gcgcgccgcg gtgggcgtcc 540
gcgcccttca cgcacccggc cacgctcgac acggtggcca tggaccccga cctcaaggcc 600
cgcgtccgcg ccgacctgga gagcttcctc aagggccgcg cgtactacca ccgcctcggc 660
cgcgtctggc gcaggagcta cctgctgtac ggcgctcccg gcacgggcaa gtccacgttc 720
gccgccgcga tggcgaggtt cctggggtac gacgtctacg acgtggacct gtcccgcggc 780
ggctgcgacg acctccgcgc cctgctcctg gacaccgccc cgcggtcgct catcctcgtg 840
gaggacctcg accgctacct gcgcggcggg gacggcgaga cggcggcggc gaggaccgcg 900
cgcgtgctcg gcttcatgga cgggctctcc tcgtcatgcg gcgaggagcg cgtgatggtg 960
ttcaccatga gcgggggcaa ggacggcgtg gacccggccg tgctgcggcc cggccggctc 1020
gacgtccaca tccacttcac catgtgcgac ttcgagggat tcaaggctct ggcgagcaac 1080
tacctggggc tcaaggacca caagctgtac ccgcaggtgg aggaggggtt ccacgccggc 1140
gcccgcctca gccccgccga gctcggcgag atcatgctcg ccaaccgcgg gtccgcgagc 1200
cgcgcgctcc gcaccgtcat cagcgcgctg cagcacgtgg ccccgtcacc gcctccgcag 1260
cggaccgtca ccgcggcgcg gccgccgagg ctgacatcga gatggtccgg gcacctcgac 1320
gaggccagcg tcgcgaccgc gacgtccgag gccagcgcgg cggggcagtc gccgcggggc 1380
gggggaggtt tcgccaagga cgcgccgatc agggagatca agaagctcta cggtctgatc 1440
aagtacagga gccgcaagga cgccggcgtc gtgccggtgg atgacagcgc ggcatcgccg 1500
gacgggcggg acagcgacgt tagccccgag aaggaccggt ga 1542
<210> 123
<211> 513
<212> PRT
<213> Zea mays
<400> 123
Met Met Gly Gln Asp Gly Val Gly Gly Gly Val Ile Gly Ala Leu Leu
1 5 10 15
Tyr Ala Ala Leu Ala Val Leu Ala Leu Arg Leu Val Leu Ser Tyr Lys
20 25 30
Ser Ala Ala His Ala Val Arg Arg Ala Trp Arg Trp Ala Asp Glu Trp
35 40 45
Ala Gln Ala Tyr Gln Tyr Tyr Glu Val Pro Arg Leu Ala Val Asp Gly
50 55 60
Ala Glu Asn Pro Leu Phe Arg Lys Ala Ala Ala Tyr Val Ala Ser Leu
65 70 75 80
Pro Ser Leu Glu Asp Ala Asp Ala Ala Cys Val Leu Ser Ser Ala Ala
85 90 95
Lys Ser Asn Asp Phe Ala Leu Gln Leu Gly Pro Gly His Thr Ala Arg
100 105 110
Asp Ala Phe Leu Gly Ala Arg Leu Ala Trp Thr Asn Ala Gly Gly Asp
115 120 125
Gly Arg Leu Val Leu Arg Val Arg Arg His Asp Arg Thr Arg Val Leu
130 135 140
Arg Pro Tyr Leu Gln His Leu Glu Ser Val Ala Asp Glu Met Glu Ala
145 150 155 160
Arg Arg Arg Glu Leu Arg Val His Ala Asn Ala Gly Gly Gly Ala Pro
165 170 175
Arg Trp Ala Ser Ala Pro Phe Thr His Pro Ala Thr Leu Asp Thr Val
180 185 190
Ala Met Asp Pro Asp Leu Lys Ala Arg Val Arg Ala Asp Leu Glu Ser
195 200 205
Phe Leu Lys Gly Arg Ala Tyr Tyr His Arg Leu Gly Arg Val Trp Arg
210 215 220
Arg Ser Tyr Leu Leu Tyr Gly Ala Pro Gly Thr Gly Lys Ser Thr Phe
225 230 235 240
Ala Ala Ala Met Ala Arg Phe Leu Gly Tyr Asp Val Tyr Asp Val Asp
245 250 255
Leu Ser Arg Gly Gly Cys Asp Asp Leu Arg Ala Leu Leu Leu Asp Thr
260 265 270
Ala Pro Arg Ser Leu Ile Leu Val Glu Asp Leu Asp Arg Tyr Leu Arg
275 280 285
Gly Gly Asp Gly Glu Thr Ala Ala Ala Arg Thr Ala Arg Val Leu Gly
290 295 300
Phe Met Asp Gly Leu Ser Ser Ser Cys Gly Glu Glu Arg Val Met Val
305 310 315 320
Phe Thr Met Ser Gly Gly Lys Asp Gly Val Asp Pro Ala Val Leu Arg
325 330 335
Pro Gly Arg Leu Asp Val His Ile His Phe Thr Met Cys Asp Phe Glu
340 345 350
Gly Phe Lys Ala Leu Ala Ser Asn Tyr Leu Gly Leu Lys Asp His Lys
355 360 365
Leu Tyr Pro Gln Val Glu Glu Gly Phe His Ala Gly Ala Arg Leu Ser
370 375 380
Pro Ala Glu Leu Gly Glu Ile Met Leu Ala Asn Arg Gly Ser Ala Ser
385 390 395 400
Arg Ala Leu Arg Thr Val Ile Ser Ala Leu Gln His Val Ala Pro Ser
405 410 415
Pro Pro Pro Gln Arg Thr Val Thr Ala Ala Arg Pro Pro Arg Leu Thr
420 425 430
Ser Arg Trp Ser Gly His Leu Asp Glu Ala Ser Val Ala Thr Ala Thr
435 440 445
Ser Glu Ala Ser Ala Ala Gly Gln Ser Pro Arg Gly Gly Gly Gly Phe
450 455 460
Ala Lys Asp Ala Pro Ile Arg Glu Ile Lys Lys Leu Tyr Gly Leu Ile
465 470 475 480
Lys Tyr Arg Ser Arg Lys Asp Ala Gly Val Val Pro Val Asp Asp Ser
485 490 495
Ala Ala Ser Pro Asp Gly Arg Asp Ser Asp Val Ser Pro Glu Lys Asp
500 505 510
Arg
<210> 124
<211> 1578
<212> DNA
<213> Sorghum bicolor
<400> 124
atgccactgc acgccacgag ccccgccggc gtgctcgcgt acgccgccct cgcgctcgcg 60
gcgctgcggc tgctgctgtc ctacaagtcg gcgctctacg cgctgcgccg cctgtggcgg 120
tgcgccgacg agtgggcgca ggcgtaccag taccacgagg tgccgcgctt cgccggggct 180
gggtgcgacg gcgccgagaa cccgctgttc cgcaaggccg ccgcttacgt ggcggcgctg 240
ccgtcgctgg aggacgcgga cgccgcgtgc gtggtgtcct cggcgtcccg gaccaacggc 300
gggctctccc tgcagctcgg cccgggccac accgcgcggg acgcgttcct cggtgcgcgc 360
ctgtcgtgga ccagcgcggg cggcggaccc gagcgcctgg tgctgcgggt gcgccgccac 420
gaccgctccc gcgtgctaag accttacctg cagcacgtgg agtccgtggc cgacgagatg 480
gagcagcgcc gccgcgagct gcggctcttc gccaacgccg gcaccgacgc ggacacaggc 540
gcgccgcgct gggcgtcggc gcccttcacc cacccggcca cgctcgacga cgtagccatg 600
gacccggacc tcaaggcccg cgtccgcgcc gacctcgaga gcttcctcaa gggccgcgcc 660
tactaccacc gcctcggccg cgtctggcgc cggagctacc tcctctacgg cccgccgggc 720
accggcaagt ccacgttcgc ggcggccatg gccaggttcc tgggctacga cgtctacgac 780
gtcgacctgt cccgcgccgt cgcctccggc gacgacctcc gcgcgctgct cctgcacacc 840
accccgcgct cgctcgtcct cgtcgaggac ctggaccggt acctgcaggg cgggggcggg 900
gacggggagg cacgcgcggc cagggtgctg agcttcatgg acggcgtcgc gtcgtgctgc 960
ggcgaggagc gcgtcatggt gttcaccatg cgcgggggca aggacgccgt cgacgccgcg 1020
gtgctgcgcc ccggccggct ggacgtgcac atccagttca cgctctgcga cttcgaggcg 1080
ttcaaggcgc tggccagcaa ctaccttggg ctcaaggacc acaagctgta cccgcaggtg 1140
gaagaggggt tccacgccgc cggcgcccgc ctcagccccg ccgagctcgg cgagatcatg 1200
ctggccaacc gcgcgtcccc gagccgcgcg ctccgcagcg tgatcaccaa gctccagcac 1260
gtcgcgtccg ggggcggcgc ggcgccgcgg tacccgtcgc acaggcggaa cacgagctgg 1320
tccggcggcg ggcaccagtg ggaggaccag gcccagtcgg cgcgcgccag cgcggactcc 1380
gcgctggccg acgacgagac ggccgccggg gccccgccga cgtgcggggt gttcggcaag 1440
gaggcgccga tgagggagtt caagaagctg tacgggctga tcaagatcag gagccggagg 1500
gaggggtcgg gcgtcgtgcc acaggaaggc gacgcgcacg ggccgccgac gccgggcaac 1560
cacgacaggg accggtga 1578
<210> 125
<211> 525
<212> PRT
<213> Sorghum bicolor
<400> 125
Met Pro Leu His Ala Thr Ser Pro Ala Gly Val Leu Ala Tyr Ala Ala
1 5 10 15
Leu Ala Leu Ala Ala Leu Arg Leu Leu Leu Ser Tyr Lys Ser Ala Leu
20 25 30
Tyr Ala Leu Arg Arg Leu Trp Arg Cys Ala Asp Glu Trp Ala Gln Ala
35 40 45
Tyr Gln Tyr His Glu Val Pro Arg Phe Ala Gly Ala Gly Cys Asp Gly
50 55 60
Ala Glu Asn Pro Leu Phe Arg Lys Ala Ala Ala Tyr Val Ala Ala Leu
65 70 75 80
Pro Ser Leu Glu Asp Ala Asp Ala Ala Cys Val Val Ser Ser Ala Ser
85 90 95
Arg Thr Asn Gly Gly Leu Ser Leu Gln Leu Gly Pro Gly His Thr Ala
100 105 110
Arg Asp Ala Phe Leu Gly Ala Arg Leu Ser Trp Thr Ser Ala Gly Gly
115 120 125
Gly Pro Glu Arg Leu Val Leu Arg Val Arg Arg His Asp Arg Ser Arg
130 135 140
Val Leu Arg Pro Tyr Leu Gln His Val Glu Ser Val Ala Asp Glu Met
145 150 155 160
Glu Gln Arg Arg Arg Glu Leu Arg Leu Phe Ala Asn Ala Gly Thr Asp
165 170 175
Ala Asp Thr Gly Ala Pro Arg Trp Ala Ser Ala Pro Phe Thr His Pro
180 185 190
Ala Thr Leu Asp Asp Val Ala Met Asp Pro Asp Leu Lys Ala Arg Val
195 200 205
Arg Ala Asp Leu Glu Ser Phe Leu Lys Gly Arg Ala Tyr Tyr His Arg
210 215 220
Leu Gly Arg Val Trp Arg Arg Ser Tyr Leu Leu Tyr Gly Pro Pro Gly
225 230 235 240
Thr Gly Lys Ser Thr Phe Ala Ala Ala Met Ala Arg Phe Leu Gly Tyr
245 250 255
Asp Val Tyr Asp Val Asp Leu Ser Arg Ala Val Ala Ser Gly Asp Asp
260 265 270
Leu Arg Ala Leu Leu Leu His Thr Thr Pro Arg Ser Leu Val Leu Val
275 280 285
Glu Asp Leu Asp Arg Tyr Leu Gln Gly Gly Gly Gly Asp Gly Glu Ala
290 295 300
Arg Ala Ala Arg Val Leu Ser Phe Met Asp Gly Val Ala Ser Cys Cys
305 310 315 320
Gly Glu Glu Arg Val Met Val Phe Thr Met Arg Gly Gly Lys Asp Ala
325 330 335
Val Asp Ala Ala Val Leu Arg Pro Gly Arg Leu Asp Val His Ile Gln
340 345 350
Phe Thr Leu Cys Asp Phe Glu Ala Phe Lys Ala Leu Ala Ser Asn Tyr
355 360 365
Leu Gly Leu Lys Asp His Lys Leu Tyr Pro Gln Val Glu Glu Gly Phe
370 375 380
His Ala Ala Gly Ala Arg Leu Ser Pro Ala Glu Leu Gly Glu Ile Met
385 390 395 400
Leu Ala Asn Arg Ala Ser Pro Ser Arg Ala Leu Arg Ser Val Ile Thr
405 410 415
Lys Leu Gln His Val Ala Ser Gly Gly Gly Ala Ala Pro Arg Tyr Pro
420 425 430
Ser His Arg Arg Asn Thr Ser Trp Ser Gly Gly Gly His Gln Trp Glu
435 440 445
Asp Gln Ala Gln Ser Ala Arg Ala Ser Ala Asp Ser Ala Leu Ala Asp
450 455 460
Asp Glu Thr Ala Ala Gly Ala Pro Pro Thr Cys Gly Val Phe Gly Lys
465 470 475 480
Glu Ala Pro Met Arg Glu Phe Lys Lys Leu Tyr Gly Leu Ile Lys Ile
485 490 495
Arg Ser Arg Arg Glu Gly Ser Gly Val Val Pro Gln Glu Gly Asp Ala
500 505 510
His Gly Pro Pro Thr Pro Gly Asn His Asp Arg Asp Arg
515 520 525
<210> 126
<211> 1476
<212> DNA
<213> Arabidopsis thaliana
<400> 126
atggggattc tttgggattc gtttctcttg ttacttgtgt caacgtttgc tctgttctta 60
gttaggatcc tgttattcaa aactggattg atttacatgg tcaagttatg gcgtaggaag 120
atcatcgact ggtttcatgt ttaccaattc tacaaagtcc cagaattcaa cgacaacgtt 180
caagagaatc atctctacca aaaagtctac atgtatctaa attccttaag ctcgatcgag 240
aattctgatt tcacgaacct cttcaccggg aaaaagtcca acgaaatcat cctccggtta 300
gatcggaacc aagtcgttgg cgacgagttt ctcggcgcta gagtttgttg gattaacgga 360
gaagacgaag atggagcgag gaatttcgtt ttgaagattc gtaaagctga caaacggaga 420
attctcggtt cttatctcca gcatatacat acagtatctg atgagcttga acagaggaac 480
acagagctta agcttttcat caacgtcgga atcgatgatc atctgaataa gaagaagaag 540
aagaacggac ggtggagatc gattccgttt gatcatcctt gtaccttcga caacatcgcc 600
atggaaacgg atctgaagaa caaagtcaaa tctgatctcg aatctttcct caaaggtaaa 660
cagtattata atcgtctggg ccgtgtttgg aaacggagtt atctcttata cggaccttcc 720
ggtaccggaa aatcaagctt cgtcgcagca atggcgaatt tcttagatta cgatgtttac 780
gatatagatc tctccaaagt agttgatgat tcagatctta agatgcttct gttacaaacc 840
agaggcaaat cagtgatcgt gatcgaagat ctagatcgac acctctcgac gaaatcaacg 900
gctgtgaatt tatctgggat tttgaatttc actgatagta ttctcagctc ttgcaccgcc 960
gatgaacgga tcatggtgtt tacgatgact gggaaagaac aaattgaccc ggctatgctt 1020
cgaccgggtc gggtcgacgt acacattcat tttcccttat gtgatttcac ggcgtttaaa 1080
acgctcgcta ataactactt aggtgttaaa gagcacaagc ttttctctca agttgaagga 1140
atatttcaaa acggtgcgtc tttgagtccc gccgagatcg gagagttgat gatcgcgaat 1200
cgtaactcgc cgactcgtgc attgaagcat gtcatcaatg ctttgcagac tgatggtgat 1260
cggagaggaa ctggacgacg tttgctttta gaaaatggtt cgagaaagtc gacgtcggag 1320
gatgtttctg atgatatgag tggttcgctt tgcggcggtg gcggaggaag ttcgccggcg 1380
gtgaaggagt ttaggaagtt gtatgggttg ttgagaatta aaagtagtag aaaatctgga 1440
tcgttcgatg tggctcgaga gatgagggac ggctag 1476
<210> 127
<211> 491
<212> PRT
<213> Arabidopsis thaliana
<400> 127
Met Gly Ile Leu Trp Asp Ser Phe Leu Leu Leu Leu Val Ser Thr Phe
1 5 10 15
Ala Leu Phe Leu Val Arg Ile Leu Leu Phe Lys Thr Gly Leu Ile Tyr
20 25 30
Met Val Lys Leu Trp Arg Arg Lys Ile Ile Asp Trp Phe His Val Tyr
35 40 45
Gln Phe Tyr Lys Val Pro Glu Phe Asn Asp Asn Val Gln Glu Asn His
50 55 60
Leu Tyr Gln Lys Val Tyr Met Tyr Leu Asn Ser Leu Ser Ser Ile Glu
65 70 75 80
Asn Ser Asp Phe Thr Asn Leu Phe Thr Gly Lys Lys Ser Asn Glu Ile
85 90 95
Ile Leu Arg Leu Asp Arg Asn Gln Val Val Gly Asp Glu Phe Leu Gly
100 105 110
Ala Arg Val Cys Trp Ile Asn Gly Glu Asp Glu Asp Gly Ala Arg Asn
115 120 125
Phe Val Leu Lys Ile Arg Lys Ala Asp Lys Arg Arg Ile Leu Gly Ser
130 135 140
Tyr Leu Gln His Ile His Thr Val Ser Asp Glu Leu Glu Gln Arg Asn
145 150 155 160
Thr Glu Leu Lys Leu Phe Ile Asn Val Gly Ile Asp Asp His Leu Asn
165 170 175
Lys Lys Lys Lys Lys Asn Gly Arg Trp Arg Ser Ile Pro Phe Asp His
180 185 190
Pro Cys Thr Phe Asp Asn Ile Ala Met Glu Thr Asp Leu Lys Asn Lys
195 200 205
Val Lys Ser Asp Leu Glu Ser Phe Leu Lys Gly Lys Gln Tyr Tyr Asn
210 215 220
Arg Leu Gly Arg Val Trp Lys Arg Ser Tyr Leu Leu Tyr Gly Pro Ser
225 230 235 240
Gly Thr Gly Lys Ser Ser Phe Val Ala Ala Met Ala Asn Phe Leu Asp
245 250 255
Tyr Asp Val Tyr Asp Ile Asp Leu Ser Lys Val Val Asp Asp Ser Asp
260 265 270
Leu Lys Met Leu Leu Leu Gln Thr Arg Gly Lys Ser Val Ile Val Ile
275 280 285
Glu Asp Leu Asp Arg His Leu Ser Thr Lys Ser Thr Ala Val Asn Leu
290 295 300
Ser Gly Ile Leu Asn Phe Thr Asp Ser Ile Leu Ser Ser Cys Thr Ala
305 310 315 320
Asp Glu Arg Ile Met Val Phe Thr Met Thr Gly Lys Glu Gln Ile Asp
325 330 335
Pro Ala Met Leu Arg Pro Gly Arg Val Asp Val His Ile His Phe Pro
340 345 350
Leu Cys Asp Phe Thr Ala Phe Lys Thr Leu Ala Asn Asn Tyr Leu Gly
355 360 365
Val Lys Glu His Lys Leu Phe Ser Gln Val Glu Gly Ile Phe Gln Asn
370 375 380
Gly Ala Ser Leu Ser Pro Ala Glu Ile Gly Glu Leu Met Ile Ala Asn
385 390 395 400
Arg Asn Ser Pro Thr Arg Ala Leu Lys His Val Ile Asn Ala Leu Gln
405 410 415
Thr Asp Gly Asp Arg Arg Gly Thr Gly Arg Arg Leu Leu Leu Glu Asn
420 425 430
Gly Ser Arg Lys Ser Thr Ser Glu Asp Val Ser Asp Asp Met Ser Gly
435 440 445
Ser Leu Cys Gly Gly Gly Gly Gly Ser Ser Pro Ala Val Lys Glu Phe
450 455 460
Arg Lys Leu Tyr Gly Leu Leu Arg Ile Lys Ser Ser Arg Lys Ser Gly
465 470 475 480
Ser Phe Asp Val Ala Arg Glu Met Arg Asp Gly
485 490
<210> 128
<211> 1443
<212> DNA
<213> Glycine max
<400> 128
atgatttctc aaattagcat gctttccctt ttcttcttcc tcttctcctc ttttctaatc 60
gttttcttct tccgcaaaac ctctgcactt cacatcctca accaatggtt cctttccttc 120
gaaaaccgtc tccaccttca ccagtccttc aaaatccctc gctataatct tcactctctg 180
gacaatagcc tctaccggaa aatcctcact tacctcgatt ctcttccctc cgttgaagat 240
tccgattaca ccaacctctt ctccggcccc aatccctccg acatcttcct ccacctcgac 300
cctaaccaca ccgttcatga caccttcctc ggcgccaggc tctcctggac caacgcctcc 360
ggcgacgcgc tcgtccttcg actaaagaag aaagacaagc gcagagtctt ccggcagtac 420
ttccagcaca ttctctccgt cgcggacgag atcgagcaac gaagaaaaaa ggacgtcaag 480
ctgtacgtga actccgactc cggcgagtgg cgctcggcgc cgttcacgca tccggcgagc 540
tttgagacgg tggcgatgga cgcggagctg aagaacaagg tgaagtccga tctggaccag 600
ttcctgaagt cgaagcagta ctaccaccgg ctaggccgcg tttggaagcg gagctacctc 660
ctctacggcg cgcctggcac cggaaaatcc tccttcgtcg ccgcgatggc gaagttcctc 720
tgctacgacg tctacgacgt ggacgtttcg aagttcaccg atggcgccga ttggaaggtg 780
atgctgatgc agacgacggc gaagtctctg atcgtgatcg aagacctaga tcgcttgctg 840
acggagaagt caaagtcaaa cacaacgagc ttatcgagcg tgttgaactt catggacgga 900
atcgtatcgt gctgcggaga agagcgcgtg atggtgttca cgatgaacga aactaaagag 960
gaggttgatc aagcggttct gaggcctggg aggattgacg tgcacataca cttcccctta 1020
tgtgatttct ccacctttaa gattctcgcg agtagttact tagggttgaa ggagcacaag 1080
cttttccctc aggttgagga ggtttttcag accggggccc ggctcagccc ggccgagctt 1140
ggtgagatta tgatatcgaa ccggaattcg cccacgcggg ccttgaaaac cgttatttcg 1200
gccctgcagg tgcaatccaa cggcccgaga gagggacaga ggttgagcca tagcgggtcg 1260
ggtcggaata gcgatgataa cgaaccgggt gcggttatat gtagggagag tgttcacacg 1320
gtgagggagt tccggaagct gtatgggctt ttgcgtttgg gaagtaggag gaaggaggag 1380
tcttattcgg ggcccataga gaaagagcct ccacgtattg agagtcgggt cggatataac 1440
taa 1443
<210> 129
<211> 480
<212> PRT
<213> Glycine max
<400> 129
Met Ile Ser Gln Ile Ser Met Leu Ser Leu Phe Phe Phe Leu Phe Ser
1 5 10 15
Ser Phe Leu Ile Val Phe Phe Phe Arg Lys Thr Ser Ala Leu His Ile
20 25 30
Leu Asn Gln Trp Phe Leu Ser Phe Glu Asn Arg Leu His Leu His Gln
35 40 45
Ser Phe Lys Ile Pro Arg Tyr Asn Leu His Ser Leu Asp Asn Ser Leu
50 55 60
Tyr Arg Lys Ile Leu Thr Tyr Leu Asp Ser Leu Pro Ser Val Glu Asp
65 70 75 80
Ser Asp Tyr Thr Asn Leu Phe Ser Gly Pro Asn Pro Ser Asp Ile Phe
85 90 95
Leu His Leu Asp Pro Asn His Thr Val His Asp Thr Phe Leu Gly Ala
100 105 110
Arg Leu Ser Trp Thr Asn Ala Ser Gly Asp Ala Leu Val Leu Arg Leu
115 120 125
Lys Lys Lys Asp Lys Arg Arg Val Phe Arg Gln Tyr Phe Gln His Ile
130 135 140
Leu Ser Val Ala Asp Glu Ile Glu Gln Arg Arg Lys Lys Asp Val Lys
145 150 155 160
Leu Tyr Val Asn Ser Asp Ser Gly Glu Trp Arg Ser Ala Pro Phe Thr
165 170 175
His Pro Ala Ser Phe Glu Thr Val Ala Met Asp Ala Glu Leu Lys Asn
180 185 190
Lys Val Lys Ser Asp Leu Asp Gln Phe Leu Lys Ser Lys Gln Tyr Tyr
195 200 205
His Arg Leu Gly Arg Val Trp Lys Arg Ser Tyr Leu Leu Tyr Gly Ala
210 215 220
Pro Gly Thr Gly Lys Ser Ser Phe Val Ala Ala Met Ala Lys Phe Leu
225 230 235 240
Cys Tyr Asp Val Tyr Asp Val Asp Val Ser Lys Phe Thr Asp Gly Ala
245 250 255
Asp Trp Lys Val Met Leu Met Gln Thr Thr Ala Lys Ser Leu Ile Val
260 265 270
Ile Glu Asp Leu Asp Arg Leu Leu Thr Glu Lys Ser Lys Ser Asn Thr
275 280 285
Thr Ser Leu Ser Ser Val Leu Asn Phe Met Asp Gly Ile Val Ser Cys
290 295 300
Cys Gly Glu Glu Arg Val Met Val Phe Thr Met Asn Glu Thr Lys Glu
305 310 315 320
Glu Val Asp Gln Ala Val Leu Arg Pro Gly Arg Ile Asp Val His Ile
325 330 335
His Phe Pro Leu Cys Asp Phe Ser Thr Phe Lys Ile Leu Ala Ser Ser
340 345 350
Tyr Leu Gly Leu Lys Glu His Lys Leu Phe Pro Gln Val Glu Glu Val
355 360 365
Phe Gln Thr Gly Ala Arg Leu Ser Pro Ala Glu Leu Gly Glu Ile Met
370 375 380
Ile Ser Asn Arg Asn Ser Pro Thr Arg Ala Leu Lys Thr Val Ile Ser
385 390 395 400
Ala Leu Gln Val Gln Ser Asn Gly Pro Arg Glu Gly Gln Arg Leu Ser
405 410 415
His Ser Gly Ser Gly Arg Asn Ser Asp Asp Asn Glu Pro Gly Ala Val
420 425 430
Ile Cys Arg Glu Ser Val His Thr Val Arg Glu Phe Arg Lys Leu Tyr
435 440 445
Gly Leu Leu Arg Leu Gly Ser Arg Arg Lys Glu Glu Ser Tyr Ser Gly
450 455 460
Pro Ile Glu Lys Glu Pro Pro Arg Ile Glu Ser Arg Val Gly Tyr Asn
465 470 475 480
<210> 130
<211> 654
<212> DNA
<213> Oryza sativa
<400> 130
atggcagcaa tggcgagcag ctgcagtgtg cttgttgtgg cctgcagctt cgctgtgctt 60
cacgtcgtcg ccatcgccgg cgcgacgcag tacaaggtcg gcggcgacgg cggatggggc 120
gtgcccggcg ccggcgacga gccgtacaac acctgggccg agaagaccag cttccaggtc 180
ggcgaccagc ttttgttcgt gtacccgaag gacaaggact cggtgttggt ggtggagccg 240
gcggactaca acgcgtgcaa cacggcgtcg tacgacagca agttcgccga cggcaacacg 300
gcggtcacgc tcgaccgcgc cggcgccttc ttcttcatca gcggcgtcga cgccaactgc 360
cgcgccggcg agaagctcat cgtcatggtc gccaacgcca ccgggagcag cgcttcgccg 420
ccgtcctcct cgtcgtcgcc gtcgtctccc tccggtggtg gtggtggcgg tggcgctcca 480
gccgggcagg cgccgccggg tgctccggcc acgccggcgg ggacgaacag ctcgccggct 540
aacggcgggg cggccggcgg cggcgcgaag agtggcgctg ggctcacggt ggcggcgagc 600
ggcctcgccg gctctctgat cgccgccatt gcctgcgtcg cgattgctat ctga 654
<210> 131
<211> 217
<212> PRT
<213> Oryza sativa
<400> 131
Met Ala Ala Met Ala Ser Ser Cys Ser Val Leu Val Val Ala Cys Ser
1 5 10 15
Phe Ala Val Leu His Val Val Ala Ile Ala Gly Ala Thr Gln Tyr Lys
20 25 30
Val Gly Gly Asp Gly Gly Trp Gly Val Pro Gly Ala Gly Asp Glu Pro
35 40 45
Tyr Asn Thr Trp Ala Glu Lys Thr Ser Phe Gln Val Gly Asp Gln Leu
50 55 60
Leu Phe Val Tyr Pro Lys Asp Lys Asp Ser Val Leu Val Val Glu Pro
65 70 75 80
Ala Asp Tyr Asn Ala Cys Asn Thr Ala Ser Tyr Asp Ser Lys Phe Ala
85 90 95
Asp Gly Asn Thr Ala Val Thr Leu Asp Arg Ala Gly Ala Phe Phe Phe
100 105 110
Ile Ser Gly Val Asp Ala Asn Cys Arg Ala Gly Glu Lys Leu Ile Val
115 120 125
Met Val Ala Asn Ala Thr Gly Ser Ser Ala Ser Pro Pro Ser Ser Ser
130 135 140
Ser Ser Pro Ser Ser Pro Ser Gly Gly Gly Gly Gly Gly Gly Ala Pro
145 150 155 160
Ala Gly Gln Ala Pro Pro Gly Ala Pro Ala Thr Pro Ala Gly Thr Asn
165 170 175
Ser Ser Pro Ala Asn Gly Gly Ala Ala Gly Gly Gly Ala Lys Ser Gly
180 185 190
Ala Gly Leu Thr Val Ala Ala Ser Gly Leu Ala Gly Ser Leu Ile Ala
195 200 205
Ala Ile Ala Cys Val Ala Ile Ala Ile
210 215
<210> 132
<211> 609
<212> DNA
<213> Zea mays
<400> 132
atgaggatgc gtgcgcgggc ggcatcggca tctgcgtcgg cggctgtggt ggtgctgctc 60
ctgctcctgc tactggtggg cgtctgcgcg ggcgccgtgt acaaggtagg cgacctggac 120
gcctggggcg tgccgccgcc gtccaagccc gacgtctaca agcgctgggc caagtccatc 180
cacttcgcgc tcggcgactc catctggttc ctgtacccgc cgagccagga ctcggtgctg 240
cagctggcgc cggcggcctt cgcgtcctgc gacctgtcgc gccccgtggc caggctcgcc 300
gacggcaact ccttattcaa cctcaccgcg cccggccgcg cctactacgc cagcggcgcg 360
ccgggtcact gccgcagggg ccagaagctc tgggtcgacg tgcccttgcc caacggcacc 420
tacctccagc cctccgccac cgacctcgcc gcgctcgcgc ccacccccgc cgccgacccg 480
cccgccgggt tcgcgtccgc tgccgccgcc gcgccacagg ggggcaacgc ctcgcccgcg 540
ccccgcgccg ccgccgccgc tggatccgtc gtcgcactct ccttcgcgct ccagatcctc 600
ctcctctga 609
<210> 133
<211> 202
<212> PRT
<213> Zea mays
<400> 133
Met Arg Met Arg Ala Arg Ala Ala Ser Ala Ser Ala Ser Ala Ala Val
1 5 10 15
Val Val Leu Leu Leu Leu Leu Leu Leu Val Gly Val Cys Ala Gly Ala
20 25 30
Val Tyr Lys Val Gly Asp Leu Asp Ala Trp Gly Val Pro Pro Pro Ser
35 40 45
Lys Pro Asp Val Tyr Lys Arg Trp Ala Lys Ser Ile His Phe Ala Leu
50 55 60
Gly Asp Ser Ile Trp Phe Leu Tyr Pro Pro Ser Gln Asp Ser Val Leu
65 70 75 80
Gln Leu Ala Pro Ala Ala Phe Ala Ser Cys Asp Leu Ser Arg Pro Val
85 90 95
Ala Arg Leu Ala Asp Gly Asn Ser Leu Phe Asn Leu Thr Ala Pro Gly
100 105 110
Arg Ala Tyr Tyr Ala Ser Gly Ala Pro Gly His Cys Arg Arg Gly Gln
115 120 125
Lys Leu Trp Val Asp Val Pro Leu Pro Asn Gly Thr Tyr Leu Gln Pro
130 135 140
Ser Ala Thr Asp Leu Ala Ala Leu Ala Pro Thr Pro Ala Ala Asp Pro
145 150 155 160
Pro Ala Gly Phe Ala Ser Ala Ala Ala Ala Ala Pro Gln Gly Gly Asn
165 170 175
Ala Ser Pro Ala Pro Arg Ala Ala Ala Ala Ala Gly Ser Val Val Ala
180 185 190
Leu Ser Phe Ala Leu Gln Ile Leu Leu Leu
195 200
<210> 134
<211> 603
<212> DNA
<213> Sorghum bicolor
<400> 134
atgaggatgc gtgcgcgggc ggcattgcca tcggcgtcgg cgtcggtgct gctgctcctc 60
ctgctcctgg tgggcggctc cgccggcgcc gtgtacaagg tgggcgacct ggacgcctgg 120
ggcgtgccgc cgccgtccaa gcccgacgtc tacaagcgct gggccaagtc catccacttc 180
gcgctcggcg actccatctg gttcctgtac ccgccgagcc aggactcggt gctgcaggtg 240
acgccggagg ccttcgcgtc ctgcgacctg tcgcgccccg tggccaggct cgccgacggc 300
aactccttct tcaacctcac cacgccgggc cgcgcctact acgccagcgg cgcgccgggt 360
cactgccgca agggccagaa gctctgggtc gacgtcccca tggccaacgg cacctacctc 420
cagccctccg ccaccgacct cgccgcgctc gcgcccacac ccgccgccga cccgcccgcc 480
gggttcgcat ccgcgtccgc gccagagggc gccagcgcct cgcccgcgcc ccgcgccgcc 540
gtcgccgccg ctggatccgt cgtcgccctc ctctgcttcg ccctccaaat cctcctccac 600
tga 603
<210> 135
<211> 200
<212> PRT
<213> Sorghum bicolor
<400> 135
Met Arg Met Arg Ala Arg Ala Ala Leu Pro Ser Ala Ser Ala Ser Val
1 5 10 15
Leu Leu Leu Leu Leu Leu Leu Val Gly Gly Ser Ala Gly Ala Val Tyr
20 25 30
Lys Val Gly Asp Leu Asp Ala Trp Gly Val Pro Pro Pro Ser Lys Pro
35 40 45
Asp Val Tyr Lys Arg Trp Ala Lys Ser Ile His Phe Ala Leu Gly Asp
50 55 60
Ser Ile Trp Phe Leu Tyr Pro Pro Ser Gln Asp Ser Val Leu Gln Val
65 70 75 80
Thr Pro Glu Ala Phe Ala Ser Cys Asp Leu Ser Arg Pro Val Ala Arg
85 90 95
Leu Ala Asp Gly Asn Ser Phe Phe Asn Leu Thr Thr Pro Gly Arg Ala
100 105 110
Tyr Tyr Ala Ser Gly Ala Pro Gly His Cys Arg Lys Gly Gln Lys Leu
115 120 125
Trp Val Asp Val Pro Met Ala Asn Gly Thr Tyr Leu Gln Pro Ser Ala
130 135 140
Thr Asp Leu Ala Ala Leu Ala Pro Thr Pro Ala Ala Asp Pro Pro Ala
145 150 155 160
Gly Phe Ala Ser Ala Ser Ala Pro Glu Gly Ala Ser Ala Ser Pro Ala
165 170 175
Pro Arg Ala Ala Val Ala Ala Ala Gly Ser Val Val Ala Leu Leu Cys
180 185 190
Phe Ala Leu Gln Ile Leu Leu His
195 200
<210> 136
<211> 576
<212> DNA
<213> Arabidopsis thaliana
<400> 136
atgggagtga tgagtttgag caagacgatg gtggtggtgg tattacaggt gatgatattg 60
ttgggacaag agattggtaa agtgtcgtcg actctataca aagttgggga cttggacgct 120
tggggcatcc caattgatgc taaagtctat tccaaatggc ccaaatctca ctctttcaag 180
atcggtgact ccctcttgtt cttgtaccca ccaagcgaag actcactgat tcaagtgacg 240
ccctccaatt tcaagagctg caacaccaaa gacccaatct tgtacatgaa cgacggcaac 300
tctctcttca acctcaccca aaacggaacc ctatacttca caagtgcaaa ccccggccac 360
tgtaccaagt accagaagct cctagtctcc gtcggcacct actccgccga agcagaggcc 420
ttgtctccgt cttctgccgc cgacgctccc tcttaccaaa acgccttcgg gtccattcct 480
ctctctcaga aatcgtctgc ttcctcctcg ctcatttctg ctttctccac tgtcgctgct 540
tcgctggctt gcgctgtcgt cggtgcaatc atgtga 576
<210> 137
<211> 191
<212> PRT
<213> Arabidopsis thaliana
<400> 137
Met Gly Val Met Ser Leu Ser Lys Thr Met Val Val Val Val Leu Gln
1 5 10 15
Val Met Ile Leu Leu Gly Gln Glu Ile Gly Lys Val Ser Ser Thr Leu
20 25 30
Tyr Lys Val Gly Asp Leu Asp Ala Trp Gly Ile Pro Ile Asp Ala Lys
35 40 45
Val Tyr Ser Lys Trp Pro Lys Ser His Ser Phe Lys Ile Gly Asp Ser
50 55 60
Leu Leu Phe Leu Tyr Pro Pro Ser Glu Asp Ser Leu Ile Gln Val Thr
65 70 75 80
Pro Ser Asn Phe Lys Ser Cys Asn Thr Lys Asp Pro Ile Leu Tyr Met
85 90 95
Asn Asp Gly Asn Ser Leu Phe Asn Leu Thr Gln Asn Gly Thr Leu Tyr
100 105 110
Phe Thr Ser Ala Asn Pro Gly His Cys Thr Lys Tyr Gln Lys Leu Leu
115 120 125
Val Ser Val Gly Thr Tyr Ser Ala Glu Ala Glu Ala Leu Ser Pro Ser
130 135 140
Ser Ala Ala Asp Ala Pro Ser Tyr Gln Asn Ala Phe Gly Ser Ile Pro
145 150 155 160
Leu Ser Gln Lys Ser Ser Ala Ser Ser Ser Leu Ile Ser Ala Phe Ser
165 170 175
Thr Val Ala Ala Ser Leu Ala Cys Ala Val Val Gly Ala Ile Met
180 185 190
<210> 138
<211> 684
<212> DNA
<213> Glycine max
<400> 138
agccagactc gagccaataa taagtccttg gcgagatcac tatatctaaa gaaaagagtg 60
aagattaatg tgagtgcaat tttgaataga accaagatgg ccattttttc aagtcaccac 120
agaatgttgg tgtctctctt gcttacgttg gtccaaatcc aagccaaggt gttttgctat 180
caatacaaag tgggagatct agatgcttgg ggcataccca catcagcaaa tccacaagtc 240
tacacaaaat ggtccaaata tcataatctc acaattggag actccctttt atttctatac 300
ccaccaagtc aagattcagt gattcaagtt acagaggaat cctacaagag gtgcaacatt 360
aaagacccga tattgtacat gaacaatggc aactctttgt ttaacattac atcaaagggc 420
caattcttct tcactagtgg tgagcctggc cattgccaaa aaaatcaaaa gcttcatata 480
tctgttggtg aaggaataat agaaactatg gatacagcac ctggtccaag ttcgtcattg 540
cctgcatctg caccctccta tcccacagta tttggcaata ttccagtagc tccttcaacc 600
tcaacctcac ctcaactcac atcaactttt caacttctca tcattggatt tatgatatgt 660
gcgcacttcg cttccttaat gtga 684
<210> 139
<211> 227
<212> PRT
<213> Glycine max
<400> 139
Ser Gln Thr Arg Ala Asn Asn Lys Ser Leu Ala Arg Ser Leu Tyr Leu
1 5 10 15
Lys Lys Arg Val Lys Ile Asn Val Ser Ala Ile Leu Asn Arg Thr Lys
20 25 30
Met Ala Ile Phe Ser Ser His His Arg Met Leu Val Ser Leu Leu Leu
35 40 45
Thr Leu Val Gln Ile Gln Ala Lys Val Phe Cys Tyr Gln Tyr Lys Val
50 55 60
Gly Asp Leu Asp Ala Trp Gly Ile Pro Thr Ser Ala Asn Pro Gln Val
65 70 75 80
Tyr Thr Lys Trp Ser Lys Tyr His Asn Leu Thr Ile Gly Asp Ser Leu
85 90 95
Leu Phe Leu Tyr Pro Pro Ser Gln Asp Ser Val Ile Gln Val Thr Glu
100 105 110
Glu Ser Tyr Lys Arg Cys Asn Ile Lys Asp Pro Ile Leu Tyr Met Asn
115 120 125
Asn Gly Asn Ser Leu Phe Asn Ile Thr Ser Lys Gly Gln Phe Phe Phe
130 135 140
Thr Ser Gly Glu Pro Gly His Cys Gln Lys Asn Gln Lys Leu His Ile
145 150 155 160
Ser Val Gly Glu Gly Ile Ile Glu Thr Met Asp Thr Ala Pro Gly Pro
165 170 175
Ser Ser Ser Leu Pro Ala Ser Ala Pro Ser Tyr Pro Thr Val Phe Gly
180 185 190
Asn Ile Pro Val Ala Pro Ser Thr Ser Thr Ser Pro Gln Leu Thr Ser
195 200 205
Thr Phe Gln Leu Leu Ile Ile Gly Phe Met Ile Cys Ala His Phe Ala
210 215 220
Ser Leu Met
225

Claims (42)

1.一种抑制DNA构建体,包含有至少一个异源调控元件可操作地连接抑制元件,其中所述抑制元件含有一个多核苷酸片段,所述多核苷酸编码的多肽的氨基酸序列与SEQ ID NO:3、6、9、12、15、18或21有至少90%的序列一致性。所述抑制元件能减少内源性多肽的表达,所述内源多肽的氨基酸序列为SEQ ID NO:3(BCS1-2)、SEQ ID NO:6(DnaJ7)、SEQ ID NO:9(LNTP10)、SEQ ID NO:12(GH17.2)、SEQ ID NO:15(DUF6)、SEQ ID NO:18(ATAP1)或SEQ IDNO:21(PCL1)。
2.权利要求1所述抑制DNA构建体的抑制元件含有SEQ ID NO:51。
3.一种CRIPRS/Cas构建体,包含有至少一个异源调控序列可操作地连接gRNA。其中所述gRNA是针对含有内源性BCS1-2、DnaJ7、LNTP10、GH17.2、DUF6、ATAP1或PCL1基因的基因组区域及其调控元件,以减少氨基酸序列与SEQ ID NO:3、6、9、12、15、18或21有至少90%的序列一致性的内源BCS1-2、DnaJ7、LNTP10、GH17.2、DUF6、ATAP1或PCL1多肽的表达或活性。
4.权利要求3所述CRIPRS/Cas构建体,其中所述gRNA针对核苷酸序列为SEQ ID NO:2、5、8、11、14、17、20、74或75的多核苷酸的基因组区域。
5.一种改良的植物或种子,其包含的内源BCS1-2、DnaJ7、LNTP10、GH17.2、DUF6、ATAP1或PCL1多肽的表达或活性,和对照植物中相应多肽的表达或活性相比是减少的。其中所述改良植物表现出增加的耐旱性和或籽粒产量。
6.权利要求5所述改良的植物或种子,其中所述多肽包含的氨基酸序列与SEQ ID NO:3、6、9、12、15、18或21有至少80%的一致性。
7.权利要求5或6所述改良的植物或种子,其中所述植物包含的抑制DNA构建体含有至少一个调控元件可操作地连接一个抑制元件。其中所述抑制元件含有至少100个连续的碱基对,其(a)多核苷酸的核苷酸序列与SEQ ID NO:2、5、8、11、14、17或20有至少90%的一致性;或(b)核苷酸编码的多肽的氨基酸序列与SEQ ID NO:3、6、9、12、15、18或21有至少90%的序列一致性;或(c)核苷酸序列(a)或(b)的全长互补序列,其中所述植物和对照植物相比较时表现出提高的耐旱性。
8.权利要求7所述改良的植物或种子,其中所述抑制元件包含的核苷酸序列为SEQ IDNO:51。
9.权利要求5所述的改良植物或种子,其中所述植物在其基因组位点上包含有一个靶向基因修饰,其包含的多核苷酸序列编码的多肽的氨基酸序列与SEQ ID NO:3、6、9、12、15、18或21有至少80%的序列一致性,从而减少了所述多肽的表达。
10.权利要求9所述的植物,其中所述基因修饰是由一个或多个含有筛选自SEQ ID NO:56-66的序列的gRNA引入的。
11.一种改良的植物或种子,包含的内源性LNTP10、DUF6或ATAP1多肽的表达和/或活性,与对照植物中相应多肽的表达和/或活性相比是减少的。其中所述植物与对照植物相比较时,表现出增加的氮胁迫耐性和/或籽粒产量。
12.权利要求11所述改良的植物或种子,其中所述多肽包含的氨基酸序列与SEQ IDNO:9、15或18有至少90%的一致性。
13.权利要求11或12所述改良的植物或种子,其中所述植物包含的抑制构建体含有至少一个调控元件可操作地连接抑制元件。其中所述抑制元件包含有至少100个连续的碱基对,其(a)多核苷酸的核苷酸序列与SEQ ID NO:8、14或17有至少90%的一致性;或(b)多核苷酸编码的多肽的氨基酸序列与SEQ ID NO:9、15或18有至少90%的序列一致性;或(c)核苷酸序列(a)或(b)的全长互补序列,其中所述植物与对照植物相比较时表现出增加的氮素胁迫耐性和/或籽粒产量。
14.权利要求13所述改良的植物或种子,其中所述抑制元件的核苷酸序列为SEQ IDNO:51。
15.权利要求11所述的改良植物或种子,其中所述植物基因位点包含的靶向基因修饰的多核苷酸序列,编码的多肽的氨基酸序列与SEQ ID NO:9、15或18有至少80%的序列一致性,从而减少了所述多肽的表达。
16.权利要求5-15所述的任一植物,其中所述植物选自水稻、玉米、大豆、向日葵、高粱、油菜、小麦、苜蓿、棉花、大麦、小米、甘蔗和柳枝稷。
17.一种产生植物的方法,所述植物中内源BCS1-2、DnaJ7、LNTP10、GH17.2、DUF6、ATAP1或PCL1多肽的表达是减少的,并在和对照植物相比较时表现出增加的耐旱性和/或籽粒产量。其中所述方法包括:(a)引入包含有至少一个异源调控元件可操作地连接抑制元件的抑制DNA构建体,以减少BCS1-2、DnaJ7、LNTP10、GH17.2、DUF6、ATAP1或PCL1多肽的表达;(b)引入一个基因修饰,包括向含有内源BCS1-2、DnaJ7、LNTP10、GH17.2、DUF6、ATAP1或PCL1基因及其调控元件的基因组区域引入一个DNA片段、删除一个DNA片段、替换一个DNA片段、或引入一个或多个核苷酸、或替换一个或多个核苷酸,以减少内源BCS1-2、DnaJ7、LNTP10、GH17.2、DUF6、ATAP1或PCL1多肽的表达或活性。
18.权利要求17所述的方法,其中所述方法包括引入含有至少一个异源调控元件可操作地连接抑制元件的抑制DNA构建体,以减少内源BCS1-2、DnaJ7、LNTP10、GH17.2、DUF6、ATAP1或PCL1多核苷酸的表达,其中所述抑制元件包含至少100个连续的碱基对,其(a)多核苷酸的核苷酸序列与SEQ ID NO:2、5、8、11、14、17或20有至少85%的序列一致性;(b)多核苷酸编码的多肽的氨基酸序列与SEQ ID NO:3、6、9、12、15、18或21有至少90%的序列一致性;或(c)所述核苷酸序列(a)或(b)的全长互补序列。
19.权利要求18所述的方法,其中所述抑制元件包含的序列为SEQ ID NO:51。
20.权利要求17所述的方法,其中所述修饰包括(a)引入一个DNA片段、删除一个DNA片段或替换一个DNA片段,或(b)引入一个或多个核苷酸、或替换一个或多个核苷酸,到含有的多肽的氨基酸序列与SEQ ID NO:3、6、9、12、15、18或21有至少90%序列一致性的基因组区域。
21.权利要求20所述的方法,其中所述修饰包括向基因组区域(a)引入一个DNA片段、删除一个DNA片段或替换一个DNA片段,或(b)引入一个或多个核苷酸、或替换一个或多个核苷酸。所述基因组区域包含的序列与SEQ ID NO:2、5、8、11、14、17、20、74或75。
22.权利要求21所述的方法,其中所述修饰通过SEQ ID NO:56-66的gRNA被引入,以减少内源BCS1-2、DnaJ7、LNTP10、GH17.2、DUF6、ATAP1 or PCL1多肽的表达或活性。
23.权利要求20-22所述的方法,其中所述靶向基因修饰是使用以下基因修饰技术被引入的:多核苷酸引导的核酸内切酶、CRISPR-Cas核酸内切酶、碱基编辑脱氨酶、锌指核酸酶、转录激活因子样效应核酸酶(TALEN)、工程位点特异性大范围核酸酶或Argonaute。
24.一种增加耐旱性的植物,所述植物中含有的BCS1-2、DnaJ7、LNTP10、GH17.2、DUF6、ATAP1或PCL1的多肽表达和/活性是减少的。
25.权利要求24所述的方法,其中所述多肽含有的氨基酸序列和SEQ ID NO:3、6、9、12、15、18或21有至少80%的序列一致性。
26.权利要求24或25所述的方法,该方法包括:
a)向一个可再生的植物细胞引入一个抑制DNA构建体,以减少所述多核苷酸的表达或活性;和
b)从可再生植物细胞再生一个改良的植物,其中所述植物包含有所述抑制DNA构建体。
27.权利要求26所述的方法,其中所述抑制DNA构建体含有至少一个异源调控元件可操作地连接抑制元件,其中所述抑制元件含有至少100个连续的碱基对,其(a)多核苷酸的核苷酸序列与SEQ ID NO:2、5、8、11、14、17或20有至少85%的序列一致性;(b)多核苷酸编码的多肽的氨基酸序列与SEQ ID NO:3、6、9、12、15、18或21有至少90%的序列一致性;或(c)核苷酸序列(a)-(b)的全长互补序列。
28.权利要求26所述的方法,其中所述抑制元件含有一个多核苷酸,其核苷酸序列为SEQ ID NO:51。
29.权利要求26所述的方法,其中所述异源调控元件是一个启动子。
30.权利要求24或25所述的方法,其中所述方法包括:
a)向一个可再生植物细胞的基因位点引入一个靶向基因修饰来编码所述多肽;和
b)再生所述植物,植物中所述多肽的水平和/或活性是降低的。
31.权利要求30所述的方法,其中所述靶向基因修饰使用以下基因修饰技术被引入的:多核苷酸引导的核酸内切酶、CRISPR-Cas核酸内切酶、碱基编辑脱氨酶、锌指核酸酶、转录激活因子样效应核酸酶(TALEN)、工程位点特异性大范围核酸酶或Argonaute。
32.权利要求30所述的方法,其中所述靶向基因修饰存在于编码所述多肽的基因位点的(a)编码区;(b)非编码区;(c)调控区域;(d)非转录区;或(e)任意(a)-(d)的组合。
33.权利要求30所述的方法,其中所述靶向基因修饰是通过gRNA被引入的,gRNA含有的序列是一个或多个SEQ ID NO:56-66。
34.一种提高植物氮素耐性和/或氮素利用效率的方法,在植物中包含有减少的LNTP10、DUF6或ATAP1多肽。
35.权利要求34所述的方法,其中所述多肽含有的氨基酸序列与SEQ ID NO:9、15或18有至少80%的序列一致性。
36.权利要求34或35所述的方法,其中该方法包括:
a)向一个可再生植物细胞引入抑制DNA构建体,以减少所述多肽的表达或活性;和
b)从可再生植物细胞再生一个改良的植物,其中所述植物包含有抑制DNA构建体。
37.权利要求36所述的方法,其中所述抑制DNA构建体含有至少一个抑制元件,所述抑制元件含有至少100个连续的碱基对,其(a)多核苷酸的核苷酸序列与SEQ ID NO:8、14或17有至少85%的序列一致性;(b)多核苷酸编码的多肽的氨基酸序列与SEQ ID NO:9、15或18有至少90%的序列一致性;或(c)核苷酸序列(a)或(b)的全长互补序列。
38.权利要求36所述的方法,其中所述抑制元件含有的多核苷酸的核苷酸序列为SEQID NO:51。
39.权利要求36所述的方法,其中所述异源调控元件是一个启动子。
40.权利要求34或35所述的方法牟其中所述方法包括:
a)向可再生植物细胞的基因组位点引入靶向基因修饰,以编码所述多肽;和
b)再生所述植物,植物所述多肽的表达和/或活性是降低的。
41.权利要求40所述的方法,其中所述靶向基因修饰使用以下基因修饰技术被引入的:多核苷酸引导的核酸内切酶、CRISPR-Cas核酸内切酶、碱基编辑脱氨酶、锌指核酸酶、转录激活因子样效应核酸酶(TALEN)、工程位点特异性大范围核酸酶或Argonaute。
42.权利要求40所述的方法,其中所述靶向基因修饰存在于能编码所述多肽的基因组位点的(a)编码区;(b)非编码区;(c)调控序列;(d)非翻译区;或(e)任意(a)-(d)的组合。
CN201980096653.5A 2019-05-22 2019-05-22 非生物胁迫耐性植物和方法 Pending CN114245823A (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/087910 WO2020232660A1 (en) 2019-05-22 2019-05-22 Abiotic stress tolerant plants and methods

Publications (1)

Publication Number Publication Date
CN114245823A true CN114245823A (zh) 2022-03-25

Family

ID=73458945

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201980096653.5A Pending CN114245823A (zh) 2019-05-22 2019-05-22 非生物胁迫耐性植物和方法

Country Status (3)

Country Link
US (1) US20220213499A1 (zh)
CN (1) CN114245823A (zh)
WO (1) WO2020232660A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114891802A (zh) * 2022-04-24 2022-08-12 上海市农业生物基因中心 OsDUF6基因及其编码蛋白在水稻耐盐性育种中的应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101802190A (zh) * 2007-06-20 2010-08-11 澳大利亚国立大学 提高植物胁迫抗性的方法和材料

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR122021002337B1 (pt) * 2010-04-28 2022-03-22 Evogene Ltd Método de aumento de produção, biomassa, taxa de crescimento, vigor, teor de óleo, produção de fibra qualidade de fibra, tolerância ao estresse abiótico e/ou eficiência de uso de nitrogênio de uma planta, e construto de ácido nucleico isolado
CN107287208A (zh) * 2016-03-31 2017-10-24 未名生物农业集团有限公司 花期调控基因和相关载体及其应用
CN107557368A (zh) * 2016-06-30 2018-01-09 未名生物农业集团有限公司 非生物胁迫耐性提高的植物和方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101802190A (zh) * 2007-06-20 2010-08-11 澳大利亚国立大学 提高植物胁迫抗性的方法和材料

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
NONE: "AAA-ATPase At3g50940 [Oryza sativa Japonica Group]", GENBANK, 7 August 2018 (2018-08-07), pages 1 - 486 *
张旺: "水稻基因OsAAA1的功能研究及其互作蛋白的筛选", 中国优秀硕士学位论文全文数据库 (基础科学辑), 16 April 2019 (2019-04-16) *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114891802A (zh) * 2022-04-24 2022-08-12 上海市农业生物基因中心 OsDUF6基因及其编码蛋白在水稻耐盐性育种中的应用
CN114891802B (zh) * 2022-04-24 2023-11-17 上海市农业生物基因中心 OsDUF6基因及其编码蛋白在水稻耐盐性育种中的应用

Also Published As

Publication number Publication date
WO2020232660A1 (en) 2020-11-26
US20220213499A1 (en) 2022-07-07

Similar Documents

Publication Publication Date Title
KR102607893B1 (ko) 지베렐린 대사의 조작을 통해 저신장 식물의 수확량을 증가시키기 위한 방법 및 조성물
AU2016216734B2 (en) Maize cytoplasmic male sterility (CMS) C-type restorer RF4 gene, molecular markers and their use
KR101659101B1 (ko) 박테리아 [2Fe-2S] 다이하이드록시산 탈수효소의 동정 및 용도
US20030033626A1 (en) Manipulation of genes of the mevalonate and isoprenoid pathways to create novel traits in transgenic organisms
CN108699560B (zh) 花期调控基因和相关载体及其应用
CN109312350B (zh) 非生物胁迫耐性的植物和方法
CA2809644C (en) Activation tagging platform for maize, and resultant tagged populations and plants
CN101410521A (zh) 植物木质素含量的调控
EP3609314A1 (en) Methods and compositions for herbicide tolerance in plants
AU2024204180B2 (en) Methods
CN109819659A (zh) 提高植物非生物胁迫耐性的构建体和方法
CN115066175A (zh) Cas介导的体细胞植物组织中的同源定向修复
CN101918560B (zh) 在氮限制条件下具有改变的农学特性的植物以及涉及编码lnt2多肽及其同源物的基因的相关构建体和方法
CN114805510B (zh) 调控抗铝毒转录因子stop1蛋白的基因及其应用
US20200283786A1 (en) Lodging resistance in plants
CN110818785B (zh) 一种玉米蔗糖转运蛋白ZmSUT3J及其编码基因和应用
CN114245823A (zh) 非生物胁迫耐性植物和方法
US20120094338A1 (en) Continuous production and excretion of waxy products from photosynthetic organisms
CN101848931B (zh) 具有改变的根构造的植物、涉及编码exostosin家族多肽及其同源物的基因的相关的构建体和方法
US5474929A (en) Selectable/reporter gene for use during genetic engineering of plants and plant cells
CN109912703B (zh) 蛋白质OsARE1在调控植物衰老中的应用
JP2018511333A (ja) 導入遺伝子発現のための植物プロモータ
AU2014373712A1 (en) The use of transgenic plant for recovery of non-transgenic hybrids
CN106459161A (zh) 涉及谷氨酸受体多肽编码基因的构建体和方法
CN108473997B (zh) 用于转基因表达的植物启动子

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination