EP3098510B1 - Gas turbine engine uncontrolled high thrust accommodation system and method - Google Patents

Gas turbine engine uncontrolled high thrust accommodation system and method Download PDF

Info

Publication number
EP3098510B1
EP3098510B1 EP16168454.3A EP16168454A EP3098510B1 EP 3098510 B1 EP3098510 B1 EP 3098510B1 EP 16168454 A EP16168454 A EP 16168454A EP 3098510 B1 EP3098510 B1 EP 3098510B1
Authority
EP
European Patent Office
Prior art keywords
engine
gas turbine
turbofan gas
turbine engine
rotational speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP16168454.3A
Other languages
German (de)
French (fr)
Other versions
EP3098510A1 (en
Inventor
Scot Coffey
Gregory J. Chapman
Yufei Xiong
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honeywell International Inc
Original Assignee
Honeywell International Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honeywell International Inc filed Critical Honeywell International Inc
Publication of EP3098510A1 publication Critical patent/EP3098510A1/en
Application granted granted Critical
Publication of EP3098510B1 publication Critical patent/EP3098510B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C9/00Controlling gas-turbine plants; Controlling fuel supply in air- breathing jet-propulsion plants
    • F02C9/16Control of working fluid flow
    • F02C9/20Control of working fluid flow by throttling; by adjusting vanes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C9/00Controlling gas-turbine plants; Controlling fuel supply in air- breathing jet-propulsion plants
    • F02C9/16Control of working fluid flow
    • F02C9/18Control of working fluid flow by bleeding, bypassing or acting on variable working fluid interconnections between turbines or compressors or their stages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C9/00Controlling gas-turbine plants; Controlling fuel supply in air- breathing jet-propulsion plants
    • F02C9/16Control of working fluid flow
    • F02C9/20Control of working fluid flow by throttling; by adjusting vanes
    • F02C9/22Control of working fluid flow by throttling; by adjusting vanes by adjusting turbine vanes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C9/00Controlling gas-turbine plants; Controlling fuel supply in air- breathing jet-propulsion plants
    • F02C9/26Control of fuel supply
    • F02C9/263Control of fuel supply by means of fuel metering valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N3/00Regulating air supply or draught
    • F23N3/06Regulating air supply or draught by conjoint operation of two or more valves or dampers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/24Preventing development of abnormal or undesired conditions, i.e. safety arrangements
    • F23N5/242Preventing development of abnormal or undesired conditions, i.e. safety arrangements using electronic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/10Purpose of the control system
    • F05B2270/101Purpose of the control system to control rotational speed (n)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/10Purpose of the control system
    • F05B2270/101Purpose of the control system to control rotational speed (n)
    • F05B2270/1011Purpose of the control system to control rotational speed (n) to prevent overspeed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/10Purpose of the control system
    • F05B2270/107Purpose of the control system to cope with emergencies
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2270/00Control
    • F05D2270/01Purpose of the control system
    • F05D2270/02Purpose of the control system to control rotational speed (n)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2270/00Control
    • F05D2270/01Purpose of the control system
    • F05D2270/05Purpose of the control system to affect the output of the engine
    • F05D2270/051Thrust
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2270/00Control
    • F05D2270/01Purpose of the control system
    • F05D2270/09Purpose of the control system to cope with emergencies
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2270/00Control
    • F05D2270/30Control parameters, e.g. input parameters
    • F05D2270/304Spool rotational speed

Definitions

  • the present invention generally relates to gas turbine engine controls, and more particularly relates to a system and method for accommodating an uncontrolled high thrust condition in gas turbine engines.
  • Such a condition may include the actual engine thrust increasing to significantly higher levels than what is being commanded and/or remaining high when low thrust is commanded.
  • the means of metering fuel to the engine e.g., the fuel metering valve
  • the pilot may lose the ability to control engine thrust via the thrust/power/throttle levers or the auto-throttle.
  • engine thrust will continue to increase until either an engine limit is reached or the pilot initiates an intervening action.
  • the engine limit may be, for example, an engine control limit, such as an overspeed governor, or an inherent limit, such as an engine stall. Intervening actions may include, for example, recovering the normal fuel metering means or manually shutting down the affected engine.
  • a method of accommodating an uncontrolled high thrust condition in a turbofan gas turbine engine includes processing engine data from the turbofan gas turbine engine to determine when a potential for an uncontrolled high thrust condition exists. When the potential for an uncontrolled high thrust condition exists, the engine data are processed to determine whether corrective action for the uncontrolled high thrust condition should be implemented by varying turbofan gas turbine engine effective geometry to (i) increase turbofan gas turbine engine rotational speed or (ii) decrease turbofan gas turbine engine rotational speed. The determined corrective action is automatically implemented.
  • a turbofan gas turbine engine uncontrolled high thrust condition accommodation system in another embodiment, includes an engine data source and an engine control.
  • the engine data source is configured to supply engine data representative of turbofan gas turbine engine operability.
  • the engine control is coupled to receive the engine data and is configured, upon receipt thereof, to determine when a potential for an uncontrolled high thrust condition exists in the turbofan gas turbine engine.
  • the engine control Upon determining that the potential for an uncontrolled high thrust condition exists, the engine control is further configured to determine whether corrective action for the uncontrolled high thrust condition should be implemented by varying turbofan gas turbine engine effective geometry to (i) increase turbofan gas turbine engine rotational speed or (ii) decrease turbofan gas turbine engine rotational speed, and supply commands that cause the determined corrective action to be implemented.
  • a turbofan gas turbine engine control system in yet another embodiment, includes a turbofan gas turbine engine, a plurality of bleed air flow control valves, an engine data source, and an engine control.
  • the turbofan gas turbine engine has a plurality of movable inlet guide vanes mounted therein that are responsive to guide vane position commands to move to commanded guide vane positions.
  • the bleed air flow control valves are in fluid communication with the turbofan gas turbine engine. Each bleed air flow control valve is responsive to valve position commands to control bleed air flow from the turbofan gas turbine engine.
  • the engine data source is coupled to the turbofan gas turbine engine and is configured to supply engine data representative of turbofan gas turbine engine operability.
  • the engine control is coupled to receive the engine data and is configured, upon receipt thereof, to determine when a potential for an uncontrolled high thrust condition exists in the turbofan gas turbine engine. Upon determining that the potential for an uncontrolled high thrust condition exists, the engine control is configured to determine whether corrective action for the uncontrolled high thrust condition should be implemented by (i) supplying guide vane position commands that cause the inlet guide vanes to close to thereby increase turbofan gas turbine engine rotational speed or (ii) supply valve position commands that cause bleed air flow from the turbofan gas turbine engine to increase to thereby decrease turbofan gas turbine engine rotational speed, and supply the commands that cause the determined corrective action to be implemented.
  • FIG. 1 a functional block diagram of an exemplary gas turbine engine control system is depicted.
  • the depicted system is for a multi-spool turbofan gas turbine engine 100, which includes an intake section 102, a compressor section 104, a combustion section 106, a turbine section 108, and an exhaust section 112.
  • the intake section 102 includes a fan 114, which is mounted in a fan case 116.
  • the fan 114 draws air into the intake section 102 and accelerates it.
  • a fraction of the accelerated air exhausted from the fan 114 is directed through a bypass section 118 disposed between the fan case 116 and an engine cowl 122, and provides a forward thrust.
  • the remaining fraction of air exhausted from the fan 114 is directed into the compressor section 104.
  • the compressor section 104 may include one or more compressors 124, which raise the pressure of the air directed into it from the fan 114, and directs the compressed air into the combustion section 106. In the depicted embodiment, only a single compressor 124 is shown, though it will be appreciated that one or more additional compressors could be used.
  • the combustion section 106 which includes a combustor assembly 126, the compressed air is mixed with fuel that is controllably supplied to the combustor assembly 126 from a non-illustrated fuel source via a fuel metering valve 127. The fuel and air mixture is combusted, and the high energy combusted air mixture is then directed into the turbine section 108.
  • the turbine section 108 includes one or more turbines.
  • the turbine section 108 includes two turbines, a high pressure turbine 128, and a low pressure turbine 132.
  • the engine 100 could be configured with more or less than this number of turbines.
  • the combusted air mixture from the combustion section 106 expands through each turbine 128, 132, causing it to rotate.
  • the combusted air mixture is then exhausted through a exhaust nozzle 134 disposed in the exhaust section 112, providing additional forward thrust.
  • each drives equipment in the engine 100 via concentrically disposed shafts or spools.
  • the high pressure turbine 128 drives the compressor 124 via a high pressure spool 136
  • the low pressure turbine 132 drives the fan 114 via a low pressure spool 138.
  • the depicted engine 100 additionally includes a plurality of variable geometry devices.
  • the variable geometry devices which may be variously configured and implemented, impact the effective geometry of the engine 100 and, for a given fuel flow, can be positioned to either increase or decrease engine speed.
  • Some non-limiting examples of the variable geometry devices include one or more of a plurality of variable inlet guide vanes 142, a plurality of bleed air flow control valves 144, a variable area engine inlet 146, one or more sets of variable turbine stator vanes 148, and a variable area exhaust nozzle 134.
  • variable inlet guide vanes 142 when included, are responsive to guide vane position commands to move to commanded guide vane positions. As is generally known, for given engine conditions, closing the variable inlet guide vanes 142 will cause the rotational speed of the engine 100 to increase, and opening the variable inlet guide vanes 142 will cause the rotational speed of the engine 100 to decrease.
  • the bleed air flow control valves 144 are in fluid communication with the turbofan gas turbine engine 100. More specifically, the bleed air flow control valves 144 are in fluid communication with the compressor section 104 of the engine, via, for example, one or more bleed air supply lines (only one depicted). Each bleed air flow control valve 144 is responsive to valve position commands to control bleed air flow from the turbofan gas turbine engine 100. It will be appreciated that the number of bleed air flow control valves 144 may vary depending, for example, on the number of bleed air loads that may be supplied with bleed air.
  • the bleed air flow control valves 144 include one or more surge bleed control valves 144-1 (only one depicted), one or more aircraft bleed air system control valves 144-2 (only one depicted), and one or more anti-ice system control valves 144-3 (only one depicted). Regardless of the number of bleed air flow control valves 144 and associated loads, it is generally known that, for given engine conditions, reducing bleed air flow from the engine 100 will cause the rotational speed of the engine 100 to increase, and increasing bleed air flow from the engine 100 will cause the rotational speed of the engine 100 to decrease.
  • variable area engine inlet 146 when included, is responsive to engine inlet position commands to move to commanded engine inlet position. As is generally known, for given engine conditions, increasing the area of the engine inlet 146 will cause the rotational speed of the engine 100 to increase, and decreasing the area of the engine inlet 146will cause the rotational speed of the engine 100 to decrease.
  • variable turbine stator vanes 148 may be included in the high pressure turbine 128, or the low pressure turbine 132, or both. For clarity, the depicted engine 100 is shown as including variable turbine stator vanes 148 in both turbines. Regardless of whether the variable turbine stator vanes 148 are included in only one or in both turbines 128, 132, the variable turbine stator vanes 148, when included, are responsive to turbine stator vane position commands to move to commanded turbine stator vane positions. As is generally known, for given engine conditions, closing the variable turbine stator vanes 148 in a high pressure 128 will cause the rotational speed of the engine 100 to increase, and opening the variable turbine stator vanes 148 in a high pressure 128 will cause the rotational speed of the engine 100 to decrease.
  • variable turbine stator vanes 148 in a low pressure 132 will cause the rotational speed of the engine 100 to increase, and closing the variable turbine stator vanes 148 in a low pressure 132 will cause the rotational speed of the engine 100 to decrease
  • variable area exhaust nozzle 134 when included, is responsive to exhaust nozzle position commands to move to commanded exhaust nozzle position. As is generally known, for given engine conditions, increasing the area of the exhaust nozzle 134 will cause the rotational speed of the engine 100 to increase, and decreasing the area of the exhaust nozzle 134 will cause the rotational speed of the engine 100 to decrease.
  • the system additionally includes an engine data source 152 and an engine control 154.
  • the engine data source 152 is coupled to the turbofan gas turbine engine 100 and is configured to supply engine data representative of turbofan gas turbine engine operability.
  • the engine data source 152 may be variously configured and implemented, but in the depicted embodiment the engine data source 152 is implemented using various sensors that are configured to supply data representative of various parameters associated with turbofan gas turbine engine operability.
  • the parameters may also vary, but include at least fuel flow, fuel metering valve data, engine rotational speeds (both N1 and N2), and various engine temperatures and pressures, just to name a few.
  • the engine control 154 is coupled to receive the engine data supplied from the engine data source 152.
  • the engine control 154 is configured, upon receipt of the engine data, to control the operation of the turbofan gas turbine engine 100.
  • the engine control 154 is additionally configured, upon receipt of the engine data, to determine when a potential for an uncontrolled high thrust condition exists in the turbofan gas turbine engine 100.
  • the manner in which the engine control 154 determines that a potential for an uncontrolled high thrust condition exists may vary. In one particular embodiment, it makes this determination based on fuel metering valve operability - that is, whether the fuel metering valve 127 is stuck in a position that will result in an uncontrolled high thrust condition. It will be appreciated that this is only one technique for determining the potential for an uncontrolled high thrust condition. Other techniques include, for example, various electrical, hydraulic, mechanical, or pneumatic failures that would yield an increase in fuel flow sufficient to cause an uncontrolled thrust condition.
  • the engine control 154 upon making this determination, is further configured to determine the type of corrective action that should be implemented, and then supply the commands that cause the determined corrective action to be implemented. In particular, the engine control 154 determines whether the corrective action should be supplying commands that will vary the effective geometry of the engine to increase turbofan gas turbine engine rotational speed, or whether the corrective action should be supplying commands that will vary the effective geometry of the engine to decrease turbofan gas turbine engine rotational speed.
  • This process which was just described generally, is depicted in flowchart form in FIG. 2 , and with reference thereto will now be described.
  • the engine control 148 upon initiation of the process 200, first determines whether the potential for an uncontrolled high thrust condition exists (202). If not, the process reinitiates. If, however, the potential does exist, the engine control 154 then determines if the turbofan gas turbine engine rotational speed will reach an overspeed trip limit by varying the effective geometry of the engine in a manner that will increase turbofan gas turbine engine rotational speed (204). In particular, based on the engine data, the engine control 154 determines whether the rotational speed of the high pressure turbine (N2) will reach an overspeed trip limit. As is generally known, the overspeed trip limit is a preset value that is stored in memory in the engine control 154.
  • the engine control 154 will then supply appropriate commands to the appropriate variable geometry devices that will increase turbofan gas turbine engine rotational speed (206). As a result, the turbofan gas turbine engine rotational speed will increase until it reaches the overspeed trip limit, and the engine 100 will shut down, thereby preventing the uncontrolled overthrust. If, however, the engine control 154 determines that the turbofan gas turbine engine rotational speed will not reach the overspeed trip limit, the engine control 154 will supply appropriate commands to the appropriate variable geometry devices that will decrease turbofan gas turbine engine rotational speed (208). As a result, the turbofan gas turbine engine rotational speed will decrease, and although the engine 100 will not automatically shut down, the uncontrolled overthrust is still prevented.
  • Skilled artisans may implement the described functionality in varying ways for each particular application, but such implementation decisions should not be interpreted as causing a departure from the scope of the present invention.
  • an embodiment of a system or a component may employ various integrated circuit components, e.g., memory elements, digital signal processing elements, logic elements, look-up tables, or the like, which may carry out a variety of functions under the control of one or more microprocessors or other control devices.
  • integrated circuit components e.g., memory elements, digital signal processing elements, logic elements, look-up tables, or the like, which may carry out a variety of functions under the control of one or more microprocessors or other control devices.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • a general-purpose processor may be a microprocessor, but in the alternative, the processor may be any conventional processor, controller, microcontroller, or state machine.
  • a processor may also be implemented as a combination of computing devices, e.g., a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration.
  • a software module may reside in RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, hard disk, a removable disk, a CD-ROM, or any other form of storage medium known in the art.
  • An exemplary storage medium is coupled to the processor such that the processor can read information from, and write information to, the storage medium.
  • the storage medium may be integral to the processor.
  • the processor and the storage medium may reside in an ASIC.
  • the ASIC may reside in a user terminal.
  • the processor and the storage medium may reside as discrete components in a user terminal.

Description

    TECHNICAL FIELD
  • The present invention generally relates to gas turbine engine controls, and more particularly relates to a system and method for accommodating an uncontrolled high thrust condition in gas turbine engines.
  • BACKGROUND
  • Although highly unlikely, it is postulated that single or multiple component failures can result in an uncontrolled high thrust condition. Such a condition may include the actual engine thrust increasing to significantly higher levels than what is being commanded and/or remaining high when low thrust is commanded. For example, though highly unlikely, it is postulated that if the means of metering fuel to the engine (e.g., the fuel metering valve) were to fail in a fixed position, then the pilot may lose the ability to control engine thrust via the thrust/power/throttle levers or the auto-throttle. If the fuel metering means were to fail at the maximum fuel flow position, then engine thrust will continue to increase until either an engine limit is reached or the pilot initiates an intervening action. The engine limit may be, for example, an engine control limit, such as an overspeed governor, or an inherent limit, such as an engine stall. Intervening actions may include, for example, recovering the normal fuel metering means or manually shutting down the affected engine.
  • Presently, most regulatory bodies address the postulated uncontrolled high thrust condition by relying on crew intervention. That is, it is presently asserted that a flight crew will readily recognize the condition and manually shutdown the affected engine. Engineering studies and service experience indicate that this assertion is not always valid. Moreover, as may be appreciated, even if a flight crew were to recognize the postulated uncontrolled high thrust condition and thus shut down the affected engine, that engine is now unavailable to provide electrical, hydraulic, and/or pneumatic power to the aircraft. US 2011 / 0173988 A1 discloses an helicopter turbine featuring a system and the related method of operation to detect a high fuel low rate incident due to a stuck valve. An emergency control takes over, either shutting the fuel valve off or reducing the fuel rate significantly.
  • Hence, there is a need for a system and method for accommodating an uncontrolled high thrust condition in turbofan gas turbine engines that does not rely on flight crew recognition and subsequent intervention. The present invention addresses at least this need.
  • BRIEF SUMMARY
  • This summary is provided to describe select concepts in a simplified form that are further described in the Detailed Description. This summary is not intended to identify key or essential features of the claimed subject matter, nor is it intended to be used as an aid in determining the scope of the claimed subject matter.
  • In one embodiment, a method of accommodating an uncontrolled high thrust condition in a turbofan gas turbine engine includes processing engine data from the turbofan gas turbine engine to determine when a potential for an uncontrolled high thrust condition exists. When the potential for an uncontrolled high thrust condition exists, the engine data are processed to determine whether corrective action for the uncontrolled high thrust condition should be implemented by varying turbofan gas turbine engine effective geometry to (i) increase turbofan gas turbine engine rotational speed or (ii) decrease turbofan gas turbine engine rotational speed. The determined corrective action is automatically implemented.
  • In another embodiment, a turbofan gas turbine engine uncontrolled high thrust condition accommodation system includes an engine data source and an engine control. The engine data source is configured to supply engine data representative of turbofan gas turbine engine operability. The engine control is coupled to receive the engine data and is configured, upon receipt thereof, to determine when a potential for an uncontrolled high thrust condition exists in the turbofan gas turbine engine. Upon determining that the potential for an uncontrolled high thrust condition exists, the engine control is further configured to determine whether corrective action for the uncontrolled high thrust condition should be implemented by varying turbofan gas turbine engine effective geometry to (i) increase turbofan gas turbine engine rotational speed or (ii) decrease turbofan gas turbine engine rotational speed, and supply commands that cause the determined corrective action to be implemented.
  • In yet another embodiment, a turbofan gas turbine engine control system includes a turbofan gas turbine engine, a plurality of bleed air flow control valves, an engine data source, and an engine control. The turbofan gas turbine engine has a plurality of movable inlet guide vanes mounted therein that are responsive to guide vane position commands to move to commanded guide vane positions. The bleed air flow control valves are in fluid communication with the turbofan gas turbine engine. Each bleed air flow control valve is responsive to valve position commands to control bleed air flow from the turbofan gas turbine engine. The engine data source is coupled to the turbofan gas turbine engine and is configured to supply engine data representative of turbofan gas turbine engine operability. The engine control is coupled to receive the engine data and is configured, upon receipt thereof, to determine when a potential for an uncontrolled high thrust condition exists in the turbofan gas turbine engine. Upon determining that the potential for an uncontrolled high thrust condition exists, the engine control is configured to determine whether corrective action for the uncontrolled high thrust condition should be implemented by (i) supplying guide vane position commands that cause the inlet guide vanes to close to thereby increase turbofan gas turbine engine rotational speed or (ii) supply valve position commands that cause bleed air flow from the turbofan gas turbine engine to increase to thereby decrease turbofan gas turbine engine rotational speed, and supply the commands that cause the determined corrective action to be implemented.
  • Furthermore, other desirable features and characteristics of the uncontrolled high thrust accommodation system and method will become apparent from the subsequent detailed description and the appended claims, taken in conjunction with the accompanying drawings and the preceding background.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The present invention will hereinafter be described in conjunction with the following drawing figures, wherein like numerals denote like elements, and wherein:
    • FIG. 1 depicts a functional block diagram of an exemplary gas turbine engine control system; and
    • FIG. 2 depicts a process, in flowchart form, of accommodating an uncontrolled high thrust condition in a turbofan gas turbine engine, such as the one depicted in FIG. 1.
    DETAILED DESCRIPTION
  • The following detailed description is merely exemplary in nature and is not intended to limit the invention or the application and uses of the invention. As used herein, the word "exemplary" means "serving as an example, instance, or illustration." Thus, any embodiment described herein as "exemplary" is not necessarily to be construed as preferred or advantageous over other embodiments.
  • All of the embodiments described herein are exemplary embodiments provided to enable persons skilled in the art to make or use the invention and not to limit the scope of the invention which is defined by the claims. Furthermore, there is no intention to be bound by any expressed or implied theory presented in the preceding technical field, background, brief summary, or the following detailed description. In this regard, although embodiments described herein are directed toward a turbofan gas turbine engine, it will be appreciated that the described embodiments could be implemented in other types of gas turbine engines.
  • Turning now to FIG. 1, a functional block diagram of an exemplary gas turbine engine control system is depicted. The depicted system is for a multi-spool turbofan gas turbine engine 100, which includes an intake section 102, a compressor section 104, a combustion section 106, a turbine section 108, and an exhaust section 112. The intake section 102 includes a fan 114, which is mounted in a fan case 116. The fan 114 draws air into the intake section 102 and accelerates it. A fraction of the accelerated air exhausted from the fan 114 is directed through a bypass section 118 disposed between the fan case 116 and an engine cowl 122, and provides a forward thrust. The remaining fraction of air exhausted from the fan 114 is directed into the compressor section 104.
  • The compressor section 104 may include one or more compressors 124, which raise the pressure of the air directed into it from the fan 114, and directs the compressed air into the combustion section 106. In the depicted embodiment, only a single compressor 124 is shown, though it will be appreciated that one or more additional compressors could be used. In the combustion section 106, which includes a combustor assembly 126, the compressed air is mixed with fuel that is controllably supplied to the combustor assembly 126 from a non-illustrated fuel source via a fuel metering valve 127. The fuel and air mixture is combusted, and the high energy combusted air mixture is then directed into the turbine section 108.
  • The turbine section 108 includes one or more turbines. In the depicted embodiment, the turbine section 108 includes two turbines, a high pressure turbine 128, and a low pressure turbine 132. However, it will be appreciated that the engine 100 could be configured with more or less than this number of turbines. No matter the particular number, the combusted air mixture from the combustion section 106 expands through each turbine 128, 132, causing it to rotate. The combusted air mixture is then exhausted through a exhaust nozzle 134 disposed in the exhaust section 112, providing additional forward thrust. As the turbines 128 and 132 rotate, each drives equipment in the engine 100 via concentrically disposed shafts or spools. Specifically, the high pressure turbine 128 drives the compressor 124 via a high pressure spool 136, and the low pressure turbine 132 drives the fan 114 via a low pressure spool 138.
  • The depicted engine 100 additionally includes a plurality of variable geometry devices. The variable geometry devices, which may be variously configured and implemented, impact the effective geometry of the engine 100 and, for a given fuel flow, can be positioned to either increase or decrease engine speed. Some non-limiting examples of the variable geometry devices include one or more of a plurality of variable inlet guide vanes 142, a plurality of bleed air flow control valves 144, a variable area engine inlet 146, one or more sets of variable turbine stator vanes 148, and a variable area exhaust nozzle 134. Each of these variable geometry devices, and the impact each has on engine speed, will now be briefly described.
  • The variable inlet guide vanes 142, when included, are responsive to guide vane position commands to move to commanded guide vane positions. As is generally known, for given engine conditions, closing the variable inlet guide vanes 142 will cause the rotational speed of the engine 100 to increase, and opening the variable inlet guide vanes 142 will cause the rotational speed of the engine 100 to decrease.
  • The bleed air flow control valves 144 are in fluid communication with the turbofan gas turbine engine 100. More specifically, the bleed air flow control valves 144 are in fluid communication with the compressor section 104 of the engine, via, for example, one or more bleed air supply lines (only one depicted). Each bleed air flow control valve 144 is responsive to valve position commands to control bleed air flow from the turbofan gas turbine engine 100. It will be appreciated that the number of bleed air flow control valves 144 may vary depending, for example, on the number of bleed air loads that may be supplied with bleed air. In the depicted embodiment, the bleed air flow control valves 144 include one or more surge bleed control valves 144-1 (only one depicted), one or more aircraft bleed air system control valves 144-2 (only one depicted), and one or more anti-ice system control valves 144-3 (only one depicted). Regardless of the number of bleed air flow control valves 144 and associated loads, it is generally known that, for given engine conditions, reducing bleed air flow from the engine 100 will cause the rotational speed of the engine 100 to increase, and increasing bleed air flow from the engine 100 will cause the rotational speed of the engine 100 to decrease.
  • The variable area engine inlet 146, when included, is responsive to engine inlet position commands to move to commanded engine inlet position. As is generally known, for given engine conditions, increasing the area of the engine inlet 146 will cause the rotational speed of the engine 100 to increase, and decreasing the area of the engine inlet 146will cause the rotational speed of the engine 100 to decrease.
  • The variable turbine stator vanes 148 may be included in the high pressure turbine 128, or the low pressure turbine 132, or both. For clarity, the depicted engine 100 is shown as including variable turbine stator vanes 148 in both turbines. Regardless of whether the variable turbine stator vanes 148 are included in only one or in both turbines 128, 132, the variable turbine stator vanes 148, when included, are responsive to turbine stator vane position commands to move to commanded turbine stator vane positions. As is generally known, for given engine conditions, closing the variable turbine stator vanes 148 in a high pressure 128 will cause the rotational speed of the engine 100 to increase, and opening the variable turbine stator vanes 148 in a high pressure 128 will cause the rotational speed of the engine 100 to decrease. Conversely, for given engine conditions, opening the variable turbine stator vanes 148 in a low pressure 132 will cause the rotational speed of the engine 100 to increase, and closing the variable turbine stator vanes 148 in a low pressure 132 will cause the rotational speed of the engine 100 to decrease
  • The variable area exhaust nozzle 134, when included, is responsive to exhaust nozzle position commands to move to commanded exhaust nozzle position. As is generally known, for given engine conditions, increasing the area of the exhaust nozzle 134 will cause the rotational speed of the engine 100 to increase, and decreasing the area of the exhaust nozzle 134 will cause the rotational speed of the engine 100 to decrease.
  • As FIG. 1 further depicts, the system additionally includes an engine data source 152 and an engine control 154. The engine data source 152 is coupled to the turbofan gas turbine engine 100 and is configured to supply engine data representative of turbofan gas turbine engine operability. The engine data source 152 may be variously configured and implemented, but in the depicted embodiment the engine data source 152 is implemented using various sensors that are configured to supply data representative of various parameters associated with turbofan gas turbine engine operability. The parameters may also vary, but include at least fuel flow, fuel metering valve data, engine rotational speeds (both N1 and N2), and various engine temperatures and pressures, just to name a few.
  • No matter how the engine data source 152 is specifically implemented, the engine control 154 is coupled to receive the engine data supplied from the engine data source 152. The engine control 154 is configured, upon receipt of the engine data, to control the operation of the turbofan gas turbine engine 100. The engine control 154 is additionally configured, upon receipt of the engine data, to determine when a potential for an uncontrolled high thrust condition exists in the turbofan gas turbine engine 100. The manner in which the engine control 154 determines that a potential for an uncontrolled high thrust condition exists may vary. In one particular embodiment, it makes this determination based on fuel metering valve operability - that is, whether the fuel metering valve 127 is stuck in a position that will result in an uncontrolled high thrust condition. It will be appreciated that this is only one technique for determining the potential for an uncontrolled high thrust condition. Other techniques include, for example, various electrical, hydraulic, mechanical, or pneumatic failures that would yield an increase in fuel flow sufficient to cause an uncontrolled thrust condition.
  • Regardless of how the potential for an uncontrolled high thrust condition is determined, the engine control 154, upon making this determination, is further configured to determine the type of corrective action that should be implemented, and then supply the commands that cause the determined corrective action to be implemented. In particular, the engine control 154 determines whether the corrective action should be supplying commands that will vary the effective geometry of the engine to increase turbofan gas turbine engine rotational speed, or whether the corrective action should be supplying commands that will vary the effective geometry of the engine to decrease turbofan gas turbine engine rotational speed. This process, which was just described generally, is depicted in flowchart form in FIG. 2, and with reference thereto will now be described.
  • As FIG. 2 depicts, the engine control 148, upon initiation of the process 200, first determines whether the potential for an uncontrolled high thrust condition exists (202). If not, the process reinitiates. If, however, the potential does exist, the engine control 154 then determines if the turbofan gas turbine engine rotational speed will reach an overspeed trip limit by varying the effective geometry of the engine in a manner that will increase turbofan gas turbine engine rotational speed (204). In particular, based on the engine data, the engine control 154 determines whether the rotational speed of the high pressure turbine (N2) will reach an overspeed trip limit. As is generally known, the overspeed trip limit is a preset value that is stored in memory in the engine control 154.
  • If the engine control 154 does determine that the overspeed trip limit will be reached, the engine control 154 will then supply appropriate commands to the appropriate variable geometry devices that will increase turbofan gas turbine engine rotational speed (206). As a result, the turbofan gas turbine engine rotational speed will increase until it reaches the overspeed trip limit, and the engine 100 will shut down, thereby preventing the uncontrolled overthrust. If, however, the engine control 154 determines that the turbofan gas turbine engine rotational speed will not reach the overspeed trip limit, the engine control 154 will supply appropriate commands to the appropriate variable geometry devices that will decrease turbofan gas turbine engine rotational speed (208). As a result, the turbofan gas turbine engine rotational speed will decrease, and although the engine 100 will not automatically shut down, the uncontrolled overthrust is still prevented.
  • Those of skill in the art will appreciate that the various illustrative logical blocks, modules, circuits, and algorithm steps described in connection with the embodiments disclosed herein may be implemented as electronic hardware, computer software, or combinations of both. Some of the embodiments and implementations are described above in terms of functional and/or logical block components (or modules) and various processing steps. However, it should be appreciated that such block components (or modules) may be realized by any number of hardware, software, and/or firmware components configured to perform the specified functions. To clearly illustrate this interchangeability of hardware and software, various illustrative components, blocks, modules, circuits, and steps have been described above generally in terms of their functionality. Whether such functionality is implemented as hardware or software depends upon the particular application and design constraints imposed on the overall system. Skilled artisans may implement the described functionality in varying ways for each particular application, but such implementation decisions should not be interpreted as causing a departure from the scope of the present invention. For example, an embodiment of a system or a component may employ various integrated circuit components, e.g., memory elements, digital signal processing elements, logic elements, look-up tables, or the like, which may carry out a variety of functions under the control of one or more microprocessors or other control devices. In addition, those skilled in the art will appreciate that embodiments described herein are merely exemplary implementations.
  • The various illustrative logical blocks, modules, and circuits described in connection with the embodiments disclosed herein may be implemented or performed with a general purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a field programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described herein. A general-purpose processor may be a microprocessor, but in the alternative, the processor may be any conventional processor, controller, microcontroller, or state machine. A processor may also be implemented as a combination of computing devices, e.g., a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration.
  • The steps of a method or algorithm described in connection with the embodiments disclosed herein may be embodied directly in hardware, in a software module executed by a processor, or in a combination of the two. A software module may reside in RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, hard disk, a removable disk, a CD-ROM, or any other form of storage medium known in the art. An exemplary storage medium is coupled to the processor such that the processor can read information from, and write information to, the storage medium. In the alternative, the storage medium may be integral to the processor. The processor and the storage medium may reside in an ASIC. The ASIC may reside in a user terminal. In the alternative, the processor and the storage medium may reside as discrete components in a user terminal.
  • In this document, relational terms such as first and second, and the like may be used solely to distinguish one entity or action from another entity or action without necessarily requiring or implying any actual such relationship or order between such entities or actions. Numerical ordinals such as "first," "second," "third," etc. simply denote different singles of a plurality and do not imply any order or sequence unless specifically defined by the claim language. The sequence of the text in any of the claims does not imply that process steps must be performed in a temporal or logical order according to such sequence unless it is specifically defined by the language of the claim. The process steps may be interchanged in any order without departing from the scope of the invention as long as such an interchange does not contradict the claim language and is not logically nonsensical.
  • Furthermore, depending on the context, words such as "connect" or "coupled to" used in describing a relationship between different elements do not imply that a direct physical connection must be made between these elements. For example, two elements may be connected to each other physically, electronically, logically, or in any other manner, through one or more additional elements.
  • While at least one exemplary embodiment has been presented in the foregoing detailed description of the invention, it should be appreciated that a vast number of variations exist. It should also be appreciated that the exemplary embodiment or exemplary embodiments are only examples, and are not intended to limit the scope, applicability, or configuration of the invention in any way. Rather, the foregoing detailed description will provide those skilled in the art with a convenient road map for implementing an exemplary embodiment of the invention. It being understood that various changes may be made in the function and arrangement of elements described in an exemplary embodiment without departing from the scope of the invention as set forth in the appended claims.

Claims (13)

  1. A method of accommodating an uncontrolled high thrust condition in a turbofan gas turbine engine (100), the method comprising the steps of:
    processing engine data from the turbofan gas turbine engine to determine when a potential for an uncontrolled high thrust condition exists;
    when the potential for an uncontrolled high thrust condition exists, processing the engine data to determine whether corrective action for the uncontrolled high thrust condition should be implemented by varying turbofan gas turbine engine effective geometry to (i) increase turbofan gas turbine engine rotational speed or (ii) decrease turbofan gas turbine engine rotational speed; and
    automatically implementing the determined corrective action.
  2. The method of claim 1, further comprising:
    when the potential for an uncontrolled high thrust condition exists, processing the engine data to determine if the turbofan gas turbine engine rotational speed will reach an overspeed trip limit by closing inlet guide vanes (142) in the turbofan gas turbine engine; and
    if so, closing the inlet guide vanes to increase the turbofan gas turbine engine rotational speed to the overspeed trip limit.
  3. The method of claim 2, wherein:
    the engine data include high pressure turbine rotational speed; and
    the overspeed trip limit is associated with high pressure turbine rotational speed.
  4. The method of claim 3, further comprising:
    bleeding air from the turbofan gas turbine engine if the turbofan gas turbine engine rotational speed will not reach the overspeed trip limit.
  5. The method of claim 4, wherein the step of bleeding air from the turbofan gas turbine engine comprises one or more of:
    bleeding air via surge bleed control valves;
    bleeding air via aircraft bleed air system control valves; and
    bleeding air via engine anti-ice system control valves.
  6. The method of claim 1, wherein:
    the engine data include fuel metering valve data, the fuel metering valve data representative of fuel metering valve operability; and
    the determination of when the potential for the uncontrolled high thrust condition exists is based, at least in part, on the fuel metering valve data.
  7. The method of claim 6, further comprising:
    processing the fuel metering valve data to determine if the fuel metering valve is stuck.
  8. A turbofan gas turbine engine uncontrolled high thrust condition accommodation system, comprising:
    an engine data source (152) configured to supply engine data representative of turbofan gas turbine engine operability; and
    an engine control (154) coupled to receive the engine data and configured, upon receipt thereof, to determine when a potential for an uncontrolled high thrust condition exists in the turbofan gas turbine engine (100) and, upon determining that the potential for an uncontrolled high thrust condition exists, to:
    determine whether corrective action for the uncontrolled high thrust condition should be implemented by varying turbofan gas turbine engine effective geometry to (i) increase turbofan gas turbine engine rotational speed or (ii) decrease turbofan gas turbine engine rotational speed, and
    supply commands that cause the determined corrective action to be implemented.
  9. The system of claim 8, wherein the engine control is further configured, upon determining that the potential for an uncontrolled high thrust condition exists, to:
    determine if the turbofan gas turbine engine rotational speed will reach an overspeed trip limit by closing inlet guide vanes in the turbofan gas turbine engine; and
    if so, supply commands that cause the inlet guide vanes to close to thereby increase the turbofan gas turbine engine rotational speed to the overspeed trip limit.
  10. The system of claim 9, wherein:
    the engine data include high pressure turbine rotational speed; and
    the overspeed trip limit is associated with high pressure turbine rotational speed.
  11. The system of claim 10, wherein the engine control is further configured, upon determining that the turbofan gas turbine engine rotational speed will not reach the overspeed trip limit, to supply commands that cause increased bleed air flow from the turbofan gas turbine engine.
  12. The system of claim 11, wherein the commands that cause increased bleed air flow from the turbofan gas turbine engine comprise one or more of:
    commands that increase bleed air flow via surge bleed control valves (144-1) ;
    commands that increase bleed air flow via aircraft bleed air system control valves (144-2); and
    commands that increase bleed air flow via engine anti-ice system control valves (144-3).
  13. The system of claim 8, wherein:
    the engine data include fuel metering valve data, the fuel metering valve data representative of fuel metering valve operability; and
    the engine control determines when the potential for the uncontrolled high thrust condition exists based, at least in part, on the fuel metering valve data.
EP16168454.3A 2015-05-20 2016-05-04 Gas turbine engine uncontrolled high thrust accommodation system and method Active EP3098510B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US14/717,506 US10156190B2 (en) 2015-05-20 2015-05-20 Gas turbine engine uncontrolled high thrust accommodation system and method

Publications (2)

Publication Number Publication Date
EP3098510A1 EP3098510A1 (en) 2016-11-30
EP3098510B1 true EP3098510B1 (en) 2017-09-27

Family

ID=56116192

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16168454.3A Active EP3098510B1 (en) 2015-05-20 2016-05-04 Gas turbine engine uncontrolled high thrust accommodation system and method

Country Status (2)

Country Link
US (1) US10156190B2 (en)
EP (1) EP3098510B1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170138781A1 (en) * 2015-11-17 2017-05-18 General Electric Company Method and system for improving parameter measurement
CN106988894B (en) * 2017-04-19 2019-05-24 中国航发沈阳发动机研究所 A kind of gas turbine removal of load control system
GB201903062D0 (en) * 2019-03-07 2019-04-24 Rolls Royce Plc Fuel control system
CN110173358A (en) * 2019-06-18 2019-08-27 中国船舶重工集团公司第七0三研究所 It is a kind of power generation with free-turbine engine removal of load when method for adjusting rotation speed
US11499446B2 (en) 2020-04-29 2022-11-15 Pratt & Whitney Canada Corp. System and method for detecting a shaft event on an engine

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2941354A (en) 1957-10-11 1960-06-21 Gen Motors Corp Variable jet nozzle control with auxiliary control of guide vanes and compressor bleed
GB1119316A (en) 1967-03-20 1968-07-10 Rolls Royce Gas turbine engine fuel system
US3641766A (en) 1969-11-26 1972-02-15 Gen Electric Gas turbine engine constant speed thrust modulation
US4112677A (en) 1977-01-31 1978-09-12 Avco Corporation Thrust spoiler for turbofan engine
US4523517A (en) 1980-09-02 1985-06-18 Lockhead Corporation All electric environmental control system for advanced transport aircraft
US4483147A (en) 1981-04-27 1984-11-20 Evans Hugh G Turbocharged engine having an engine speed and throttle position responsive compressor bleed valve
US4653267A (en) 1983-05-31 1987-03-31 United Technologies Corporation Thrust balancing and cooling system
US5168447A (en) 1983-12-27 1992-12-01 The Boeing Company Engine trim control unit
US4756152A (en) 1986-12-08 1988-07-12 United Technologies Corporation Control for bleed modulation during engine deceleration
EP0342970A3 (en) 1988-05-19 1991-08-28 Control Data Canada Limited Method & apparatus for real-time measurement of the net thrust of a jet engine
US4991389A (en) 1989-04-21 1991-02-12 United Technologies Corporation Bleed modulation for transient engine operation
US6155212A (en) * 1989-06-12 2000-12-05 Mcalister; Roy E. Method and apparatus for operation of combustion engines
US5313778A (en) 1992-12-10 1994-05-24 United Technologies Corporation Automatic turbine engine bleed valve control for enhanced fuel management
US6141951A (en) 1998-08-18 2000-11-07 United Technologies Corporation Control system for modulating bleed in response to engine usage
GB0027288D0 (en) * 2000-11-08 2000-12-27 Rolls Royce Plc Overthrust protection system and method
US6895325B1 (en) * 2002-04-16 2005-05-17 Altek Power Corporation Overspeed control system for gas turbine electric powerplant
US6920748B2 (en) * 2002-07-03 2005-07-26 General Electric Company Methods and apparatus for operating gas turbine engines
US8302405B2 (en) 2006-10-13 2012-11-06 Rolls-Royce Power Engineering Plc Dynamic control of a gas turbine engine compressor during rapid transients
US8146370B2 (en) * 2008-05-21 2012-04-03 Honeywell International Inc. Turbine drive system with lock-up clutch and method
US8321119B2 (en) 2008-07-10 2012-11-27 General Electric Company Methods and systems to facilitate over-speed protection
US9217376B2 (en) 2008-11-13 2015-12-22 Sikorsky Aircraft Corporation Multi-mode adaptive fail-fixed system for FADEC controlled gas turbine engines
GB0915616D0 (en) 2009-09-08 2009-10-07 Rolls Royce Plc Surge margin regulation
US8370100B2 (en) * 2010-03-23 2013-02-05 General Electric Company Method for determining when to perform a test of an overspeed protection system of a powerplant machine
US9429078B1 (en) * 2013-03-14 2016-08-30 Tucson Embedded Systems, Inc. Multi-compatible digital engine controller

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
US10156190B2 (en) 2018-12-18
US20160341066A1 (en) 2016-11-24
EP3098510A1 (en) 2016-11-30

Similar Documents

Publication Publication Date Title
EP3098510B1 (en) Gas turbine engine uncontrolled high thrust accommodation system and method
EP2884075B1 (en) Aircraft engine system comprising a main engine, a starter and an auxiliary power unit
US10099796B2 (en) System and method for dynamically controlling the operation of an aircraft
CN109661504B (en) Control system for gas turbine engine
EP2535525B1 (en) Surge margin control for a gas turbine engine
US20170175646A1 (en) Method and system for stall margin modulation as a function of engine health
EP3147483B1 (en) Gas turbine engine uncontrolled high thrust detection system and method
US9266618B2 (en) Gas turbine engine turbine blade tip active clearance control system and method
CN108180077B (en) Method of limiting core engine speed of a gas turbine during icing conditions
US11618580B2 (en) Hybrid electric aircraft engine
US10487752B2 (en) Overthrust protection system and method
US10605166B2 (en) System and method for variable geometry mechanism control
EP3904660B1 (en) System and method for detecting a shaft event on a gas turbine engine
US11015531B2 (en) Engine-induced aircraft cabin resonance reduction system and method
EP3106649B1 (en) Aircraft gas turbine propulsion engine control without aircraft total air temperature sensors
EP3287625B1 (en) Gas turbine engine compressor surge avoidance control system and method
US10822112B2 (en) Slope-based event detection for turbine engines
CN111720218B (en) Signal response monitoring for turbine engines
RU2795890C2 (en) Lp spool power take-off and debris removal system

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20160504

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: F02C 9/22 20060101ALI20170407BHEP

Ipc: F23N 5/24 20060101ALI20170407BHEP

Ipc: F23N 3/06 20060101AFI20170407BHEP

Ipc: F02C 9/18 20060101ALI20170407BHEP

INTG Intention to grant announced

Effective date: 20170508

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 932306

Country of ref document: AT

Kind code of ref document: T

Effective date: 20171015

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602016000460

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170927

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170927

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171227

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170927

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170927

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20170927

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 932306

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170927

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171227

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171228

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170927

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170927

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170927

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170927

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170927

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170927

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180127

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170927

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170927

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170927

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170927

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602016000460

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170927

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170927

26N No opposition filed

Effective date: 20180628

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170927

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20180531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170927

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180504

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180504

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180531

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190531

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190531

Ref country code: MT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180504

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170927

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170927

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20160504

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170927

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170927

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170927

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170927

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20200504

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200504

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230525

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230530

Year of fee payment: 8