CN114242437B - 一种高性能烧结Re-Fe-B系的制备方法 - Google Patents

一种高性能烧结Re-Fe-B系的制备方法 Download PDF

Info

Publication number
CN114242437B
CN114242437B CN202111346274.2A CN202111346274A CN114242437B CN 114242437 B CN114242437 B CN 114242437B CN 202111346274 A CN202111346274 A CN 202111346274A CN 114242437 B CN114242437 B CN 114242437B
Authority
CN
China
Prior art keywords
magnetic field
powder
powder particles
orientation
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111346274.2A
Other languages
English (en)
Other versions
CN114242437A (zh
Inventor
曹利军
李志学
李绍芳
李小明
程言志
杨慧杰
王浩颉
韩雪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin Sanhuan Lucky New Material Co ltd
Beijing Zhong Ke San Huan High Tech Co Ltd
Original Assignee
Tianjin Sanhuan Lucky New Material Co ltd
Beijing Zhong Ke San Huan High Tech Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin Sanhuan Lucky New Material Co ltd, Beijing Zhong Ke San Huan High Tech Co Ltd filed Critical Tianjin Sanhuan Lucky New Material Co ltd
Priority to CN202111346274.2A priority Critical patent/CN114242437B/zh
Publication of CN114242437A publication Critical patent/CN114242437A/zh
Application granted granted Critical
Publication of CN114242437B publication Critical patent/CN114242437B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0266Moulding; Pressing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0573Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes obtained by reduction or by hydrogen decrepitation or embrittlement
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0576Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together pressed, e.g. hot working
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0293Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets diffusion of rare earth elements, e.g. Tb, Dy or Ho, into permanent magnets

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

本发明涉及永磁材料技术领域,尤其涉及一种高性能烧结Re‑Fe‑B系的制备方法,本发明采取分段磁场取向自动压制的方式,可明显提高取向度,从而提高Br,不需要等静压,易于控制氧含量,不会使金属模具明显发热,可实现连续批量生产,而且由于高Br的磁体Hcj低,采取扩散工艺可明显提高Hcj,同时Br基本不降低,本发明的制备方法中在制粉后到装炉烧结前全程零氧控制,可以有效避免毛坯局部或边角氧化。

Description

一种高性能烧结Re-Fe-B系的制备方法
技术领域
本发明涉及永磁材料技术领域,尤其涉及一种高性能烧结Re-Fe-B系的制备方法。
背景技术
目前,烧结Nd-Fe-B是人类迄今为止发现的具有最高能量密度的、已大规模商品化的永磁体。自发现以来被广泛应用于计算机硬盘、混合动力汽车、医疗、风力发电等许多领域,其应用范围和产量在逐年增加,尤其是新能源汽车领域。
近年来,烧结Re-Fe-B磁体研发主要分两个方向:一是高性能;二是低成本。随着烧结Re-Fe-B磁体在风力发电、新能源汽车和节能家电等低碳经济领域的应用,兼具高磁能积和高矫顽力的双高特性的烧结Re-Fe-B磁体成为一个重要的研究方向;
如专利文献CN102592775B中公布了一种高性能钕铁硼烧结磁体及其制造方法,剩磁Br为12.8-13.1KGs。专利文献CN110504097A公布了一种提高烧结磁体剩磁的磁场成型方法,等静压时在取向方向不主动施压并在取向方向的长度保持不变,取向度高。Sagawa等人提出橡胶模等静压是制造高性能Re-Fe-B磁体的较好工艺,橡胶模等静压,粉末颗粒几乎不转动,从而维持高的取向度,但该技术装料不方便,还要等静压,操作不方便,成本高,同时不利于控制生坯氧含量,而高性能磁体制备过程要严格控制氧含量。
如专利文献CN112331468A中公布了一种高剩磁钕铁硼磁体的制备方法,先在1.8T的磁场下压到密度为3.3g/cm3,再在2.0T的磁场下压到密度为3.9-4.6g/cm3.Rodewald等人采用脉冲磁场取向,压制时沿充磁方向施加若干次脉冲磁场,磁场方向或始终沿原磁场方向,或先反向后正向,并调整脉冲次数发现先反向后正向的脉冲场取向好于正向单次脉冲。烧结Re-Fe-B粉末磁场趋向主要有恒磁场取向和交变脉冲磁场取向,交变脉冲磁场取向的取向度大于恒磁场取向的取向度,但大批量生产,长时的脉冲场会使金属模具发热,影响工作效率和产品质量。
对此,特提出一种高性能烧结Re-Fe-B系的制备方法以解决上述问题。
发明内容
本发明提供了一种高性能烧结Re-Fe-B系的制备方法,本发明采取分段磁场取向自动压制的方式,可明显提高取向度,从而提高Br,不需要等静压,易于控制氧含量,不会使金属模具明显发热,可连续批量生产,制粉后到装炉烧结前全程零氧控制,可以有效避免毛坯局部或边角氧化。
本发明为解决上述技术问题所采用的技术方案是:一种高性能烧结Re-Fe-B系的制备方法,包括以下步骤:
S1:首先采用速凝工艺制成Re-Fe-B-M合金速凝片;
S2:将步骤S1中得到的合金速凝片进行氢化;
S3:将步骤S2中得到的氢化粉加入添加剂,然后用气流磨制成3um~5.5um的粉体颗粒;
S4:将步骤S3中得到的粉体颗粒加入添加剂后进行混匀;
S5:进行分段磁场取向:将步骤S4中得到的粉体颗粒压制成型,在压制取向时先正向充磁、上冲下压,到达位置后,停止下压,反向充磁,然后再进行正向充磁继续下压;
S6:将步骤S5中得到的生坯放入真空烧结炉内进行烧结;
S7:将步骤S6中得到的烧结磁体切成1mm~8mm不同厚度的磁体进行扩Dy或Tb处理,根据产品Hcj要求可调节镀Dy或Tb的时间;
S8:将步骤S6或步骤S7中得到的烧结磁体进行回火处理。
进一步,所述步骤S1中的Re选自Nd、Pr、Dy和Tb中的一种或者一种以上,其总稀土为28.5wt%~31.4wt%,M选自Cr、Co、Ni、Ga、Cu、Al、Zr、Nb、Ti中的两种或两种以上,其总量为1.15wt%~2.46wt%,同时M中Ga<0.25wt%,B总量为0.95wt%~1.0wt%,余量为Fe。
进一步,所述步骤S5中采用自动压制的方式进行取向,其中正向充磁的正向磁场大于1.4T,反向磁场为0.3T~0.45T,反向充磁位置为0.2h~0.35h。
进一步,所述步骤S5在压制取向时采用Ar气或N2气进行保护。
进一步,所述步骤S6中真空烧结炉的烧结温度为950℃~1080℃,烧结时间为5h~15h,真空烧结炉内的真空度控制在10-2Pa~10-5Pa。
进一步,所述步骤S6中真空烧结炉内采用5kPa~20kPa的Ar气保护气氛,用于使生坯致密化。
进一步,所述步骤S8中采用两级或单级回火处理,回火处理的高温回火温度为680℃~980℃,低温回火温度为450℃~690℃,低温时效处理时间为0.5h~5h,低温回火结束后快速冷却。
本发明的优点在于:本发明通过成分和气体含量的控制和优化提供了一种Br大于14.5KGs的高性能烧结Re-Fe-B的制备方法,本发明采取分段磁场取向自动压制的方式,可明显提高取向度,从而提高Br,不需要等静压,易于控制氧含量,不会使金属模具明显发热,可实现连续批量生产,而且由于高Br的磁体Hcj低,采取扩散工艺可明显提高Hcj,同时Br基本不降低,本发明的制备方法中在制粉后到装炉烧结前全程零氧控制,可以有效避免毛坯局部或边角氧化。
附图说明
为了更清楚地说明本发明具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明中分段磁场取向示意图;
图2为分段磁场取向的磁场变化示意图;
其中:
1、阴模内壁; 2、Re-Fe-B粉末。
具体实施方式
下面将结合附图对本发明的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。
实施例1:
本发明提供了一种高性能烧结Re-Fe-B系的制备方法,采用速凝工艺制成Re-Fe-B-M合金速凝片,其中;另外熔炼合金速凝片的浇注温度和转速要合适,速凝片柱状晶宽度分布越窄越好,其中,Re为Nd,M包括Ga、Cu、Co和Zr;将合金速凝片经过氢化,气流磨,制成平均粒度为5.1μm 的微粉;得到的微粉添加1.2ml/Kg的润滑剂后混匀;在N2气保护下取向,在正向磁场+1.5T取向(简称为恒磁场取向)所得样品记为1#样品;触粉开始正向磁场+1.5T取向,上冲下压0.2h行程后,上冲静止,磁场变为零,停留3s,然后再正向磁场+1.5T取向,所得样品记为2#样品;触粉开始反向磁场-0.3T取向, 上冲下压0.2h行程后,磁场变为零,停留3s,然后再正向磁场+1.5T充磁,所得的样品记为3#样品;触粉开始正向磁场+1.5T取向, 上冲下压0.2h行程后,反向磁场-0.3T取向,停留3s,然后再正向磁场+1.5T充磁,所得的样品记为4#样品;采用分段磁场取向方式,触粉开始正向磁场+1.5T取向,上冲分别下压0.1h、0.2h、0.35h和0.45h行程后,反向磁场-0.3T取向,停留3s,然后再正向磁场+1.5T充磁,所得的样品分别记为5#-8#样品;采用分段磁场取向方式,触粉开始正向磁场+1.5T取向, 上冲下压0.2h行程后,反向磁场-0.1T、-0.2T、-0.3T、-0.45T和-0.6T 分别取向,停留3s,然后再正向磁场+1.5T充磁,所得的样品分别记为9#-13#样品,将上述生坯放入烧结炉中进行烧结(对于不同成分和不同制粉工艺的生坯,烧结温度和时间也不同,烧结温度过低或时间过短则会导致烧结磁体密度低且性能差,若烧结温度高或时间长,则容易使晶粒明显长大,从而会导致矫顽力降低,所以烧结工艺的制定十分关键),在1068℃的温度下进行烧结6h后气淬至室温,两级回火,第一级回火温度为800℃,第二级回火温度为460℃,具体见表1到表3。
表1:不同取向方式压制样品的性能对比
Figure 7382DEST_PATH_IMAGE001
从上表中可以看出,触粉开始正向磁场+1.5T取向,上冲行程0.2h后反向磁场-0.3T停留3s,然后再正向磁场+1.5T充磁继续压制的4#样品的Br最高,比正常取向的1#样品的Br提高约0.15KGs;
可见分段磁场取向方式比恒磁场取向的Br提高约0.15KGs,取向度提高0.1%,分段磁场取向方式也优于另外两种取向方式,分段磁场取向方式可克服部分颗粒间的摩擦力,更利于磁性颗粒c轴在取向方向上排列。
表2:不同反向充磁位置压制样品的性能对比
Figure 455680DEST_PATH_IMAGE002
压制时上冲触粉开始到反向充磁位置之间的距离记为X(如本说明书附图1所示),本发明中说明书附图1中的A点表示刚布完粉时粉末在阴模内最上端的位置;B点表示反向充磁位置,上冲下压到该位置时停止,反向充磁;C点表示上冲下压的最终位置;h表示上冲接触粉末位置A到上冲下压的最终位置C之间的距离;X表示上冲接触粉末位置A到反向充磁位置B之间的距离;
样品取向:上冲触粉开始正向磁场+1.5T取向,上冲行程Xmm后反向-0.3T停留3s,然后再正向电流+1.5T充磁继续压制。从上表来看,在0.1h和0.45h位置反向充磁得到的5#和8#样品的Br明显低于其它反向位置的样品,反向充磁位置在0.2h-0.35h行程时Br较高。
表3:不同反向充磁电流压制样品的性能对比
Figure 766576DEST_PATH_IMAGE003
上述样品取向方式,触粉开始正向磁场+1.5T取向,上冲行程0.2h行程后,不同反向磁场取向停留3s,然后再正向磁场+1.5T充磁继续压制,反向磁场为-0.1T、-0.2T和-0.6T得到的9#、10#和13#样品的Br明显低于其它样品,反向磁场在0.3T-0.45T时Br较高。
实施例2:
本发明提供了一种高性能烧结Re-Fe-B系的制备方法,采用速凝工艺制成Re-Fe-B-M合金速凝片,其中,R为Nd、Pr、Dy或Tb中的一种或多种,M 选自Cr、Co、Ni、Ga、Cu、Al、Zr、Nb、Ti中的多种;将合金速凝片经过氢化,气流磨,制成不同粒度的微粉,粒度为3.0um~5.5um,气流磨采用N2介质或其他惰性气体介质;得到的微粉添加1.2ml/Kg的润滑剂后混匀;在N2气保护下取向,采取分段充磁取向,触粉开始正向磁场+1.5T取向,上冲行程0.2h行程后,反向磁场-0.4T取向,停留3s,然后再正向磁场+1.5T,压制成生坯(h指上冲触粉位置到上冲下压最终位置之间的距离,见本说明书附图1) ,该种取向方式在本发明中定义为分段磁场取向(见说明书附图1说明书附图和2);压制全过程严格防氧化,可以采取自动压制,从开罐到装炉前都在Ar气或N2气保护中,全程零氧控制;将生坯放入烧结炉中,不同温度烧结温度保温6h后气淬至室温,烧结温度范围1040℃~1080℃,第一级回火温度为800℃~930℃,第二级回火温度为450℃~560℃保温一定时间后气淬,不同的样品两级回火温度不同,得到的样品分别记为14-24#,具体成分和工艺参数参见表4与表5。
表4:不同样品的配料成分及取向方式
Figure 692944DEST_PATH_IMAGE004
表5:表4中不同成分样品的性能对比
Figure 38475DEST_PATH_IMAGE005
上表中15#样品的Br最小14.5KGs,其稀土含量Re为31.4 wt%,Re只有Nd,M元素中主要含利于Br的Co,如果进一步增加稀土含量,Br定会小于14.5KGs,所以要保证Br大于14.5KGs,则稀土含量Re<31.4 wt%。
24#样品的土含量Re为28.5wt%,但Br只有14.63KGs,即使过烧,有明显亮点,其密度也只有7.44g/cm3,其它性能参数急剧恶化,因其稀土含量太低,没有一定量的富钕相使其致密化,导致其Br反而降低,所以稀土含量Re>28.5wt%。
17#样品PrNd含量29.6wt%,Br高达14.83KGs,18#样品用1.6wt%Dy代替PrNd,其稀土含量还是29.6wt%,其余元素与17#样品完全一样,18#样品的Br只有14.44KGs,可见重稀土元素替代PrNd,Br会有明显降低,大概1wt%的Dy或Tb代替PrNd会降低Br约0.23KGs,但Hcj有明显提高。
21#和22#样品对比来看,21#的PrNd含量比22#高0.5wt%,21#的Br比22#低0.16KGs,可见稀土含量越高Br越低,但Hcj越高,大概增加1wt%的PrNd会降低Br约0.32KGs。
上述样品的B含量0.97wt%~0.98wt%,结合本发明的其它样品来看,如果B含量大于1.0wt%,富B相会有明显的增加,会降低Br,如果B含量小于0.95wt%,方形度会明显变差,同时Br会有所降低,故B含量控制范围0.95wt%~1.0wt%。
上述样品的M含量为1.15wt%~2.46wt%,M中Ga<0.25 wt%,结合本发明的其它样品来看,M中除Co外,其它元素的增加会降低Br,尤其是Al和Ga,所以M含量控制范围1.15wt%~2.46wt%,同时Ga<0.25 wt%,即要满足Br>14.5KGs,各元素质量百分比必须满足:0.95wt%<B<1.0wt%,28.5wt%<Re<31.4wt%,1.15wt%<M<2.46wt%,同时M中Ga<0.25wt%,其余为Fe。
为制造Br大于14.5KGs的高性能烧结R~Fe~B 系磁体,Br越高,其合适的成分范围越窄,由于成分范围较窄,成分设计时,可添加的元素种类和含量可选择的范围变窄,如Pr、Dy、Tb、Nb、Al、Cu、Ga等取代Nd或Fe的种类会变少,同时含量变小,制造过程氧含量要严格控制,甚至零氧控制。
表6:上述样品的气体含量(包括氧、氮和碳)和稀土净含量
Figure 392095DEST_PATH_IMAGE006
总稀土含量定义为Rewt%,净剩稀土含量定义为Re,wt%,总稀土含量减去氧、氮和碳消耗后,即净剩稀土含量Re,wt%=Rewt%-(6*Owt%+10*Nwt%+8Cwt%)。15#样品的净剩稀土含量最大,Re,wt%为29.54%,24#样品的净剩稀土含量最小,Re,wt%为27.811%,该样品未能致密化,23#样品的净剩稀土含量为27.987%,该样品可以致密化,但Hcj偏低,磁体的氮和碳越低越利于磁体性能,由于润滑剂的添加,磁体氮和碳不可避免,当然,我们可以改善添加剂的种类和用量,改善烧结工艺,改善气流磨介质的使用等方法来降低磁体的氮和碳。为了减少稀土用量,提高Br,同时也要兼顾Hcj,结合本发明的样品结果来看,要保证Br大于14.5KGs,同时也能使致密化,稀土净含量Re,wt%>27.987%,氮和碳含量越低越好。
实施例3:
本发明提供了一种高性能烧结Re-Fe-B系的制备方法,将实施例2中的样品19#、21#、22#和23#,充磁方向切为3um厚,六面磨光,清洗干净,在一定条件下扩Tb后,对应样品分别记为25#至28#。
表7:上述部分样品扩散后的性能
Figure 190287DEST_PATH_IMAGE007
实施例2中样品的Hcj都在15KOe以下,为了提高Hcj,对部分样品做了扩Tb处理,扩散后样品的Hcj有明显增加,增加约:10.45-12.82KOe,Br略有降低,28#样品的Br可达15.04KGs同时Hcj可到18.24KOe, 25#样品的BHm与Hcj之和可达76.28。
本发明提供了一种Br大于14.5KGs高性能烧结Re-Fe-B 系的制备方法,需要控制以下主要因素:第一,采取分段磁场取向的充磁方式;第二,总稀土量需要控制为28.5wt%-31.4wt%;第三,硼含量需要控制在0.95 wt%-1.0wt%;第四,M总量需要控制为1.15wt%~2.46wt%,同时M中Ga<0.25wt%;第五,气体含量控制,氮和碳越低越好,净剩稀土含量大于27.987%,制粉后到装炉烧结前全程零氧控制,避免毛坯局部或边角氧化;第六,由于高Br的磁体Hcj低,采取扩散工艺可明显提高Hcj,同时Br基本不降低。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (5)

1.一种高性能烧结Re-Fe-B系的制备方法,其特征在于,包括以下步骤:
S1:首先采用速凝工艺制成Re-Fe-B-M合金速凝片;
S2:将步骤S1中得到的合金速凝片进行氢化;
S3:将步骤S2中得到的氢化粉加入添加剂,然后用气流磨制成3μm~5.5μm的粉体颗粒;
S4:将步骤S3中得到的粉体颗粒加入添加剂后进行混匀;
S5:进行分段磁场取向:将步骤S4中得到的粉体颗粒压制成型,在压制取向时先正向充磁、上冲下压,到达位置后,停止下压,反向充磁,然后再进行正向充磁继续下压;
S6:将步骤S5中得到的生坯放入真空烧结炉内进行烧结;
S7:将步骤S6中得到的烧结磁体切成1mm~8mm不同厚度的磁体进行扩Dy或Tb处理,根据产品Hcj要求可调节镀Dy或Tb的时间;
S8:将步骤S6或步骤S7中得到的烧结磁体进行回火处理;
所述步骤S5采用自动压制的方式进行取向,其中正向充磁的正向磁场大于1.4T,反向磁场为-0.3T~-0.45T,反向充磁位置为0.2h~0.35h,h指上冲触粉位置到上冲下压最终位置之间的距离,步骤S5在压制取向时采用Ar气或N2气进行保护;
所述步骤S5中触粉开始正向磁场+1.5T取向,上冲行程0.2h后反向磁场-0.3T停留3s,然后再正向磁场+1.5T充磁继续压制。
2.根据权利要求1所述的一种高性能烧结Re-Fe-B系的制备方法,其特征在于,所述步骤S1中的Re选自Nd、Pr、Dy和Tb中的一种或一种以上,其总稀土为28.5wt%~31.4wt%,M选自Cr、Co、Ni、Ga、Cu、Al、Zr、Nb、Ti中的两种或两种以上,其总量为1.15wt%~2.46wt%,同时M中Ga<0.25wt%,B总量为0.95wt%~1.0wt%,余量为Fe。
3.根据权利要求1所述的一种高性能烧结Re-Fe-B系的制备方法,其特征在于:所述步骤S6中真空烧结炉的烧结温度为950℃~1080℃,烧结时间为5h~15h,真空烧结炉内的真空度控制在10-2Pa~10-5Pa。
4.根据权利要求1所述的一种高性能烧结Re-Fe-B系的制备方法,其特征在于:所述步骤S6中真空烧结炉内采用5kPa~20kPa的Ar气保护气氛,用于使生坯致密化。
5.根据权利要求1所述的一种高性能烧结Re-Fe-B系的制备方法,其特征在于:所述步骤S8中采用两级回火处理,回火处理的高温回火温度为680℃~980℃,低温回火温度为450℃~690℃,低温时效处理时间为0.5h~5h,低温回火结束后快速冷却。
CN202111346274.2A 2021-11-15 2021-11-15 一种高性能烧结Re-Fe-B系的制备方法 Active CN114242437B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111346274.2A CN114242437B (zh) 2021-11-15 2021-11-15 一种高性能烧结Re-Fe-B系的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111346274.2A CN114242437B (zh) 2021-11-15 2021-11-15 一种高性能烧结Re-Fe-B系的制备方法

Publications (2)

Publication Number Publication Date
CN114242437A CN114242437A (zh) 2022-03-25
CN114242437B true CN114242437B (zh) 2022-05-24

Family

ID=80749321

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111346274.2A Active CN114242437B (zh) 2021-11-15 2021-11-15 一种高性能烧结Re-Fe-B系的制备方法

Country Status (1)

Country Link
CN (1) CN114242437B (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102339670A (zh) * 2010-07-21 2012-02-01 何若冲 永磁体的制作方法
CN105810425A (zh) * 2014-12-29 2016-07-27 天津三环乐喜新材料有限公司 一种集约型烧结钕铁硼永磁体的制造方法
CN113512685A (zh) * 2021-04-22 2021-10-19 北京中磁电气有限公司 Fe基磁性合金及其制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104681225A (zh) * 2013-12-03 2015-06-03 湖南稀土金属材料研究院 一种提高烧结钕铁硼材料性能的处理方法
CN104575903A (zh) * 2014-11-26 2015-04-29 宁波格荣利磁业有限公司 一种添加Dy粉末的钕铁硼磁体及其制备方法
CN108899190B (zh) * 2018-06-29 2020-12-22 烟台首钢磁性材料股份有限公司 一种梯度钕铁硼磁体及其制作方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102339670A (zh) * 2010-07-21 2012-02-01 何若冲 永磁体的制作方法
CN105810425A (zh) * 2014-12-29 2016-07-27 天津三环乐喜新材料有限公司 一种集约型烧结钕铁硼永磁体的制造方法
CN113512685A (zh) * 2021-04-22 2021-10-19 北京中磁电气有限公司 Fe基磁性合金及其制备方法

Also Published As

Publication number Publication date
CN114242437A (zh) 2022-03-25

Similar Documents

Publication Publication Date Title
EP2760032B1 (en) Manufacturing method of R-T-B-M-C sintered magnet
EP0302947B1 (en) Rare earth element-iron base permanent magnet and process for its production
JP6446092B2 (ja) 複合磁性材料およびその製造方法
US20110233455A1 (en) Sintered nd-fe-b permanent magnet with high coercivity for high temperature applications
CN103985533B (zh) 共晶合金氢化物掺杂提高烧结钕铁硼磁体矫顽力的方法
CN1033623C (zh) 生产稀土合金磁粉的方法
EP2830069A1 (en) R-T-B-M sintered magnet and manufacturing method thereof
KR20210151940A (ko) R-t-b계 희토류 영구자석 재료, 제조방법 및 응용
CN109859922B (zh) 一种低重稀土含量的R-Fe-B类磁体的制备方法
CN109732046B (zh) 一种烧结钕铁硼磁体及其制备方法
JP2022535482A (ja) R-t-b系永久磁石材料、製造方法、並びに応用
CN111968819A (zh) 一种低重稀土高性能烧结钕铁硼磁体及其制备方法
CN112750587A (zh) 高性能烧结钐钴磁体的制备方法
USRE40348E1 (en) Arc segment magnet, ring magnet and method for producing such magnets
JP2017069337A (ja) R−t−b系磁石の製造方法
CN112582121B (zh) 超高性能烧结钐钴磁体的制备方法
CN106920612B (zh) 一种钕铁硼永磁材料的制备方法
CN111261355A (zh) 钕铁硼磁体材料、原料组合物、制备方法、应用
EP4152348B1 (en) Preparation method for heavy rare earth-free high-performance neodymium-iron-boron permanent magnet material
KR20170132034A (ko) 자기특성이 우수한 희토류 영구자석 제조방법
CN113838622A (zh) 一种高矫顽力烧结钕铁硼磁体及其制备方法
CN114242437B (zh) 一种高性能烧结Re-Fe-B系的制备方法
CN110033914B (zh) 提高烧结钕铁硼磁体的矫顽力的方法
CN110473684B (zh) 一种高矫顽力烧结钕铁硼磁体的制备方法
WO2023124688A1 (zh) 钕铁硼磁体及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant