CN114220873B - 基于石墨烯/砷化镓肖特基结的近红外光电探测器 - Google Patents

基于石墨烯/砷化镓肖特基结的近红外光电探测器 Download PDF

Info

Publication number
CN114220873B
CN114220873B CN202111426366.1A CN202111426366A CN114220873B CN 114220873 B CN114220873 B CN 114220873B CN 202111426366 A CN202111426366 A CN 202111426366A CN 114220873 B CN114220873 B CN 114220873B
Authority
CN
China
Prior art keywords
graphene
layer
gallium arsenide
insulating layer
photoelectric detector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111426366.1A
Other languages
English (en)
Other versions
CN114220873A (zh
Inventor
陈俊
赵阳阳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzhou University
Original Assignee
Suzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzhou University filed Critical Suzhou University
Priority to CN202111426366.1A priority Critical patent/CN114220873B/zh
Publication of CN114220873A publication Critical patent/CN114220873A/zh
Application granted granted Critical
Publication of CN114220873B publication Critical patent/CN114220873B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/108Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the Schottky type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0232Optical elements or arrangements associated with the device
    • H01L31/02327Optical elements or arrangements associated with the device the optical elements being integrated or being directly associated to the device, e.g. back reflectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/186Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
    • H01L31/1868Passivation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Nanotechnology (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Light Receiving Elements (AREA)

Abstract

本发明涉及一种基于石墨烯/砷化镓肖特基结的近红外光电探测器,包括一n型砷化镓基底,所述n型砷化镓基底的背面沉积有背电极,正面沉积有绝缘层,所述绝缘层上通过蚀刻形成有窗口区,所述窗口区上蒸镀有氧化铝钝化层;所述绝缘层上设有正电极,所述氧化铝钝化层上具有石墨烯层,且所述石墨烯层的一部分与所述正电极接触;所述石墨烯层上涂布有银纳米颗粒。本发明的基于石墨烯/砷化镓肖特基结的近红外光电探测器,能够在降低器件暗电流的同时增大光电流,从而使探测器的响应度、探测率得到提高。

Description

基于石墨烯/砷化镓肖特基结的近红外光电探测器
技术领域
本发明涉及近红外光电探测技术领域,尤其涉及一种基于石墨烯/砷化镓肖特基结近红外光电探测器。
背景技术
由于石墨烯具有独特的零带隙结构,当它与半导体接触后可以形成肖特基结而应用在太阳能电池、光电探测器等领域。砷化镓作为直接带隙半导体,具有较高的光吸收系数和载流子迁移率,与石墨烯形成的肖特基结光电探测器具有探测范围广、响应度高、探测率大等特点。目前,石墨烯/砷化镓肖特基结在光电探测和太阳能领域具有广阔的应用前景。
目前已有很多关于提高石墨烯/砷化镓肖特基结近红外光电探测器性能的文献报道,如在石墨烯/砷化镓表面旋涂转换粒子、硅量子点和金纳米颗粒、银纳米颗粒;掺入氧化铝钝化层。尽管这些报道都在一定程度上提高了器件的光电性能,但通过界面钝化的方法虽然在一定程度上降低了器件的暗电流,但不能很大程度的提高探测器的光电流。利用量子点和纳米颗粒可以提高探测器对近红外光的吸收从而增大器件的光电流,但是对降低器件的暗电流几乎没有作用。
发明内容
为此,本发明所要解决的技术问题在于提供一种基于石墨烯/砷化镓肖特基结近红外光电探测器,该近红外光电探测器能够在降低器件暗电流的同时增大光电流,从而使探测器的响应度、探测率得到提高。
为实现上述目的,本发明采用了以下的技术方案:
一种基于石墨烯/砷化镓肖特基结的近红外光电探测器,包括一n型砷化镓基底,所述n型砷化镓基底的背面沉积有背电极,正面沉积有绝缘层,所述绝缘层上通过蚀刻形成有窗口区,所述窗口区上蒸镀有氧化铝钝化层;所述绝缘层上设有正电极,所述氧化铝钝化层上具有石墨烯层,且所述石墨烯层的一部分与所述正电极接触;所述石墨烯层上涂布有银纳米颗粒。
进一步地,所述背电极为钛/铂/金电极。优选地,所述钛/铂/金电极中各层的厚度分别为20nm/30nm/200nm。
进一步地,所述绝缘层为氮化硅绝缘层,所述绝缘层的厚度为200-300nm。
进一步地,所述氧化铝钝化层的厚度为2-3nm。
进一步地,所述石墨烯层为双层石墨烯。
进一步地,所述银纳米颗粒的直径为30-100nm。
进一步地,所述正电极为银电极。
本发明还提供了所述的基于石墨烯/砷化镓肖特基结近红外光电探测器的制备方法,包括如下步骤:
以n型砷化镓晶片作为基底,在所述基底的背面依次溅射Ti层、Pt层和Au层,得到背电极;
在所述基底的正面沉积氮化硅绝缘层;接着蚀刻去除部分绝缘层,形成窗口区;
在所述的窗口区表面沉积氧化铝钝化层;
将石墨烯转移至所述窗口区的氧化铝钝化层上,并使部分石墨烯覆盖于绝缘层上;接着,在位于窗口区的石墨烯上涂布银纳米颗粒;
在绝缘层上覆盖有石墨烯的区域表面设置正电极。
进一步地,所述砷化镓晶片在沉积背电极和氧化铝钝化层之前,先依次经过丙酮、异丙醇、盐酸溶液清洗,以去除表面的金属离子和氧化物。
进一步地,所述正电极是通过在绝缘层上覆盖有石墨烯的区域表面涂布银浆得到的。
本发明的上述技术方案相比现有技术具有以下优点:
本发明的基于石墨烯/砷化镓近红外光电探测器的器件结构,将氧化铝的钝化作用和银纳米颗粒的等离子增强效应结合起来提高器件的性能,在降低器件暗电流的同时增大了光电流,使探测器的响应度、探测率得到了显著的提高。经试验验证,本发明的近红外光电探测器,响应度是传统的石墨烯/砷化镓近红外光电探测器的10倍,探测率比传统的高1个数量级,使石墨烯/砷化镓近红外光电探测器的探测性能极大增强。
附图说明
图1是本发明实施例提供的石墨烯/砷化镓近红外光电探测器的结构示意图;
图2是本发明实施例提供的石墨烯/砷化镓近红外光电探测器的I-V图;
图3是对比例1的器件I-V图;
图4是对比例2的器件I-V图;
图5是实施例的近红外光电探测器的响应度图;
图6是实施例的近红外光电探测器的探测率图;
说明书附图标记说明:1、Ti/Pt/Au背电极;2、n型砷化镓基底;3、氧化铝钝化层;4、氮化硅绝缘层;5、双层石墨烯层;6、银纳米颗粒;7、银电极。
具体实施方式
下面结合附图和具体实施例对本发明作进一步说明,以使本领域的技术人员可以更好地理解本发明并能予以实施,但所举实施例不作为对本发明的限定。
实施例1
请参见图1,本实施例提供了一种石墨烯/砷化镓肖特基结近红外光电探测器,包括一n型砷化镓基底(GaAs)2,所述n型砷化镓基底的背面沉积有Ti/Pt/Au背电极1,正面沉积有氮化硅绝缘层4。所述氮化硅绝缘层4的中部通过刻蚀形成一窗口区,所述窗口区上蒸镀有氧化铝钝化层3。
氮化硅绝缘层4上设有银电极7,位于窗口区的氧化铝钝化层3上具有双层石墨烯层5,且该双层石墨烯层5的一部分与银电极7相接触。在所述双层石墨烯层5上涂布有银纳米颗粒6。
本实施例的石墨烯/砷化镓肖特基结近红外光电探测器通过以下的制备方法制备得到:
(1)首先用丙酮、异丙醇、10%wt盐酸溶液依次清洗n型砷化镓晶片,以去除n型砷化镓晶片表面的金属离子和氧化物。
(2)利用磁控溅射的方法在上述n型砷化镓晶片的背面分别溅射厚度为20nm/30nm/200nm的钛/铂/金,作为背电极。
(3)利用等离子增强化学气相沉积技术在n型砷化镓晶片的表面沉积一层厚度为200nm的氮化硅绝缘层。
(4)通过光刻的方法定义一个窗口区,利用反应离子刻蚀的方法去除窗口区的氮化硅绝缘层。
(5)通过等离子体原子层沉积技术,在窗口区沉积一层厚度为2nm的氧化铝钝化层。
(6)在双层石墨烯上旋涂PMMA,利用湿法转移的方法将双层石墨烯转移到氧化铝钝化层的表面,干燥后用有机溶剂去除PMMA。
(7)在双层石墨烯的表面旋涂一层直径为100nm的银纳米颗粒。
(8)在有双层石墨烯的氮化硅绝缘层表面涂抹银浆,作为探测器的正电极,得到石墨烯/砷化镓肖特基结近红外光电探测器。
对比例1
对比例1与实施例1的区别在于:对比例1中,未在n型砷化镓基底与氮化硅绝缘层之间插入氧化铝钝化层,且未在双层石墨烯层表面旋涂银纳米颗粒。
对比例2
对比例2与实施例1的区别在于:对比例2中,未在n型砷化镓基底与氮化硅绝缘层之间插入氧化铝钝化层。
测试例1
图2-图4分别为实施例1和对比例1、2制备的石墨烯/砷化镓近红外光电探测器在没有入射光和不同的入射光功率下的电流-电压特性。
从图中可以看出,该探测器在808nm的近红外光下具有明显的光响应,且实施例的器件具有更低的暗电流和更大的光电流。
测试例2
请参见附图5-6,按照实施例1的方式插入钝化层和银纳米颗粒的石墨烯/砷化镓近红外光电探测器,与没有插入氧化铝和加银纳米颗粒的器件相比,探测器的响应度由76mA/W提高到120mA/W,探测率由1.42×1011cm Hz1/2W-1提高到3.43×1011cm Hz1/2W-1,光电探测器的性能得到明显提高。
显然,上述实施例仅仅是为清楚地说明所作的举例,并非对实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式变化或变动。这里无需也无法对所有的实施方式予以穷举。而由此所引伸出的显而易见的变化或变动仍处于本发明创造的保护范围之中。

Claims (4)

1.一种基于石墨烯/砷化镓肖特基结的近红外光电探测器,其特征在于,包括一n型砷化镓基底,所述n型砷化镓基底的背面沉积有背电极,正面沉积有绝缘层,所述绝缘层上通过蚀刻形成有窗口区,所述窗口区上蒸镀有氧化铝钝化层;所述绝缘层上设有正电极,所述氧化铝钝化层上具有石墨烯层,且所述石墨烯层的一部分与所述正电极接触;所述石墨烯层上涂布有银纳米颗粒;所述石墨烯层为双层石墨烯,所述银纳米颗粒的直径为30-100nm;
其中,所述背电极为钛/铂/金电极,所述绝缘层为氮化硅绝缘层,所述绝缘层的厚度为200-300 nm,所述氧化铝钝化层的厚度为2-3 nm,所述正电极为银电极。
2.一种如权利要求1所述的基于石墨烯/砷化镓肖特基结近红外光电探测器的制备方法,其特征在于,包括如下步骤:
以n型砷化镓晶片作为基底,在所述基底的背面依次溅射Ti层、Pt层和Au层,得到背电极;
在所述基底的正面沉积氮化硅绝缘层;接着蚀刻去除部分绝缘层,形成窗口区;
在所述的窗口区表面沉积氧化铝钝化层;
将石墨烯转移至所述窗口区的氧化铝钝化层上,并使部分石墨烯覆盖于绝缘层上;接着,在位于窗口区的石墨烯上涂布银纳米颗粒;
在绝缘层上覆盖有石墨烯的区域表面设置正电极。
3.根据权利要求2所述的基于石墨烯/砷化镓肖特基结近红外光电探测器的制备方法,其特征在于,所述砷化镓晶片在沉积背电极和氮化硅绝缘层之前,先依次经过丙酮、异丙醇、盐酸溶液清洗,以去除表面的金属离子和氧化物。
4.根据权利要求2所述的基于石墨烯/砷化镓肖特基结近红外光电探测器的制备方法,其特征在于,所述正电极是通过在绝缘层上覆盖有石墨烯的区域表面涂布银浆得到的。
CN202111426366.1A 2021-11-27 2021-11-27 基于石墨烯/砷化镓肖特基结的近红外光电探测器 Active CN114220873B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111426366.1A CN114220873B (zh) 2021-11-27 2021-11-27 基于石墨烯/砷化镓肖特基结的近红外光电探测器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111426366.1A CN114220873B (zh) 2021-11-27 2021-11-27 基于石墨烯/砷化镓肖特基结的近红外光电探测器

Publications (2)

Publication Number Publication Date
CN114220873A CN114220873A (zh) 2022-03-22
CN114220873B true CN114220873B (zh) 2023-03-24

Family

ID=80698630

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111426366.1A Active CN114220873B (zh) 2021-11-27 2021-11-27 基于石墨烯/砷化镓肖特基结的近红外光电探测器

Country Status (1)

Country Link
CN (1) CN114220873B (zh)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014149004A1 (en) * 2013-03-22 2014-09-25 Nanyang Technological University Method of manufacturing a monolayer graphene photodetector and monolayer graphene photodetector
CN103280484B (zh) * 2013-05-28 2015-08-05 合肥工业大学 p-型石墨烯薄膜/n-型Ge肖特基结近红外光电探测器及其制备方法
CN103956402B (zh) * 2014-05-14 2016-03-30 合肥工业大学 一种自驱动高速肖特基结近红外光电探测器及其制备方法
CN104638049B (zh) * 2015-02-11 2016-10-19 合肥工业大学 一种p型石墨烯/n型锗纳米锥阵列肖特基结红外光电探测器及其制备方法
CN106346016B (zh) * 2016-08-30 2018-04-06 电子科技大学 银/石墨烯复合薄膜的制备方法及在紫外探测器中的应用
US11187653B2 (en) * 2018-06-26 2021-11-30 Hangzhou Sanhua Research Institute Co., Ltd. Infrared sensor and infrared gas detector
CN109473506A (zh) * 2018-10-24 2019-03-15 中国科学院上海微系统与信息技术研究所 高敏感度中红外光电探测器及其制备方法

Also Published As

Publication number Publication date
CN114220873A (zh) 2022-03-22

Similar Documents

Publication Publication Date Title
Yu et al. Heterojunction solar cells with asymmetrically carrier-selective contact structure of molybdenum-oxide/silicon/magnesium-oxide
CN112204764A (zh) MXene改进型混合光电转换器
US20180190919A1 (en) Conductive polymer/si interfaces at the backside of solar cells
AU2007209710A1 (en) Solar cell
CN113097336B (zh) 一种非对称电极msm结构氧化镓紫外探测器
CN106784117A (zh) 一种短波/中波/长波三波段红外探测器的制备方法
CN105720197B (zh) 一种自驱动宽光谱响应硅基杂化异质结光电传感器及其制备方法
CN104157720B (zh) 一种混合结构的石墨烯硅基雪崩光电探测器及制备方法
Li et al. Lithography-free and dopant-free back-contact silicon heterojunction solar cells with solution-processed TiO2 as the efficient electron selective layer
CN109950332A (zh) 一种perc柔性石墨烯/硅太阳能电池的制备方法
CN104300027A (zh) 基于石墨烯/二氧化硅/硅的雪崩光电探测器及制备方法
CN109980040A (zh) 一种氧化镓mis结构紫外探测器
Fu et al. Interfacial engineering to boost photoresponse performance and stability of V2O5/n-Si heterojunction photodetectors
CN104638036A (zh) 高光响应近红外光电探测器
Wang et al. p-type c-Si/SnO2/Mg heterojunction solar cells with an induced inversion layer
CN109360892B (zh) 一种宽光谱探测器件及其制备方法
CN106409988A (zh) 一种石墨烯/砷化镓太阳电池的制备方法
CN114220873B (zh) 基于石墨烯/砷化镓肖特基结的近红外光电探测器
CN108321221A (zh) 具有微腔结构的石墨烯太阳能电池及其制备方法
KR102033273B1 (ko) 광 흡수층 및 광 흡수층을 포함하는 광기전 디바이스
CN113690372B (zh) 一种钙钛矿太阳能电池及其制备方法
CN109698250A (zh) 栅极调控AlGaN基金属-半导体-金属紫外探测器及制备方法
CN111739963B (zh) 一种硅基宽光谱光电探测器的制备方法
CN111081886B (zh) 基于氧化镓钙钛矿多层堆叠结构的pin二极管及其制备方法
CN114512552A (zh) 一种基于n型硅基底的双面TOPCon光伏电池

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant