CN114214347B - Plasmid system for tracing liver precursor cells and application - Google Patents

Plasmid system for tracing liver precursor cells and application Download PDF

Info

Publication number
CN114214347B
CN114214347B CN202111304113.7A CN202111304113A CN114214347B CN 114214347 B CN114214347 B CN 114214347B CN 202111304113 A CN202111304113 A CN 202111304113A CN 114214347 B CN114214347 B CN 114214347B
Authority
CN
China
Prior art keywords
plasmid
epcam
liver
cre
plasmid system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111304113.7A
Other languages
Chinese (zh)
Other versions
CN114214347A (en
Inventor
王红阳
于乐兴
晏梓钧
刘傅言
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Third Affiliated Hospital Of Chinese People's Liberation Army Naval Medical University
Original Assignee
Third Affiliated Hospital Of Chinese People's Liberation Army Naval Medical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Third Affiliated Hospital Of Chinese People's Liberation Army Naval Medical University filed Critical Third Affiliated Hospital Of Chinese People's Liberation Army Naval Medical University
Priority to CN202111304113.7A priority Critical patent/CN114214347B/en
Publication of CN114214347A publication Critical patent/CN114214347A/en
Application granted granted Critical
Publication of CN114214347B publication Critical patent/CN114214347B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/164Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/177Receptors; Cell surface antigens; Cell surface determinants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • A61K48/005Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy characterised by an aspect of the 'active' part of the composition delivered, i.e. the nucleic acid delivered
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • A61K48/0075Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy characterised by an aspect of the delivery route, e.g. oral, subcutaneous
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/001Preparation for luminescence or biological staining
    • A61K49/0013Luminescence
    • A61K49/0017Fluorescence in vivo
    • A61K49/0019Fluorescence in vivo characterised by the fluorescent group, e.g. oligomeric, polymeric or dendritic molecules
    • A61K49/0045Fluorescence in vivo characterised by the fluorescent group, e.g. oligomeric, polymeric or dendritic molecules the fluorescent agent being a peptide or protein used for imaging or diagnosis in vivo
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/001Preparation for luminescence or biological staining
    • A61K49/0063Preparation for luminescence or biological staining characterised by a special physical or galenical form, e.g. emulsions, microspheres
    • A61K49/0069Preparation for luminescence or biological staining characterised by a special physical or galenical form, e.g. emulsions, microspheres the agent being in a particular physical galenical form
    • A61K49/0097Cells, viruses, ghosts, red blood cells, viral vectors, used for imaging or diagnosis in vivo
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/16Drugs for disorders of the alimentary tract or the digestive system for liver or gallbladder disorders, e.g. hepatoprotective agents, cholagogues, litholytics
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/47Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/705Receptors; Cell surface antigens; Cell surface determinants
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • C12N9/22Ribonucleases RNAses, DNAses
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Epidemiology (AREA)
  • Biomedical Technology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Biotechnology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Wood Science & Technology (AREA)
  • Biochemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Immunology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biophysics (AREA)
  • Cell Biology (AREA)
  • Toxicology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Pathology (AREA)
  • Microbiology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Hematology (AREA)
  • Virology (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

The application provides a plasmid system Epcam-cre-DTR for tracing liver precursor cells, wherein the base sequence of the plasmid system is shown as SEQ ID NO.1, and the DNA sequences of an Epcam promoter sequence, cre recombinase and diphtheria toxin receptor are inserted. After the Epcam-cre-DTR plasmid system and the sleep Beauy transposon system are injected into the tail vein, liver precursor cells expressing Epcam are started to specifically generate cre recombinase, bind with loxP sites, express tdTomato and diphtheria toxin receptors, and carry red fluorescent markers. The expression of liver precursor cells containing the genome integrated into the host was specifically cleared by intraperitoneal injection of diphtheria toxin, and the red fluorescent label disappeared.

Description

Plasmid system for tracing liver precursor cells and application
Technical Field
The application belongs to the technical field of medical biology, and particularly relates to a plasmid system for tracing liver precursor cells, a construction method and application of the plasmid system in tracing normal liver homeostasis and damaged liver regeneration to differentiation and proliferation of the liver precursor cells.
Background
The liver is the organ with the strongest regeneration capacity of human body. The steady state balance of normal liver and the source of liver cells for damaged liver regeneration are currently a matter of debate in the academy. Recent studies have shown that self-regeneration of hepatocytes is found in acute and subacute liver injury (Schaub JR, malato Y, gormond C, et al (2014) Evidence against a stem cell origin of new hepatocytes in a common mouse model of chronic liver injury. Cell Rep8 (4): 933-9.); in chronic liver injury, a state in which hepatocytes pass through hnf4α+sox9+ double positive was found, and self-renewal ability was shown in vitro, however Sox9 was not only biliary, but also a surface marker of liver precursor cells (Tarlow BD, pelz C, naugler WE, et al (2014) Bipotential adult liver progenitors are derived from chronically injured mature hepatosteps Cell 15 (5): 605-18.); in the case of p21 overexpression and Itgb1 knockdown, transdifferentiation of biliary epithelial cells into hepatocytes can be achieved in a short period of time (RavenA, lu WY, man TY, et al (2017) Cholangiocytes act as facultative liver stem cells during impaired hepatocyte regeneration.nature 547 (7663): 350-354.); in chronic liver injury of long duration, biliary epithelial cells transform to hepatocytes through Hnf4α+Krt19+ states (DengX, zhang X, li W, et al (2018) Chronic Liver Injury Induces Conversion of Biliary Epithelial Cells into hepatoducts. Cell Stem Cell23 (1): 114-122.e3.).
The cross-section of the hepatic lobule from portal vein region (PV) to central vein region (CV) is defined as three regions of heterogeneity that express different metabolic enzymes although of histological identical cell origin. Venous blood from the gut mixes with oxygenated arterial blood from the ductus zone (zone 1), passes through the central lobe (zone 2 ) hepatic blood sinus, enters the central venous zone (zone 3 ) and returns to the heart. In 2015, wang et al found that there were sustainable Self-renewing axin2+ diploid cells in region 3 by lineage tracing techniques that expressed Tbx3 liver precursor cell markers that subsequently disappeared in mature hepatocytes (Wang B, zhao L, fish M, et al (2015) Self-renewing diploid Axin2 (+) cells fuel homeostatic renewal ofthe lever. Nature 524 (7564): 180-5.); in 2019 Sun et al, refuted the above observations, cleared axin2+ cells from central venous regions temporarily destroyed 3 region, found that Axin2 was upregulated during liver regeneration from original liver parenchymal cells, indicating the simultaneous presence of local repair and repair of the whole liver (Sun T, pikiole M, orsini V, et al (2019) axin2+ Pericentral Hepatocytes Have Limited Contributions to Liver Homeostasis and regeneration.cell Stem Cell 26 (1): 97-107.e6.); in 2020, chen et al, using rainbow reporter mice randomly lineage tagged hepatocytes, found that hepatocyte homeostasis was dependent on moderate proliferation of hepatocytes in each region, and that proliferation of hepatocytes was carried by hepatocytes in each region after liver injury (Chen F, jimez RJ, sharma K, et al (2020) Broad Distribution of Hepatocyte Proliferation in Liver Homeostasis and regeneration.cell Stem Cell 26 (1): 27-33.e4.); 2021, wei et al, by 11 creER mice knockin model, labeled hepatocytes distributed in three regions, and found that region 2hepatocytes were the primary cell source for maintenance of hepatic homeostasis; proliferation of region 2 was found to be driven by insulin-like growth factor binding protein 2-rapamycin receptor-cyclin D1 (IGFBP 2-mTOR-CCND 1) by inhibition and activation of signaling pathways that regulate proliferation of region 2 (Wei Y, wanyg, jiaY, et al (2021) Liver homeostasis is maintained by midlobular zone2 hepatocytotes.science 371 (6532): eabb 1625.).
The epithelial cell adhesion molecule (Epithelial cell adhesion molecule, epcam) is Ca independent in epithelial cells 2+ Transmembrane glycoproteins that regulate intercellular adhesion. In 2010, terris B et al revealed that epcam+afp+liver injury subtype has characteristics of liver precursor cells (Terris B, cavard C, perret C (2010) Epcam, a new marker for cancer stem cells in hepatocellular carpinoma.j Hepatol 52 (2): 280-1.). Gene chip analysis showed that the Epcam+ subpopulation was present at high levels of stem cell related markers (Nio K, yamashita T, okada H, et al (2015) developing EpCAM (+) liver cancer stem cells by targeting chromatin remodeling enzyme CHD in human hepatocellular carpatol 63 (5): 1164-72) and that the Epcam+ subpopulation was found to have higher tumorigenicity in vivo than the EpCAM-subpopulation (Yamashita T, ji J, budhu A, et al (2009) EpCAM-positive hepatocellular carcinoma cells are tumor-initiating cells with stem/progenitor cell features. Gateway 136 (3): 1012-24). These evidence suggest that Epcam may be of great significance in diagnosing and treating liver cancer and liver injury regeneration.
And the related research of tracing liver precursor cells is carried out, so that a reliable regenerative cell source is provided for treatment modes such as liver transplantation and the like. There are no reports about the construction of a targeting liver precursor cell system, and no researches about the targeting tracer epcam+ liver precursor cells.
Disclosure of Invention
The application is carried out by relying on the research, provides a plasmid system Epcam-cre-DTR for tracing liver precursor cells, and also provides a construction method and application of the plasmid system.
The design of the application can be fused to Rosa26 loxP-stop-loxP–tdTomato Plasmid system Epcam-cre-DTR of mouse host genome. After tail vein injection of the Epcam-cre-DTR plasmid system and the sleep Beauty transposon system, liver precursor cells expressing Epcam are started to specifically generate cre recombinase, bind with loxP sites, express tdTomato and diphtheria toxin receptor (Diphtheria Toxin Receptor, DTR), and carry red fluorescent markers. The expression of liver precursor cells containing the genome integrated into the host was specifically cleared by intraperitoneal injection of Diphtheria Toxin (DT), and the red fluorescent marker disappeared.
In a first aspect of the application, there is provided a plasmid system Epcam-cre-DTR for tracing liver precursor cells, the base sequence of the plasmid system is shown in SEQ ID NO.1, the structure is shown in figure 1, and polynucleotides encoding Epcam promoter, cre recombinase and diphtheria toxin receptor are inserted and expressed.
Wherein, the base sequence of the Epcam promoter is shown as SEQ ID NO.2, the base sequence of cre recombinase is shown as SEQ ID NO.3, and the base sequence of the diphtheria toxin receptor is shown as SEQ ID NO. 4.
After the Epcam-cre-DTR plasmid system and the sleep befall transposon system co-transfect cells, the Epcam promoter promotes epcam+liver precursor cells to start to express cre recombinase, binds to loxP sites, expresses tdTomato and diphtheria toxin receptor (Diphtheria Toxin Receptor, DTR), and enables epcam+liver precursor cells to carry red fluorescent markers.
In a second aspect of the present application, there is provided a method for preparing a plasmid system Epcam-cre-DTR for tracing liver precursor cells, comprising the steps of:
A. construction of plasmid pT-Epcam-cre-DTR by seamless cloning
Performing double enzyme digestion on an Epcam promoter, cre recombinase, a diphtheria toxin receptor PCR product and a carrier by using Clal and Pmll, wherein a high-salt buffer system is adopted for reaction, and the reaction is placed in a 37 ℃ water bath for 3 hours, so that the enzyme digestion is performed fully; then separating by 0.8% agarose electrophoresis, and recovering gel; the enzyme fragments and the carrier are mixed according to the mol ratio of 2:1 to carry out recombination reaction.
B. Preparation of engineering bacteria
Melting competent DH5 alpha escherichia coli on ice; adding the constructed plasmid into competent DH5 alpha escherichia coli, gently mixing, standing in an ice bath for 30 minutes, and rapidly cooling in the ice bath for 2 minutes by heat shock in a water bath at 42 ℃ for 60-90 seconds, wherein escherichia coli cannot be oscillated in the cooling process; adding 0.9ml of sterile LB culture medium without antibiotics, gently mixing, and culturing on a shaking table at 37 ℃ and 180-200 rpm for 1 hour; centrifuging at 600g for 3 min, collecting transformed host bacteria, discarding supernatant, and adding ampicillin-containing LB medium for resuspension; the transformed host bacteria are evenly coated on LB agar medium containing ampicillin, cultured for 12-16 hours at 37 ℃ to obtain monoclonal colony containing recombinant plasmid,
selecting clone colony, adding LB culture medium containing ampicillin, culturing on a shaking table at 37 ℃ and 180-200 rpm for 12 hours, extracting plasmid of host bacteria, and cutting a 2950bp strip and a 3900bp strip by using Clal and Pmll double enzyme, wherein the host bacteria is positive recombinant.
C. Extraction and purification of plasmid pT-Epcam-cre-DTR
Taking monoclonal host bacteria which are verified to be positive recombinants, adding LB culture medium containing ampicillin, and culturing on a shaking table at 37 ℃ and 180-200 rpm for 12-16 hours; the bacterial liquid 12000g was centrifuged for 2min, the supernatant was discarded, bacterial cells were collected, and plasmid extraction and purification were performed according to the kit instructions.
In a third aspect of the application there is provided the use of a plasmid system in the preparation of a liver cell tracer. Preferably, the liver cell tracer is a tracer for tracing liver precursor cells, specifically epcam+ liver precursor cells.
According to experimental verification, 6-week-old C57BL/6J-Rosa26 loxP-stop-loxP–tdTomato Mice were injected i.v. with Epcam-cre-DTR targeting plasmid and sleep Beauty transposon system. Administered as shown from week 2DDC feeding results in mouse liver injury caused by mouse biliary tract response and liver fibrosis. Hematoxylin eosin staining experiments and sirius red staining experiments show that the modeling of the liver fibrosis model of the mice is successful. The materials are obtained 4 weeks after the successful molding, and immunofluorescence experiments show that the Epcam-cre-DTR system successfully marks the Epcam+liver precursor cells. The red fluorescence disappears after DT treatment, and the Epcam+ liver precursor cells can be effectively tracked and cleared, so that a plasmid system for tracking the liver precursor cells is obtained.
In a fourth aspect of the application, there is provided the use of the plasmid system described above in the preparation of a medicament for the treatment of liver injury.
Preferably, the drug for treating liver injury is a drug for tracing liver precursor cells, and the active components of the drug comprise the plasmid system and a transposon system for driving the plasmid system to transpose, so that the drug is integrated into the genome of Epcam+liver precursor cells.
In a fifth aspect, the present application provides a pharmaceutical composition for tracing liver precursor cells, comprising an active ingredient and pharmaceutically acceptable excipients; the active component comprises the plasmid system and a transposon system for driving the plasmid system to generate transposition and integrate into a cell genome, wherein the transposon system is a sleep Beauy transposon system.
In a sixth aspect of the application, there is provided a pharmaceutical composition for the treatment of liver injury comprising a pharmaceutical composition for the tracking of liver precursor cells as described above, and diphtheria toxin for use in combination with the pharmaceutical composition.
In use, the pharmaceutical composition of the tracer liver precursor cells is introduced into the body first, and after a period of time, the diphtheria toxin is injected, and the diphtheria toxin specifically eliminates and expresses liver precursor cells containing the genome integrated into the host by binding to the diphtheria toxin receptor.
The beneficial effects of the application are as follows:
the experimental result proves that the Epcam-cre-DTR plasmid system can be effectively integrated into the genome of the hepatic precursor cells, and the Epcam+ hepatic precursor cells can be effectively tracked and cleared due to the fluorescent marking effect generated by the activation of tdTomato by cre recombinase and the cell clearing effect combined by DTR and DT, so that the plasmid system for tracking the hepatic precursor cells is obtained.
The application adopts the induction type expression vector, which can reduce the cost in large-scale cloning, thereby being beneficial to large-scale production. Since epcam+ liver precursor cells are a main cell subset of liver precursor cells, tracing epcam+ liver precursor cells has great significance for studying liver homeostasis balance and the role played by liver precursor cells in liver regeneration after liver injury.
Drawings
FIG. 1 is a schematic diagram of the construction of plasmid Epcam-cre-DTR by a seamless cloning method.
FIG. 2 shows the FIG. 2 of the restriction map of the plasmid Epcam-cre-DTR: lane1: plasmid, lane2: plasmidDigested with Clal-Pmll, lane3: DNA marker.
FIG. 3 is a verification experiment of plasmid Epcam-cre-DTR, A is Rosa26 loxP-stop-loxP–tdTomato Schematic of mice and tracer plasmid Epcam-cre-DTR tail intravenous injection, and schematic of experimental treatment process B.
FIG. 4 shows the results of hematoxylin eosin staining, sirius red staining and immunofluorescence experiments.
Detailed Description
The present application will be described in detail with reference to the drawings and examples thereof, which are provided on the premise of the technical solution of the present application, and the detailed embodiments and specific operation procedures are given, but the scope of the present application is not limited to the following examples.
The reagents and starting materials used in the present application are commercially available or may be prepared by literature procedures. The experimental procedure, which does not address the specific conditions in the examples below, is generally followed by conventional conditions such as Sambrook et al, molecular cloning: conditions described in the laboratory guidelines (NewYork: cold Spring Harbor Laboratory Press, 1989), or according to conventional conditions or manufacturer's recommendations.
Example 1 construction and purification of plasmid Epcam-cre-DTR
1. Construction of expression plasmid pT-Epcam-cre-DTR
The construction is carried out by adopting a seamless cloning method, and the specific construction steps are as follows:
after the sequencing is correct, the sequence is cut by Clal and Pmll double enzymes, and is connected with the carrier cut by Clal and Pmll double enzymes. Restriction enzymes for cleavage were purchased from New England Biolabs (NEB) and the reaction was carried out using the system recommended in the enzyme specifications.
The specific reaction process is as follows: and (3) carrying out double enzyme digestion on the PCR product and the carrier by using Clal and Pmll, wherein a high-salt (H) buffer system is adopted in the reaction, and the reaction is placed in a 37 ℃ water bath for 3 hours, so that the PCR product and the carrier are subjected to full enzyme digestion. Then, after separation by 0.8% agarose electrophoresis, gel recovery was performed using TIANGEN gel recovery kit (catalogue number: DP 209). The enzyme fragment and the carrier are mixed according to the molar ratio of 2:1, the recombination reaction was carried out using the Cloneexpress II kit (catalog number: C112) from Vazyme company, and the reaction was carried out according to the recommended system of the specification.
2. Preparation of engineering bacteria
The above-mentioned ligated product was transformed into competent DH 5. Alpha. E.coli strain (DH 5. Alpha. Competent cells, MD101-1, new Saimei Biotechnology Co., ltd.) to obtain engineering bacterium DH 5. Alpha (pT-Epcam-cre-DTR).
The method comprises the following specific steps: 0.1ml competent DH 5. Alpha. E.coli was thawed on ice. 10ng of the plasmid constructed above was added to competent DH 5. Alpha. E.coli, gently mixed, left in an ice bath for 30 minutes, heat shock in a 42℃water bath for 60 seconds (the longest heat shock time cannot exceed 90 seconds), and rapidly cooled in an ice bath for 2 minutes without shaking the E.coli during the cooling. 0.9ml of sterile (autoclaved) LB medium without antibiotics (containing 1% tryptone, 0.5% yeast extract and 1% sodium chloride, pH 7.0) was added, gently mixed and incubated on a shaker at 37℃and 180-200 rpm for 1 hour. The transformed host bacteria were collected by centrifugation at 600g for 3 minutes, the supernatant was discarded, and 0.3ml of ampicillin-containing LB medium was added for resuspension. The transformed host bacteria were spread on LB agar medium containing ampicillin uniformly and cultured overnight at 37℃for 12 to 16 hours. Thus, a monoclonal colony containing the recombinant plasmid was obtained. The colony is picked up, 5ml LB medium containing ampicillin is added, and the culture is carried out on a shaking table at 37 ℃ and 180-200 rpm for 12 hours. The plasmid of the host bacterium is extracted, and a 2950bp band and a 3900bp band can be cut by using Clal and Pmll double enzyme digestion (see figure 2), and the host bacterium is the positive recombinant.
Coli strain DH5 alpha containing plasmid pT-Epcam-cre-DTR is engineering bacterium DH5 alpha (pT-Epcam-cre-DTR).
3. Extraction and purification of plasmid pT-Epcam-cre-DTR
Engineering bacteria DH5 alpha (pT-Epcam-cre-DTR) can be used for mass production of plasmids pT-Epcam-cre-DTR. 2ml of monoclonal host bacteria which are verified to be positive recombinants are taken, 500ml of LB culture medium containing ampicillin is added, and the culture is carried out on a shaking table at 37 ℃ and 180-200 rpm for 12-16 hours. The bacterial liquid was centrifuged at 12000g for 2min, and the supernatant was discarded to collect the bacterial cells. Plasmid extraction and purification were carried out using Vazyme company FastPure EndoFree PlasmidMaxi Kit (catalogue number: DC 202), and the reaction was carried out according to the recommended system of the specification.
The base sequence of the constructed plasmid system Epcam-cre-DTR is shown as SEQ ID NO.1, the structure is shown as figure 1, and the polynucleotide for encoding the Epcam promoter, cre recombinase and diphtheria toxin receptor is inserted and expressed in the recombinant expression plasmid system. Wherein, the base sequence of the Epcam promoter is shown as SEQ ID NO.2, the base sequence of cre recombinase is shown as SEQ ID NO.3, the base sequence of the diphtheria toxin receptor is shown as SEQ ID NO.4, and the specific sequence is shown as follows.
The plasmid Epcam-cre-DTR was digested with the endonuclease Clal-Pmll, and subjected to agarose gel electrophoresis, the results of which are shown in FIG. 2.
Base sequence of plasmid System Epcam-cre-DTR (SEQ ID NO. 1)
CGCTCaCaATTCCACACAACATACGAGCCGGAAGCATAAAGTGTAAAGCCTGGGGTGCCTAATGAGTGAGCTAACTCACATTAATTGCGTTGCGCTCACTGCCCGCTTTCCAGTCGGGAAACCTGTCGTGCCAGCTGCATTAATGAATCGGCCAACGCGCGGGGAGAGGCGGTTTGCGTATTGGGCGCTCTTCCGCTTCCTCGCTCACTGACTCGCTGCGCTCGGTCGTTCGGCTGCGGCGAGCGGTATCAGCTCACTCAAAGGCGGTAATACGGTTATCCACAGAATCAGGGGATAACGCAGGAAAGAACATGTGAGCAAAAGGCCAGCAAAAGGCCAGGAACCGTAAAAAGGCCGCGTTGCTGGCGTTTTTCCATAGGCTCCGCCCCCCTGACGAGCATCACAAAAATCGACGCTCAAGTCAGAGGTGGCGAAACCCGACAGGACTATAAAGATACCAGGCGTTTCCCCCTGGAAGCTCCCTCGTGCGCTCTCCTGTTCCGACCCTGCCGCTTACCGGATACCTGTCCGCCTTTCTCCCTTCGGGAAGCGTGGCGCTTTCTCATAGCTCACGCTGTAGGTATCTCAGTTCGGTGTAGGTCGTTCGCTCCAAGCTGGGCTGTGTGCACGAACCCCCCGTTCAGCCCGACCGCTGCGCCTTATCCGGTAACTATCGTCTTGAGTCCAACCCGGTAAGACACGACTTATCGCCACTGGCAGCAGCCACTGGTAACAGGATTAGCAGAGCGAGGTATGTAGGCGGTGCTACAGAGTTCTTGAAGTGGTGGCCTAACTACGGCTACACTAGAAGAACAGTATTTGGTATCTGCGCTCTGCTGAAGCCAGTTACCTTCGGAAAAAGAGTTGGTAGCTCTTGATCCGGCAAACAAACCACCGCTGGTAGCGGTGGTTTTTTTGTTTGCAAGCAGCAGATTACGCGCAGAAAAAAAGGATCTCAAGAAGATCCTTTGATCTTTTCTACGGGGTCTGACGCTCAGTGGAACGAAAACTCACGTTAAGGGATTTTGGTCATGAGATTATCAAAAAGGATCTTCACCTAGATCCTTTTAAATTAAAAATGAAGTTTTAAATCAATCTAAAGTATATATGAGTAAACTTGGTCTGACAGTTACCAATGCTTAATCAGTGAGGCACCTATCTCAGCGATCTGTCTATTTCGTTCATCCATAGTTGCCTGACTCCCCGTCGTGTAGATAACTACGATACGGGAGGGCTTACCATCTGGCCCCAGTGCTGCAATGATACCGCGAGACCCACGCTCACCGGCTCCAGATTTATCAGCAATAAACCAGCCAGCCGGAAGGGCCGAGCGCAGAAGTGGTCCTGCAACTTTATCCGCCTCCATCCAGTCTATTAATTGTTGCCGGGAAGCTAGAGTAAGTAGTTCGCCAGTTAATAGTTTGCGCAACGTTGTTGCCATTGCTACAGGCATCGTGGTGTCACGCTCGTCGTTTGGTATGGCTTCATTCAGCTCCGGTTCCCAACGATCAAGGCGAGTTACATGATCCCCCATGTTGTGCAAAAAAGCGGTTAGCTCCTTCGGTCCTCCGATCGTTGTCAGAAGTAAGTTGGCCGCAGTGTTATCACTCATGGTTATGGCAGCACTGCATAATTCTCTTACTGTCATGCCATCCGTAAGATGCTTTTCTGTGACTGGTGAGTACTCAACCAAGTCATTCTGAGAATAGTGTATGCGGCGACCGAGTTGCTCTTGCCCGGCGTCAATACGGGATAATACCGCGCCACATAGCAGAACTTTAAAAGTGCTCATCATTGGAAAACGTTCTTCGGGGCGAAAACTCTCAAGGATCTTACCGCTGTTGAGATCCAGTTCGATGTAACCCACTCGTGCACCCAACTGATCTTCAGCATCTTTTACTTTCACCAGCGTTTCTGGGTGAGCAAAAACAGGAAGGCAAAATGCCGCAAAAAAGGGAATAAGGGCGACACGGAAATGTTGAATACTCATACTCTTCCTTTTTCAATATTATTGAAGCATTTATCAGGGTTATTGTCTCATGAGCGGATACATATTTGAATGTATTTAGAAAAATAAACAAATAGGGGTTCCGCGCACATTTCCCCGAAAAGTGCCACCTGACGTCTAAGAAACCATTATTATCATGACATTAACCTATAAAAATAGGCGTATCACGAGGCCCTTTCGTCTCGCGCGTTTCGGTGATGACGGTGAAAACCTCTGACACATGCAGCTCCCGGAGACGGTCACAGCTTGTCTGTAAGCGGATGCCGGGAGCAGACAAGCCCGTCAGGGCGCGTCAGCGGGTGTTGGCGGGTGTCGGGGCTGGCTTAACTATGCGGCATCAGAGCAGATTGTACTGAGAGTGCACCATATGCGGTGTGAAATACCGCACAGATGCGTAAGGAGAAAATACCGCATCAGGCGCCATTCGCCATTCAGGCTGCGCAACTGTTGGGAAGGGCGATCGGTGCGGGCCTCTTCGCTATTACGCCAGCTGGCGAAAGGGGGATGTGCTGCAAGGCGATTAAGTTGGGTAACGCCAGGGTTTTCCCAGTCACGACGTTGTAAAACGACGGCCAGTGAATTCGAGCTCGGTACCCTACAGTTGAAGTCGGAAGTTTACATACACTTAAGTTGGAGTCATTAAAACTCGTTTTTCAACTACTCCACAAATTTCTTGTTAACAAACAATAGTTTTGGCAAGTCAGTTAGGACATCTACTTTGTGCATGACACAAGTCATTTTTCCAACAATTGTTTACAGACAGATTATTTCACTTATAATTCACTGTATCACAATTCCAGTGGGTCAGAAGTTTACATACACTAAGTTGACTGTGCCTTTAAACAGCTTGGAAAATTCCAGAAAATGATGTCATGGCTTTAGAAGCTTCTGATAGACTAATTGACATCATTTGAGTCAATTGGAGGTGTACCTGTGGATGTATTTCAAGGAATTCTGTGGAATGTGTGTCAGTTAGGGTGTGGAAAGTCCCCAGGCTCCCCAGCAGGCAGAAGTATGCAAAGCATGCATATCGATACTAGTTCCGCTCCTCCTCACCCCATGCCATCTTCTCAGCTGGGAAATACTTTGATACACAAGGCATCGTGCAAGGCATTATGGGGCACATGCCCATATCCCAGACCCTGAGAGGAAAGGGGGAGGGCTGCATAAGACACTGGAGAGATGGCTCAGTGACTAAGCCCTGGCTGCTCTTAGAAGACCAGGGTTCAGTTTCTGACACTCACATGGCAGTAACAACTGCCTGCAGCTCCCGTTTCAGAGGATCAATGCTCTCTTTGGCCTGTATGGGAACTGCATGCATGTGATGCATAGACATACATGGGGGCAAAACACCCATACACATAAAATAAAAATAAAATATTTTTTAAAAAGATACCGTCTTTAAAAAAAGGCAAGCCATCACCCATTTGATCCTTTCCCATGCATCAGTGACTTAACAGAGCAGTGAACACAAAATTCTTCAAGGAAGGAGAAGCCATGGTGGTCATTGGTGGAGTCAGGGTCTCCAGAGAGCCCAAGTTGGACCCTAACTGCAGAGCTAGCCGAGGATGGTCTTCAACTTCTGATTTTCTGCTTTCACCTTCCCAGTGCTGGCATTGCGGGCCTCTGCCACCAAGCCCAGTTTAGGAGATGCTGGAGATCAAACCCAGGTTTTCAAGTGTGCTCAACAAACAGCCTTCTAACTGATCTACATCCCCAGAGGGCTGGAAATGTGTGCAACTTTTTCTGAGTTGTGAGTTGACAGAGATATTGGGGCAGGAGGGGAGTTAGAGGCTATTCTCCTTGAGATGCTATAAAGAATATTGTATCCAAAATTCTATCTGTGCTCTATGTAGAGATATCTAGTCTAATGCTTTCTGTAAACGCCCCCCCCCCCCGCCCAATTCTAGTGGGGAGTGTCATGCTATTTCATGAAGATGGAGGTCAGAGGATTAACTAGTGGGGGTGGGCTCTCTCCTTCTACCCTGTGGGTTCTAGGGACTGAATGCTGGACATCAGGAAGTAGGGGTCAGAGGATCCCTAACAGGCAGACATTTAGAGATAGGGCCACAAAAATAGGAGATGAAGATGGCAAACTTCCAGCTTCTCCCTCACCCTGCTGATCTGAGACAAAAGCCTGGAGGCTTAAATAGAAGGCCGGGCCTGCTTTTTCTCCCGCCAGTAGGGCCCACCTGCTGGAGGACCGGTCTGACAAGTTCATGACTGAATGAGGACTGTTTATCCCACCGGTATCGGCCTATCGGCTGCGCTGTCTTAGTTCAAACTGACCAACCCAAACTGGGGGCTGAACAGTGTGTCCGCCCCCCACTCCCACCCCTCCAAAGACCCATAAAACCCAGGTGTGGAGGAGAAGCAGCACTTCTTCCCTCTGATGGACTGATTCTGCACGTGAGACCTGCGGCGGCGGCGGCGGCGGCTGCTGCAGCTGCAGCTGCATGTTTCACTAGAGGTCTTTCCTCGATTTTTTTTTTTTTTTTTTTTGGTTTATTTTTCGAGACAAGAGTTTCTCTTGTGTGGGCCTGGCTGTATTCGAACTCACAGAGATCCTCCTGCCTCTGCTTTCGTCGTGCTAGGATTGAAGGTGTGTGCTACCCGCCCTGGTTCTCGAGCACCatgtccaatttactgaccgtacaccaaaatttgcctgcattaccggtcgatgcaacgagtgatgaggttcgcaagaacctgatggacatgttcagggatcgccaggcgttttctgagcatacctggaaaatgcttctgtccgtttgccggtcgtgggcggcatggtgcaagttgaataaccggaaatggtttcccgcagaacctgaagatgttcgcgattatcttctatatcttcaggcgcgcggtctggcagtaaaaactatccagcaacatttgggccagctaaacatgcttcatcgtcggtccgggctgccacgaccaagtgacagcaatgctgtttcactggttatgcggcggatccgaaaagaaaacgttgatgccggtgaacgtgcaaaacaggctctagcgttcgaacgcactgatttcgaccaggttcgttcactcatggaaaatagcgatcgctgccaggatatacgtaatctggcatttctggggattgcttataacaccctgttacgtatagccgaaattgccaggatcagggttaaagatatctcacgtactgacggtgggagaatgttaatccatattggcagaacgaaaacgctggttagcaccgcaggtgtagagaaggcacttagcctgggggtaactaaactggtcgagcgatggatttccgtctctggtgtagctgatgatccgaataactacctgttttgccgggtcagaaaaaatggtgttgccgcgccatctgccaccagccagctatcaactcgcgccctggaagggatttttgaagcaactcatcgattgatttacggcgctaaggatgactctggtcagagatacctggcctggtctggacacagtgcccgtgtcggagccgcgcgagatatggcccgcgctggagtttcaataccggagatcatgcaagctggtggctggaccaatgtaaatattgtcatgaactatatccgtaacctggatagtgaaacaggggcaatggtgcgcctgctggaagatggcgatGCTAGCGAGGGCAGAGGAAGTCTTCTAACATGCGGTGACGTGGAGGAGAATCCCGGCCCTACTAGTCTCGAGACCATGAAGCTGCTGCCGTCGGTGGTGCTGAAGCTCTTTCTGGCTGCAGTTCTCTCGGCACTGGTGACTGGCGAGAGCCTGGAGCGGCTTCGGAGAGGGCTAGCTGCTGGAACCAGCAACCCGGACCCTCCCACTGTATCCACGGACCAGCTGCTACCCCTAGGAGGCGGCCGGGACCGGAAAGTCCGTGACTTGCAAGAGGCAGATCTGGACCTTTTGAGAGTCACTTTATCCTCCAAGCCACAAGCACTGGCCACACCAAACAAGGAGGAGCACGGGAAAAGAAAGAAGAAAGGCAAGGGGCTAGGGAAGAAGAGGGACCCATGTCTTCGGAAATACAAGGACTTCTGCATCCATGGAGAATGCAAATATGTGAAGGAGCTCCGGGCTCCCTCCTGCATCTGCCACCCGGGTTACCATGGAGAGAGGTGTCATGGGCTGAGCCTCAAGGTTCTGCCCACATGGTCCACCCCGGTGCAGCCAACCATCCTGGCCGTGGTGGCTGTGGTGCTGTCATCTGTCTGTCTGCTGGTCATCGTGGGGCTTCTCATGTTTAGGTACCATAGGAGAGGAGGTTATGATGTGGAAAATGAAGAGAAAGTGAAGTTGGGCATGACTAATTCCCACTGAGCGGCCGCCGACTGTGCCTTCTAGTTGCCAGCCATCTGTTGTTTGCCCCTCCCCCGTGCCTTCCTTGACCCTGGAAGGTGCCACTCCCACTGTCCTTTCCTAATAAAATGAGGAAATTGCATCGCATTGTCTGAGTAGGTGTCATTCTATTCTGGGGGGTGGGGTGGGGCAGGACAGCAAGGGGGAGGATTGGGAAGACAATAGCAGGCATGCTGGGGATGCGGTGGGCTCTATGGGGATCCCCTTGAAATACATCCACAGGTACACCTCCAATTGACTCAAATGATGTCAATTAGTCTATCAGAAGCTTCTAAAGCCATGACATCATTTTCTGGAATTTTCCAAGCTGTTTAAAGGCACAGTCAACTTAGTGTATGTAAACTTCTGACCCACTGGAATTGTGATACAGTGAATTATAAGTGAAATAATCTGTCTGTAAACAATTGTTGGAAAAATGACTTGTGTCATGCACAAAGTAGATGTCCTAACTGACTTGCCAAAACTATTGTTTGTTAACAAGAAATTTGTGGAGTAGTTGAAAAACGAGTTTTAATGACTCCAACTTAAGTGTATGTAAACTTCCGACTTCAACTGTATAGGTCTAGAGTCGACCTGCAGGCATGCAAGCTTGGCGTAATCATGGTCATAGCTGTTTCCTGTGTGAAATTGTTATCCGCTCACAATTCCACACAACATACGAGCCGGAAGCATAAAGTGTAAAGCCTGGGGTGCCTAATGAGTGAGCTAACTCACATTAATTGCGTTGCGCTCACTGCCCGCTTTCCAGTCGGGAAACCTGTCGTGCCAGCTGCATTAATGAATCGGC
Base sequence of Epcam promoter (SEQ ID NO. 2)
TCCGCTCCTCCTCACCCCATGCCATCTTCTCAGCTGGGAAATACTTTGATACACAAGGCATCGTGCAAGGCATTATGGGGCACATGCCCATATCCCAGACCCTGAGAGGAAAGGGGGAGGGCTGCATAAGACACTGGAGAGATGGCTCAGTGACTAAGCCCTGGCTGCTCTTAGAAGACCAGGGTTCAGTTTCTGACACTCACATGGCAGTAACAACTGCCTGCAGCTCCCGTTTCAGAGGATCAATGCTCTCTTTGGCCTGTATGGGAACTGCATGCATGTGATGCATAGACATACATGGGGGCAAAACACCCATACACATAAAATAAAAATAAAATATTTTTTAAAAAGATACCGTCTTTAAAAAAAGGCAAGCCATCACCCATTTGATCCTTTCCCATGCATCAGTGACTTAACAGAGCAGTGAACACAAAATTCTTCAAGGAAGGAGAAGCCATGGTGGTCATTGGTGGAGTCAGGGTCTCCAGAGAGCCCAAGTTGGACCCTAACTGCAGAGCTAGCCGAGGATGGTCTTCAACTTCTGATTTTCTGCTTTCACCTTCCCAGTGCTGGCATTGCGGGCCTCTGCCACCAAGCCCAGTTTAGGAGATGCTGGAGATCAAACCCAGGTTTTCAAGTGTGCTCAACAAACAGCCTTCTAACTGATCTACATCCCCAGAGGGCTGGAAATGTGTGCAACTTTTTCTGAGTTGTGAGTTGACAGAGATATTGGGGCAGGAGGGGAGTTAGAGGCTATTCTCCTTGAGATGCTATAAAGAATATTGTATCCAAAATTCTATCTGTGCTCTATGTAGAGATATCTAGTCTAATGCTTTCTGTAAACGCCCCCCCCCCCCGCCCAATTCTAGTGGGGAGTGTCATGCTATTTCATGAAGATGGAGGTCAGAGGATTAACTAGTGGGGGTGGGCTCTCTCCTTCTACCCTGTGGGTTCTAGGGACTGAATGCTGGACATCAGGAAGTAGGGGTCAGAGGATCCCTAACAGGCAGACATTTAGAGATAGGGCCACAAAAATAGGAGATGAAGATGGCAAACTTCCAGCTTCTCCCTCACCCTGCTGATCTGAGACAAAAGCCTGGAGGCTTAAATAGAAGGCCGGGCCTGCTTTTTCTCCCGCCAGTAGGGCCCACCTGCTGGAGGACCGGTCTGACAAGTTCATGACTGAATGAGGACTGTTTATCCCACCGGTATCGGCCTATCGGCTGCGCTGTCTTAGTTCAAACTGACCAACCCAAACTGGGGGCTGAACAGTGTGTCCGCCCCCCACTCCCACCCCTCCAAAGACCCATAAAACCCAGGTGTGGAGGAGAAGCAGCACTTCTTCCCTCTGATGGACTGATTCTGCACGTGAGACCTGCGGCGGCGGCGGCGGCGGCTGCTGCAGCTGCAGCTGCATGTTTCACTAGAGGTCTTTCCTCGATTTTTTTTTTTTTTTTTTTTGGTTTATTTTTCGAGACAAGAGTTTCTCTTGTGTGGGCCTGGCTGTATTCGAACTCACAGAGATCCTCCTGCCTCTGCTTTCGTCGTGCTAGGATTGAAGGTGTGTGCTACCCGCCCTGGTT
Base sequence of cre recombinase (SEQ ID NO. 3)
Atgtccaatttactgaccgtacaccaaaatttgcctgcattaccggtcgatgcaacgagtgatgaggttcgcaagaacctgatggacatgttcagggatcgccaggcgttttctgagcatacctggaaaatgcttctgtccgtttgccggtcgtgggcggcatggtgcaagttgaataaccggaaatggtttcccgcagaacctgaagatgttcgcgattatcttctatatcttcaggcgcgcggtctggcagtaaaaactatccagcaacatttgggccagctaaacatgcttcatcgtcggtccgggctgccacgaccaagtgacagcaatgctgtttcactggttatgcggcggatccgaaaagaaaacgttgatgccggtgaacgtgcaaaacaggctctagcgttcgaacgcactgatttcgaccaggttcgttcactcatggaaaatagcgatcgctgccaggatatacgtaatctggcatttctggggattgcttataacaccctgttacgtatagccgaaattgccaggatcagggttaaagatatctcacgtactgacggtgggagaatgttaatccatattggcagaacgaaaacgctggttagcaccgcaggtgtagagaaggcacttagcctgggggtaactaaactggtcgagcgatggatttccgtctctggtgtagctgatgatccgaataactacctgttttgccgggtcagaaaaaatggtgttgccgcgccatctgccaccagccagctatcaactcgcgccctggaagggatttttgaagcaactcatcgattgatttacggcgctaaggatgactctggtcagagatacctggcctggtctggacacagtgcccgtgtcggagccgcgcgagatatggcccgcgctggagtttcaataccggagatcatgcaagctggtggctggaccaatgtaaatattgtcatgaactatatccgtaacctggatagtgaaacaggggcaatggtgcgcctgctggaagatggcgat
Base sequence of diphtheria toxin receptor (SEQ ID NO. 4)
ATGAAGCTGCTGCCGTCGGTGGTGCTGAAGCTCTTTCTGGCTGCAGTTCTCTCGGCACTGGTGACTGGCGAGAGCCTGGAGCGGCTTCGGAGAGGGCTAGCTGCTGGAACCAGCAACCCGGACCCTCCCACTGTATCCACGGACCAGCTGCTACCCCTAGGAGGCGGCCGGGACCGGAAAGTCCGTGACTTGCAAGAGGCAGATCTGGACCTTTTGAGAGTCACTTTATCCTCCAAGCCACAAGCACTGGCCACACCAAACAAGGAGGAGCACGGGAAAAGAAAGAAGAAAGGCAAGGGGCTAGGGAAGAAGAGGGACCCATGTCTTCGGAAATACAAGGACTTCTGCATCCATGGAGAATGCAAATATGTGAAGGAGCTCCGGGCTCCCTCCTGCATCTGCCACCCGGGTTACCATGGAGAGAGGTGTCATGGGCTGAGCCTCAAGGTTCTGCCCACATGGTCCACCCCGGTGCAGCCAACCATCCTGGCCGTGGTGGCTGTGGTGCTGTCATCTGTCTGTCTGCTGGTCATCGTGGGGCTTCTCATGTTTAGGTACCATAGGAGAGGAGGTTATGATGTGGAAAATGAAGAGAAAGTGAAGTTGGGCATGACTAATTCCCACTGA
Example 2 Trace verification
Taking a mouse liver fibrosis model fed by 3,5-diethoxycarbonyl-1, 4-dihydro-osteoblast (3, 5-diethoxycarbonyl-1,4-dihydrocollidine, DDC) as an example, the integration of the Epcam-cre-DTR plasmid system into the host genome was demonstrated to track the proliferation of Epcam+ liver precursor cells in the case of liver injury.
6-week-old C57BL/6J-Rosa26 loxP-stop-loxP–tdTomato Mice were injected i.v. with Epcam-cre-DTR targeting plasmid and sleep Beauty transposon system (fig. 3A). DDC feeding was administered from week 2 on in the manner shown in figure 3B, resulting in mouse liver injury due to the mouse biliary tract response and liver fibrosis.
The experimental results are shown in fig. 4, and according to hematoxylin eosin staining experiments and sirius red staining experiments, after DDC injection, liver parenchymal cells are different in size, irregular in arrangement and increased in atypical, so that the successful modeling of the liver fibrosis model of the mouse is indicated; the materials are obtained 4 weeks after the successful molding, and immunofluorescence experiments show that the Epcam-cre-DTR system successfully marks the Epcam+liver precursor cells.
The experimental result proves that the Epcam-cre-DTR plasmid system can be effectively integrated into the genome of the hepatic precursor cells, and the Epcam+ hepatic precursor cells can be effectively tracked and cleared due to the fluorescent marking effect generated by the activation of tdTomato by cre recombinase and the cell clearing effect combined by DTR and DT, so that the plasmid system for tracking the hepatic precursor cells is obtained.
The application adopts the induction type expression vector, which can reduce the cost in large-scale cloning, thereby being beneficial to large-scale production. Since epcam+ liver precursor cells are a main cell subset of liver precursor cells, tracing epcam+ liver precursor cells has great significance for studying liver homeostasis balance and the role played by liver precursor cells in liver regeneration after liver injury.
While the preferred embodiments of the present application have been described in detail, the present application is not limited to the embodiments, and various equivalent modifications and substitutions can be made by those skilled in the art without departing from the spirit of the present application, and these equivalent modifications and substitutions are intended to be included in the scope of the present application as defined in the appended claims.
Sequence listing
<110> third affiliated Hospital of the navy medical university of the free army of Chinese people
<120> plasmid system for tracing liver precursor cells and application thereof
<130> claims, description
<160> 4
<170> SIPOSequenceListing 1.0
<210> 1
<211> 7199
<212> DNA
<213> Artificial sequence (Artificial sequence)
<400> 1
cgctcacaat tccacacaac atacgagccg gaagcataaa gtgtaaagcc tggggtgcct 60
aatgagtgag ctaactcaca ttaattgcgt tgcgctcact gcccgctttc cagtcgggaa 120
acctgtcgtg ccagctgcat taatgaatcg gccaacgcgc ggggagaggc ggtttgcgta 180
ttgggcgctc ttccgcttcc tcgctcactg actcgctgcg ctcggtcgtt cggctgcggc 240
gagcggtatc agctcactca aaggcggtaa tacggttatc cacagaatca ggggataacg 300
caggaaagaa catgtgagca aaaggccagc aaaaggccag gaaccgtaaa aaggccgcgt 360
tgctggcgtt tttccatagg ctccgccccc ctgacgagca tcacaaaaat cgacgctcaa 420
gtcagaggtg gcgaaacccg acaggactat aaagatacca ggcgtttccc cctggaagct 480
ccctcgtgcg ctctcctgtt ccgaccctgc cgcttaccgg atacctgtcc gcctttctcc 540
cttcgggaag cgtggcgctt tctcatagct cacgctgtag gtatctcagt tcggtgtagg 600
tcgttcgctc caagctgggc tgtgtgcacg aaccccccgt tcagcccgac cgctgcgcct 660
tatccggtaa ctatcgtctt gagtccaacc cggtaagaca cgacttatcg ccactggcag 720
cagccactgg taacaggatt agcagagcga ggtatgtagg cggtgctaca gagttcttga 780
agtggtggcc taactacggc tacactagaa gaacagtatt tggtatctgc gctctgctga 840
agccagttac cttcggaaaa agagttggta gctcttgatc cggcaaacaa accaccgctg 900
gtagcggtgg tttttttgtt tgcaagcagc agattacgcg cagaaaaaaa ggatctcaag 960
aagatccttt gatcttttct acggggtctg acgctcagtg gaacgaaaac tcacgttaag 1020
ggattttggt catgagatta tcaaaaagga tcttcaccta gatcctttta aattaaaaat 1080
gaagttttaa atcaatctaa agtatatatg agtaaacttg gtctgacagt taccaatgct 1140
taatcagtga ggcacctatc tcagcgatct gtctatttcg ttcatccata gttgcctgac 1200
tccccgtcgt gtagataact acgatacggg agggcttacc atctggcccc agtgctgcaa 1260
tgataccgcg agacccacgc tcaccggctc cagatttatc agcaataaac cagccagccg 1320
gaagggccga gcgcagaagt ggtcctgcaa ctttatccgc ctccatccag tctattaatt 1380
gttgccggga agctagagta agtagttcgc cagttaatag tttgcgcaac gttgttgcca 1440
ttgctacagg catcgtggtg tcacgctcgt cgtttggtat ggcttcattc agctccggtt 1500
cccaacgatc aaggcgagtt acatgatccc ccatgttgtg caaaaaagcg gttagctcct 1560
tcggtcctcc gatcgttgtc agaagtaagt tggccgcagt gttatcactc atggttatgg 1620
cagcactgca taattctctt actgtcatgc catccgtaag atgcttttct gtgactggtg 1680
agtactcaac caagtcattc tgagaatagt gtatgcggcg accgagttgc tcttgcccgg 1740
cgtcaatacg ggataatacc gcgccacata gcagaacttt aaaagtgctc atcattggaa 1800
aacgttcttc ggggcgaaaa ctctcaagga tcttaccgct gttgagatcc agttcgatgt 1860
aacccactcg tgcacccaac tgatcttcag catcttttac tttcaccagc gtttctgggt 1920
gagcaaaaac aggaaggcaa aatgccgcaa aaaagggaat aagggcgaca cggaaatgtt 1980
gaatactcat actcttcctt tttcaatatt attgaagcat ttatcagggt tattgtctca 2040
tgagcggata catatttgaa tgtatttaga aaaataaaca aataggggtt ccgcgcacat 2100
ttccccgaaa agtgccacct gacgtctaag aaaccattat tatcatgaca ttaacctata 2160
aaaataggcg tatcacgagg ccctttcgtc tcgcgcgttt cggtgatgac ggtgaaaacc 2220
tctgacacat gcagctcccg gagacggtca cagcttgtct gtaagcggat gccgggagca 2280
gacaagcccg tcagggcgcg tcagcgggtg ttggcgggtg tcggggctgg cttaactatg 2340
cggcatcaga gcagattgta ctgagagtgc accatatgcg gtgtgaaata ccgcacagat 2400
gcgtaaggag aaaataccgc atcaggcgcc attcgccatt caggctgcgc aactgttggg 2460
aagggcgatc ggtgcgggcc tcttcgctat tacgccagct ggcgaaaggg ggatgtgctg 2520
caaggcgatt aagttgggta acgccagggt tttcccagtc acgacgttgt aaaacgacgg 2580
ccagtgaatt cgagctcggt accctacagt tgaagtcgga agtttacata cacttaagtt 2640
ggagtcatta aaactcgttt ttcaactact ccacaaattt cttgttaaca aacaatagtt 2700
ttggcaagtc agttaggaca tctactttgt gcatgacaca agtcattttt ccaacaattg 2760
tttacagaca gattatttca cttataattc actgtatcac aattccagtg ggtcagaagt 2820
ttacatacac taagttgact gtgcctttaa acagcttgga aaattccaga aaatgatgtc 2880
atggctttag aagcttctga tagactaatt gacatcattt gagtcaattg gaggtgtacc 2940
tgtggatgta tttcaaggaa ttctgtggaa tgtgtgtcag ttagggtgtg gaaagtcccc 3000
aggctcccca gcaggcagaa gtatgcaaag catgcatatc gatactagtt ccgctcctcc 3060
tcaccccatg ccatcttctc agctgggaaa tactttgata cacaaggcat cgtgcaaggc 3120
attatggggc acatgcccat atcccagacc ctgagaggaa agggggaggg ctgcataaga 3180
cactggagag atggctcagt gactaagccc tggctgctct tagaagacca gggttcagtt 3240
tctgacactc acatggcagt aacaactgcc tgcagctccc gtttcagagg atcaatgctc 3300
tctttggcct gtatgggaac tgcatgcatg tgatgcatag acatacatgg gggcaaaaca 3360
cccatacaca taaaataaaa ataaaatatt ttttaaaaag ataccgtctt taaaaaaagg 3420
caagccatca cccatttgat cctttcccat gcatcagtga cttaacagag cagtgaacac 3480
aaaattcttc aaggaaggag aagccatggt ggtcattggt ggagtcaggg tctccagaga 3540
gcccaagttg gaccctaact gcagagctag ccgaggatgg tcttcaactt ctgattttct 3600
gctttcacct tcccagtgct ggcattgcgg gcctctgcca ccaagcccag tttaggagat 3660
gctggagatc aaacccaggt tttcaagtgt gctcaacaaa cagccttcta actgatctac 3720
atccccagag ggctggaaat gtgtgcaact ttttctgagt tgtgagttga cagagatatt 3780
ggggcaggag gggagttaga ggctattctc cttgagatgc tataaagaat attgtatcca 3840
aaattctatc tgtgctctat gtagagatat ctagtctaat gctttctgta aacgcccccc 3900
ccccccgccc aattctagtg gggagtgtca tgctatttca tgaagatgga ggtcagagga 3960
ttaactagtg ggggtgggct ctctccttct accctgtggg ttctagggac tgaatgctgg 4020
acatcaggaa gtaggggtca gaggatccct aacaggcaga catttagaga tagggccaca 4080
aaaataggag atgaagatgg caaacttcca gcttctccct caccctgctg atctgagaca 4140
aaagcctgga ggcttaaata gaaggccggg cctgcttttt ctcccgccag tagggcccac 4200
ctgctggagg accggtctga caagttcatg actgaatgag gactgtttat cccaccggta 4260
tcggcctatc ggctgcgctg tcttagttca aactgaccaa cccaaactgg gggctgaaca 4320
gtgtgtccgc cccccactcc cacccctcca aagacccata aaacccaggt gtggaggaga 4380
agcagcactt cttccctctg atggactgat tctgcacgtg agacctgcgg cggcggcggc 4440
ggcggctgct gcagctgcag ctgcatgttt cactagaggt ctttcctcga tttttttttt 4500
tttttttttt ggtttatttt tcgagacaag agtttctctt gtgtgggcct ggctgtattc 4560
gaactcacag agatcctcct gcctctgctt tcgtcgtgct aggattgaag gtgtgtgcta 4620
cccgccctgg ttctcgagca ccatgtccaa tttactgacc gtacaccaaa atttgcctgc 4680
attaccggtc gatgcaacga gtgatgaggt tcgcaagaac ctgatggaca tgttcaggga 4740
tcgccaggcg ttttctgagc atacctggaa aatgcttctg tccgtttgcc ggtcgtgggc 4800
ggcatggtgc aagttgaata accggaaatg gtttcccgca gaacctgaag atgttcgcga 4860
ttatcttcta tatcttcagg cgcgcggtct ggcagtaaaa actatccagc aacatttggg 4920
ccagctaaac atgcttcatc gtcggtccgg gctgccacga ccaagtgaca gcaatgctgt 4980
ttcactggtt atgcggcgga tccgaaaaga aaacgttgat gccggtgaac gtgcaaaaca 5040
ggctctagcg ttcgaacgca ctgatttcga ccaggttcgt tcactcatgg aaaatagcga 5100
tcgctgccag gatatacgta atctggcatt tctggggatt gcttataaca ccctgttacg 5160
tatagccgaa attgccagga tcagggttaa agatatctca cgtactgacg gtgggagaat 5220
gttaatccat attggcagaa cgaaaacgct ggttagcacc gcaggtgtag agaaggcact 5280
tagcctgggg gtaactaaac tggtcgagcg atggatttcc gtctctggtg tagctgatga 5340
tccgaataac tacctgtttt gccgggtcag aaaaaatggt gttgccgcgc catctgccac 5400
cagccagcta tcaactcgcg ccctggaagg gatttttgaa gcaactcatc gattgattta 5460
cggcgctaag gatgactctg gtcagagata cctggcctgg tctggacaca gtgcccgtgt 5520
cggagccgcg cgagatatgg cccgcgctgg agtttcaata ccggagatca tgcaagctgg 5580
tggctggacc aatgtaaata ttgtcatgaa ctatatccgt aacctggata gtgaaacagg 5640
ggcaatggtg cgcctgctgg aagatggcga tgctagcgag ggcagaggaa gtcttctaac 5700
atgcggtgac gtggaggaga atcccggccc tactagtctc gagaccatga agctgctgcc 5760
gtcggtggtg ctgaagctct ttctggctgc agttctctcg gcactggtga ctggcgagag 5820
cctggagcgg cttcggagag ggctagctgc tggaaccagc aacccggacc ctcccactgt 5880
atccacggac cagctgctac ccctaggagg cggccgggac cggaaagtcc gtgacttgca 5940
agaggcagat ctggaccttt tgagagtcac tttatcctcc aagccacaag cactggccac 6000
accaaacaag gaggagcacg ggaaaagaaa gaagaaaggc aaggggctag ggaagaagag 6060
ggacccatgt cttcggaaat acaaggactt ctgcatccat ggagaatgca aatatgtgaa 6120
ggagctccgg gctccctcct gcatctgcca cccgggttac catggagaga ggtgtcatgg 6180
gctgagcctc aaggttctgc ccacatggtc caccccggtg cagccaacca tcctggccgt 6240
ggtggctgtg gtgctgtcat ctgtctgtct gctggtcatc gtggggcttc tcatgtttag 6300
gtaccatagg agaggaggtt atgatgtgga aaatgaagag aaagtgaagt tgggcatgac 6360
taattcccac tgagcggccg ccgactgtgc cttctagttg ccagccatct gttgtttgcc 6420
cctcccccgt gccttccttg accctggaag gtgccactcc cactgtcctt tcctaataaa 6480
atgaggaaat tgcatcgcat tgtctgagta ggtgtcattc tattctgggg ggtggggtgg 6540
ggcaggacag caagggggag gattgggaag acaatagcag gcatgctggg gatgcggtgg 6600
gctctatggg gatccccttg aaatacatcc acaggtacac ctccaattga ctcaaatgat 6660
gtcaattagt ctatcagaag cttctaaagc catgacatca ttttctggaa ttttccaagc 6720
tgtttaaagg cacagtcaac ttagtgtatg taaacttctg acccactgga attgtgatac 6780
agtgaattat aagtgaaata atctgtctgt aaacaattgt tggaaaaatg acttgtgtca 6840
tgcacaaagt agatgtccta actgacttgc caaaactatt gtttgttaac aagaaatttg 6900
tggagtagtt gaaaaacgag ttttaatgac tccaacttaa gtgtatgtaa acttccgact 6960
tcaactgtat aggtctagag tcgacctgca ggcatgcaag cttggcgtaa tcatggtcat 7020
agctgtttcc tgtgtgaaat tgttatccgc tcacaattcc acacaacata cgagccggaa 7080
gcataaagtg taaagcctgg ggtgcctaat gagtgagcta actcacatta attgcgttgc 7140
gctcactgcc cgctttccag tcgggaaacc tgtcgtgcca gctgcattaa tgaatcggc 7199
<210> 2
<211> 1583
<212> DNA
<213> Artificial sequence (Artificial sequence)
<400> 2
tccgctcctc ctcaccccat gccatcttct cagctgggaa atactttgat acacaaggca 60
tcgtgcaagg cattatgggg cacatgccca tatcccagac cctgagagga aagggggagg 120
gctgcataag acactggaga gatggctcag tgactaagcc ctggctgctc ttagaagacc 180
agggttcagt ttctgacact cacatggcag taacaactgc ctgcagctcc cgtttcagag 240
gatcaatgct ctctttggcc tgtatgggaa ctgcatgcat gtgatgcata gacatacatg 300
ggggcaaaac acccatacac ataaaataaa aataaaatat tttttaaaaa gataccgtct 360
ttaaaaaaag gcaagccatc acccatttga tcctttccca tgcatcagtg acttaacaga 420
gcagtgaaca caaaattctt caaggaagga gaagccatgg tggtcattgg tggagtcagg 480
gtctccagag agcccaagtt ggaccctaac tgcagagcta gccgaggatg gtcttcaact 540
tctgattttc tgctttcacc ttcccagtgc tggcattgcg ggcctctgcc accaagccca 600
gtttaggaga tgctggagat caaacccagg ttttcaagtg tgctcaacaa acagccttct 660
aactgatcta catccccaga gggctggaaa tgtgtgcaac tttttctgag ttgtgagttg 720
acagagatat tggggcagga ggggagttag aggctattct ccttgagatg ctataaagaa 780
tattgtatcc aaaattctat ctgtgctcta tgtagagata tctagtctaa tgctttctgt 840
aaacgccccc cccccccgcc caattctagt ggggagtgtc atgctatttc atgaagatgg 900
aggtcagagg attaactagt gggggtgggc tctctccttc taccctgtgg gttctaggga 960
ctgaatgctg gacatcagga agtaggggtc agaggatccc taacaggcag acatttagag 1020
atagggccac aaaaatagga gatgaagatg gcaaacttcc agcttctccc tcaccctgct 1080
gatctgagac aaaagcctgg aggcttaaat agaaggccgg gcctgctttt tctcccgcca 1140
gtagggccca cctgctggag gaccggtctg acaagttcat gactgaatga ggactgttta 1200
tcccaccggt atcggcctat cggctgcgct gtcttagttc aaactgacca acccaaactg 1260
ggggctgaac agtgtgtccg ccccccactc ccacccctcc aaagacccat aaaacccagg 1320
tgtggaggag aagcagcact tcttccctct gatggactga ttctgcacgt gagacctgcg 1380
gcggcggcgg cggcggctgc tgcagctgca gctgcatgtt tcactagagg tctttcctcg 1440
attttttttt tttttttttt tggtttattt ttcgagacaa gagtttctct tgtgtgggcc 1500
tggctgtatt cgaactcaca gagatcctcc tgcctctgct ttcgtcgtgc taggattgaa 1560
ggtgtgtgct acccgccctg gtt 1583
<210> 3
<211> 1029
<212> DNA
<213> Artificial sequence (Artificial sequence)
<400> 3
atgtccaatt tactgaccgt acaccaaaat ttgcctgcat taccggtcga tgcaacgagt 60
gatgaggttc gcaagaacct gatggacatg ttcagggatc gccaggcgtt ttctgagcat 120
acctggaaaa tgcttctgtc cgtttgccgg tcgtgggcgg catggtgcaa gttgaataac 180
cggaaatggt ttcccgcaga acctgaagat gttcgcgatt atcttctata tcttcaggcg 240
cgcggtctgg cagtaaaaac tatccagcaa catttgggcc agctaaacat gcttcatcgt 300
cggtccgggc tgccacgacc aagtgacagc aatgctgttt cactggttat gcggcggatc 360
cgaaaagaaa acgttgatgc cggtgaacgt gcaaaacagg ctctagcgtt cgaacgcact 420
gatttcgacc aggttcgttc actcatggaa aatagcgatc gctgccagga tatacgtaat 480
ctggcatttc tggggattgc ttataacacc ctgttacgta tagccgaaat tgccaggatc 540
agggttaaag atatctcacg tactgacggt gggagaatgt taatccatat tggcagaacg 600
aaaacgctgg ttagcaccgc aggtgtagag aaggcactta gcctgggggt aactaaactg 660
gtcgagcgat ggatttccgt ctctggtgta gctgatgatc cgaataacta cctgttttgc 720
cgggtcagaa aaaatggtgt tgccgcgcca tctgccacca gccagctatc aactcgcgcc 780
ctggaaggga tttttgaagc aactcatcga ttgatttacg gcgctaagga tgactctggt 840
cagagatacc tggcctggtc tggacacagt gcccgtgtcg gagccgcgcg agatatggcc 900
cgcgctggag tttcaatacc ggagatcatg caagctggtg gctggaccaa tgtaaatatt 960
gtcatgaact atatccgtaa cctggatagt gaaacagggg caatggtgcg cctgctggaa 1020
gatggcgat 1029
<210> 4
<211> 627
<212> DNA
<213> Artificial sequence (Artificial sequence)
<400> 4
atgaagctgc tgccgtcggt ggtgctgaag ctctttctgg ctgcagttct ctcggcactg 60
gtgactggcg agagcctgga gcggcttcgg agagggctag ctgctggaac cagcaacccg 120
gaccctccca ctgtatccac ggaccagctg ctacccctag gaggcggccg ggaccggaaa 180
gtccgtgact tgcaagaggc agatctggac cttttgagag tcactttatc ctccaagcca 240
caagcactgg ccacaccaaa caaggaggag cacgggaaaa gaaagaagaa aggcaagggg 300
ctagggaaga agagggaccc atgtcttcgg aaatacaagg acttctgcat ccatggagaa 360
tgcaaatatg tgaaggagct ccgggctccc tcctgcatct gccacccggg ttaccatgga 420
gagaggtgtc atgggctgag cctcaaggtt ctgcccacat ggtccacccc ggtgcagcca 480
accatcctgg ccgtggtggc tgtggtgctg tcatctgtct gtctgctggt catcgtgggg 540
cttctcatgt ttaggtacca taggagagga ggttatgatg tggaaaatga agagaaagtg 600
aagttgggca tgactaattc ccactga 627

Claims (7)

1. A plasmid system Epcam-cre-DTR for tracing liver precursor cells is characterized in that the base sequence of the plasmid system is shown as SEQ ID NO. 1.
2. The method for preparing the liver precursor cell tracing plasmid system Epcam-cre-DTR according to claim 1, comprising the steps of:
A. construction of plasmid Epcam-cre-DTR by adopting seamless cloning method
Performing double enzyme digestion on an Epcam promoter, cre recombinase, a diphtheria toxin receptor PCR product and a carrier by using Clal and Pmll, wherein a high-salt buffer system is adopted for reaction, and the reaction is placed in a 37 ℃ water bath for 3 hours, so that the enzyme digestion is performed fully; then separating by 0.8% agarose electrophoresis, and recovering gel; mixing the enzyme fragments and the carrier according to a molar ratio of 2:1, and carrying out recombination reaction;
B. preparation of engineering bacteria
Melting competent DH5 alpha escherichia coli on ice; adding the constructed plasmid into competent DH5 alpha escherichia coli, gently mixing, standing in an ice bath for 30 minutes, and rapidly cooling in the ice bath for 2 minutes by heat shock in a water bath at 42 ℃ for 60-90 seconds, wherein escherichia coli cannot be oscillated in the cooling process; adding 0.9ml of sterile LB culture medium without antibiotics, gently mixing, and culturing on a shaking table at 37 ℃ and 180-200 rpm for 1 hour; centrifuging at 600g for 3 min, collecting transformed host bacteria, discarding supernatant, and adding ampicillin-containing LB medium for resuspension; the transformed host bacteria are evenly coated on LB agar medium containing ampicillin, cultured for 12-16 hours at 37 ℃ to obtain monoclonal colony containing recombinant plasmid,
selecting clone colony, adding LB culture medium containing ampicillin, culturing on a shaking table at 37 ℃ and 180-200 rpm for 12 hours, extracting plasmid of host bacteria, and cutting a 2950bp strip and a 3900bp strip by using Clal and Pmll double enzyme, wherein the host bacteria is positive recombinant;
C. extraction and purification of plasmid Epcam-cre-DTR
Taking monoclonal host bacteria which are verified to be positive recombinants, adding LB culture medium containing ampicillin, and culturing on a shaking table at 37 ℃ and 180-200 rpm for 12-16 hours; the bacterial liquid 12000g was centrifuged for 2min, the supernatant was discarded, bacterial cells were collected, and plasmid extraction and purification were performed according to the kit instructions.
3. Use of the plasmid system of claim 1 for the preparation of a liver precursor cell tracer.
4. Use of the plasmid system of claim 1 for the preparation of a medicament for the treatment of liver injury comprising a liver precursor cell tracer as set forth in claim 3.
5. Use according to claim 3, characterized in that:
the active components of the liver precursor cell tracer comprise the plasmid system and a sleep Beauy transposon system which drives the plasmid system to transpose.
6. A pharmaceutical composition for tracing liver precursor cells is characterized by comprising an active component and pharmaceutically available auxiliary materials, wherein the active component comprises a plasmid system and a transposon system for driving the plasmid system to generate transposition,
the plasmid system is the plasmid system of claim 1, and the transposon system is a Sleeping
Beaury transposon subsystem.
7. A pharmaceutical combination for treating liver injury comprising the liver precursor cell tracing pharmaceutical composition of claim 6, and diphtheria toxin in combination with the pharmaceutical composition.
CN202111304113.7A 2021-11-05 2021-11-05 Plasmid system for tracing liver precursor cells and application Active CN114214347B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111304113.7A CN114214347B (en) 2021-11-05 2021-11-05 Plasmid system for tracing liver precursor cells and application

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111304113.7A CN114214347B (en) 2021-11-05 2021-11-05 Plasmid system for tracing liver precursor cells and application

Publications (2)

Publication Number Publication Date
CN114214347A CN114214347A (en) 2022-03-22
CN114214347B true CN114214347B (en) 2023-11-17

Family

ID=80695739

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111304113.7A Active CN114214347B (en) 2021-11-05 2021-11-05 Plasmid system for tracing liver precursor cells and application

Country Status (1)

Country Link
CN (1) CN114214347B (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103409448A (en) * 2013-08-30 2013-11-27 北京百奥赛图基因生物技术有限公司 Model mouse preparation method and recombinant vector for conditional cell removal
CN113249328A (en) * 2020-02-11 2021-08-13 上海交通大学医学院附属仁济医院 Application of EpCAM in regulation and control of hepatic differentiation of human hepatic precursor cells

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100329986A1 (en) * 2009-01-06 2010-12-30 Greenbaum Linda E Adult Hepatic Progenitor Cells and Methods of Use Thereof
US10342221B2 (en) * 2016-08-19 2019-07-09 University Of Southern California Generation of an inducible pericyte-specific CRE mouse model

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103409448A (en) * 2013-08-30 2013-11-27 北京百奥赛图基因生物技术有限公司 Model mouse preparation method and recombinant vector for conditional cell removal
CN113249328A (en) * 2020-02-11 2021-08-13 上海交通大学医学院附属仁济医院 Application of EpCAM in regulation and control of hepatic differentiation of human hepatic precursor cells

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HCV core通过活化Wnt/β-catenin信号通路诱导肝前体细胞向肝癌干细胞分化;聂丹等;《中国生物化学与分子生物学报》;第34卷(第11期);第1194-1200页 *

Also Published As

Publication number Publication date
CN114214347A (en) 2022-03-22

Similar Documents

Publication Publication Date Title
US20020025561A1 (en) Vectors for gene-self-assembly
CN113549618B (en) SARS-CoV-2 nucleic acid detection method based on RAA amplification and CRISPR-Cas13a system
CN113481327B (en) Novel coronavirus ORF1ab gene detection method based on RAA amplification and CRISPR-Cas12a
CN108395996B (en) Classical swine fever virus subunit vaccine and preparation method and application thereof
CN108531471B (en) Long gene synthesis method
CN108285886A (en) The method that recombined bacillus subtilis resting cell produces N-acetyl-neuraminate
CN109609579B (en) Genetically engineered bacterium for producing beta-carotene and construction method thereof
CN104357459B (en) The full-length infectious clone of japanese encephalitis virus of Carrying Green Fluorescent Protein gene and preparation method and application
CN107937428B (en) Construction method of carrier integrating functions of microRNA and CAR
CN109652352B (en) Genetically engineered bacterium for efficiently immobilizing enterococcus faecium glutamate decarboxylase and immobilization method
CN114933970B (en) Toxoplasma gene knock-out strain lacking 6-phosphogluconate dehydrogenase 1 gene
CN114214347B (en) Plasmid system for tracing liver precursor cells and application
CN114292864B (en) Bacillus bailii mutant strain with high surfactant yield, construction method and application thereof
CN113584223B (en) Identification method of D614G mutation in SARS-CoV-2 based on CRISPR-Cas12a
CN114214346B (en) Plasmid system for targeting liver precursor cells and application
CN107661496A (en) A kind of pig parvoviral immune composition and preparation method and application
CN112626116B (en) Method for site-specific integration of large-fragment exogenous DNA
CN111321163B (en) Construction and application of bacillus subtilis linear plasmid system
CN113073097B (en) CHO cell endogenous temperature-sensitive promoter and application thereof
CN112322706A (en) Specific human gene fragment, primer probe and application thereof
CN112301059A (en) CAR-NK transgenic vector based on replication-defective recombinant lentivirus and construction method and application thereof
KR102468650B1 (en) Recombinant vector inducing expression of T7 RNA polymerase and mRNA capping enzyme and uses thereof
CN111378718A (en) Construction method of gene sequencing library
CN111979134A (en) Construction and application of recombinant saccharomyces cerevisiae for synthesizing carminic acid
CN115216492B (en) Preparation method and application of mouse primary glioma model

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant