CN114207288A - 用于辅助动力单元所装备的充气压缩机的防喘振调节 - Google Patents

用于辅助动力单元所装备的充气压缩机的防喘振调节 Download PDF

Info

Publication number
CN114207288A
CN114207288A CN202080055996.XA CN202080055996A CN114207288A CN 114207288 A CN114207288 A CN 114207288A CN 202080055996 A CN202080055996 A CN 202080055996A CN 114207288 A CN114207288 A CN 114207288A
Authority
CN
China
Prior art keywords
pressure
diffuser
surge
pomp
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202080055996.XA
Other languages
English (en)
Other versions
CN114207288B (zh
Inventor
戴维·弗朗西斯·皮埃尔·奥米雷斯
路易斯·简-保罗·法比恩·佩罗特-米诺特
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Safran Power Units SAS
Original Assignee
Safran Power Units SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Safran Power Units SAS filed Critical Safran Power Units SAS
Publication of CN114207288A publication Critical patent/CN114207288A/zh
Application granted granted Critical
Publication of CN114207288B publication Critical patent/CN114207288B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D41/00Power installations for auxiliary purposes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D27/00Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
    • F04D27/001Testing thereof; Determination or simulation of flow characteristics; Stall or surge detection, e.g. condition monitoring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D33/00Arrangements in aircraft of power plant parts or auxiliaries not otherwise provided for
    • B64D33/02Arrangements in aircraft of power plant parts or auxiliaries not otherwise provided for of combustion air intakes
    • B64D2033/0213Arrangements in aircraft of power plant parts or auxiliaries not otherwise provided for of combustion air intakes specially adapted for auxiliary power units (APU's)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D27/00Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
    • F04D27/02Surge control
    • F04D27/0207Surge control by bleeding, bypassing or recycling fluids
    • F04D27/0223Control schemes therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/50On board measures aiming to increase energy efficiency

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Control Of Positive-Displacement Air Blowers (AREA)
  • Control Of Positive-Displacement Pumps (AREA)

Abstract

本发明属于充气压缩机的调节的范围,飞行器辅助动力单元装备有该充气压缩机。本发明涉及用于确定喘振参数的方法,该喘振参数指示充气压缩机将出现被称为喘振的现象的风险。本发明还涉及用于控制该充气压缩机的释压阀的方法和系统。根据本发明,用于确定喘振参数的方法包括计算(102)该喘振参数Ppomp,该喘振参数为第一项T1和第二项T2的和,第一项T1是根据第一压力P1和第二压力P2计算的,第一压力P1是在充气压缩机的扩散器的下游测量的,第二压力P2是在扩散器的上游测量的,第二项T2是根据第三压力P3和周围压力Psamb计算的,第三压力P3是在扩散器的上游测量的,周围压力Psamb表示辅助动力单元周围的周围环境的压力。

Description

用于辅助动力单元所装备的充气压缩机的防喘振调节
技术领域
本发明涉及充气压缩机的调节的领域,飞行器的辅助动力单元装备有该充气压缩机。本发明旨在防止压缩机内的喘振的现象,特别是在对向飞行器的环境控制系统供应的空气进行控制的阀关闭的情况下。本发明涉及用于确定喘振参数的方法以及用于对用于该充气压缩机的释压阀进行控制的方法和系统,该喘振参数表示在辅助动力单元的充气压缩机中出现喘振现象的风险。
背景技术
飞行器通常装备有主发动机和辅助动力单元。主发动机专用于推进,并且在巡航速度下为各种机载设备产生能量。辅助动力单元(APU)是用于供应不同类型的能量(电能、液压能、气动能、机械能)的装置,以向机载装备供能,特别是在主发动机不运行时。辅助动力单元通常包括涡轮轴发动机和充气压缩机,充气压缩机被涡轮轴发动机机械地驱动以向飞行器的环境控制系统供应压缩空气。该环境控制系统(ECS)包括被称为“飞行器阀”或“ECS阀”的可调节阀,以对来自充气压缩机的压缩空气的流量进行控制。当环境控制系统由主发动机供能时,ECS阀可以完全闭合。在对压缩空气的需求相对较少或没有需求的情况下,充气压缩机可能会遭受喘振现象,这可能对充气压缩机造成损害。为了限制这种风险,充气压缩机的入口处的空气流量可以由入口引导桨叶(IGV)进行调节。在对压缩空气的需求较低的情况下,特别是当ECS阀完全闭合时,IGV也可以被布置在半闭合位置或闭合位置。然而,与ECS阀的响应时间相比,IGV的响应时间相对较慢,使得喘振现象仍可能以瞬态方式发生。此外,IGV通常不会完全阻止空气流入充气压缩机。因此,如果ECS阀完全闭合,喘振现象仍然存在。
充气压缩机喘振可以通过在辅助动力单元上装备释压阀来防止,释压阀被布置在充气压缩机的下游,并且根据喘振现象或根据喘振现象的风险来控制。一旦ECS阀闭合,释压阀就可以自然地切换到打开位置。然而,当ECS阀仅部分地闭合时,很难识别可能发生喘振现象的情况。因此,需要以可靠的方式识别这些情况。
识别喘振风险的第一解决方案包括确定充气压缩机的上游和下游的流体的参数,特别是流体的总压力、温度以及流量。该解决方案在理论上是完全可靠的,但具有依赖于使用大量的传感器的缺点。这些传感器昂贵且易于发生故障,使得解决方案在实践中不可靠。此外,流量传感器很难集成到充气压缩机中。
识别充气压缩机喘振的风险的第二解决方案包括确定喘振参数Ppomp,喘振参数由在充气压缩机的出口处的总压力Pt1300和在充气压缩机的扩散器的上游的静压力Ps1270i之间的比值根据以下关系限定:
Figure BDA0003496381270000021
然而,该喘振参数Ppomp和在充气压缩机的出口处的流量之间的关系不是双射的。对于同一喘振标准,可以得到两个流量值。在充气压缩机的出口处的流量的确定需要待确定的附加参数。特别地,可以使用由静压力Ps1270i计算的B参数和IGV的开度、周围静压力Psamb、周围温度Tamb、以及在充气压缩机的出口处的温度T1300
Figure BDA0003496381270000022
因此,B参数的计算包括测量附加压力Psamb和两个温度Tamb和T1300。因此,第二解决方案具有与第一解决方案相同的缺点。
鉴于上述,本发明的目的是提供解决方案以可靠且经济效益高地识别在充气压缩机中出现的喘振现象的风险,飞行器的辅助动力单元装备有该充气压缩机。特别地,本发明旨在限制待测量的参数的数量,以确定该喘振风险。本发明进一步旨在对喘振风险进行量化的喘振参数和在充气压缩机的出口处的流量之间建立双射关系。本发明的另一目的是提供其设计、制造以及维护成本与工业规模上的使用相容的方法和装置。
发明内容
为此,本发明基于明智地选择要测量的参数,使得能够通过对这些参数的数量进行限制的关系来确定喘振参数。所选择的参数进一步使得能够在喘振参数和充气压缩机的流量之间建立双射关系。
更具体地,本发明涉及用于确定喘振参数Ppomp的方法,该喘振参数Ppomp指示在用于飞行器的辅助动力单元所装备的充气压缩机中出现喘振现象的风险。该充气压缩机包括扩散器和布置在扩散器的下游的壳体。根据本发明的方法包括计算喘振参数Ppomp,喘振参数为第一项T1与第二项T2的和。第一项T1通过第一压力P1和第二压力P2来计算,第一压力P1在扩散器的下游测量,第二压力P2在扩散器的上游测量;第二项T2通过第三压力P3和周围压力Psamb来计算,第三压力在扩散器的上游测量,周围压力Psamb表示辅助动力单元(APU)周围的周围环境的压力。
因此,喘振参数Ppomp通过四个压力计算的,或当压力P2和P3相等时是通过三个压力计算的。不需要温度测量或流量测量。
特别地,充气压缩机可以是离心式压缩机。因此,扩散器是有径向叶片的扩散器。
第一压力P1例如是壳体的上游的总压力Pt1300、壳体的下游的总压力Pt1800、壳体的上游的静压力Ps1300或壳体的下游的静压力Ps1800。因此,总压力Pt1300和静压力Ps1300在扩散器和壳体之间的交界处测量。压力传感器在壳体的上游或下游布置是根据表示第一项T1的曲线的斜率以及根据在充气压缩机中集成该传感器的可能性来选择的。
第二压力P2和/或第三压力P3例如是扩散器的上游的静压力。优选地,压力P3是在扩散器的叶片之间于前缘区域测量的静压力Ps1270i。换言之,静压力Ps1270i是扩散器的叶片之间、在叶片的前缘处测量的静压力。有利地,压力P3被确定为在扩散器的不同的叶片对之间、在叶片的前缘处测量的压力的平均值。
周围压力Psamb是例如辅助动力单元的周围环境的静压力。
根据第一实施例,第一项T1是使用以下方程计算的:
Figure BDA0003496381270000041
特别地,第一项T1可以使用以下方程计算:
Figure BDA0003496381270000042
根据第二实施例,第二项T2是使用以下方程计算的:
Figure BDA0003496381270000043
特别地,当压力P3是静压力Ps1270i,第二项T2变成:
Figure BDA0003496381270000044
第一实施例和第二实施例是相容的,并且给出用于确定喘振参数Ppomp的以下关系式:
Figure BDA0003496381270000045
本发明进一步涉及对用于充气压缩机的释压阀进行控制的方法,用于飞行器的辅助动力单元装备有该充气压缩机,该充气压缩机包括扩散器和布置在扩散器的下游的壳体,释压阀被布置在壳体的下游。根据本发明,该控制方法包括:
-按照以上所述的确定方法来确定喘振参数Ppomp
-将通过确定方法确定的喘振参数Ppomp与预定压力释放阈值进行比较,以及
-当喘振参数Ppomp低于压力释放阈值或者当喘振参数Ppomp高于压力释放阈值时,打开释压阀。
当喘振参数Ppomp由第一实施例和第二实施例限定,当喘振参数Ppomp高于压力释放阈值时,释压阀被打开。
本发明进一步涉及对用于充气压缩机的释压阀进行控制的装置,用于飞行器的辅助动力单元装备有该充气压缩机,该充气压缩机包括扩散器和布置在扩散器的下游的壳体,释压阀被布置在壳体的下游。根据本发明,该控制装置包括处理单元,该处理单元被配置成按照上述确定方法来确定喘振参数Ppomp,将所述喘振参数Ppomp与预定压力释放阈值进行比较,并且当喘振参数Ppomp低于压力释放阈值或当喘振参数Ppomp高于压力释放阈值时,触发释压阀的打开。
最后,本发明涉及用于飞行器的辅助动力单元,该辅助动力单元包括充气压缩机、释压阀以及如上所述的释压阀控制装置。充气压缩机包括扩散器和布置在扩散器下游的壳体,并且释压阀被布置在壳体的下游。
附图说明
本发明的其他特征、细节和优点将在阅读以下描述后显现,该描述是仅为了说明目的而提供的、并且参照附图给出,在附图中:
-图1示出了辅助动力单元的示例,该辅助动力单元包括用于充气压缩机的释压阀和处理单元,该处理单元被配置成按照根据本发明的控制方法对释压阀进行控制;
-图2示意性地示出了在图1中的辅助动力单元的充气压缩机;
-图3示出了用于对根据本发明的释压阀进行控制的示例方法。
具体实施方式
图1示意性地示出了可以装备于飞行器的辅助动力单元1的示例。辅助动力单元1(auxiliary power unit,APU)包括气体发生器10和压缩空气供应系统20。气体发生器10包括主压缩机11、燃烧腔室12、涡轮13、喷嘴14、动力轴15、空气供给管线16、压缩空气管线17、烟道(flue)气体管线18以及废气管线19。主压缩机11通过空气供应管线16而被供以空气,并且主压缩机通过压缩空气管线17向燃烧腔室12供应压缩空气。压缩的空气在燃烧腔室12中与燃料混合。该混合物的燃烧产生高能气体,该高能气体通过烟道气体管线18输送到涡轮13中。这些气体穿过涡轮13使涡轮旋转。动力轴15将涡轮13机械连接到主压缩机11,使得主压缩机11也被旋转地驱动。在穿过涡轮13之后,废气通过废气管线19和喷嘴14从辅助动力单元1排出。
压缩空气供应系统20包括充气压缩机(charging compressor)21、入口引导桨叶22、处理单元23、释压阀24、空气摄入管线25、空气输出管线26、第一压力传感器27、第二压力传感器28以及第三压力传感器29。图2示意性地示出了充气压缩机21。充气压缩机21是离心式压缩机。空气从空气供应管线16经由空气摄入管线25供应给充气压缩机。入口引导桨叶22被布置在空气摄入管线25上,以调节流向充气压缩机21的入口的空气流,而不干扰流向主压缩机11的空气流。入口引导桨叶22也被称为“IGV”。充气压缩机21包括叶轮211、扩散器212以及壳体213。叶轮211机械连接到动力轴15,以与主压缩机11和涡轮13一起被旋转地驱动。壳体213被布置在扩散器212的下游,并且连接到空气输出管线26的入口。空气输出管线26的出口连接到释压阀24和环境控制系统30。在图1中所示的示例实施例中,第一压力传感器27测量扩散器212和充气压缩机21的壳体213之间的交界处的总压力Pt1300。第二压力传感器28测量扩散器212的上游的静压力Ps1270i。第三压力传感器29测量辅助动力单元1的周围环境的静压力Psamb。根据其他实施例,压力传感器27、28、29可以测量其他压力。特别地,压力传感器27可以测量在扩散器212和充气压缩机21的壳体213之间的交界处的静压力Ps1300,或壳体213的下游的总压力Pt1800或静压力Ps1800。压力传感器29可以测量周围环境的总压力Ptamb。处理单元23包括例如处理器。如下文所述的,处理单元被配置成接收来自压力传感器27、28以及29的测量结果,以通过这些测量结果确定喘振参数Ppomp,并且根据该喘振参数Ppomp以及根据预定的压力释放阈值Thdis来触发释压阀24的打开。处理单元23可以进一步被配置成例如根据来自压力传感器27、28、29的一个或多个测量结果和/或根据其他测量结果对入口引导桨叶22进行控制。
环境控制系统30被配置成调节飞行器舱内的空气压力。特别地,环境控制系统包括被称为ECS阀的阀31,以调节流向环境控制系统的空气流。特别地,当通过主发动机向环境控制系统30供应压缩空气时,ECS阀31可以处于闭合位置。
图3示出了用于控制释压阀24的示例方法。控制方法100包括测量三个控制压力(即壳体213的上游的总压力Pt1300、扩散器212的上游的静压力Ps1270i、以及辅助动力单元的周围环境的静压力Psamb)的步骤101。在步骤102中,喘振参数Ppomp是通过这些控制压力来计算的:
Figure BDA0003496381270000071
因此,该方法包括将该喘振参数Ppomp与预定压力释放阈值Thdis进行比较的步骤103。无论气体发生器10的速度和IGV的打开位置如何,该压力释放阈值Thdis可以是恒定的。如果喘振参数Ppomp低于或等于压力释放阈值Thdis,则方法100返回到测量控制压力的步骤101,以执行监控循环。另一方面,如果在步骤102中计算的喘振参数高于压力释放阈值Thdis,该方法继续进行打开释压阀24的步骤104。在该步骤104期间,释压阀24打开,以降低在充气压缩机21的出口处的压力,从而防止喘振现象。释压阀24可以完全地打开或部分地打开。
因此,根据本发明的用于控制释压阀的方法可以通过使用有限数量的测量参数来控制这种喘振风险,从而使得能防止充气压缩机出现喘振现象。

Claims (9)

1.用于确定喘振参数的方法,所述喘振参数指示在用于飞行器的辅助动力单元(1)所装备的充气压缩机(21)中出现喘振现象的风险,所述充气压缩机(21)包括扩散器(212)和布置在所述扩散器的下游的壳体(213),所述方法包括计算(102)所述喘振参数Ppomp,所述喘振参数为第一项T1与第二项T2的和,所述第一项T1通过第一压力P1和第二压力P2计算,所述第一压力P1在所述扩散器(212)的下游测量,所述第二压力P2在所述扩散器的上游测量,所述第二项T2通过第三压力P3和周围压力Psamb计算,所述第三压力在所述扩散器(212)的上游测量,所述周围压力Psamb表示所述辅助动力单元周围的周围环境的压力。
2.根据权利要求1所述的方法,其中,所述第一压力P1是所述壳体(213)的上游的总压力Pt1300、所述壳体(213)的下游的总压力Pt1800、所述壳体(213)的上游的静压力Ps1300或所述壳体(213)的下游的静压力Ps1800
3.根据权利要求1或2所述的方法,其中,所述第二压力P2和/或所述第三压力P3是所述扩散器的上游的静压力Ps1270i,其在所述扩散器的叶片之间、在所述叶片的前缘处测量。
4.根据前述权利要求中任一项所述的方法,其中,所述周围压力Psamb是所述辅助动力单元的周围环境的静压力。
5.根据前述权利要求中任一项所述的方法,其中,所述第一项T1是使用以下方程计算的:
Figure FDA0003496381260000011
6.根据前述权利要求中任一项所述的方法,其中,所述第二项T2是使用以下方程计算的:
Figure FDA0003496381260000012
7.对用于充气压缩机(21)的释压阀(24)进行控制的方法,用于飞行器的辅助动力单元(1)装备有所述充气压缩机,所述充气压缩机(21)包括扩散器(212)和布置在所述扩散器的下游的壳体(213),所述释压阀(24)被布置在所述壳体(213)的下游,所述控制方法(100)包括:
-按照根据前述权利要求中任一项所述的确定方法来计算(102)所述喘振参数Ppomp
-将通过所述确定方法确定的喘振参数Ppomp与预定压力释放阈值Thdis进行比较(103),以及
-当所述喘振参数Ppomp低于所述压力释放阈值Thdis或者当所述喘振参数Ppomp高于所述压力释放阈值Thdis时,打开(104)所述释压阀(24)。
8.对用于充气压缩机(21)的释压阀(24)进行控制的装置,用于飞行器的辅助动力单元(1)装备有所述充气压缩机,所述充气压缩机(21)包括扩散器(212)和布置在所述扩散器的下游的壳体(213),所述释压阀(24)被布置在所述壳体(213)的下游,所述控制装置包括处理单元(23),所述处理单元被配置成按照根据权利要求1至6中任一项所述的确定方法来确定所述喘振参数Ppomp,将所述喘振参数Ppomp与预定压力释放阈值Thdis进行比较,并且当所述喘振参数Ppomp低于所述压力释放阈值Thdis或当所述喘振参数Ppomp高于所述压力释放阈值Thdis时,触发所述释压阀(24)的打开。
9.用于飞行器的辅助动力单元,所述辅助动力单元(1)包括充气压缩机(21)、释压阀(24)以及根据权利要求8所述的释压阀控制装置,所述充气压缩机(21)包括扩散器(212)和布置在所述扩散器的下游的壳体(213),并且所述释压阀(24)被布置在所述壳体(213)的下游。
CN202080055996.XA 2019-08-07 2020-07-31 用于辅助动力单元所装备的充气压缩机的防喘振调节 Active CN114207288B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR1909051A FR3099806B1 (fr) 2019-08-07 2019-08-07 Régulation anti-pompage d’un compresseur de charge équipant un groupe auxiliaire de puissance
FR1909051 2019-08-07
PCT/FR2020/051421 WO2021023937A1 (fr) 2019-08-07 2020-07-31 Régulation anti-pompage d'un compresseur de charge équipant un groupe auxiliaire de puissance

Publications (2)

Publication Number Publication Date
CN114207288A true CN114207288A (zh) 2022-03-18
CN114207288B CN114207288B (zh) 2024-06-11

Family

ID=68654730

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202080055996.XA Active CN114207288B (zh) 2019-08-07 2020-07-31 用于辅助动力单元所装备的充气压缩机的防喘振调节

Country Status (6)

Country Link
US (1) US11738882B2 (zh)
EP (1) EP3994358B1 (zh)
CN (1) CN114207288B (zh)
ES (1) ES2950841T3 (zh)
FR (1) FR3099806B1 (zh)
WO (1) WO2021023937A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112937885B (zh) * 2021-03-04 2023-04-14 中国商用飞机有限责任公司 一种利用辅助动力装置进行引气的引气系统以及引气控制方法

Citations (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2409837A (en) * 1944-04-21 1946-10-22 Gen Electric Centrifugal type compressor
US4550564A (en) * 1984-03-19 1985-11-05 United Technologies Corporation Engine surge prevention system
US4586870A (en) * 1984-05-11 1986-05-06 Elliott Turbomachinery Co., Inc. Method and apparatus for regulating power consumption while controlling surge in a centrifugal compressor
US4662817A (en) * 1985-08-20 1987-05-05 The Garrett Corporation Apparatus and methods for preventing compressor surge
US5095714A (en) * 1989-12-25 1992-03-17 Daikin Industries, Ltd. Surging prediction device for a centrifugal compressor
US5222356A (en) * 1991-12-12 1993-06-29 Allied-Signal Inc. Modulating surge prevention control for a variable geometry diffuser
US5224836A (en) * 1992-05-12 1993-07-06 Ingersoll-Rand Company Control system for prime driver of compressor and method
US5235801A (en) * 1991-12-12 1993-08-17 Allied-Signal Inc. On/off surge prevention control for a variable geometry diffuser
US5306116A (en) * 1992-04-10 1994-04-26 Ingersoll-Rand Company Surge control and recovery for a centrifugal compressor
US5683223A (en) * 1994-05-19 1997-11-04 Ebara Corporation Surge detection device and turbomachinery therewith
JP2002047946A (ja) * 2000-05-25 2002-02-15 Honda Motor Co Ltd 航空機用ガスタービン・エンジンのサージ検出装置
JP2005061352A (ja) * 2003-08-18 2005-03-10 Mitsubishi Heavy Ind Ltd ターボ冷凍機の遠心圧縮機、ターボ冷凍機、およびその制御方法
WO2006017365A2 (en) * 2004-07-13 2006-02-16 Carrier Corporation Improving centrifugal compressor performance by optimizing diffuser surge control and flow control device settings
JP2009092003A (ja) * 2007-10-10 2009-04-30 Univ Of Ryukyus ディフューザ内気体振動制御装置およびそれを用いた振動制御方法
JP2010255609A (ja) * 2009-04-28 2010-11-11 Toyota Motor Corp 遠心圧縮機
US20110280738A1 (en) * 2010-05-11 2011-11-17 Krishnan Narayanan Method of surge protection for a dynamic compressor using a surge parameter
CN102341604A (zh) * 2009-03-05 2012-02-01 爱进股份有限公司 气体压缩机及气体压缩机的流量控制方法
KR20120113878A (ko) * 2011-04-06 2012-10-16 현대중공업 주식회사 서지 예방을 위한 바이패스관이 형성된 압축기
US20130039781A1 (en) * 2011-08-08 2013-02-14 Victor Pascu Anticipation logic for a surge control valve utilized with load compressor
CN106523139A (zh) * 2015-09-14 2017-03-22 福特环球技术公司 用于喘振控制的方法和系统
CN107420339A (zh) * 2017-09-21 2017-12-01 东华工程科技股份有限公司 一种新型离心式压缩机喘振检测方法
CN107587998A (zh) * 2016-07-07 2018-01-16 韩华泰科株式会社 压缩机控制系统和方法
DE102019101508A1 (de) * 2018-01-24 2019-07-25 Ford Global Technologies, Llc System und Verfahren zur Laderegelung

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4405290A (en) * 1980-11-24 1983-09-20 United Technologies Corporation Pneumatic supply system having variable geometry compressor

Patent Citations (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2409837A (en) * 1944-04-21 1946-10-22 Gen Electric Centrifugal type compressor
US4550564A (en) * 1984-03-19 1985-11-05 United Technologies Corporation Engine surge prevention system
US4586870A (en) * 1984-05-11 1986-05-06 Elliott Turbomachinery Co., Inc. Method and apparatus for regulating power consumption while controlling surge in a centrifugal compressor
US4662817A (en) * 1985-08-20 1987-05-05 The Garrett Corporation Apparatus and methods for preventing compressor surge
US5095714A (en) * 1989-12-25 1992-03-17 Daikin Industries, Ltd. Surging prediction device for a centrifugal compressor
US5222356A (en) * 1991-12-12 1993-06-29 Allied-Signal Inc. Modulating surge prevention control for a variable geometry diffuser
US5235801A (en) * 1991-12-12 1993-08-17 Allied-Signal Inc. On/off surge prevention control for a variable geometry diffuser
US5306116A (en) * 1992-04-10 1994-04-26 Ingersoll-Rand Company Surge control and recovery for a centrifugal compressor
US5224836A (en) * 1992-05-12 1993-07-06 Ingersoll-Rand Company Control system for prime driver of compressor and method
US5683223A (en) * 1994-05-19 1997-11-04 Ebara Corporation Surge detection device and turbomachinery therewith
CN1329218A (zh) * 1994-05-19 2002-01-02 株式会社荏原制作所 喘振检测器及其涡轮机
JP2002047946A (ja) * 2000-05-25 2002-02-15 Honda Motor Co Ltd 航空機用ガスタービン・エンジンのサージ検出装置
JP2005061352A (ja) * 2003-08-18 2005-03-10 Mitsubishi Heavy Ind Ltd ターボ冷凍機の遠心圧縮機、ターボ冷凍機、およびその制御方法
WO2006017365A2 (en) * 2004-07-13 2006-02-16 Carrier Corporation Improving centrifugal compressor performance by optimizing diffuser surge control and flow control device settings
US20070248453A1 (en) * 2004-07-13 2007-10-25 Tetu Lee G Improving Centrifugal Compressor Performance by Optimizing Diffuser Surge Control and Flow Control Device Settings
CN101065582A (zh) * 2004-07-13 2007-10-31 开利公司 通过优化扩压器喘振控制和流量控制以改进离心压缩机性能
JP2009092003A (ja) * 2007-10-10 2009-04-30 Univ Of Ryukyus ディフューザ内気体振動制御装置およびそれを用いた振動制御方法
CN102341604A (zh) * 2009-03-05 2012-02-01 爱进股份有限公司 气体压缩机及气体压缩机的流量控制方法
JP2010255609A (ja) * 2009-04-28 2010-11-11 Toyota Motor Corp 遠心圧縮機
US20110280738A1 (en) * 2010-05-11 2011-11-17 Krishnan Narayanan Method of surge protection for a dynamic compressor using a surge parameter
KR20120113878A (ko) * 2011-04-06 2012-10-16 현대중공업 주식회사 서지 예방을 위한 바이패스관이 형성된 압축기
US20130039781A1 (en) * 2011-08-08 2013-02-14 Victor Pascu Anticipation logic for a surge control valve utilized with load compressor
CN106523139A (zh) * 2015-09-14 2017-03-22 福特环球技术公司 用于喘振控制的方法和系统
CN107587998A (zh) * 2016-07-07 2018-01-16 韩华泰科株式会社 压缩机控制系统和方法
CN107420339A (zh) * 2017-09-21 2017-12-01 东华工程科技股份有限公司 一种新型离心式压缩机喘振检测方法
DE102019101508A1 (de) * 2018-01-24 2019-07-25 Ford Global Technologies, Llc System und Verfahren zur Laderegelung
CN110067640A (zh) * 2018-01-24 2019-07-30 福特全球技术公司 用于增压控制的系统和方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
丁亮;王彤;谷传纲;: "带孔式机匣处理的某工业压缩机稳态与瞬态特性实验", 上海交通大学学报, no. 03 *
张立军;: "浅析离心式压缩机的喘振现象及控制方案", 化工管理, no. 05 *
杜小宝;: "离心式压缩机喘振分析及消除措施探究", 石化技术, no. 03, 28 March 2018 (2018-03-28) *
苏三买;常博博;刘铁庚;刘美凤;: "辅助动力装置喘振控制方法", 航空动力学报, no. 09 *
陈浩然;陈奎;赵冬;孟飞;林凡;: "离心式压缩机防喘振方法的应用现状", 重庆理工大学学报(自然科学), no. 03, 15 March 2015 (2015-03-15) *

Also Published As

Publication number Publication date
US11738882B2 (en) 2023-08-29
WO2021023937A1 (fr) 2021-02-11
EP3994358A1 (fr) 2022-05-11
ES2950841T3 (es) 2023-10-13
EP3994358B1 (fr) 2023-06-07
CN114207288B (zh) 2024-06-11
US20220274716A1 (en) 2022-09-01
FR3099806B1 (fr) 2021-09-03
FR3099806A1 (fr) 2021-02-12

Similar Documents

Publication Publication Date Title
CN107472541B (zh) 用于飞行器的环境控制系统
US10054051B2 (en) Bleed air systems for use with aircraft and related methods
CN107444653B (zh) 在双进口涡轮机系统中混合冲压空气和排气
US3868625A (en) Surge indicator for turbine engines
EP3242006B1 (en) Method to determine a state of a valve and valve monitoring apparatus
US20130091940A1 (en) Method and System for Determining Gas Turbine Tip Clearance
CA2710000A1 (en) Compressor and gas turbine engine with a plasma actuator
US8311684B2 (en) Output flow control in load compressor
EP2762707B1 (en) Method of controlling a cooling system
CN104213987A (zh) 双轴式燃气轮机
EP3098510B1 (en) Gas turbine engine uncontrolled high thrust accommodation system and method
CN114207288B (zh) 用于辅助动力单元所装备的充气压缩机的防喘振调节
JP6633961B2 (ja) 航空機用ガスタービン・エンジンの運転パラメータ推定装置
US10309249B2 (en) Control apparatus for a gas-turbine aeroengine
EP3287625B1 (en) Gas turbine engine compressor surge avoidance control system and method
RU2458257C1 (ru) Способ защиты турбокомпрессора от помпажа
Cruz-Manzo et al. Performance analysis of a twin-shaft gas turbine with fault in the variable stator guide vane system of the axial compressor
RU2447418C2 (ru) Способ управления газотурбинным двигателем
RU2527850C1 (ru) Способ диагностики помпажа компрессора газотурбинного двигателя
RU2214535C2 (ru) Способ управления перепуском воздуха в компрессоре двухвального двухконтурного газотурбинного двигателя
NL2031951B1 (en) Engine pre turbine pressure monitoring system
JP7429337B2 (ja) 圧縮空気供給システム
GB2548584A (en) Controlling gas turbine engines
US11391288B2 (en) System and method for operating a compressor assembly
US11549446B1 (en) Method and apparatus for measuring compressor bleed flow

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant