CN114221542A - 一种恒流型调制中频理疗仪电路及其工作原理 - Google Patents

一种恒流型调制中频理疗仪电路及其工作原理 Download PDF

Info

Publication number
CN114221542A
CN114221542A CN202111491582.4A CN202111491582A CN114221542A CN 114221542 A CN114221542 A CN 114221542A CN 202111491582 A CN202111491582 A CN 202111491582A CN 114221542 A CN114221542 A CN 114221542A
Authority
CN
China
Prior art keywords
modulation
circuit
current
intermediate frequency
power supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202111491582.4A
Other languages
English (en)
Other versions
CN114221542B (zh
Inventor
张旭
魏秋宏
周基清
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangzhou Stonge Needle Health Technology Co ltd
South China Normal University
Original Assignee
Guangzhou Stonge Needle Health Technology Co ltd
South China Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangzhou Stonge Needle Health Technology Co ltd, South China Normal University filed Critical Guangzhou Stonge Needle Health Technology Co ltd
Priority to CN202111491582.4A priority Critical patent/CN114221542B/zh
Publication of CN114221542A publication Critical patent/CN114221542A/zh
Application granted granted Critical
Publication of CN114221542B publication Critical patent/CN114221542B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M11/00Power conversion systems not covered by the preceding groups
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/157Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators with digital control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33507Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters
    • H02M3/33515Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters with digital control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33507Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters
    • H02M3/33523Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters with galvanic isolation between input and output of both the power stage and the feedback loop
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
    • H02M7/53873Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current with digital control

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Dc-Dc Converters (AREA)

Abstract

本发明公开了一种恒流型调制中频理疗仪电路,包括高压电源供电模块和电流波形调制输出模块,所述高压电源供电模块和电流波形调制输出模块之间设有数字隔离模块,所述高压电源供电模块包括第一MCU和正激式开关电源,所述第一MCU与正激式开关电源连接,所述正激式开关电源与电流波形调制输出模块连接。通过使用本发明,能够实现正弦波、三角波和方波的连调、间调、断调和变调的任意组合,实现了载波频率、调制频率、输出间隔时间和调制度任意调节。本发明作为一种恒流型调制中频理疗仪电路,可广泛应用于理疗仪电路领域。

Description

一种恒流型调制中频理疗仪电路及其工作原理
技术领域
本发明涉及理疗仪电路领域,尤其涉及一种恒流型调制中频理疗仪电路及其工作原理。
背景技术
理疗仪用于临床治疗已经有很多年,主要有直流电疗仪、交流电疗仪和静电电疗仪,其中交流电电疗仪一般分为低频、中频和高频,中频电疗仪被广泛应用于临床,该方法的电流脉冲强度大,可以深入到组织内部,但是单一频率的脉冲电流会使人体产生适应性,另外,目前的中频电疗仪输出模式均是电压波形,容易受到负载的影响,从而无法保证治疗的一致性。
发明内容
为了解决上述技术问题,本发明的目的是提供一种恒流型调制中频理疗仪电路及其工作原理,实现了正弦波、三角波和方波的连调、间调、断调和变调的任意组合,实现了载波频率、调制频率、输出间隔时间和调制度任意调节,对于克服人体对于治疗过程中的适应性上有很大的优势。
本发明所采用的技术方案是:一种恒流型调制中频理疗仪电路,包括高压电源供电模块和电流波形调制输出模块,所述高压电源供电模块和电流波形调制输出模块之间设有数字隔离模块,所述高压电源供电模块包括第一MCU和正激式开关电源,所述第一MCU与正激式开关电源连接,所述正激式开关电源与电流波形调制输出模块连接。
进一步,所述电流波形调制输出模块包括第二MCU、电流源和中频电流调制电路,所述第二MCU、电流源和中频电流调制电路依次连接,所述中频电流调制电路还与正激式开关电源连接。
进一步,所述第一MCU和第二MCU均采用STM8L151低功耗单片机,所述STM8L151低功耗单片机内部集成12位模数转换器和12位数模转换器。
进一步,所述高压电源供电模块包括第一STM8L151K4U6芯片、第一电阻、第一增强型MOS管、第一二极管、变压器、BUCK电路、第二二极管、第一电容和第二电容,所述第一STM8L151K4U6芯片的第十五引脚与第一电阻的第一端连接,所述第一电阻的第二端与第一增强型MOS管的栅极连接,所述第一二极管正极与第一增强型MOS管的源极连接,所述第一增强型MOS管的漏极与变压器的第四端连接,所述第一二极管的负极与变压器的第三端连接,所述变压器的第七端和第八端与BUCK电路连接,所述变压器的第五端与第二二极管连接,所述第二二极管的负极、第一电容的第一端和第二电容的第二端相连,所述变压器的第六端、第一电容的第二端和第二电容的第二端相连。
进一步,所述第二MCU为第二STM8L151K4U6芯片,所述电流源包括运算放大器、三极管和第二电阻,所述运算放大器的第三端口与第二STM8L151K4U6芯片的第七引脚连接,所述运算放大器的第一端口与三极管的基极连接,所述运算放大器的第四端口、三极管的发射极和第二电阻的第一端连接。
进一步,还设有空载检测电路,所述空载检测电路包括第三电阻和第四电阻,所述第三电阻的第一端、第四电阻的第一端和第二STM8L151K4U6芯片的第二十三引脚连接。
进一步,所述中频电流调制电路采用H桥电路。
应用于上述一种恒流型调制中频理疗仪电路的工作原理如下:
第一MCU输出一路PWM波,调节频率和占空比来控制正激式开关电源的导通时间,调节输出电压,得到第一路PWM信号;
第二MCU输出双路相位差为180°PWM波形控制H桥电路的导通方向,得到第二路PWM信号,并输出电压包络信号给电流源电路产生电流包络信号;
两路PWM信号分别控制H桥电路两个桥臂的轮流导通,使负载上的电流在两个方向流动,实现电流的调制;
第一MCU和第二MCU通过数字隔离电路交换数据。
本发明的有益效果是:本发明通过该恒流型调制中频理疗仪电路,输出电流强度最大到100mA,实现了正弦波、三角波和方波的连调、间调、断调和变调的任意组合,实现了载波频率、调制频率、输出间隔时间和调制度任意调节。相对于电压输出型的理疗仪,可以做到在治疗过程中的真正“计量”控制,对于克服人体对于治疗过程中的适应性上有很大的优势。
附图说明
图1是本发明一种恒流型调制中频理疗仪电路的结构框图;
图2是本发明具体实施例高压电源供电模块的部分电路图;
图3是本发明具体实施例电流波形调制输出模块的部分电路图;
图4是本发明具体是实力数字隔离电路的部分电路图;
图5是本发明具体实施例调制波形的类型图;
图6是本发明具体实施例电流模式下调幅波的电流包络信号示意图;
图7是本发明具体实施例电流模式下调幅波示意图;
图8是本发明具体实施例2路相位差为1800的PWM波的信号示意图;
图9是本发明具体实施例H桥实现电流调制原理图。
附图标记:U1、第一MCU;R1、第一电阻;M1、第一增强型MOS管;D1、第一二极管;T1、变压器;D2、第二二极管;C1、第一电容;C2、第二电容;U2、第二MCU;U3、运算放大器;Q1、三极管;R2、第二电阻;R3、第三电阻;R4、第四电阻。
具体实施方式
下面结合附图和具体实施例对本发明做进一步的详细说明。对于以下实施例中的步骤编号,其仅为了便于阐述说明而设置,对步骤之间的顺序不做任何限定,实施例中的各步骤的执行顺序均可根据本领域技术人员的理解来进行适应性调整。
低频调制中频电疗法采用10~150Hz的低频调制波调制2kHz~8kHz的中频载波,产生调制的电流波形。调制波形有4种基本类型,如图5所示:连续调制波(连调)、断续调制波(断调)、间歇调制波(间调)和变频调制波(变调)。4种基本类型可以多种组合。本文根据这4种基本类型波形,设计了恒流型的低频调制中频理疗仪。
如图1所示,本发明提供了一种恒流型调制中频理疗仪电路,包括高压电源供电模块和电流波形调制输出模块,所述高压电源供电模块和电流波形调制输出模块之间设有数字隔离模块,所述高压电源供电模块包括第一MCU(U1)和正激式开关电源,所述第一MCU(U1)与正激式开关电源连接,所述正激式开关电源与电流波形调制输出模块连接。
进一步作为优选实施例,所述电流波形调制输出模块包括第二MCU(U2)、电流源和中频电流调制电路,所述第二MCU(U2)、电流源和中频电流调制电路依次连接,所述中频电流调制电路还与正激式开关电源连接。
进一步作为优选实施例,所述第一MCU(U1)和第二MCU(U2)均采用STM8L151低功耗单片机,所述STM8L151低功耗单片机内部集成12位模数转换器和12位数模转换器。
进一步作为优选实施例,所述高压电源供电模块包括第一STM8L151K4U6芯片、第一电阻R1、第一增强型MOS管M1、第一二极管D1、变压器T1、BUCK电路、第二二极管D2、第一电容C1和第二电容C2,所述第一STM8L151K4U6芯片的第十五引脚与第一电阻R1的第一端连接,所述第一电阻R1的第二端与第一增强型MOS管M1的栅极连接,所述第一二极管D1正极与第一增强型MOS管M1的源极连接,所述第一增强型MOS管M1的漏极与变压器T1的第四端连接,所述第一二极管D1的负极与变压器T1的第三端连接,所述变压器T1的第七端和第八端与BUCK电路连接,所述变压器T1的第五端与第二二极管D2连接,所述第二二极管D2的负极、第一电容C1的第一端和第二电容C2的第二端相连,所述变压器T1的第六端、第一电容的第二端和第二电容的第二端相连。
电流源需要的高压使用单管正激变换电路来实现,它的特点是变压器就是一个纯粹的变压器,不是必须加气隙,设计简单。在连续电流模式下最小输出电压公式为:
Figure BDA0003398571280000041
其中,VO是输出电压,VD是二极管的导通压降大约0.4伏左右,在本电路中可忽略不计,VINMIN为锂电池最小电压,考虑到电池需要连接低压差线性稳压器(LDO)产生3.3伏电压,于是设定VINMIN=3.4伏,
Figure BDA0003398571280000042
为变压器次级和初级线圈匝数比,DMAX是PWM波形的最大占空比为50%,输出需要最大60伏的电压,此时次级和初级线圈匝数比
Figure BDA0003398571280000043
取整数36。实际电路图参照图2。
图2中第一STM8L151K4U6芯片的一路PWM输出通过限流电阻R1连接到第一增强型MOS管M1的栅极,变压器初级线圈2-4的4端接第一增强型MOS管M1漏极,2端接电池;初级线圈1-3的1端接电池,3端接第一二极管D1的负极组成磁复位回路,初级线圈的2端和3端是同名端。变压器次级有2个线圈输出,一个是线圈7-8接BUCK电路,其输出电压根据(1)式可知,通过第一STM8L151K4U6芯片改变PWM的输出的占空比来改变输出的电压,就可以实现根据输出电流的大小来调整输出电压的大小,从而可以提高电源的效率,延长电池使用时间。另一个线圈5-6,与初级线圈之比为3,锂电池工作电压范围从3.4伏到4.2伏,经过第二二极管D2半波整流后输出电压范围大约是10伏到13伏,再连接到低压差线性稳压器(LDO)产生3.3V电压给单片机和蓝牙模块等电路提供工作电源。
进一步作为优选实施例,所述第二MCU(U2)为第二STM8L151K4U6芯片,所述电流源包括运算放大器U3、三极管Q1和第二电阻R2,所述运算放大器U3的第三端口与第二STM8L151K4U6芯片的第七引脚连接,所述运算放大器U3的第一端口与三极管Q1的基极连接,所述运算放大器U3的第四端口、三极管Q1的发射极和第二电阻R2的第一端连接。
中频电流调制电路使用光耦控制H桥来实现,第二STM8L151K4U6芯片输出2路PWM相位差为180°的信号,低电平导通,为了防止H桥上下两臂同时导通,PWM的占空比必须大于50%,波形如图5所示,具体的电路实现如图3所示。
运算放大器U3、三极管Q1和取样电阻R2组成电流源电路,电压信号从运算放大器U3的正向端第3脚输入,反向端第4脚和第3脚“虚短”,所以运算放大器U3的输入电压加到了取样电阻R2上,使三极管Q1的集电极电流跟随电阻R2的电流变化。第二STM8L151K4U6芯片的模数转换器(DAC)从PB4端口输出电压到运算放大器U3的正向输入端通过电阻R2转换成电流。H桥电路是电流源电路三极管Q1上的负载,当改变H桥的导通方向时,相当于改变了三极管Q1集电极电流的方向,实现了对电流源上的电流的调制,PWM信号相当于载波,单片机输出给电流源的信号相当于调制波。
当改变电流源电流强度时,通过数字隔离电路,图3中的第二STM8L151K4U6芯片发送电流强度给图2中的单片机第一STM8L151K4U6芯片,第一STM8L151K4U6芯片会改变输出的PWM占空比来改变DC-DC单管正激变换电路电压输出大小,从而达到提高电源效率的目的,数字隔离电路的具体电路图如图4所示。
进一步作为优选实施例,还设有空载检测电路,所述空载检测电路包括第三电阻R3和第四电阻R4,所述第三电阻R3的第一端、第四电阻R4的第一端和第二STM8L151K4U6芯片的第二十三引脚连接。
为了能检测负载变化情况,DC-DC单管正激变换电路电压输出端加入了2个分压电阻,再由单片机获取电压值,具体电路见图3所示,由R3和R4对高压进行分压,其分压值必须小于3.3伏,再送入第二STM8L151K4U6芯片的数模转换器的采集端口PD6。其空载检测具体原理如下:
系统开机之后,第一STM8L151K4U6芯片的PB2输出最小占空比PWM信号驱动正激变换器,使其输出较低电压。如果没有接负载,正激变换器的BUCK电路部分会运行在断续电流状态,其输出电压不是上文中(1)式所示,其输出电压会比工作在连续电流状态时高;如果接入负载则进入连续工作状态,此时在不改变占空比的情况下,输出电压会下降,从而能检测开始运行和运行中途是否接入了负载。
进一步作为优选实施例,所述中频电流调制电路采用H桥电路。
应用于上述一种恒流型调制中频理疗仪电路的工作原理:
第一MCU输出一路PWM波,调节频率和占空比来控制正激式开关电源的导通时间,调节输出电压,得到第一路PWM信号;
第二MCU输出双路相位差为180°PWM波形控制H桥电路的导通方向,得到第二路PWM信号,并输出电压包络信号给电流源电路产生电流包络信号;
两路PWM信号分别控制H桥电路两个桥臂的轮流导通,使负载上的电流在两个方向流动,实现电流的调制;
第一MCU和第二MCU通过数字隔离电路交换数据。
恒流调制波输出原理如下:
本发明设计输出3种调制波,分别是正弦波、三角波和方波,使用DDS的方法实现频率从5Hz到200Hz可变,将来只需要加入波形的数据,就可以实现更多的治疗调制波形。为了实现调制度可变、载波频率可变的调幅电流波形,做了一下的算法处理。
电压调幅波的数学表达式可以表示为:
uAM(t)=Ucm*(1+ma*cos(Ωt))*cosωt (2)
其中ma表示调制度,cos(Ωt)表示调制波,cosωt表示载波,设UMAX和UMIN分别是调幅波包络的最大电压强度和最小电压强度,Ucm表示为:
Figure BDA0003398571280000061
调制度ma定义为:
Figure BDA0003398571280000062
把(3)式和(4)式化简,可得:
Figure BDA0003398571280000063
代入到(2)式中,调幅波的表达式变成:
Figure BDA0003398571280000064
把(5)式变换成电流模式,如是有:
Figure BDA0003398571280000065
IMAX为调幅波包络最大电流强度。在(6)式中,
Figure BDA0003398571280000066
表示电流模式调幅波的电流包络信号,如图6所示,设IMAX=20mA,调制度ma=50%,调制波频率
Figure BDA0003398571280000067
cosωt表示载波信号。IAM(t)波形就变成调幅电流包络信号和载波相乘,如图7所示。
载波用2路相位差为180°的PWM信号来实现,如图8和图9所示。CH1和CH2两路PWM信号分别控制H桥电路两个桥臂的轮流导通,使负载上的电流在两个方向流动,实现电流的调制。当电流源是(6)的电流包络信号时,就可以实现电流模式下调幅波的调制,改变PWM频率就可以相当于改变载波频率。
调幅电流包络信号可以由DDS算法产生,DDS基本原理是:把输入的频率控制字FTW通过时钟fclk累加,该累加器称位相位累加器,把累加的结果作为地址,查询波形表,把取出的数据输入DAC(数模转换器)得到模拟波形,输出模拟波形的频率可以表示为:
Figure BDA0003398571280000068
其中,fout表示输出模拟波形的频率,N表示相位累加器的字宽。所以通过(7)式,可以求出不同的输出频率fout对应的频率字
Figure BDA0003398571280000069
我们设计的相位累加器的字宽N=32位,时钟频率fclk=20kHz,所以频率字FTW=fout*214748。
波形输出数据使用12位的数模转换器(DAC)进行转换,使用MATLAB生成直流偏置为零的正弦波、三角波和方波数字波形数据,由于采用的是12位的DAC输出,波形数据的数值范围限定在(-(211-1)~(211-1)),把DAC输出的电压信号给电流源电路就可以得到电流源。为了得到(6)式中电流包络信号,所以需要给电流源的电压信号为:
Figure BDA0003398571280000071
R是电流源的取样电阻。当用DDS输出要求的电压信号时,(8)式变为:
Figure BDA0003398571280000072
(9)式中3.3表示DAC的转换参考电压为3.3伏,0x7FF波形表中最大输出值,wave_table[i]是波形表数据的查表输出。当用单片机来实现该信号时,DDS的时钟频率信号通过单片机的定时器来产生,设置定时器的定时时间间隔为50微秒,对应的时钟频率fclk=20kHz,定时器每中断一次,相位累加器加一次频率控制字,取输出的高9位作为地址访问波形表,把取到的波形表数据经过(9)式计算送给数模转换器输出,这样就得到了需要的调幅波电流包络信号,如图6所示。在程序设定各个参数的值,就可以实现不同调制度、电流强度、调制频率的电流包络波形,改变图8中CH1和CH2的频率,。
本发明的一种新型的基于电流输出的调幅波中频理疗仪,采用电流源输出模式,输出强度从0-100mA可调,输出强度不受负载影响,能保证治疗的一致性。
以上是对本发明的较佳实施进行了具体说明,但本发明创造并不限于所述实施例,熟悉本领域的技术人员在不违背本发明精神的前提下还可做作出种种的等同变形或替换,这些等同的变形或替换均包含在本申请权利要求所限定的范围内。

Claims (8)

1.一种恒流型调制中频理疗仪电路,其特征在于,包括高压电源供电模块和电流波形调制输出模块,所述高压电源供电模块和电流波形调制输出模块之间设有数字隔离模块,所述高压电源供电模块包括第一MCU和正激式开关电源,所述第一MCU与正激式开关电源连接,所述正激式开关电源与电流波形调制输出模块连接。
2.根据权利要求1所述一种恒流型调制中频理疗仪电路,其特征在于,所述电流波形调制输出模块包括第二MCU、电流源和中频电流调制电路,所述第二MCU、电流源和中频电流调制电路依次连接,所述中频电流调制电路还与正激式开关电源连接。
3.根据权利要求2所述一种恒流型调制中频理疗仪电路,其特征在于,所述第一MCU和第二MCU均采用STM8L151低功耗单片机,所述STM8L151低功耗单片机内部集成12位模数转换器和12位数模转换器。
4.根据权利要求3所述一种恒流型调制中频理疗仪电路,其特征在于,所述高压电源供电模块包括第一STM8L151K4U6芯片、第一电阻、第一增强型MOS管、第一二极管、变压器、BUCK电路、第二二极管、第一电容和第二电容,所述第一STM8L151K4U6芯片的第十五引脚与第一电阻的第一端连接,所述第一电阻的第二端与第一增强型MOS管的栅极连接,所述第一二极管正极与第一增强型MOS管的源极连接,所述第一增强型MOS管的漏极与变压器的第四端连接,所述第一二极管的负极与变压器的第三端连接,所述变压器的第七端和第八端与BUCK电路连接,所述变压器的第五端与第二二极管连接,所述第二二极管的负极、第一电容的第一端和第二电容的第二端相连,所述变压器的第六端、第一电容的第二端和第二电容的第二端相连。
5.根据权利要求4所述一种恒流型调制中频理疗仪电路,其特征在于,所述第二MCU为第二STM8L151K4U6芯片,所述电流源包括运算放大器、三极管和第二电阻,所述运算放大器的第三端口与第二STM8L151K4U6芯片的第七引脚连接,所述运算放大器的第一端口与三极管的基极连接,所述运算放大器的第四端口、三极管的发射极和第二电阻的第一端连接。
6.根据权利要求5所述一种恒流型调制中频理疗仪电路,其特征在于,还设有空载检测电路,所述空载检测电路包括第三电阻和第四电阻,所述第三电阻的第一端、第四电阻的第一端和第二STM8L151K4U6芯片的第二十三引脚连接。
7.根据权利要求6所述一种恒流型调制中频理疗仪电路,其特征在于,所述中频电流调制电路采用H桥电路。
8.根据权利要求7所述一种恒流型调制中频理疗仪电路,其特征在于,工作原理如下:
第一MCU输出一路PWM波,调节频率和占空比来控制正激式开关电源的导通时间,调节输出电压,得到第一路PWM信号;
第二MCU输出双路相位差为180°PWM波形控制H桥电路的导通方向,得到第二路PWM信号,并输出电压包络信号给电流源电路产生电流包络信号;
两路PWM信号分别控制H桥电路两个桥臂的轮流导通,使负载上的电流在两个方向流动,实现电流的调制;
第一MCU和第二MCU通过数字隔离电路交换数据。
CN202111491582.4A 2021-12-08 2021-12-08 一种恒流型调制中频理疗仪电路及其工作原理 Active CN114221542B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111491582.4A CN114221542B (zh) 2021-12-08 2021-12-08 一种恒流型调制中频理疗仪电路及其工作原理

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111491582.4A CN114221542B (zh) 2021-12-08 2021-12-08 一种恒流型调制中频理疗仪电路及其工作原理

Publications (2)

Publication Number Publication Date
CN114221542A true CN114221542A (zh) 2022-03-22
CN114221542B CN114221542B (zh) 2024-01-30

Family

ID=80700201

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111491582.4A Active CN114221542B (zh) 2021-12-08 2021-12-08 一种恒流型调制中频理疗仪电路及其工作原理

Country Status (1)

Country Link
CN (1) CN114221542B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115378250A (zh) * 2022-08-30 2022-11-22 济南大学 一种参数可配置的多路双向恒流源电路及控制方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104623802A (zh) * 2015-02-02 2015-05-20 深圳大学 一种治疗波形产生装置及中频电刺激治疗仪
CN106178265A (zh) * 2016-07-09 2016-12-07 大连理工大学 一种交变磁场治疗仪实现无级调频的方法
CN208283775U (zh) * 2018-06-15 2018-12-25 河南汇博医疗股份有限公司 一种中频调制模块
CN110833656A (zh) * 2019-12-16 2020-02-25 大连理工大学 一种恒流输出的中频治疗仪系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104623802A (zh) * 2015-02-02 2015-05-20 深圳大学 一种治疗波形产生装置及中频电刺激治疗仪
CN106178265A (zh) * 2016-07-09 2016-12-07 大连理工大学 一种交变磁场治疗仪实现无级调频的方法
CN208283775U (zh) * 2018-06-15 2018-12-25 河南汇博医疗股份有限公司 一种中频调制模块
CN110833656A (zh) * 2019-12-16 2020-02-25 大连理工大学 一种恒流输出的中频治疗仪系统

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115378250A (zh) * 2022-08-30 2022-11-22 济南大学 一种参数可配置的多路双向恒流源电路及控制方法

Also Published As

Publication number Publication date
CN114221542B (zh) 2024-01-30

Similar Documents

Publication Publication Date Title
US7279868B2 (en) Power factor correction circuits
CN102497711B (zh) Led驱动电路及包含该驱动电路的开关电源
CN107086793A (zh) 一种用于同步整流功率变换器的动态补偿控制电路
CN102081419B (zh) 一种太阳能光伏发电系统的自动调压电路及方法
CN109189140A (zh) 一种纹波电流产生电路
CN111245238A (zh) 三电平Boost电路控制方法及系统
CN114221542B (zh) 一种恒流型调制中频理疗仪电路及其工作原理
CN103117670A (zh) 一种基于buck-boost电路的新型dc/ac逆变器
CN206962707U (zh) 一种用于同步整流功率变换器的动态补偿控制电路
CN104868533B (zh) 高频x射线机的锂电池供电方法和电路
CN116961399A (zh) 基于输出反向的反激与降压单元的无桥降压型pfc变换器
CN208752488U (zh) 一种纹波电流产生电路
CN102802324A (zh) 一种双环路驱动系统
CN207218515U (zh) 一种供电电路
CN206410183U (zh) 一种用于提高变频微波炉功率因数的电路
CN109038725A (zh) 一种控制脉冲自适应调节的高压充电电路
CN201122906Y (zh) 同步整流控制电路
CN107124105A (zh) 提高隔离型三电平pfc变换器pf的控制系统及方法
CN107634672A (zh) 一种新型四电平变换器及其控制方法
CN110061625B (zh) 具有双极性输出的四端口变换器及其控制方法
CN102857118A (zh) 一种调压稳压装置
CN203313482U (zh) 一种led驱动电路
CN102832834B (zh) 一种高效率的线性可调变压器
Hirachi et al. A novel control strategy on single-phase PWM current source inverter incorporating pulse area modulation
CN206433226U (zh) 一种led驱动电源的内部降压电路

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant