CN114231994A - 一种铝合金牺牲阳极及其制备方法及应用 - Google Patents

一种铝合金牺牲阳极及其制备方法及应用 Download PDF

Info

Publication number
CN114231994A
CN114231994A CN202111645734.1A CN202111645734A CN114231994A CN 114231994 A CN114231994 A CN 114231994A CN 202111645734 A CN202111645734 A CN 202111645734A CN 114231994 A CN114231994 A CN 114231994A
Authority
CN
China
Prior art keywords
aluminum alloy
sacrificial anode
alloy sacrificial
aluminum
anode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202111645734.1A
Other languages
English (en)
Other versions
CN114231994B (zh
Inventor
刘严强
李�杰
万励
戴慰慰
梁云
冯海星
苏永强
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang Yuxi Corrosion Control Corp
Original Assignee
Zhejiang Yuxi Corrosion Control Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang Yuxi Corrosion Control Corp filed Critical Zhejiang Yuxi Corrosion Control Corp
Priority to CN202111645734.1A priority Critical patent/CN114231994B/zh
Publication of CN114231994A publication Critical patent/CN114231994A/zh
Application granted granted Critical
Publication of CN114231994B publication Critical patent/CN114231994B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F13/00Inhibiting corrosion of metals by anodic or cathodic protection
    • C23F13/02Inhibiting corrosion of metals by anodic or cathodic protection cathodic; Selection of conditions, parameters or procedures for cathodic protection, e.g. of electrical conditions
    • C23F13/06Constructional parts, or assemblies of cathodic-protection apparatus
    • C23F13/08Electrodes specially adapted for inhibiting corrosion by cathodic protection; Manufacture thereof; Conducting electric current thereto
    • C23F13/12Electrodes characterised by the material
    • C23F13/14Material for sacrificial anodes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • C22C1/026Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/003Alloys based on aluminium containing at least 2.6% of one or more of the elements: tin, lead, antimony, bismuth, cadmium, and titanium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/06Alloys based on aluminium with magnesium as the next major constituent
    • C22C21/08Alloys based on aluminium with magnesium as the next major constituent with silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F2213/00Aspects of inhibiting corrosion of metals by anodic or cathodic protection
    • C23F2213/30Anodic or cathodic protection specially adapted for a specific object
    • C23F2213/31Immersed structures, e.g. submarine structures
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F2213/00Aspects of inhibiting corrosion of metals by anodic or cathodic protection
    • C23F2213/30Anodic or cathodic protection specially adapted for a specific object
    • C23F2213/32Pipes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Prevention Of Electric Corrosion (AREA)

Abstract

本发明涉及腐蚀与防护技术领域,尤其是一种铝合金牺牲阳极及其制备方法及应用,现提出如下方案,铝合金牺牲阳极含有重量比为:0.005%~0.50%的铟,0.01%~4.00%的锡,0.01%~1.85%的硅,0.2%~6.0%的镁,0.005%~0.20%的镉,其余为铝;铝合金牺牲阳极的制备方法,在铝中加入相应组分的铟、锡、硅、镁和镉,加热熔融制得合金溶液,再将合金溶液浇铸成型得到铝合金牺牲阳极。本发明提出的铝合金牺牲阳极中不含锌,具有电位稳定,实际电流容量高,表面溶解均匀,腐蚀产物容易脱落的优点,避免了牺牲阳极中锌元素溶解对海洋生态的影响,为环境友好型铝合金牺牲阳极。

Description

一种铝合金牺牲阳极及其制备方法及应用
技术领域
本发明涉及腐蚀与防护技术领域,尤其是一种铝合金牺牲阳极及其制备方法及应用。
背景技术
目前,应用于海洋工程装备的腐蚀防护的阴极保护材料以Al-Zn-In系阳极为主,含锌的铝合金牺牲阳极溶解后产生的重金属锌离子,会对海洋生态环境造成影响和危害,例如,海上养殖区附近修建了大量的海上风电设施,环评发现其周边海水中的锌含量超标,超过了标准规定中作为水产养殖区的二类水质中锌元素不超过0.05mg/L的上限,过量的锌会影响海洋生物正常的生理代谢,导致生物生长发育被抑制,对免疫系统和生殖系统也会造成损害,对养殖业会造成减产的危害,而锌超标主要是牺牲阳极中锌元素溶解所致。
为了减少锌过量对海洋环境的影响,可以在不影响铝合金牺牲阳极原有性能基础上不添加金属锌,形成一种对海洋环境无污染的无锌型铝合金牺牲阳极材料,为此,本发明提出了一种铝合金牺牲阳极及其制备方法及应用。
发明内容
为解决现有技术中的问题,本发明提出了一种铝合金牺牲阳极及其制备方法及应用。
为了实现上述目的,本发明采用了如下技术方案:
一种铝合金牺牲阳极,含有重量比为:0.005%~0.50%的铟,0.01%~4.00%的锡,0.01%~1.85%的硅,0.2%~6.0%的镁,0.005%~0.20%的镉,其余为铝。
上述铝合金牺牲阳极在用于海洋结构物、海底管道及海洋装备的腐蚀防护的阴极保护工程中的应用。
上述铝合金牺牲阳极的制备方法,包括在铝中加入铟、锡、硅、镁和镉,加热熔融制得合金溶液,再将合金溶液浇铸成型得到铝合金牺牲阳极,所述铟的质量分数为0.005%~0.50%,所述锡的质量分数为0.01%~4.00%,所述硅的质量分数为0.01%~1.85%,所述镁的质量分数为0.2%~6.0%,所述镉的质量分数为0.005%~0.20%。
本发明的有益效果:
1、本发明提出的铝合金牺牲阳极中不含锌,避免了牺牲阳极中锌元素溶解对海洋生态的影响,为环境友好型铝合金牺牲阳极,而且该铝合金牺牲阳极的开路电位为-1.19V~-1.10V(相对于饱和甘汞电极),工作电位为-1.13V~-1.05V(相对于饱和甘汞电极),电容量为按照ISO 15589-2Annex E(等同于DNVGL-RP-B401 Appendix B)测试:≥2600Ah/Kg;按照ISO 15589-2Annex C(等同于DNVGL-RP-B401Appendix C的Free-running法)进行1年期电化学性能试验:≥2200Ah/kg。
2、本发明的铝合金牺牲阳极在使用时,其表面溶解均匀,腐蚀产物容易脱落,可广泛用于海洋结构物、海底管道工程及海洋装备等的阴极保护工程。
具体实施方式
下面将对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。
一种铝合金牺牲阳极,含有重量比为:0.005%~0.50%的铟,0.01%~4.00%的锡,0.01%~1.85%的硅,0.2%~6.0%的镁,0.005%~0.20%的镉,其余为铝,铝合金牺牲阳极的阳极开路电位为-1.13V(相对于饱和甘汞电极),开路电位为-1.19V~-1.10V(相对于饱和甘汞电极),工作电位为-1.13V~-1.05V(相对于饱和甘汞电极),按照ISO 15589-2Annex E(等同于DNVGL-RP-B401 Appendix B)测试,其电容量≥2600Ah/Kg。
在一些场景下,适当的调整各金属的比例可得到本发明所提出的铝合金牺牲阳极,例如,铝合金牺牲阳极的组成及各组成含量可以但不仅局限于为:铝合金牺牲阳极的各组分重量比为:铟0.008%,锡0.012%,硅0.015%,镁0.3%,镉0.006%,铝99.659%,该铝合金牺牲阳极的阳极开路电位为-1.13V(相对于饱和甘汞电极),工作电位为-1.07V(相对于饱和甘汞电极),按照ISO 15589-2Annex E(等同于DNVGL-RP-B401 Appendix B)测试,实际电流容量为2628Ah/Kg。
在一些场景下,适当的调整各金属的比例可得到本发明所提出的铝合金牺牲阳极,例如,铝合金牺牲阳极的各组分重量比为:铟0.25%,锡2%,硅0.93%,镁3.1%,镉0.1%,铝93.62%,该铝合金牺牲阳极的阳极开路电位:-1.15V,工作电位为:-1.12V,按照ISO 15589-2Annex E(等同于DNVGL-RP-B401 Appendix B)测试,实际电流容量为:2637Ah/Kg。
在一些场景下,适当的调整各金属的比例可得到本发明所提出的铝合金牺牲阳极,例如,铝合金牺牲阳极的各组分重量比为:铟0.48%,锡3.8%,硅1.65%,镁5.8%,镉0.18%,铝88.09%,铝合金牺牲阳极的阳极开路电位-1.13V,工作电位为-1.1V,按照ISO15589-2Annex E(等同于DNVGL-RP-B401 Appendix B)测试,实际电流容量为2609Ah/Kg。
在一些场景下,适当的调整各金属的比例可得到本发明所提出的铝合金牺牲阳极,例如,铝合金牺牲阳极的各组分重量比为:铟0.008%-0.48%,锡0.012%-3.8%,硅0.015%-1.65%,镁0.3%-5.8%,镉0.006%-0.18%,铝88.09%-99.659%。
一种铝合金牺牲阳极在用于海洋结构物、海底管道及海洋装备的腐蚀防护的阴极保护工程中的应用,例如,应用于各类船舶、采油平台、海上风电、海底管线、跨海大桥、人造岛礁、海港码头等大型设施的腐蚀防护。
实施例1
按照Al:99.659%,In:0.008%,Sn:0.012%,Si:0.015%,Mg:0.3%,Cd:0.006%配置各组分材料,将其放在在熔炉内加热熔融,通过合金化后形成铝合金溶液,再通过模具浇铸形成成品铝合金牺牲阳极,按照ISO 15589-2Annex E(等同于DNVGL-RP-B401Appendix B)对样品进行测试表明:阳极表面腐蚀均匀,腐蚀产物容易脱落,阳极开路电位:-1.13V(相对于饱和甘汞电极),工作电位为:-1.07V(相对于饱和甘汞电极),实际电流容量为:2628Ah/Kg;按照ISO 15589-2Annex C(等同于DNVGL-RP-B401 Appendix C的Free-running法)进行1年期电化学性能试验,其工作电位为-1.07V(相对于饱和甘汞电极),电容量为2410Ah/kg。
实施例2
按照Al:88.09%,In:0.48%,Sn:3.8%,Si:1.65%,Mg:5.8%,Cd:0.18%配置各组分材料,将其放在在熔炉内加热熔融,通过合金化后形成铝合金溶液,再通过模具浇铸形成成品铝合金牺牲阳极,按照ISO 15589-2Annex E(等同于DNVGL-RP-B401 Appendix B)对样品进行测试表明:阳极表面腐蚀均匀,腐蚀产物容易脱落,阳极开路电位:-1.13V,工作电位为:-1.1V,实际电流容量为:2609Ah/Kg;按照ISO 15589-2Annex C(等同于DNVGL-RP-B401 Appendix C的Free-running法)进行1年期电化学性能试验,其工作电位为-1.10V(相对于饱和甘汞电极),电容量为2290Ah/kg。
实施例3
按照Al:93.62%,In:0.25%,Sn:2%,Si:0.93%,Mg:3.1%,Cd:0.1%配置各组分材料,将其放在在熔炉内加热熔融,通过合金化后形成铝合金溶液,再通过模具浇铸形成成品铝合金牺牲阳极,按照ISO 15589-2Annex E(等同于DNVGL-RP-B401 Appendix B)对样品进行测试表明:阳极表面腐蚀均匀,腐蚀产物容易脱落,阳极开路电位:-1.15V,工作电位为:-1.12V,实际电流容量为:2637Ah/Kg,按照ISO 15589-2Annex C(等同于DNVGL-RP-B401Appendix C的Free-running法)进行1年期电化学性能试验,其工作电位为-1.10V(相对于饱和甘汞电极),电容量为2350Ah/kg。
通过实施例1-3的数据可以看出,本发明所提出的环境友好型铝合金牺牲阳极具有电位稳定,实际电流容量高,表面溶解均匀,腐蚀产物容易脱落的优点,对海洋环境无二次污染,适用于海洋环境不同工况下钢构件的阴极保护;
对比例1(去除Sn)
按照Al:91.89%,In:0.48%,Si:1.65%,Mg:5.8%,Cd:0.18%配置各组分材料,将其放在在熔炉内加热熔融,通过合金化后形成铝合金溶液,再通过模具浇铸形成成品铝合金牺牲阳极,按照ISO 15589-2Annex E(等同于DNVGL-RP-B401 Appendix B)对样品进行测试表明:阳极表面腐蚀均匀,腐蚀产物不容易脱落,阳极开路电位:-1.16V,工作电位为:-1.14V,实际电流容量为:2325Ah/Kg;按照ISO 15589-2Annex C(等同于DNVGL-RP-B401Appendix C的Free-running法)进行1年期电化学性能试验,其工作电位为-1.10V(相对于饱和甘汞电极),电容量为2077Ah/kg;
通过对比例1和实施例2相比,实施例2的实际电流容量为2609Ah/Kg,而对比例1的实际电流容量为2325Ah/Kg,对比例1的实际电流容量下降较多,阳极开路电位、工作电位略有降低。
对比例2(去除Si、Mg、Cd)
按照Al:95.72%,In:0.48%,Sn:3.8%配置各组分材料,将其放在在熔炉内加热熔融,通过合金化后形成铝合金溶液,再通过模具浇铸形成成品铝合金牺牲阳极,按照ISO15589-2Annex E(等同于DNVGL-RP-B401 Appendix B)对样品进行测试表明:阳极表面腐蚀均匀,腐蚀产物较容易脱落,阳极开路电位:-1.14V,工作电位为:-1.12V,实际电流容量为:2399Ah/Kg;按照ISO 15589-2Annex C(等同于DNVGL-RP-B401 Appendix C的Free-running法)进行1年期电化学性能试验,其工作电位为-1.10V(相对于饱和甘汞电极),电容量为2085Ah/kg。
通过对比例1和对比例2相比,对比例2的实际电流容量为2399Ah/Kg,对比例1的实际电流容量为2325Ah/Kg,对比例2的电流电流容量有所提高,阳极开路电位、工作电位以略有提高,但均低于实施例2中的相关数据,分析其原因包括如下:
锡元素添加提高阳极的电流效率,但是各金属反应后产生的腐蚀产物不易脱落,使得其它的金属元素参与反应的速率降低,从而降低了阳极表面活性,以至于各阳极的各实验参数降低,而通过添加Si、Mg、Cd可以使得腐蚀产物较容易脱落,使得其它的金属元素参与反应的速率提高,从而提高了阳极表面活性,以至于各阳极的各实验参数相应的提高了,但是均低于实施2中的各参数,可见以上组分之间存在一定的协同促进作用;
本发明各组分间具有相互协同作用,通过在金属铝中添加铝、铟、锡、硅、镁、镉金属,有效保证阳极的电化学性能及阳极的腐蚀表面的均匀程度,从而提升阳极的使用寿命,通过添加铟元素提升阳极的电位,锡元素添加提高阳极的电流效率,硅、镁、镉的添加用于增加阳极表面活性;在阳极中添加铟元素使其达到所需阳极电位时,会导致阳极的电流容量下降,通过锡元素的添加能将有效解除铟元素对阳极电流效率的影响,但是,锡的添加又造成阳极表面活性下降,而通过添加硅、镁、镉等元素解决阳极表面活性低的问题。
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,根据本发明的技术方案及其发明构思加以等同替换或改变,都应涵盖在本发明的保护范围之内。

Claims (10)

1.一种铝合金牺牲阳极,其特征在于,含有重量比为:0.005%~0.50%的铟,0.01%~4.00%的锡,0.01%~1.85%的硅,0.2%~6.0%的镁,0.005%~0.20%的镉,其余为铝。
2.根据权利要求1所述的一种铝合金牺牲阳极,其特征在于,所述铝合金牺牲阳极的各组分重量比为:铟0.008%,锡0.012%,硅0.015%,镁0.3%,镉0.006%,铝99.659%。
3.根据权利要求1所述的一种铝合金牺牲阳极,其特征在于,所述铝合金牺牲阳极的各组分重量比为:铟0.25%,锡2%,硅0.93%,镁3.1%,镉0.1%,铝93.62%。
4.根据权利要求1所述的一种铝合金牺牲阳极,其特征在于,所述铝合金牺牲阳极的各组分重量比为:铟0.48%,锡3.8%,硅1.65%,镁5.8%,镉0.18%,铝88.09%。
5.根据权利要求1所述的一种铝合金牺牲阳极,其特征在于,所述铝合金牺牲阳极的各组分重量比为:铟0.008%-0.48%,锡0.012%-3.8%,硅0.015%-1.65%,镁0.3%-5.8%,镉0.006%-0.18%,铝88.09%-99.659%。
6.根据权利要求1所述的一种铝合金牺牲阳极,其特征在于,所述铝合金牺牲阳极的阳极开路电位为-1.13V(相对于饱和甘汞电极),开路电位为-1.19V~-1.10V(相对于饱和甘汞电极),工作电位为-1.13V~-1.05V(相对于饱和甘汞电极),电容量≥2600Ah/Kg。
7.根据权利要求2所述的一种铝合金牺牲阳极,其特征在于,所述铝合金牺牲阳极的阳极开路电位为-1.13V(相对于饱和甘汞电极),工作电位为-1.07V(相对于饱和甘汞电极),实际电流容量为2628Ah/Kg。
8.根据权利要求4所述的一种铝合金牺牲阳极,其特征在于,所述铝合金牺牲阳极的阳极开路电位-1.13V,工作电位为-1.1V,实际电流容量为2609Ah/Kg。
9.如权利要求1-8任一权利要求所述的一种铝合金牺牲阳极在用于海洋结构物、海底管道及海洋装备的腐蚀防护的阴极保护工程中的应用。
10.如权利要求1-8任一权利要求所述的铝合金牺牲阳极的制备方法,其特征在于,包括在铝中加入铟、锡、硅、镁和镉,加热熔融制得合金溶液,再将合金溶液浇铸成型得到铝合金牺牲阳极,所述铟的质量分数为0.005%~0.50%,所述锡的质量分数为0.01%~4.00%,所述硅的质量分数为0.01%~1.85%,所述镁的质量分数为0.2%~6.0%,所述镉的质量分数为0.005%~0.20%。
CN202111645734.1A 2021-12-30 2021-12-30 一种铝合金牺牲阳极及其制备方法及应用 Active CN114231994B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111645734.1A CN114231994B (zh) 2021-12-30 2021-12-30 一种铝合金牺牲阳极及其制备方法及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111645734.1A CN114231994B (zh) 2021-12-30 2021-12-30 一种铝合金牺牲阳极及其制备方法及应用

Publications (2)

Publication Number Publication Date
CN114231994A true CN114231994A (zh) 2022-03-25
CN114231994B CN114231994B (zh) 2024-01-23

Family

ID=80744455

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111645734.1A Active CN114231994B (zh) 2021-12-30 2021-12-30 一种铝合金牺牲阳极及其制备方法及应用

Country Status (1)

Country Link
CN (1) CN114231994B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115637434A (zh) * 2022-10-20 2023-01-24 常州大学 一种铝牺牲阳极合金及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109609959A (zh) * 2018-12-28 2019-04-12 青岛双瑞海洋环境工程股份有限公司 应用于海洋工程阴极保护的高性能低电位铝牺牲阳极材料
CN113293384A (zh) * 2021-06-02 2021-08-24 青岛双瑞海洋环境工程股份有限公司 无锌型铝合金牺牲阳极

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109609959A (zh) * 2018-12-28 2019-04-12 青岛双瑞海洋环境工程股份有限公司 应用于海洋工程阴极保护的高性能低电位铝牺牲阳极材料
CN113293384A (zh) * 2021-06-02 2021-08-24 青岛双瑞海洋环境工程股份有限公司 无锌型铝合金牺牲阳极

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115637434A (zh) * 2022-10-20 2023-01-24 常州大学 一种铝牺牲阳极合金及其制备方法

Also Published As

Publication number Publication date
CN114231994B (zh) 2024-01-23

Similar Documents

Publication Publication Date Title
CN102002715B (zh) 一种高性能铝合金牺牲阳极
Wang et al. Enhancement of the discharge performance of AP65 magnesium alloy anodes by hot extrusion
EP2503017B1 (en) Hot dip casting aluminium alloy containing Al-Zn-Si-Mg-RE-Ti-Ni and production method thereof
KR20130132464A (ko) 해양 기후 저항성 방부 처리용 수용성 도료 및 그 제조 방법
CN104862530A (zh) 一种适用于热海泥环境的锌合金牺牲阳极
CN113293384A (zh) 无锌型铝合金牺牲阳极
CN103834890B (zh) 输电铁塔及紧固件用防腐合金镀层及制备工艺
CN104862710B (zh) 一种环境友好型的锌合金牺牲阳极
CN109252170B (zh) 耐高温油污海水的铝合金牺牲阳极
CN100432294C (zh) 高电位镁合金牺牲阳极材料及其制造方法
CN109295350B (zh) 一种海水铝-空气电池用阳极材料及其制备方法
CN101389442A (zh) 用于金属的电解提炼的改进的合金以及阳极
CN114231994A (zh) 一种铝合金牺牲阳极及其制备方法及应用
CN109609959A (zh) 应用于海洋工程阴极保护的高性能低电位铝牺牲阳极材料
CN101935815A (zh) 一种输电线路紧固件合金镀层及其制备工艺
CN103103537A (zh) 一种新型的热海水环境中的锌合金牺牲阳极
JPH10130770A (ja) マグネシウム製材料の用途
CN102925902A (zh) 一种高铁杂质含量的铝阳极电化学性能控制方法
CN1710128A (zh) 板栅合金及制备方法
CN102534317B (zh) 一种多元铝钛合金丝及其制造方法
CN113322467A (zh) 微锌型铝合金牺牲阳极
CN109097783A (zh) 一种油井用铝合金牺牲阳极及其制备方法
CN104377365A (zh) 铅酸蓄电池正极板栅合金
Pratesa et al. Effect of Silicon on Corrosion Behaviour of Al-Zn As A Low Voltage Sacrificial Anode for Marine Environment
US4517065A (en) Alloyed-lead corrosion-resisting anode

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant