CN114226663A - 铸造装置及铸造方法 - Google Patents

铸造装置及铸造方法 Download PDF

Info

Publication number
CN114226663A
CN114226663A CN202010943162.4A CN202010943162A CN114226663A CN 114226663 A CN114226663 A CN 114226663A CN 202010943162 A CN202010943162 A CN 202010943162A CN 114226663 A CN114226663 A CN 114226663A
Authority
CN
China
Prior art keywords
chamber
crucible
module
channel
processing module
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010943162.4A
Other languages
English (en)
Other versions
CN114226663B (zh
Inventor
孙宝德
隽永飞
张佼
姜海涛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Jiaotong University
Original Assignee
Shanghai Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Jiaotong University filed Critical Shanghai Jiaotong University
Priority to CN202010943162.4A priority Critical patent/CN114226663B/zh
Publication of CN114226663A publication Critical patent/CN114226663A/zh
Application granted granted Critical
Publication of CN114226663B publication Critical patent/CN114226663B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/06Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars
    • B22D11/0622Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars formed by two casting wheels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/001Continuous casting of metals, i.e. casting in indefinite lengths of specific alloys
    • B22D11/003Aluminium alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/06Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars
    • B22D11/0637Accessories therefor
    • B22D11/068Accessories therefor for cooling the cast product during its passage through the mould surfaces
    • B22D11/0682Accessories therefor for cooling the cast product during its passage through the mould surfaces by cooling the casting wheel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/06Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars
    • B22D11/0637Accessories therefor
    • B22D11/0697Accessories therefor for casting in a protected atmosphere
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/16Controlling or regulating processes or operations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D2/00Arrangement of indicating or measuring devices, e.g. for temperature or viscosity of the fused mass
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/06Alloys based on aluminium with magnesium as the next major constituent
    • C22C21/08Alloys based on aluminium with magnesium as the next major constituent with silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/10Alloys based on aluminium with zinc as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F3/00Changing the physical structure of non-ferrous metals or alloys by special physical methods, e.g. treatment with neutrons

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)
  • Continuous Casting (AREA)

Abstract

本申请涉及一种铸造装置及铸造方法,涉及金属铸造的技术领域。本申请铸造装置包括第一腔室、第二腔室、坩埚、第一处理模块和第三处理模块。第一腔室具有第一进料口和第一出料口;第二腔室具有第二进料口和第二出料口;坩埚设于第一腔室内,坩埚上设有喷嘴;第一处理模块包括两个第一转动件,两个第一转动件之间具有第一通道,每个第一转动件内均设有第一加热元件;第三处理模块包括两个第三转动件,两个第三转动件之间具有第三通道,每个第三转动件内均设有冷却元件,其中,喷嘴穿过第一出料口和第二进料口后对接于第一通道。故本申请能够用于铸造成型,提高了生产效率,改善了铸锭质量。

Description

铸造装置及铸造方法
技术领域
本申请涉及金属铸造的技术领域,具体而言涉及一种铸造装置及铸造方法。
背景技术
铝合金铸造技术中通常采用半连续铸造的方式进行铸造,尤其是浇铸工艺中,普遍采用的方法是将融化的铝液倒入浇煲中,再使用夹持装置将浇煲中的铝液倾斜倒入浇杯中,使铝液流入模具中,最后铸造成型。
但是现有技术的浇铸方法,采用多个装置,生产过程中需要更换装置,生产效率较低。
发明内容
本申请的目的是提供一种铸造装置及铸造方法,其能够用于铸造成型。
本申请的实施例是这样实现的:
一种铸造装置,包括第一腔室、第二腔室、坩埚、第一处理模块和第三处理模块。第一腔室具有第一进料口和第一出料口;第二腔室具有第二进料口和第二出料口;坩埚设于第一腔室内,坩埚上设有喷嘴;第一处理模块包括两个第一转动件,两个第一转动件之间具有第一通道,每个第一转动件内均设有第一加热元件;第三处理模块包括两个第三转动件,两个第三转动件之间具有第三通道,每个第三转动件内均设有冷却元件,其中,第一进料口和第一通道连通,第一通道和第三通道连通,第三通道和第二出料口连通,喷嘴穿过第一出料口和第二进料口后对接于第一通道。
于一实施例中,第二通道的最小宽度大于第一通道的最小宽度。
于一实施例中,第三通道的最小宽度小于第一通道的最小宽度,第一通道的最小宽度小于或者等于喷嘴的狭缝直径。
于一实施例中,铸造装置还包括第二处理模块,第二处理模块包括两个第二加热元件,两个第二加热元件之间具有第二通道;其中,第二通道设于第一通道和第二通道之间,第一通道、第二通道和第三通道依次连通。
于一实施例中,铸造装置还包括第一环境控制模块,第一环境控制模块设于第一腔室,用于调整第一腔室内的环境参数。
于一实施例中,铸造装置还包括第二环境控制模块,第二环境控制模块设于第二腔室,用于调整第二腔室内的环境参数。
于一实施例中,第一处理模块还包括第一驱动件,第一驱动件与第一转动件传动连接,用于驱动第一转动件转动。
于一实施例中,第三处理模块还包括第三驱动件,第三驱动件与第三转动件传动连接,用于驱动第三转动件转动。
于一实施例中,第二腔室的内壁上设有沿第一通道长度方向设置的第一滑槽和沿第一通道宽度方向设置的第二滑槽,第一转动件和第三转动件安装于第一滑槽或者第二滑槽内。
于一实施例中,第一转动件和第三转动件均为陶瓷材料制成的。
于一实施例中,喷嘴设有一个或者多个。当喷嘴设有多个时,多个喷嘴沿第一转动件的旋转轴线方向成线性阵列分布。
于一实施例中,第二腔室的内壁上设有多个安装孔,多个安装孔沿第一通道长度方向以及第一通道宽度方向成双向线性阵列的方式排列;第一转动件和第三转动件安装于安装孔内。
于一实施例中,第一腔室上设有第一进气孔和第一排气孔,第一环境控制模块包括第一抽真空元件和第一调压元件,第一抽真空元件与第一排气孔相连;第一调压元件与第一进气孔相连。
于一实施例中,第一抽真空元件为真空泵,第一调压元件为储气盒和气泵等充气组件。
于一实施例中,第一环境控制模块还包括第三加热元件设于第一腔室内,且设于第一进料口与坩埚之间。
于一实施例中,第三加热元件为高频感应线圈。
于一实施例中,第一环境控制模块还包括多个第四加热元件,多个第四加热元件均匀设于坩埚外侧。
于一实施例中,第一环境控制模块还包括电磁搅拌元件,设于第一腔室内,且设于坩埚以及第四加热元件的外侧。
于一实施例中,第一环境控制模块还包括保温层,保温层设于第一腔室内,且设于坩埚、第四加热元件以及电磁搅拌元件的外侧。
于一实施例中,第二腔室上设有第二进气孔和第二排气孔,第二环境控制模块包括第二抽真空元件和第二调压元件,第二抽真空元件与第二排气孔相连;第二调压元件与第二进气孔相连。
于一实施例中,第二抽真空元件为真空泵,第二调压元件为储气盒和气泵等充气组件。
于一实施例中,铸造装置还包括进料模块,进料模块设置在第一腔室外,且设于第一进料口处,进料模块包括第二驱动件以及两个间隔设置的第二转动件,第二驱动件与第二转动件传动连接,用于驱动第二转动件转动。
于一实施例中,铸造装置还包括引锭模块,引锭模块包括引锭头,引锭头能移动地设置在第一通道、第二通道和第三通道内。
于一实施例中,坩埚一端为开口设置,且与第一进料口相对,另一端设有喷嘴。
于一实施例中,喷嘴上设有第一阀门,第一阀门可以控制喷嘴的开启或者关闭。
于一实施例中,铸造装置还包括进液模块,进液模块设置在第一腔室上,且与坩埚相通。
于一实施例中,铸造装置还包括轧制模块,轧制模块设置在第二腔室外,且与第二出料口相通。
于一实施例中,铸造装置还包括主控模块,主控模块与喷嘴、第一处理模块、和第三处理模块电性连接,用于控制。
于一实施例中,铸造装置还包括主控模块,主控模块与进料模块、第一环境控制模块、第二环境控制模块、喷嘴、第一处理模块、第二处理模块、第三处理模块、进液模块、轧制模块和引锭模块电性连接,用于控制。
一种铸造方法,包括:
将初始材料通入第一腔室内的坩埚内进行初步处理形成中间熔体,并令第一腔室处于第一预设环境内;
将中间熔体通过坩埚的喷嘴通入第二腔室内,并令第二腔室处于第二预设环境内;
通过设于第二腔室内的第一处理模块进行加热和挤压处理,并令第一处理模块处于第一预设温度;
通过设于第二腔室内的第三处理模块进行冷却和挤压处理,并令第三处理模块处于第三预设温度;
其中,第三预设温度低于第一预设温度。
于一实施例中,通过设于第二腔室内的第一处理模块进行加热和挤压处理,并令第一处理模块处于第一预设温度之后,
通过设于第二腔室内的第三处理模块进行冷却和挤压处理,并令第三处理模块处于第三预设温度之前,包括:
通过设于第二腔室内的第二处理模块进行加热处理,并令第二处理模块处于第二预设温度;
其中,第三预设温度低于第二预设温度,第二预设温度低于第一预设温度。
于一实施例中,将初始材料通入第一腔室内的坩埚内进行初步处理形成中间熔体,并令第一腔室处于第一预设环境内,包括:
令第一腔室处于第四预设温度和第一预设气压;
通过进料模块令初始材料通入第一腔室内,并令进料模块给予初始材料的第二挤压力;
在初始材料进入坩埚之前,通过设于第一腔室内的第三加热元件加热;
在初始材料进入坩埚之后,通过设于坩埚外侧的第四加热元件进行加热处理,并通过设于坩埚外侧的电磁搅拌元件进行均匀化处理,形成中间熔体;
其中,第四预设温度高于第一预设温度。
于一实施例中,将初始材料通入第一腔室内的坩埚内进行初步处理形成中间熔体,并令第一腔室处于第一预设环境内,包括:
令第一腔室处于第四预设温度和第一预设气压;
通过进料模块令初始材料通入第一腔室内;
在初始材料进入坩埚之前,通过设于第一腔室内的第三加热元件加热;
通过进液模块向坩埚内加入添加材料,用于使初始材料和添加材料在坩埚内混合;
在初始材料和添加材料进入坩埚之后,通过设于坩埚外侧的第四加热元件进行加热处理,并通过设于坩埚外侧的电磁搅拌元件进行均匀化处理;
其中,第四预设温度高于第一预设温度。
于一实施例中,将中间熔体通过喷嘴通入第二腔室内,并令第二腔室处于第二预设环境内,包括:
令第二腔室处于第二预设气压;
令中间熔体通过喷嘴通入第二腔室内。
于一实施例中,将初始材料通入第一腔室内的坩埚内进行初步处理形成中间熔体,并令第一腔室处于第一预设环境内,之前包括:
调整第一处理模块所包括的两个第一转动件之间的距离,以及第一转动件相对第二腔室的位置;
调整第三处理模块所包括的两个第三转动件之间的距离,以及第三转动件相对第二腔室的位置。
于一实施例中,通过设于第二腔室内的第三处理模块进行冷却和挤压处理,并令第三处理模块处于第三预设温度,之后包括:
通过设于第二腔室外的轧制模块进行轧制处理。
本申请与现有技术相比的有益效果是:
本申请能够提供一个较为集中的装置用于铸造成型,铸造过程可以在一个装置内完成,提高了生产效率。而且本申请采用熔体冲击的方法来铸造成型。
再者,本申请的第一处理模块和第三处理模块使用了对辊技术,提高了合金的冷却速率,进一步细化合金的晶粒,并大大提升了金属制备的效率,从而可以改善铸锭质量。
另外本申请是通过设置第一处理模块、第二处理模块以及第三处理模块改进凝固过程,实现对熔体组织的不断冲击,从而可以细化晶粒,改善铸锭质量。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本申请的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1a为本申请一实施例示出铸造装置的结构示意图。
图1b为本申请一实施例示出铸造装置的结构示意图。
图1c为本申请一实施例示出铸造装置的结构示意图。
图1d为本申请一实施例示出铸造装置的部分结构示意图。
图2为本申请一实施例示出铸造装置的结构示意图。
图3为本申请一实施例示出铸造装置的结构示意图。
图4为本申请一实施例示出铸造装置的结构示意图。
图5为本申请一实施例示出铸造装置的结构示意图。
图6为本申请一实施例示出铸造装置的结构示意图。
图7为本申请一实施例示出铸造装置的结构示意图。
图8为本申请一实施例示出的铸造方法的流程示意图。
图9为本申请一实施例示出的铸造方法的流程示意图。
图10为本申请一实施例示出的铸造方法的流程示意图。
图11为本申请一实施例示出的铸造方法的流程示意图。
图12为本申请一实施例提供的铸锭微观组织图。
图13为本申请一实施例提供的铸锭微观组织图。
图标:1-铸造装置;10-热场分布;100-第一腔室;110-第一进料口;120-第一出料口;130-第一进气孔;140-第一排气孔;150-坩埚;151-喷嘴;152-第一阀门;160-进料模块;161-第二转动件;162-第二驱动件;180-第一环境控制模块;181-第一抽真空元件;182-第一调压元件;183-第三加热元件;184-第四加热元件;185-电磁搅拌元件;186-保温层;200-第二腔室;210-第二进料口;220-第二出料口;230-第二进气孔;240-第二排气孔;250-第一滑槽;260-第二滑槽;270-安装孔;280-第二环境控制模块;281-第二抽真空元件;282-第二调压元件;300-第一处理模块;310-第一通道;320-第一转动件;330-第一驱动件;340-第一加热元件;400-第二处理模块;410-第二通道;420-第二加热元件;500-第三处理模块;510-第三通道;520-第三转动件;530-第三驱动件;540-冷却元件;600-引锭模块;610-引锭头;611-引锭头移动机构;700-进液模块;710-进液管;720-第二阀门;800-轧制模块;810-轧辊;820-动力件;2-主控模块;21-人机交互界面;22-温度检测单元;23-气压检测单元;24-处理器;25-控制器。
具体实施方式
术语“第一”、“第二”、“第三”等仅用于区分描述,并不表示排列序号,也不能理解为指示或暗示相对重要性。
此外,术语“水平”、“竖直”、“悬垂”等术语并不表示要求部件绝对水平或悬垂,而是可以稍微倾斜。如“水平”仅仅是指其方向相对“竖直”而言更加水平,并不是表示该结构一定要完全水平,而是可以稍微倾斜。
在本申请的描述中,需要说明的是,术语“内”、“外”、“左”、“右”、“上”、“下”等指示的方位或位置关系为基于附图所示的方位或位置关系,或者是该申请产品使用时惯常摆放的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
在本申请的描述中,除非另有明确的规定和限定,术语“设置”、“安装”、“相连”、“连接”、“连通”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。
下面将结合附图对本申请的技术方案进行清楚、完整地描述。
请参照图1a、图1b、和图1c,其为本申请一实施例示出铸造装置1的结构示意图。铸造装置1包括第一腔室100、第一环境控制模块180、第二腔室200、第二环境控制模块280、坩埚150、第一处理模块300、第二处理模块400和第三处理模块500。第一腔室100具有第一进料口110和第一出料口120;第二腔室200具有第二进料口210和第二出料口220。第一腔室100位于第二腔室200的上方,且第一出料口120与第二进料口210对接。
第一环境控制模块180设于第一腔室100,用于调整第一腔室100内的环境参数,例如温度参数、气压参数、湿度参数等;第二环境控制模块280设于第二腔室200,用于调整第二腔室200内的环境参数,例如温度参数、气压参数、湿度参数等。
坩埚150可以是石墨等材料制成的,坩埚150设于第一腔室100内,坩埚150一端为开口设置,且与第一进料口110相对,另一端设有喷嘴151。喷嘴151设有一个或者多个。其中为令喷射均匀,喷嘴151设于坩埚150底面的中间位置,且喷嘴151的轴线与坩埚150的轴线重合。
第一处理模块300包括两个第一转动件320,两个第一转动件320之间具有第一通道310,每个第一转动件320内均设有第一加热元件340。一个第一转动件320可以是一个辊轴或者滚轮,也可以是多个辊轴或者滚轮沿第一通道310长度方向(熔体通过方向)排列形成的辊轴组或者滚轮组,第一加热元件340可以是加热管、电热片等,设置在各个辊轴或者滚轮内部,用于准确控制熔体的温度。当材料通过第一通道310时,第一加热元件340对其进行加热,第一转动件320对其进行挤压,从而可以辅助熔体成型。于一实施例中,第一转动件320可以是陶瓷材料制成的。
第二处理模块400包括两个第二加热元件420,两个第二加热元件420之间具有第二通道410。第二加热元件420可以是加热管、电热片等,可以固定在第二腔室200的内壁上。当材料通过第二通道410时,第二加热元件420对其进行加热,从而使得熔体液面(包括位于第一转动件320处的熔体液面)呈现水平状态,使得结晶过程在一个平面上完成,以实现合金组织的均匀性。
第三处理模块500包括两个第三转动件520,两个第三转动件520之间具有第三通道510,每个第三转动件520内均设有冷却元件540。一个第三转动件520可以是一个辊轴或者滚轮,也可以是多个辊轴或者滚轮沿第三通道510长度方向(材料通过方向)排列形成的辊轴组或者滚轮组,冷却元件540可以是冷却管、水冷管等,设置在各个辊轴或者滚轮内部,用于快速冷却。当材料通过第三通道510时,冷却元件540对其进行冷却,第三转动件520对其进行挤压(加压),从而可以使得熔体最终成型得到所需的板材。于一实施例中,第三转动件520可以是陶瓷材料制成的。
其中,第一通道310、第二通道410和第三通道510依次连通,第三通道510与第二出料口220相对,喷嘴151穿过第一出料口120和第二进料口210后对接于第一通道310。喷嘴151对接于第一通道310,即喷嘴151伸入第一通道310内,或者位于第一通道310的入口处,或者与第一通道310有一个较小的间隙,能令熔体通过喷嘴151喷射进入第一通道310即可。于一实施例中,喷嘴151狭缝直径d为15mm。
由于第一转动件320、第三转动件520为辊轴或者滚轮,可以是圆柱形,则第一通道310、第二通道410和第三通道510的内表面可以是圆弧形。其中,第二通道410的最小宽度W2大于第一通道310的最小宽度W1,第三通道510的最小宽度W3小于第一通道310的最小宽度W1,第一通道310的最小宽度W1小于或者等于喷嘴151的狭缝直径。如此设置,则第一处理模块300和第三处理模块500可以对第一通道310和第三通道510内流动的熔体进行挤压。
本实施例中,喷嘴151的轴线、第一通道310、第二通道410和第三通道510均位于同一竖直的直线上,且喷嘴151设于第一通道310的上方,第一通道310、第二通道410和第三通道510由上至下依次连通。
请参照图1a,于一操作过程中,待处理的初始材料从上往下移动,首先从第一进料口110进入第一腔室100,并进入坩埚150中,初始材料在第一腔室100内进行加热等初步处理后转变为熔体,熔体通过喷嘴151进入第二腔室200;接着熔体到达第一处理模块300进行初步成型处理形成一个半固态熔体,其间通过两个间隔设置的第一转动件320挤压熔体,并通过第一加热元件340进行加热处理;最后半固态熔体到达第三处理模块500进行冷却成型处理形成一个成品,其间通过两个间隔设置的第三转动件520挤压熔体,并通过冷却元件540进行冷却处理,从而可以使得熔体最终成型得到所需的板材,板材通过第二出料口220排出。此操作过程可以得到超细晶的金属板材,同时实现了材料的连续制备,生产效率提高了。
于一其他的实施例中,第一进料口110和第二出料口220上能拆卸地连接有盖子。
请参照图1b,于一操作过程中,待处理的初始材料从上往下移动,首先从第一进料口110进入第一腔室100,并进入坩埚150中,初始材料在第一腔室100内进行加热等初步处理后转变为熔体,熔体通过喷嘴151进入第二腔室200;接着熔体到达第一处理模块300进行初步成型处理形成一个半固态熔体,其间通过两个间隔设置的第一转动件320挤压熔体,并通过第一加热元件340进行加热处理;再接着半固态熔体到达第二处理模块400通过第二加热元件420加热,使得半固态熔体液面呈现水平状态,使得结晶过程在一个平面上完成,以实现合金组织的均匀性;最后半固态熔体到达第三处理模块500进行冷却成型处理形成一个成品,其间通过两个间隔设置的第三转动件520挤压熔体,并通过冷却元件540进行冷却处理,从而可以使得熔体最终成型得到所需的板材,板材通过第二出料口220排出。此操作过程可以得到超细晶的金属板材,同时实现了材料的连续制备。
请参照图1b,图中显示了第一处理模块300、第二处理模块400和第三处理模块500之间的热场分布10。
本实施例能够提供一个较为集中的装置,采用熔体冲击的方法来铸造成型,铸造过程可以在一个装置内完成,提高了生产效率。本铸造装置1可以用于金属铸造,即纯金属的铸造以及铝合金等合金材料的铸造。另外,本实施例可以通过调节第一加热元件340的温度以及冷却元件540的温度可以实现不同熔点材料的制备。
现有技术中,由于凝固顺序存在先后,运用常规铸造法铸造纯铝锭或铝合金锭时,凝固的条件均不尽相同且难以控制,因此很难得到均匀的超细晶组织,不利于通过后续的变形过程得到较高的合金性能。此外,对于大型金属铸锭而言,同样因为组织不均匀的原因,主要合金元素在液固界面上很容易发生偏析,从边部到心部容易产生较大的宏观元素偏析,严重影响铸锭质量,因此应用传统工艺制备超细晶且无宏观元素偏析的铸锭是一项很难完成的任务,目前获得超细晶铝合金材料的方法大都是通过添加其他合金或稀土元素,但是研究成果往往都停留在实验室里,未能在实际生产中实现。
由于本实施例中的铸造过程可以在一个装置内完成,可以应用于实际生产。而本实施例通过设置第一处理模块300以及第三处理模块500来改进凝固过程,实现对熔体组织的不断冲击,从而可以细化晶粒,改善铸锭质量,并通过设置第二处理模块400来进一步改进凝固过程,使得半固态熔体液面呈现水平状态,使得结晶过程在一个平面上完成,以实现合金组织的均匀性,从而可以得到超细晶且无宏观元素偏析的铸锭。
现有技术中,在工业生产中,虽然喷射成形方法可以用于制备无宏观成分偏析的铸锭,但该方法制备的铝锭气孔率高、组织不致密且氧化严重,对后续加工处理带来了极高的挑战。
而本实施例采用熔体冲击的方法来铸造成型,并通过第一处理模块300和第三处理模块500使用的对辊技术,对熔体进行挤压,从而使得制备的铸锭气孔率降低、组织较为致密且氧化严重。
另外,传统的半连续铸造装置1,由于冷却速率较低,铸造速度受到很大限制,严重影响了合金材料的生产效率。而对于铝合金而言,在普通铸造条件下,由于铸造速度较慢,冷却速率低,铝合金铸锭晶粒往往较为粗大,偏析严重,因此难以实现力学性能的进一步提升,严重影响了铸锭的组织性能。
而本实施例中通过第一处理模块300和第三处理模块500使用的对辊技术,提高了合金的冷却速率,进一步细化合金的晶粒,并大大提升了金属制备的效率,从而可以改善铸锭质量。
请参照图1d,其为本申请一实施例示出铸造装置1的部分结构示意图。喷嘴151设有多个,多个喷嘴151均设于两个第一转动件320之间,且多个喷嘴151沿第一转动件320的旋转轴线方向成线性阵列分布。本实施例中,通过设置多个喷嘴151,则可以加快铸造装置1的铸造速率。
请参照图2,其为本申请一实施例示出铸造装置1的结构示意图。第一处理模块300还包括第一驱动件330,第一驱动件330与第一转动件320传动连接,用于驱动第一转动件320转动。其中,第一驱动件330可以包括多个电机,每个电机分别控制一个第一转动件320中的多个辊轴或者滚轮,第一驱动件330也可以只包括一个电机,通过齿轮传动、链轮传动、或者皮带轮转动的方式同步控制多个辊轴或者滚轮。
第三处理模块500还包括第三驱动件530,第三驱动件530与第三转动件520传动连接,用于驱动第三转动件520转动。第三驱动件530可以包括多个电机,每个电机分别控制一个第三转动件520中的多个辊轴或者滚轮,第三驱动件530也可以只包括一个电机,通过齿轮传动、链轮传动、或者皮带轮转动的方式同步控制多个辊轴或者滚轮。
铸造装置1还包括进料模块160,进料模块160设置在第一腔室100外,且设于第一进料口110处。进料模块160的设置,可以使得铸造装置1自动化程度提高,生产效率提高。
进料模块160包括第二驱动件162以及两个间隔设置的第二转动件161,第二驱动件162与第二转动件161传动连接,用于驱动第二转动件161转动。一个第二转动件161可以是一个辊轴或者滚轮,也可以多个沿进料方向排列的辊轴组或者滚轮组,当材料通过进料模块160时,第二转动件161对其进行挤压,由于进料模块160对合金原材料形成一定的挤压力,以保证尽量少的气体进入第一腔室100内,保持第一腔室100内的真空度。
第二驱动件162可以包括多个电机,每个电机分别控制一个第二转动件161中的多个辊轴或者滚轮,第二驱动件162也可以只包括一个电机,通过齿轮传动、链轮传动、或者皮带轮转动的方式同步控制多个辊轴或者滚轮。于一实施例中,第二转动件161可以是陶瓷材料制成的。
请参照图3,其为本申请一实施例示出铸造装置1的结构示意图。第二腔室200的内壁上设有沿第一通道310(请参照图1b)长度方向(材料输送方向,即上下竖直方向)设置的第一滑槽250和沿第一通道310宽度方向(两个第一转动件320之间的连线方向,即左右水平方向)设置的第二滑槽260,第一转动件320和第三转动件520安装于第一滑槽250或者第二滑槽260内。
于一操作过程中,当需要调整第一转动件320和第三转动件520之间的距离D3,以及第一转动件320与喷嘴151之间的距离D2时,可以令第一转动件320和第三转动件520在第一滑槽250内滑动,再通过螺栓紧固、螺母紧固等方式令第一转动件320和第三转动件520固定;当需要调整第一通道310的最小宽度W1和第三通道510的最小宽度W3时,可以令第一转动件320和第三转动件520在第二滑槽260内滑动,再通过螺栓紧固、螺母紧固等方式令第一转动件320和第三转动件520固定。
本实施例中,第二加热元件420的位置可以是固定不动的。于一其他的实施例中,当需要调整第二加热元件420的位置时,可以利用第一滑槽250和第二滑槽260,第二加热元件420也可以是通过卡扣连接、螺栓连接等方式安装在第一滑槽250或者第二滑槽260内。
请参照图4,其为本申请一实施例示出铸造装置1的结构示意图。第二腔室200的内壁上设有多个安装孔270,多个安装孔270沿第一通道310(请参照图1b)长度方向以及第一通道310宽度方向成双向线性阵列的方式排列;第一转动件320和第三转动件520安装于安装孔270内。
于一操作过程中,当需要调整第一转动件320和第三转动件520之间的距离D3、第一转动件320与喷嘴151之间的距离D2、或者第一通道310的最小宽度W1和第三通道510的最小宽度W3时,可以将第一转动件320和第三转动件520从一个安装孔270移至另一个安装孔270,再通过螺栓紧固、螺母紧固等方式令第一转动件320和第三转动件520固定。
本实施例中,第二加热元件420的位置可以是固定不动的。于一其他的实施例中,当需要调整第二加热元件420的位置时,可以利用安装孔270,第二加热元件420也可以是通过卡扣连接、螺栓连接等方式安装在安装孔270内。
请参照图5,其为本申请一实施例示出铸造装置1的结构示意图。第一腔室100上设有第一进气孔130和第一排气孔140,第一环境控制模块180包括第一抽真空元件181和第一调压元件182,第一抽真空元件181与第一排气孔140相连;第一调压元件182与第一进气孔130相连。于一实施例中,第一抽真空元件181为真空泵,用于抽真空。第一调压元件182为储气盒和气泵等充气组件,第一调压元件182通过向第一腔室100内充入适量氩气,调控第一腔室100的气压。
第一环境控制模块180还包括第三加热元件183设于第一腔室100内,且设于第一进料口110与坩埚150之间。第三加热元件183为高频感应线圈,从而可以令通过第一进料口110的合金材料快速熔化。其中,第三加热元件183高频感应熔化合金材料的高度即第一进料口110与坩埚150的开口端之间的距离为D1(30-80cm)。于一实施例中,D1=50cm。
第一环境控制模块180还包括多个第四加热元件184,多个第四加热元件184均匀设于坩埚150外侧。第四加热元件184可以是电热片、加热管等元件,可以直接固定在坩埚150的外表面,也可以是固定在第一腔室100上,用于保持坩埚150内的熔体温度。
第一环境控制模块180还包括电磁搅拌元件185,设于第一腔室100内,且设于坩埚150以及第四加热元件184的外侧。电磁搅拌元件185可以是电磁搅拌器,用于对坩埚150内熔体进行均匀化处理。
第一环境控制模块180还包括保温层186,保温层186设于第一腔室100内,且设于坩埚150、第四加热元件184以及电磁搅拌元件185的外侧。保温层186可以包裹在坩埚150外,也可以设置在第一腔室100的内壁上。保温层186可以是保温棉,也可以是隔热保温涂料,还可以是微纳隔热板。
第二腔室200上设有第二进气孔230和第二排气孔240,第二环境控制模块280包括第二抽真空元件281和第二调压元件282,第二抽真空元件281与第二排气孔240相连;第二调压元件282与第二进气孔230相连。于一实施例中,第二抽真空元件281为真空泵,用于抽真空。第二调压元件282为储气盒和气泵等充气组件,第二调压元件282通过向第二腔室200内充入适量氩气等惰性气体,调控第一腔室100的气压。
铸造装置1还包括引锭模块600,引锭模块600包括引锭头610和驱动引锭头610移动的引锭头移动机构611(请参照图7),引锭头610设置在第二腔室200内,能移动地设置在第一通道310、第二通道410、第三通道510和第二出料口220内,用于引导熔体的移动。
本实施例中,第一调压元件182和第一抽真空元件181分别设于第一腔室100的两侧,第二调压元件282和第二抽真空元件281分别设于第二腔室200的两侧。
请参照图6,其为本申请一实施例示出铸造装置1的结构示意图。进料模块160用于向第一腔室100内添加固态材料,固态材料通过第三加热元件183加热熔化后进入坩埚150内。为提升进料速度,进料模块160可以一次添加多个固态材料。
铸造装置1还包括进液模块700,进液模块700设置在第一腔室100上,且与坩埚150相通,进液模块700用于向坩埚150内直接添加液态材料。进液模块700包括进液管710,在第一腔室100和坩埚150上开设有对应的开孔,进液管710穿过对应的开孔伸入坩埚150内。进液管710上可以连接储存有液态材料的储液盒。
铸造装置1还包括轧制模块800,轧制模块800设置在第二腔室200外,且与第二出料口220相通。轧制模块800设置在第二腔室200的下方。轧制模块800包括至少一对轧辊810(请参照图7),轧辊810上可以连接有驱动轧辊810旋转的动力件820,例如电机等。轧制模块800承接从第二出料口220出来的铸锭,对其进行轧制处理。其中,在轧制处理过程中,引锭头610继续牵引或者不牵引铸锭。故本实施例还可以通过进液模块700通入液态材料,实现不同材料的混和。本实施例还可以通过轧制模块800进行轧制处理,实现金属板材连续制备。
本实施例中,第一调压元件182和第一抽真空元件181设于第一腔室100的同一侧,第二调压元件282和第二抽真空元件281设于第二腔室200的同一侧。本实施例中坩埚150的容积大于图5所示实施例坩埚150的容积。
请参照图7,其为本申请一实施例示出铸造装置1的结构示意图。喷嘴151上设有第一阀门152,第一阀门152可以控制喷嘴151的开启或者关闭。进液管710上设有第二阀门720,第二阀门720可以控制进液管710的开启或者关闭。
铸造装置1还包括主控模块2,主控模块2与进料模块160、第一环境控制模块180、第二环境控制模块280、第一处理模块300、第二处理模块400、第三处理模块500、喷嘴151、引锭模块600、进液模块700和轧制模块800电性连接,用于控制。
主控模块2包括人机交互界面21,温度检测单元22、气压检测单元23以及处理器24和控制器25。
人机交互界面21可以为显示屏、触摸屏、按键、旋钮、开关和摇杆等计算机输入、输出设备,人机交互界面21配置成输入指令和读取信息,从而实现人机交互、信息的互通。
温度检测单元22包括多个温度传感器,分别检测第一转动件320、第二转动件161、坩埚150等各处温度,并将信号传递给处理器24,处理器24处理信号并发送指令,通过控制器25控制第一环境控制模块180、第二环境控制模块280、第一处理模块300、第二处理模块400或者第三处理模块500,进行温控。
气压检测单元23包括多个气压传感器,分别检测第一腔室100和第二腔室200的气压,并将信号传递给处理器24,处理器24处理信号,并发送指令,通过控制器25控制第一环境控制模块180和第二环境控制模块280,进行气压调控。
主控模块2还可以通过第一驱动件330、第二驱动件162、和第三驱动件530分别控制第一转动件320、第二转动件161和第三转动件520的转速;还可以通过控制器25控制第一阀门152,以使喷嘴151的开启或者关闭;还可以通过控制器25控制轧辊810旋转来控制轧制模块800;还可以通过控制器25控制第二阀门720,以使进液管710的开启或者关闭来控制进液模块700。
请参照图8,其为本申请一实施例示出的铸造方法的流程示意图。本方法可以使用于如图1a至图7所示铸造装置1。铸造方法可以包括如下步骤:
步骤S101:将初始材料通入第一腔室100内的坩埚150内进行初步处理形成中间熔体,并令第一腔室100处于第一预设环境内。
本步骤的初始材料可以是铝合金、其他合金材料或者纯金属材料。其中,当初始材料是棒材时,本步骤初始材料的直径小于30毫米。当初始材料是板材时,本步骤初始材料的长度小于30毫米。本步骤的初步处理为将初始材料熔化形成中间熔体。本步骤的第一预设环境可以是温度高于680℃,气压保持为P1(0.5atm≤P1≤1atm,atm为标准大气压)的环境。
步骤S102:将中间熔体通过坩埚150的喷嘴151通入第二腔室200内,并令第二腔室200处于第二预设环境内。
本步骤的第二预设环境可以是气压保持为P2(0.4atm≤P2<1atm,且P2<P1)的环境。由于第二腔室200的气压低于第一腔室100的气压,则坩埚150内的中间熔体内可以通过喷嘴151进入第二腔室200内。
步骤S103:通过设于第二腔室200内的第一处理模块300进行加热和挤压处理,并令第一处理模块300处于第一预设温度T3。
本步骤为初步成型处理,步骤S102所得的中间熔体通过第一处理模块300中两个间隔设置的第一转动件320挤压熔体,并通过第一加热元件340进行加热处理,从而形成一个半固态熔体。
本步骤的第一预设温度T3为第一加热元件340的温度,温度范围为400-500℃,具体的温度设置以熔体的材料而定。为提高铸锭质量,本步骤中还可以通过第一驱动件330对第一转动件320的转速进行控制,例如控制第一转动件320的转速为10mm/s,并且可以将第三转动件520对半固态熔体的产生第一挤压力F1,第一挤压力F1的大小控制在50-200N,于一实施例中,第一挤压力F1的大小为150N。
步骤S104:通过设于第二腔室200内的第三处理模块500进行冷却和挤压处理,并令第三处理模块500处于第三预设温度T5。
本步骤中为最终成型处理,经过步骤S103所得的半固态熔体通过第三处理模块500中两个间隔设置的第三转动件520挤压熔体,并通过冷却元件540进行快速冷却处理,可以使得熔体最终成型得到所需的板材。
本步骤的第三预设温度T5为冷却元件540的温度,具体的温度设置以熔体的材料而定。于一实施例中,T5的温度范围为120-400℃;于一实施例中,T5的温度范围为120-220℃;于一实施例中,T5的温度范围为120-200℃。
为提高铸锭质量,本步骤中还可以通过第三驱动件530对第三转动件520的转速进行控制,例如控制第三转动件520的转速为10mm/s,并且可以将第三转动件520对半固态熔体的产生第三挤压力F3,第三挤压力F3的大小控制在100-300N。
其中,第三预设温度T5低于第一预设温度T3。
其中,步骤S103、和步骤S104中,熔体可以是在引锭模块600中引锭头610的引导下进行流动。步骤S104之后,最终成型得到的板材可以在引锭模块600中引锭头610的拉动下通过第二出料口220排出。
请参照图9,其为本申请一实施例示出的铸造方法的流程示意图。本方法可以使用于如图1a至图7所示铸造装置1。铸造方法可以包括如下步骤:
步骤S201:将初始材料通入第一腔室100内的坩埚150内进行初步处理形成中间熔体,并令第一腔室100处于第一预设环境内。详细参见上述实施例中对步骤S101的描述。
步骤S202:将中间熔体通过坩埚150的喷嘴151通入第二腔室200内,并令第二腔室200处于第二预设环境内。详细参见上述实施例中对步骤S102的描述。
步骤S203:通过设于第二腔室200内的第一处理模块300进行加热和挤压处理,并令第一处理模块300处于第一预设温度T3。详细参见上述实施例中对步骤S203的描述。
步骤S204:通过设于第二腔室200内的第二处理模块400进行加热处理,并令第二处理模块400处于第二预设温度T4。
本步骤中,步骤S203所形成的半固态熔体到达第二处理模块400通过第二加热元件420加热,使得半固态熔体液面(包括第一转动件320处的熔体液面)呈现水平状态,使得结晶过程在一个平面上完成,以实现合金组织的均匀性。
本步骤的第二预设温度T4为第二加热元件420的温度,温度范围为300-400℃,具体的温度设置以熔体的材料而定。
其中,第三预设温度T5低于第二预设温度T4,第二预设温度T4低于第一预设温度T3。
步骤S205:通过设于第二腔室200内的第三处理模块500进行冷却和挤压处理,并令第三处理模块500处于第三预设温度T5。详细参见上述实施例中对步骤S205的描述。
其中,步骤S203、步骤S204和步骤S205中,熔体可以是在引锭模块600中引锭头610的引导下进行流动。步骤S205之后,最终成型得到的板材可以在引锭模块600中引锭头610的拉动下通过第二出料口220排出。
请参照图10,其为本申请一实施例示出的铸造方法的流程示意图。本方法可以使用于如图1a至图7所示铸造装置1。铸造方法可以包括如下步骤:
步骤S301:令第一腔室100处于第四预设温度T0和第一预设气压P1。
本步骤中的第一预设气压P1可以通过第一环境控制模块180中的第一抽真空元件181和第一调压元件182得到,先通过第一抽真空元件181将第一腔室100抽真空,并通过第一调压元件182充入适量氩气等惰性气体,使腔室内的气压保持为第一预设气压P1(0.5atm≤P1≤1atm)。
本步骤中的第四预设温度T0可以通过第一环境控制模块180中的第三加热元件183和第四加热元件184得到,第四预设温度T0的温度范围为680℃<T0,其中,第四预设温度T0高于第一预设温度T3。
步骤S302:通过进料模块160令初始材料通入第一腔室100内,并令进料模块160给予初始材料的第二挤压力。
本步骤中,初始材料通过进料模块160时,第二转动件161对其进行挤压,产生第二挤压力F2,第二挤压力F2的大小控制在第一挤压力F1的大小控制在100-200GPa,从而可以保证尽量少的气体进入第一腔室100内,保持第一腔室100内的真空度。本步骤的初始材料可以是一个或者多个固体材料。
本步骤中可以控制第二转动件161的转速即进料模块160的进料速度为0.1-1m/min。
步骤S303:在初始材料进入坩埚150之前,通过设于第一腔室100内的第三加热元件183加热。
本步骤中所指的在初始材料进入坩埚150之前,即初始材料在通过第一进料口110到达坩埚150的开口端这一时间段。本步骤在高真空的第一腔室100内通过第三加热元件183对初始材料加热,使初始材料快速熔化,形成初始熔体,初始熔体为完全熔化的熔液。
其中,第三加热元件183的加热温度T1的控制范围为:680℃<T1,且可以根据初始材料的成分进行调整。于一实施例中,T1的控制范围为700-1800℃。于一实施例中,初始材料为铝,T1可以是1800℃。
步骤S304:在初始材料进入坩埚150之后,通过设于坩埚150外侧的第四加热元件184进行加热处理,并通过设于坩埚150外侧的电磁搅拌元件185进行均匀化处理,形成中间熔体。
本步骤中所指的在初始材料进入坩埚150之后,即初始熔体在坩埚150内,且未被喷嘴151喷出的一个时间段。本步骤中,初始熔体在坩埚150内通过第四加热元件184对坩埚150加热,并通过电磁搅拌元件185对坩埚150内熔体进行均匀化处理,形成中间熔体。
第四加热元件184的加热温度T2的控制范围为:680℃<T2,且可以根据初始材料的成分进行调整。其中,第四加热元件184的加热温度T2小于或者等于第三加热元件183的加热温度T1。
步骤S305:将中间熔体通过坩埚150的喷嘴151通入第二腔室200内,并令第二腔室200处于第二预设环境内。详细参见上述实施例中对步骤S102的描述。
步骤S306:通过设于第二腔室200内的第一处理模块300进行加热和挤压处理,并令第一处理模块300处于第一预设温度T3。详细参见上述实施例中对步骤S103的描述。
步骤S307:通过设于第二腔室200内的第二处理模块400进行加热处理,并令第二处理模块400处于第二预设温度T4。详细参见上述实施例中对步骤S204的描述。
步骤S308:通过设于第二腔室200内的第三处理模块500进行冷却和挤压处理,并令第三处理模块500处于第三预设温度T5。详细参见上述实施例中对步骤S104的描述。
请参照图11,其为本申请一实施例示出的铸造方法的流程示意图。本方法可以使用于如图1a至图7所示铸造装置1。铸造方法可以包括如下步骤:
步骤S401:调整第一处理模块300所包括的两个第一转动件320之间的距离,以及第一转动件320相对第二腔室200的位置。
调整第一转动件320之间的距离,即调整第一通道310的最小宽度W1,可以通过两个第一转动件320左右移动来实现。其中,第一通道310的最小宽度W1的初始值可以为20mm,根据需要进行放大或者缩小。
调整第一转动件320相对第二腔室200的位置,即改变第一转动件320与第二出料口220之间的距离D2,可以通过两个第一转动件320的上下移动来实现。其中,第一转动件320与第二出料口220之间的距离D2的初始值可以为20cm,根据需要进行放大或者缩小。
于操作过程中,本步骤可以利用第一滑槽250和第二滑槽260,或者可以利用安装孔270。
步骤S402:调整第三处理模块500所包括的两个第三转动件520之间的距离,以及第三转动件520相对第二腔室200的位置。
调整第三转动件520之间的距离,即调整第三通道510的最小宽度W3,可以通过两个第三转动件520左右移动来实现。其中,第三通道510的最小宽度W3的初始值可以为15mm,根据需要进行放大或者缩小。
调整第三转动件520相对第二腔室200的位置,即改变第三转动件520与第二出料口220之间的距离D3,可以通过两个第三转动件520的上下移动来实现。其中,第三转动件520与第二出料口220之间的距离D3的初始值可以为30cm,根据需要进行放大或者缩小。其中,第三转动件520与第二出料口220之间的距离D3可以大于或者等于第一转动件320与第二出料口220之间的距离D2。
其中,本步骤的最终调整结果需要保持W1、W2、W3和d之间的大小关系,例如:第二通道410的最小宽度W2大于第一通道310的最小宽度W1,第三通道510的最小宽度W3小于第一通道310的最小宽度W1,第一通道310的最小宽度W1小于或者等于喷嘴151的狭缝直径d。
于操作过程中,本步骤可以利用第一滑槽250和第二滑槽260,或者可以利用安装孔270。
步骤S403:令第一腔室100处于第四预设温度T0和第一预设气压P1。详细参见上述实施例中对步骤S301的描述。
步骤S404:通过进料模块160令初始材料通入第一腔室100内。
本步骤的初始材料是一个或者多个固体材料,一个或者多个初始材料通过进料模块160同时通入第一腔室100内。进料模块160可以对初始材料进行挤压或者不挤压。
其中,当进料模块160可以对初始材料进行挤压时,可以参见上述实施例中对步骤S302的描述。
步骤S405:在初始材料进入坩埚150之前,通过设于第一腔室100内的第三加热元件183加热。详细参见上述实施例中对步骤S303的描述。
步骤S406:通过进液模块700向坩埚150内加入添加材料,用于使初始材料和添加材料在坩埚150内混合。
本步骤的添加材料是液态材料,例如纯铝等。液态的添加材料直接进入坩埚150内,与初始材料被第三加热元件183熔化后的初始熔体在坩埚150内混和。
步骤S407:在初始材料和添加材料进入坩埚150之后,通过设于坩埚150外侧的第四加热元件184进行加热处理,并通过设于坩埚150外侧的电磁搅拌元件185进行均匀化处理,形成中间熔体。
本步骤中所指的在初始材料和添加材料进入坩埚150之后,即添加材料和初始熔体在坩埚150内,且未被喷嘴151喷出的一个时间段。本步骤中,添加材料和初始熔体在坩埚150内通过第四加热元件184对坩埚150加热,并通过电磁搅拌元件185对坩埚150内熔体进行均匀化处理,形成中间熔体。
第四加热元件184的加热温度T2的控制范围为:680℃<T2,且可以根据初始材料的成分进行调整。其中,第四加热元件184的加热温度T2小于或者等于第三加热元件183的加热温度T1。
步骤S408:令第二腔室200处于第二预设气压P2。
本步骤中的第二预设气压P2可以通过第二环境控制模块280中的第二抽真空元件281和第二调压元件282得到,先通过第二抽真空元件281将第二腔室200抽真空,并通过第二调压元件282充入适量氩气等惰性气体,使第二腔室200内的气压保持为第二预设气压P2(0.4atm≤P2<1atm,且P2<P1)。
于一其他的实施例中,步骤S408可以与步骤S403同步进行,在铸造过程前进行事先调试。
于一其他的实施例中,步骤S408可以与步骤S403在铸造过程中实时进行,使得在整个铸造过程中,令第一腔室100的气压P1和第二腔室200的气压P2分别维持在各自的预设范围内。
步骤S409:令中间熔体通过喷嘴151通入第二腔室200内。
由于步骤S408使第二腔室200的气压低于第一腔室100的气压,则坩埚150内的中间熔体内可以通过喷嘴151进入第二腔室200内。
步骤S410:通过设于第二腔室200内的第一处理模块300进行加热和挤压处理,并令第一处理模块300处于第一预设温度T3。详细参见上述实施例中对步骤S103的描述。
步骤S411:通过设于第二腔室200内的第二处理模块400进行加热处理,并令第二处理模块400处于第二预设温度T4。详细参见上述实施例中对步骤S204的描述。
步骤S412:通过设于第二腔室200内的第三处理模块500进行冷却和挤压处理,并令第三处理模块500处于第三预设温度T5。详细参见上述实施例中对步骤S104的描述。
步骤S413:通过设于第二腔室200外的轧制模块800进行轧制处理。
本步骤可以通过轧制模块800承接经过步骤S410、步骤S411和步骤S412处理的,从第二出料口220出来的铸锭,铸锭由摩擦力拉进旋转轧辊810之间,受到压缩进行塑性变形的过程,实现轧制处理,使铸锭具有一定尺寸、形状和性能,从而实现金属板材连续制备,且提升铸造质量。
其中,在轧制处理过程中,引锭头610继续牵引或者不牵引铸锭。
请参照图12,其为本申请一实施例提供的铸锭微观组织图。于一实施例中,申请人对图1a至图7所示铸造装置1以及图8至图11所示的铸造方法进行了试验。试验过程包括:
试验选用半连续铸造法生产的7075铝合金铸锭,并对其进行线切割,铸锭断面规格为25mm×25mm,其化学成分为硅Si:0.40、铁Fe:0.50、铜Cu:1.8、锰Mn:0.30、镁Mg:2.5、铬Cr:0.22、锌Zn:5.6、钛Ti:0.20、铝Al:余量。
将第一腔室100和第二腔室200抽真空、调气压,并在整个试验过程中通过实时控制,令第一腔室100的气压P1维持在0.5个大气压,第二腔室200的气压P2维持在0.4个大气压。
第三加热元件183的温度T1调至1800℃,并通过第四加热元件184将坩埚150温度T2调至700℃。第一转动件320内部第一加热元件340的温度T3调至450℃。第二加热元件420的温度T4调至400℃,第三转动件520内部冷却元件540的水流开通,冷却元件540的温度T5调至200℃。
将7075铝合金铸锭样品通过进料模块160进行添加,进料速度为1m/min,铸锭规格为100mm×25mm×25mm。
经过第三加热元件183高频熔化的铝合金材料流入至第一腔室100的坩埚150内,经过电磁搅拌元件185均匀化处理后,在第一腔室100和第二腔室200的压差之下快速流入至第二腔室200中,进入第一转动件320中进行初步的成型处理。第一转动件320的转速设置为10mm/s,狭缝宽度(第一通道310的最小宽度W1)为20mm。
经过初步成型处理的铝合金通过第三转动件520的挤压成型及快速冷却,最终得到超细晶组织的铝合金材料,第三转动件520的转速为12mm/s,狭缝宽度(第三通道510的最小宽度W3)为12mm。成品铝合金铸锭的尺寸为120mm×15mm×15mm。成品铝合金铸锭的微观形貌如图11所示。
请参照图13,其为本申请一实施例提供的铸锭微观组织图。于一实施例中,申请人对图1a至图7所示铸造装置1以及图8至图11所示的铸造方法进行了试验。试验过程包括:
试验选用半连续铸造法生产的6061铝合金铸锭,并对其进行线切割,铸锭断面规格为25mm×25mm,其化学成分为硅Si:0.60、铁Fe:0.70、铜Cu:0.3、锰Mn:0.15、镁Mg:1.00、铬Cr:0.28、锌Zn:0.25、钛Ti:0.15、铝Al:余量。
将第一腔室100和第二腔室200抽真空、调气压,并在整个试验过程中通过实时控制,令第一腔室100的气压P1维持在0.5个大气压,第二腔室200的气压P2维持在0.4个大气压。
第三加热元件183的温度T1调至1800℃,并通过第四加热元件184将坩埚150温度T2调至700℃。第一转动件320内部第一加热元件340的温度T3调至450℃。第二加热元件420的温度T4调至400℃,第三转动件520内部冷却元件540的水流开通,冷却元件540的温度T5调至200℃。
将6061铝合金铸锭样品通过进料模块160进行添加,进料速度为1m/min,铸锭规格为120mm×20mm×20mm。
经过第三加热元件183高频熔化的铝合金材料流入至第一腔室100的坩埚150内,经过电磁搅拌元件185均匀化处理后,在第一腔室100和第二腔室200的压差之下快速流入至第二腔室200中,进入第一转动件320中进行初步的成型处理。第一转动件320的转速设置为10mm/s,狭缝宽度(第一通道310的最小宽度W1)为20mm。
经过初步成型处理的铝合金通过第三转动件520的挤压成型及快速冷却,最终得到超细晶组织的铝合金材料,第三转动件520的转速为12mm/s,狭缝宽度(第三通道510的最小宽度W3)为12mm。成品铝合金铸锭的尺寸为120mm×12mm×12mm。成品铝合金铸锭的微观形貌如图12所示。
需要说明的是,在不冲突的情况下,本申请中的实施例中的特征可以相互结合。
以上仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (23)

1.一种铸造装置,其特征在于,包括:
第一腔室,具有第一进料口和第一出料口;
第二腔室,具有第二进料口和第二出料口;
坩埚,设于所述第一腔室内,所述坩埚上设有至少一个喷嘴;
第一处理模块,包括两个第一转动件,两个所述第一转动件之间具有第一通道,每个所述第一转动件内均设有第一加热元件;以及
第三处理模块,包括两个第三转动件,两个所述第三转动件之间具有第三通道,每个所述第三转动件内均设有冷却元件;
其中,所述第一进料口和所述第一通道连通,所述第一通道和所述第三通道连通,所述第三通道和所述第二出料口连通,所述喷嘴穿过所述第一出料口和所述第二进料口后对接于所述第一通道。
2.根据权利要求1所述铸造装置,其特征在于,所述铸造装置还包括:
第二处理模块,包括两个第二加热元件,两个所述第二加热元件之间具有第二通道;
其中,所述第一通道、所述第二通道和所述第三通道依次连通。
3.根据权利要求2所述铸造装置,其特征在于,所述第二通道的最小宽度大于所述第一通道的最小宽度,所述第三通道的最小宽度小于所述第一通道的最小宽度,所述第一通道的最小宽度小于或者等于所述喷嘴的狭缝直径。
4.根据权利要求1所述铸造装置,其特征在于,所述第一处理模块还包括第一驱动件,所述第一驱动件与所述第一转动件传动连接,用于驱动所述第一转动件转动;
所述第三处理模块还包括第三驱动件,所述第三驱动件与所述第三转动件传动连接,用于驱动所述第三转动件转动。
5.根据权利要求4所述铸造装置,其特征在于,所述第二腔室的内壁上设有沿所述第一通道长度方向设置的第一滑槽和沿所述第一通道宽度方向设置的第二滑槽,
所述第一转动件和第三转动件安装于所述第一滑槽或者所述第二滑槽内。
6.根据权利要求4所述铸造装置,其特征在于,所述第二腔室的内壁上设有多个安装孔,多个所述安装孔沿所述第一通道长度方向以及所述第一通道宽度方向成双向线性阵列的方式排列;
所述第一转动件和第三转动件安装于所述安装孔内。
7.根据权利要求1所述铸造装置,其特征在于,所述铸造装置还包括第一环境控制模块,设于所述第一腔室,用于调整所述第一腔室内的环境参数;
其中,所述第一腔室上设有第一进气孔和第一排气孔;所述第一环境控制模块包括:
第一抽真空元件,与所述第一排气孔相连;以及
第一调压元件,与所述第一进气孔相连。
8.根据权利要求7所述铸造装置,其特征在于,所述第一环境控制模块还包括:
第三加热元件,设于第一腔室内,且设于所述第一进料口与所述坩埚之间;以及
多个第四加热元件,均匀设于所述坩埚外侧。
9.根据权利要求8所述铸造装置,其特征在于,所述第一环境控制模块还包括:
电磁搅拌元件,设于第一腔室内,且设于所述坩埚以及所述第四加热元件的外侧。
10.根据权利要求8所述铸造装置,其特征在于,所述第一环境控制模块还包括:
保温层,设于第一腔室内,且设于所述坩埚、所述第四加热元件以及电磁搅拌元件的外侧。
11.根据权利要求1所述铸造装置,其特征在于,所述铸造装置还包括第二环境控制模块,设于所述第二腔室,用于调整所述第二腔室内的环境参数;
其中,所述第二腔室上设有第二进气孔和第二排气孔,所述第二环境控制模块包括:
第二抽真空元件,与所述第二排气孔相连;以及
第二调压元件,与所述第二进气孔相连。
12.根据权利要求1至11任一项所述铸造装置,其特征在于,所述铸造装置还包括:
进料模块,设置在所述第一腔室外,且设于所述第一进料口处。
13.根据权利要求12所述铸造装置,其特征在于,所述铸造装置还包括:
引锭模块,所述引锭模块包括引锭头,所述引锭头设于所述第二腔室内。
14.根据权利要求12所述铸造装置,其特征在于,所述铸造装置还包括:
进液模块,设置在所述第一腔室上,且与所述坩埚相通。
15.根据权利要求12所述铸造装置,其特征在于,所述铸造装置还包括:
轧制模块,设置在所述第二腔室外,且与所述第二出料口相通。
16.根据权利要求1所述铸造装置,其特征在于,所述铸造装置还包括:
主控模块,与所述喷嘴、所述第一处理模块、和所述第三处理模块电性连接,用于控制。
17.一种铸造方法,其特征在于,所述铸造方法包括:
将初始材料通入第一腔室内的坩埚内进行初步处理形成中间熔体,并令所述第一腔室处于第一预设环境内;
将所述中间熔体通过所述坩埚的喷嘴通入第二腔室内,并令所述第二腔室处于第二预设环境内;
通过设于所述第二腔室内的第一处理模块进行加热和挤压处理,并令所述第一处理模块处于第一预设温度;
通过设于所述第二腔室内的第三处理模块进行冷却和挤压处理,并令所述第三处理模块处于第三预设温度;
其中,所述第三预设温度低于所述第一预设温度。
18.根据权利要求17所述的铸造方法,其特征在于,所述通过设于所述第二腔室内的第一处理模块进行加热和挤压处理,并令所述第一处理模块处于第一预设温度之后,
所述通过设于所述第二腔室内的第三处理模块进行冷却和挤压处理,并令所述第三处理模块处于第三预设温度之前,包括:
通过设于所述第二腔室内的第二处理模块进行加热处理,并令所述第二处理模块处于第二预设温度;
其中,所述第三预设温度低于所述第二预设温度,所述第二预设温度低于所述第一预设温度。
19.根据权利要求17所述的铸造方法,其特征在于,所述将初始材料通入第一腔室内的所述坩埚内进行初步处理形成中间熔体,并令所述第一腔室处于第一预设环境内,包括:
令所述第一腔室处于第四预设温度和第一预设气压;
通过进料模块令所述初始材料通入所述第一腔室内,并令所述进料模块给予所述初始材料的第二挤压力;
在所述初始材料进入所述坩埚之前,通过设于所述第一腔室内的第三加热元件加热;
在所述初始材料进入所述坩埚之后,通过设于所述坩埚外侧的第四加热元件进行加热处理,并通过设于所述坩埚外侧的电磁搅拌元件进行均匀化处理;
其中,所述第四预设温度高于所述第一预设温度。
20.根据权利要求17所述的铸造方法,其特征在于,所述将初始材料通入第一腔室内的所述坩埚内进行初步处理形成中间熔体,并令所述第一腔室处于第一预设环境内,包括:
令所述第一腔室处于第四预设温度和第一预设气压;
通过进料模块令所述初始材料通入所述第一腔室内;
在所述初始材料进入所述坩埚之前,通过设于所述第一腔室内的第三加热元件加热;
通过进液模块向所述坩埚内加入添加材料,用于使所述初始材料和所述添加材料在所述坩埚内混合;
在所述初始材料和添加材料进入所述坩埚之后,通过设于所述坩埚外侧的第四加热元件进行加热处理,并通过设于所述坩埚外侧的电磁搅拌元件进行均匀化处理;
其中,所述第四预设温度高于所述第一预设温度。
21.根据权利要求17所述的铸造方法,其特征在于,所述将所述中间熔体通过所述喷嘴通入第二腔室内,并令所述第二腔室处于第二预设环境内,包括:
令所述第二腔室处于第二预设气压;
令所述中间熔体通过所述喷嘴通入第二腔室内。
22.根据权利要求17所述的铸造方法,其特征在于,所述将初始材料通入第一腔室内的坩埚内进行初步处理形成中间熔体,并令所述第一腔室处于第一预设环境内,之前包括:
调整所述第一处理模块所包括的两个第一转动件之间的距离,以及第一转动件相对所述第二腔室的位置;
调整所述第三处理模块所包括的两个第三转动件之间的距离,以及第三转动件相对所述第二腔室的位置。
23.根据权利要求17所述的铸造方法,其特征在于,所述通过设于所述第二腔室内的第三处理模块进行冷却和挤压处理,并令所述第三处理模块处于第三预设温度,之后包括:
通过设于所述第二腔室外的轧制模块进行轧制处理。
CN202010943162.4A 2020-09-09 2020-09-09 铸造装置及铸造方法 Active CN114226663B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010943162.4A CN114226663B (zh) 2020-09-09 2020-09-09 铸造装置及铸造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010943162.4A CN114226663B (zh) 2020-09-09 2020-09-09 铸造装置及铸造方法

Publications (2)

Publication Number Publication Date
CN114226663A true CN114226663A (zh) 2022-03-25
CN114226663B CN114226663B (zh) 2023-01-20

Family

ID=80742938

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010943162.4A Active CN114226663B (zh) 2020-09-09 2020-09-09 铸造装置及铸造方法

Country Status (1)

Country Link
CN (1) CN114226663B (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5530356A (en) * 1978-08-24 1980-03-04 Victor Co Of Japan Ltd Melting and heating device for production of amorphous material
CN1296868A (zh) * 2000-11-21 2001-05-30 白荣铠 用于生产模铸锭、铸件及连铸坯的铸造新技术和装置
US20050236135A1 (en) * 2002-08-29 2005-10-27 Commonwealth Scientific And Industrial Research Organisation Twin roll casting of magnesium and magnesium alloys
CN201669392U (zh) * 2010-05-18 2010-12-15 南昌市南方连铸工程有限责任公司 一种半固态铸轧双辊式薄带坯连铸机
CN102641999A (zh) * 2012-04-24 2012-08-22 王东 一种大块非晶合金铸锭的连续制备装置和方法
KR20130022862A (ko) * 2011-08-26 2013-03-07 주식회사 포스코 쌍롤식 박판 주조장치의 주조롤
CN104525564A (zh) * 2014-11-08 2015-04-22 广东省工业技术研究院(广州有色金属研究院) 一种三层金属复合板的短流程轧制成形装置及方法
CN106493316A (zh) * 2016-12-20 2017-03-15 东北大学 立式半固态铸轧装置及铸轧方法
CN107030266A (zh) * 2017-06-01 2017-08-11 大连理工大学 一种真空条件下熔炼加声磁耦合连续铸造一体化装置和方法
CN108246993A (zh) * 2018-01-18 2018-07-06 中北大学 一种铝合金半固态铸轧方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5530356A (en) * 1978-08-24 1980-03-04 Victor Co Of Japan Ltd Melting and heating device for production of amorphous material
CN1296868A (zh) * 2000-11-21 2001-05-30 白荣铠 用于生产模铸锭、铸件及连铸坯的铸造新技术和装置
US20050236135A1 (en) * 2002-08-29 2005-10-27 Commonwealth Scientific And Industrial Research Organisation Twin roll casting of magnesium and magnesium alloys
CN201669392U (zh) * 2010-05-18 2010-12-15 南昌市南方连铸工程有限责任公司 一种半固态铸轧双辊式薄带坯连铸机
KR20130022862A (ko) * 2011-08-26 2013-03-07 주식회사 포스코 쌍롤식 박판 주조장치의 주조롤
CN102641999A (zh) * 2012-04-24 2012-08-22 王东 一种大块非晶合金铸锭的连续制备装置和方法
CN104525564A (zh) * 2014-11-08 2015-04-22 广东省工业技术研究院(广州有色金属研究院) 一种三层金属复合板的短流程轧制成形装置及方法
CN106493316A (zh) * 2016-12-20 2017-03-15 东北大学 立式半固态铸轧装置及铸轧方法
CN107030266A (zh) * 2017-06-01 2017-08-11 大连理工大学 一种真空条件下熔炼加声磁耦合连续铸造一体化装置和方法
CN108246993A (zh) * 2018-01-18 2018-07-06 中北大学 一种铝合金半固态铸轧方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
张曦月等: "连续铸造技术发展与应用(二)", 《铸造技术》 *

Also Published As

Publication number Publication date
CN114226663B (zh) 2023-01-20

Similar Documents

Publication Publication Date Title
EP3862112B1 (en) Array-spraying additive manufacturing apparatus and method for manufacturing large-sized equiaxed crystal aluminum alloy ingot
US5346184A (en) Method and apparatus for rapidly solidified ingot production
CN111676380B (zh) 钛和钛合金短流程制备装置
US6089309A (en) Method for manufacturing gradient material by continuous and semi-continuous casting
CN113369453A (zh) 一种基于真空离心铸造的铝合金板带材制备方法及真空离心铸造装置
CN114226663B (zh) 铸造装置及铸造方法
CN104745843A (zh) 一种自动化合金流变浆料制备及流变成型的装置和方法
CN206936315U (zh) 键合丝连铸炉
ITMI20111767A1 (it) Metodo e apparato di rheocasting
CN105624540A (zh) 30CrMo圆管坯钢铸坯的等轴晶率控制方法
CN102901659A (zh) 一种金属合金试棒的制备方法
CN111792821A (zh) 连熔法生产大尺寸石英筒工艺、石英筒及其应用
CN214977629U (zh) 一种半固态压力铸造成形设备
CN1301166C (zh) 一种高速钢坯料的制备方法及设备
CN112846126B (zh) 多组元径向功能梯度材料设备的熔体流速调节系统及方法
JP6524689B2 (ja) 連続鋳造装置
CN114619045B (zh) 辊轴制造装置和复合轧辊制造方法
CN114226756B (zh) 增材制造方法
CN113857494A (zh) 高锌铝合金型材及其铸造设备、铸造方法
CN113695537B (zh) 一种空心铸锭、其制备方法以及空心型材
CN213052697U (zh) 一种活性金属或合金的可控性浇铸装置
CA2434193A1 (en) Method for providing a partially solidified alloy suspension and devices
CN215033444U (zh) 三腔式多流道真空热模连铸系统
CN219705763U (zh) 一种橡胶熔化装置
CN115418724B (zh) 一种铂铱合金棒定向凝固装置、定向凝固方法及成型方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant