CN114203918B - Novel photoelectric memristor based on PVK/ZnO heterostructure - Google Patents
Novel photoelectric memristor based on PVK/ZnO heterostructure Download PDFInfo
- Publication number
- CN114203918B CN114203918B CN202111501669.5A CN202111501669A CN114203918B CN 114203918 B CN114203918 B CN 114203918B CN 202111501669 A CN202111501669 A CN 202111501669A CN 114203918 B CN114203918 B CN 114203918B
- Authority
- CN
- China
- Prior art keywords
- layer
- zinc oxide
- pvk
- aluminum electrode
- photomemristor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 claims abstract description 127
- 239000011787 zinc oxide Substances 0.000 claims abstract description 63
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 34
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims abstract description 34
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims abstract description 12
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 12
- 239000010703 silicon Substances 0.000 claims abstract description 12
- 239000000758 substrate Substances 0.000 claims abstract description 12
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims abstract description 12
- 229910052721 tungsten Inorganic materials 0.000 claims abstract description 12
- 239000010937 tungsten Substances 0.000 claims abstract description 12
- 229920003227 poly(N-vinyl carbazole) Polymers 0.000 claims description 56
- 238000004544 sputter deposition Methods 0.000 claims description 20
- 238000000034 method Methods 0.000 claims description 10
- 229910052751 metal Inorganic materials 0.000 claims description 6
- 239000002184 metal Substances 0.000 claims description 6
- 238000001755 magnetron sputter deposition Methods 0.000 claims description 5
- 238000002360 preparation method Methods 0.000 claims description 5
- 239000013077 target material Substances 0.000 claims description 5
- WSLDOOZREJYCGB-UHFFFAOYSA-N 1,2-Dichloroethane Chemical compound ClCCCl WSLDOOZREJYCGB-UHFFFAOYSA-N 0.000 claims description 3
- 238000000137 annealing Methods 0.000 claims description 3
- 239000000919 ceramic Substances 0.000 claims description 2
- 238000000151 deposition Methods 0.000 claims description 2
- 230000008021 deposition Effects 0.000 claims description 2
- 238000005137 deposition process Methods 0.000 claims description 2
- 238000004528 spin coating Methods 0.000 claims description 2
- 239000010410 layer Substances 0.000 abstract description 38
- 239000002346 layers by function Substances 0.000 abstract description 10
- KAESVJOAVNADME-UHFFFAOYSA-N Pyrrole Chemical compound C=1C=CNC=1 KAESVJOAVNADME-UHFFFAOYSA-N 0.000 abstract 2
- 229920002554 vinyl polymer Polymers 0.000 abstract 1
- 239000000463 material Substances 0.000 description 12
- 229910052760 oxygen Inorganic materials 0.000 description 11
- 239000001301 oxygen Substances 0.000 description 11
- 238000010586 diagram Methods 0.000 description 10
- 238000012360 testing method Methods 0.000 description 7
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 6
- 230000007246 mechanism Effects 0.000 description 6
- 230000005684 electric field Effects 0.000 description 5
- -1 oxygen ions Chemical class 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 3
- 239000010408 film Substances 0.000 description 3
- 239000011368 organic material Substances 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 230000007704 transition Effects 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 239000000523 sample Substances 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- PTFCDOFLOPIGGS-UHFFFAOYSA-N Zinc dication Chemical compound [Zn+2] PTFCDOFLOPIGGS-UHFFFAOYSA-N 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 238000013473 artificial intelligence Methods 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 238000004020 luminiscence type Methods 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 230000001537 neural effect Effects 0.000 description 1
- 230000005693 optoelectronics Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 210000000225 synapse Anatomy 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 229910000314 transition metal oxide Inorganic materials 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K30/00—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
- H10K30/10—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising heterojunctions between organic semiconductors and inorganic semiconductors
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K71/00—Manufacture or treatment specially adapted for the organic devices covered by this subclass
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K2102/00—Constructional details relating to the organic devices covered by this subclass
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/549—Organic PV cells
Landscapes
- Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Photovoltaic Devices (AREA)
- Light Receiving Elements (AREA)
Abstract
本发明公开了一种基于PVK/ZnO异质结构的新型光电忆阻器,所述新型光电忆阻器自下而上依次包括:硅衬底、钨电极层、氧化锌层、聚乙烯基咔唑层和铝电极。本发明能够在传统PVK光电忆阻器的基础上,引入具有高稳定性和高电子迁移率的氧化锌功能层,以提高PVK光电忆阻器的稳定性和可重复性。
The invention discloses a new photoelectric memristor based on PVK/ZnO heterostructure. The new photoelectric memristor includes from bottom to top: silicon substrate, tungsten electrode layer, zinc oxide layer, polyvinyl carbide azole layer and aluminum electrode. The present invention can introduce a zinc oxide functional layer with high stability and high electron mobility on the basis of the traditional PVK photomemristor to improve the stability and repeatability of the PVK photomemristor.
Description
技术领域Technical field
本发明属于半导体技术领域,具体涉及一种基于PVK/ZnO异质结构的新型光电忆阻器。The invention belongs to the field of semiconductor technology, and specifically relates to a new photoelectric memristor based on PVK/ZnO heterostructure.
背景技术Background technique
忆阻器是一种非线性电阻,器件的阻值能够随输入(电流或电压)的变化而发生改变,通过阻值的变化记忆流经器件的电荷或磁通。通过引入光调控信号可以将纯电子元器件忆阻器改进成光电忆阻器,以便更好地模拟视觉系统中的神经突触,将会进一步推动人工智能类脑神经计算的快速发展。Memristor is a nonlinear resistor. The resistance of the device can change with changes in input (current or voltage), and the charge or magnetic flux flowing through the device is memorized through changes in resistance. By introducing light control signals, the pure electronic component memristor can be improved into a photoelectric memristor to better simulate the synapses in the visual system, which will further promote the rapid development of brain-like neural computing in artificial intelligence.
PVK(聚乙烯基咔唑)是常见的有机材料,与其他有机材料相比更适合用于制备有机光电忆阻器,但是受限于有机物电阻转变机理不够明确、材料稳定性较差等原因存在稳定性差、可重复次数低等问题,传统PVK光电忆阻器可重复性差,高低阻态转变不够稳定,对温度变化比较敏感。PVK (polyvinylcarbazole) is a common organic material. Compared with other organic materials, it is more suitable for preparing organic photoelectric memristors. However, it is limited by the unclear resistance transformation mechanism of organic substances and poor material stability. Problems such as poor stability and low repeatability. Traditional PVK photomemristors have poor repeatability, unstable high- and low-resistance state transitions, and are sensitive to temperature changes.
发明内容Contents of the invention
为了解决现有技术中存在的上述问题,本发明提供了一种基于PVK/ZnO异质结构的新型光电忆阻器。本发明要解决的技术问题通过以下技术方案实现:In order to solve the above problems existing in the prior art, the present invention provides a new photoelectric memristor based on PVK/ZnO heterostructure. The technical problems to be solved by the present invention are achieved through the following technical solutions:
一种基于PVK/ZnO异质结构的新型光电忆阻器,所述新型光电忆阻器自下而上依次包括:硅衬底、钨电极层、氧化锌层、聚乙烯基咔唑层和铝电极。A new photoelectric memristor based on PVK/ZnO heterostructure. The new photoelectric memristor includes from bottom to top: silicon substrate, tungsten electrode layer, zinc oxide layer, polyvinyl carbazole layer and aluminum electrode.
在本发明的一个实施例中,所述铝电极包括第一铝电极、第二铝电极和第三铝电极;第一铝电极、第二铝电极和第三铝电极从左到右依次位于所述聚乙烯基咔唑层上表面。In one embodiment of the present invention, the aluminum electrode includes a first aluminum electrode, a second aluminum electrode and a third aluminum electrode; the first aluminum electrode, the second aluminum electrode and the third aluminum electrode are located in sequence from left to right. The upper surface of the polyvinylcarbazole layer.
在本发明的一个实施例中,所述氧化锌层的厚度为20nm。In one embodiment of the present invention, the thickness of the zinc oxide layer is 20 nm.
本发明的有益效果:Beneficial effects of the present invention:
本发明在传统PVK光电忆阻器的基础上,引入具有高稳定性和高电子迁移率的氧化锌功能层,能够改善PVK光电忆阻器的忆阻性能。Based on the traditional PVK photoelectric memristor, the present invention introduces a zinc oxide functional layer with high stability and high electron mobility, which can improve the memristor performance of the PVK photoelectric memristor.
以下将结合附图及实施例对本发明做进一步详细说明。The present invention will be further described in detail below with reference to the accompanying drawings and examples.
附图说明Description of drawings
图1是传统PVK光电忆阻器结构示意图;Figure 1 is a schematic structural diagram of a traditional PVK photomemristor;
图2是本发明实施例提供的一种PVK/ZnO异质结构的新型光电忆阻器结构示意图;Figure 2 is a schematic structural diagram of a new photomemristor with a PVK/ZnO heterostructure provided by an embodiment of the present invention;
图3是本发明实施例提供的一种氧化锌材料中金属导电丝的形成和断裂示意图;Figure 3 is a schematic diagram of the formation and breakage of metal conductive wires in a zinc oxide material provided by an embodiment of the present invention;
图4是本发明实施例提供的一种传统PVK光电忆阻器测试结果示意图;Figure 4 is a schematic diagram of the test results of a traditional PVK photomemristor provided by an embodiment of the present invention;
图5是本发明实施例提供的一种PVK/ZnO异质结构的新型光电忆阻器测试结果示意图。Figure 5 is a schematic diagram of the test results of a new photomemristor with a PVK/ZnO heterostructure provided by an embodiment of the present invention.
附图标记说明:Explanation of reference symbols:
硅衬底1、钨电极层2、氧化锌层3、聚乙烯基咔唑层4、第一铝电极51、第二铝电极52、第三铝电极53。Silicon substrate 1, tungsten electrode layer 2, zinc oxide layer 3, polyvinyl carbazole layer 4, first aluminum electrode 51, second aluminum electrode 52, and third aluminum electrode 53.
具体实施方式Detailed ways
下面结合具体实施例对本发明做进一步详细的描述,但本发明的实施方式不限于此。The present invention will be described in further detail below with reference to specific examples, but the implementation of the present invention is not limited thereto.
参见图1,图1是传统PVK光电忆阻器结构示意图。传统PVK光电忆阻器可重复性差,高低阻态转变不够稳定,对温度变化比较敏感。针对该问题,本发明在传统PVK光电忆阻器基础上提出了一种基于PVK/ZnO异质结构的新型光电忆阻器。See Figure 1, which is a schematic structural diagram of a traditional PVK photomemristor. Traditional PVK photomemristors have poor repeatability, unstable high- and low-resistance state transitions, and are sensitive to temperature changes. To address this problem, the present invention proposes a new photomemristor based on a PVK/ZnO heterostructure based on the traditional PVK photomemristor.
实施例一Embodiment 1
请参见图2,图2是本发明实施例提供的一种基于PVK/ZnO异质结构的新型光电忆阻器示意图,所述新型光电忆阻器自下而上依次包括:Please refer to Figure 2. Figure 2 is a schematic diagram of a new photomemristor based on PVK/ZnO heterostructure provided by an embodiment of the present invention. The new photomemristor includes from bottom to top:
硅衬底1、钨电极层2、氧化锌层3、聚乙烯基咔唑层4和铝电极5。Silicon substrate 1, tungsten electrode layer 2, zinc oxide layer 3, polyvinyl carbazole layer 4 and aluminum electrode 5.
光电忆阻器工作时,为了保证光电材料表面不被遮挡,以将忆阻器的光电性能发挥到最好,因此,本发明提出的基于PVK/ZnO异质结构的新型光电忆阻器中的PVK层设置在氧化锌层之上。When the photoelectric memristor is working, in order to ensure that the surface of the photoelectric material is not blocked and to maximize the photoelectric performance of the memristor, the new photoelectric memristor based on the PVK/ZnO heterostructure proposed by the present invention is The PVK layer is provided on top of the zinc oxide layer.
所述氧化锌(ZnO)层又可称为氧化锌功能层;所述聚乙烯基咔唑(PVK)层又可称为聚乙烯基咔唑功能层。所述聚乙烯基咔唑层是一层薄膜。The zinc oxide (ZnO) layer can also be called a zinc oxide functional layer; the polyvinylcarbazole (PVK) layer can also be called a polyvinylcarbazole functional layer. The polyvinyl carbazole layer is a thin film.
需要说明的是,以氧化锌为代表的过渡金属氧化物晶格结构致密均匀,表现出极强的稳定性,较高的熔点(氧化锌熔点m.p.=1975℃)表明其性能表现基本不受温度变化的影响。氧化锌作为一种宽带隙半导体,具有单极电阻开关行为和较高的电子迁移率,还具有较高的透明度和优异的常温发光性能。It should be noted that the lattice structure of transition metal oxides represented by zinc oxide is dense and uniform, showing extremely strong stability, and its high melting point (melting point of zinc oxide m.p. = 1975°C) indicates that its performance is basically not affected by temperature. Impact of change. As a wide band gap semiconductor, zinc oxide has unipolar resistance switching behavior and high electron mobility. It also has high transparency and excellent room temperature luminescence properties.
氧化锌在电初始化过程中,氧离子比锌离子具有更高的迁移率,在外加电场和热效应作用下,氧离子向阳电极迁移留下氧空位,随着外加电压升高,阴极附近的氧空位逐渐聚集,外部偏置电压提供的电子使材料内部电荷平衡,当氧空位浓度升高到某一定值时,电极附近的氧空位重新排列形成有序的导电结晶锌丝(由Zn和ZnO1-x共同组成),金属导电丝将进一步导致电场增强,使其在同一区域内连续生长,此时材料表现为低阻状态。当外部偏置电压达到一定值时,导电丝生长至将上下两个电极连接起来,此时氧化锌中的电场开始减小,电场引起的氧离子迁移留下氧空位过程受到抑制,阳极附近高浓度氧离子会迅速回填至氧空位,氧离子回填以及外部电场积累产生的焦耳热共同作用于导电细丝,使得导电细丝断裂分解,材料表现出高阻状态。请参见图3,图3是本发明实施例提供的一种氧化锌材料中金属导电丝的形成和断裂示意图,从氧化锌材料忆阻机理可以看出,其内部导电细丝的形成与断裂过程明确,忆阻机制稳定。综合考虑材料特性及忆阻机理,氧化锌忆阻器与有机材料忆阻器相比稳定性更好,可重复次数更多,对温度变化更不敏感。During the electrical initialization process of zinc oxide, oxygen ions have a higher mobility than zinc ions. Under the action of external electric field and thermal effect, oxygen ions migrate to the anode, leaving oxygen vacancies. As the applied voltage increases, the oxygen vacancies near the cathode Gradually gather, the electrons provided by the external bias voltage balance the internal charge of the material. When the oxygen vacancy concentration increases to a certain value, the oxygen vacancies near the electrode are rearranged to form an ordered conductive crystalline zinc wire (made of Zn and ZnO 1- x together), the metal conductive filament will further enhance the electric field, causing it to grow continuously in the same area. At this time, the material appears in a low-resistance state. When the external bias voltage reaches a certain value, the conductive filament grows to connect the upper and lower electrodes. At this time, the electric field in the zinc oxide begins to decrease, and the migration of oxygen ions caused by the electric field leaves oxygen vacancies. The process is suppressed, and the high temperature near the anode is The concentration of oxygen ions will quickly backfill to the oxygen vacancies. The Joule heat generated by the oxygen ion backfill and the accumulation of external electric field will work together on the conductive filaments, causing the conductive filaments to break and decompose, and the material will show a high resistance state. Please refer to Figure 3. Figure 3 is a schematic diagram of the formation and fracture of metal conductive filaments in a zinc oxide material provided by an embodiment of the present invention. It can be seen from the memristive mechanism of the zinc oxide material that the formation and fracture process of the internal conductive filaments are It is clear that the memristive mechanism is stable. Taking into account the material characteristics and memristor mechanism, zinc oxide memristors have better stability, can be repeated more times, and are less sensitive to temperature changes than organic material memristors.
基于上述机理,本发明将PVK与氧化锌结合,实现一种基于PVK/ZnO异质结构的新型光电忆阻器。Based on the above mechanism, the present invention combines PVK with zinc oxide to realize a new photomemristor based on PVK/ZnO heterostructure.
可选的,所述铝电极5包括第一铝电极51、第二铝电极52和第三铝电极53。Optionally, the aluminum electrode 5 includes a first aluminum electrode 51 , a second aluminum electrode 52 and a third aluminum electrode 53 .
第一铝电极、第二铝电极和第三铝电极从左到右依次位于所述聚乙烯基咔唑层上表面。The first aluminum electrode, the second aluminum electrode and the third aluminum electrode are located on the upper surface of the polyvinylcarbazole layer in order from left to right.
为了减少铝电极对光电材料的影响,本发明所述铝电极需要在不影响导电性能的前提下尽可能小。In order to reduce the impact of the aluminum electrode on the optoelectronic material, the aluminum electrode of the present invention needs to be as small as possible without affecting the conductive performance.
可选的,所述氧化锌层的厚度为20nm。Optionally, the thickness of the zinc oxide layer is 20 nm.
需要说明的是,所述氧化锌层的厚度由本领域技术人员根据业务需要进行设置。经过多次实验验证,本发明所述氧化锌层的厚度优先选用20nm。It should be noted that the thickness of the zinc oxide layer can be set by those skilled in the art according to business needs. After many experiments and verifications, the thickness of the zinc oxide layer in the present invention is preferably 20 nm.
综上,本发明在Al/PVK/W/Si结构的光电忆阻器基础上,引入具有高稳定性、高电子迁移率的氧化锌功能层,能够提高PVK光电忆阻器的稳定性、可重复性等。In summary, the present invention introduces a zinc oxide functional layer with high stability and high electron mobility based on the Al/PVK/W/Si structure photomemristor, which can improve the stability and reliability of the PVK photomemristor. Repeatability, etc.
进一步地,基于实验测试,对本发明有益效果进行验证。Further, based on experimental tests, the beneficial effects of the present invention are verified.
使用I-V测试探针台PSM-1000,在显微镜下对顶电极(铝电极)与底电极(硅衬底)扎探针通电进行I-V测试,参见图4是本发明实施例提供的一种传统PVK光电忆阻器测试结果示意图;参见图5是本发明实施例提供的一种PVK/ZnO异质结构的新型光电忆阻器测试结果示意图。Using the I-V test probe station PSM-1000, the top electrode (aluminum electrode) and the bottom electrode (silicon substrate) are energized with probes under a microscope to perform the I-V test. See Figure 4 which is a traditional PVK provided by the embodiment of the present invention. Schematic diagram of photomemristor test results; see Figure 5 which is a schematic diagram of test results of a new photomemristor with a PVK/ZnO heterostructure provided by an embodiment of the present invention.
由图4和图5可以看出,两种PVK光电忆阻器均表现出了明显的忆阻特性曲线,并且氧化锌功能层的引入虽然会增加电极之间功能层的厚度,但是并没有导致新型PVK光电忆阻器中工作电流的减小,这得益于氧化锌材料高的电子迁移率。图4和图5对比可以看出,5次重复扫描结果显示本发明提出的新型PVK光电忆阻器的可重复性和稳定性相比于传统PVK光电忆阻器有很大的提升和改善,电流误差值的计算结果表明氧化锌功能层的使用使得忆阻器中的误差电流减小了一个数量级,这与我们的预期结果相符,即,通过引入忆阻机制明确、稳定性高的氧化锌材料,能够解决传统有机光电忆阻器可重复性差、高低阻态转变不够稳定、对温度变化比较敏感等问题。It can be seen from Figure 4 and Figure 5 that both PVK photoelectric memristors exhibit obvious memristive characteristic curves, and although the introduction of the zinc oxide functional layer will increase the thickness of the functional layer between the electrodes, it does not cause The reduction in operating current in the new PVK photomemristor is due to the high electron mobility of the zinc oxide material. Comparing Figure 4 and Figure 5, it can be seen that the results of five repeated scans show that the repeatability and stability of the new PVK photomemristor proposed by the present invention are greatly improved compared to the traditional PVK photomemristor. The calculation results of the current error value show that the use of zinc oxide functional layer reduces the error current in the memristor by an order of magnitude, which is consistent with our expected results, that is, by introducing zinc oxide with a clear memristor mechanism and high stability The material can solve the problems of traditional organic photomemristors such as poor repeatability, unstable high- and low-resistance state transitions, and sensitivity to temperature changes.
实施例二Embodiment 2
本发明提供一种基于PVK/ZnO异质结构的新型光电忆阻器的制备方法,所述制备方法包括:The present invention provides a method for preparing a new photoelectric memristor based on PVK/ZnO heterostructure. The preparation method includes:
步骤1:在硅衬底层上表面,通过沉积处理得到钨电极层。Step 1: On the upper surface of the silicon substrate layer, obtain a tungsten electrode layer through deposition.
可选的,所述步骤1包括:Optionally, step 1 includes:
通过磁控溅射设备,在硅衬底层上表面进行沉积处理,以得到钨电极层。Using magnetron sputtering equipment, a deposition process is performed on the upper surface of the silicon substrate layer to obtain a tungsten electrode layer.
示例如,所述磁控溅射设备为MSP-3470x。For example, the magnetron sputtering equipment is MSP-3470x.
步骤2:按照预设溅射参数,在钨电极层上表面,通过溅射处理得到氧化锌层。Step 2: According to the preset sputtering parameters, obtain a zinc oxide layer on the upper surface of the tungsten electrode layer through sputtering treatment.
可选的,所述预设溅射参数包括预设靶材、预设溅射时间、预设溅射功率。Optionally, the preset sputtering parameters include a preset target material, a preset sputtering time, and a preset sputtering power.
可选的,所述预设靶材为:纯度为99.99%的ZnO陶瓷靶;所述预设溅射时间为30分钟;所述预设溅射功率为77W。Optionally, the preset target material is: a ZnO ceramic target with a purity of 99.99%; the preset sputtering time is 30 minutes; and the preset sputtering power is 77W.
本发明通过预设溅射参数能够灵活控制溅射出的膜内部特性,示例如,通过改变预设溅射时间,能够改变氧化锌层的厚度。The present invention can flexibly control the internal characteristics of the sputtered film by presetting sputtering parameters. For example, by changing the preset sputtering time, the thickness of the zinc oxide layer can be changed.
步骤3:在氧化锌层上表面,通过烘烤和退火处理得到聚乙烯基咔唑层。Step 3: On the upper surface of the zinc oxide layer, obtain a polyvinylcarbazole layer by baking and annealing.
可选的,所述步骤3包括:Optionally, step 3 includes:
步骤3-1:将溶于1,2-二氯乙烷中的聚乙烯基咔唑溶液旋涂在氧化锌层上表面。Step 3-1: Spin-coat the polyvinylcarbazole solution dissolved in 1,2-dichloroethane on the upper surface of the zinc oxide layer.
步骤3-2:对旋涂后的氧化锌层进行烘烤处理。Step 3-2: Bake the zinc oxide layer after spin coating.
步骤3-3:对烘烤处理后的氧化锌层进行退火处理,以氧化锌层上表面得到聚乙烯基咔唑层。Step 3-3: Perform annealing treatment on the baked zinc oxide layer to obtain a polyvinylcarbazole layer on the upper surface of the zinc oxide layer.
步骤4:在聚乙烯基咔唑层上表面,通过金属掩膜板溅射处理得到铝电极,以完成忆阻器的制备。Step 4: On the upper surface of the polyvinyl carbazole layer, an aluminum electrode is obtained by sputtering with a metal mask to complete the preparation of the memristor.
本发明制备的基于PVK/ZnO异质结构的新型光电忆阻器,能够使用磁控溅射设备MSP-3470x在裸硅衬底上沉积而成,氧化锌功能层通过改变磁控溅射设备中的靶材、溅射时间和溅射功率在钨电极上制备得到,之后分别将溶于1,2-二氯乙烷中的PVK溶液旋涂在ZnO上表面,烘烤成膜后进行退火处理得到致密的PVK薄膜,最后,利用金属掩膜板溅射沉积铝电极完成光电忆阻器的制备。The new photoelectric memristor based on the PVK/ZnO heterostructure prepared by the present invention can be deposited on a bare silicon substrate using magnetron sputtering equipment MSP-3470x. The zinc oxide functional layer can be deposited on a bare silicon substrate by changing the magnetron sputtering equipment. The target material, sputtering time and sputtering power were prepared on the tungsten electrode, and then the PVK solution dissolved in 1,2-dichloroethane was spin-coated on the upper surface of ZnO, baked to form a film and then annealed. A dense PVK film is obtained. Finally, an aluminum electrode is sputtered and deposited using a metal mask to complete the preparation of the photomemristor.
综上,本发明在传统PVK光电忆阻器的基础上,引入具有高稳定性和高电子迁移率的氧化锌功能层,能够改善PVK光电忆阻器的忆阻性能。In summary, the present invention, based on the traditional PVK photomemristor, introduces a zinc oxide functional layer with high stability and high electron mobility, which can improve the memristive performance of the PVK photomemristor.
以上内容是结合具体的优选实施方式对本发明所作的进一步详细说明,不能认定本发明的具体实施只局限于这些说明。对于本发明所属技术领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干简单推演或替换,都应当视为属于本发明的保护范围。The above content is a further detailed description of the present invention in combination with specific preferred embodiments, and it cannot be concluded that the specific implementation of the present invention is limited to these descriptions. For those of ordinary skill in the technical field to which the present invention belongs, several simple deductions or substitutions can be made without departing from the concept of the present invention, and all of them should be regarded as belonging to the protection scope of the present invention.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111501669.5A CN114203918B (en) | 2021-12-09 | 2021-12-09 | Novel photoelectric memristor based on PVK/ZnO heterostructure |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111501669.5A CN114203918B (en) | 2021-12-09 | 2021-12-09 | Novel photoelectric memristor based on PVK/ZnO heterostructure |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114203918A CN114203918A (en) | 2022-03-18 |
CN114203918B true CN114203918B (en) | 2023-09-12 |
Family
ID=80651775
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202111501669.5A Active CN114203918B (en) | 2021-12-09 | 2021-12-09 | Novel photoelectric memristor based on PVK/ZnO heterostructure |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114203918B (en) |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU4239293A (en) * | 1992-05-12 | 1993-12-13 | North Carolina State University | Integrated heterostructure of group II-VI semiconductor materials including epitaxial ohmic contact and method of fabricating same |
WO2009022774A1 (en) * | 2007-08-14 | 2009-02-19 | Industry-University Cooperation Foundation, Hanyang University | Method of fabricating nonvolatile organic bistable memory device including polymer thin film with nanoparticles serving as charge trapping region |
CN101845189A (en) * | 2010-05-14 | 2010-09-29 | 武汉工程大学 | Synthetic method of polyvinylcarbazole/graphene composite material with storage effect |
CN104051545A (en) * | 2014-02-26 | 2014-09-17 | 东北师范大学 | Memristor based on pn heterostructure and its preparation method |
CN105355788A (en) * | 2015-11-06 | 2016-02-24 | 昆明物理研究所 | ZnO nanocrystal and organic polymer heterojunction vertical structure UV photovoltaic detector |
KR20170029950A (en) * | 2015-09-08 | 2017-03-16 | 명지대학교 산학협력단 | Resistance switchable composite material having cortisol conjugated nanoparticle and memory device using the same |
WO2018021966A2 (en) * | 2016-07-27 | 2018-02-01 | Nanyang Technological University | Hot-carrier solar cell, and method to form the same |
CN108417711A (en) * | 2018-05-03 | 2018-08-17 | 无锡智高点技术研发有限公司 | A kind of preparation method of Nonvolatile resistance variation memory |
CN109103336A (en) * | 2018-08-03 | 2018-12-28 | 中国科学院金属研究所 | A kind of flexible UV photodetector and preparation method thereof based on hair |
CN109103213A (en) * | 2018-08-03 | 2018-12-28 | 中国科学院金属研究所 | A kind of flexible optical logic gate and its manufacturing method based on hair |
CN109461814A (en) * | 2018-10-09 | 2019-03-12 | 河北大学 | A kind of memristor based on zinc oxide and preparation method thereof and preparing the application in the bionical device of nerve synapse |
CN111725401A (en) * | 2020-06-30 | 2020-09-29 | 中南大学 | An optical storage composite memristor and its preparation method and application |
-
2021
- 2021-12-09 CN CN202111501669.5A patent/CN114203918B/en active Active
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU4239293A (en) * | 1992-05-12 | 1993-12-13 | North Carolina State University | Integrated heterostructure of group II-VI semiconductor materials including epitaxial ohmic contact and method of fabricating same |
WO2009022774A1 (en) * | 2007-08-14 | 2009-02-19 | Industry-University Cooperation Foundation, Hanyang University | Method of fabricating nonvolatile organic bistable memory device including polymer thin film with nanoparticles serving as charge trapping region |
CN101845189A (en) * | 2010-05-14 | 2010-09-29 | 武汉工程大学 | Synthetic method of polyvinylcarbazole/graphene composite material with storage effect |
CN104051545A (en) * | 2014-02-26 | 2014-09-17 | 东北师范大学 | Memristor based on pn heterostructure and its preparation method |
KR20170029950A (en) * | 2015-09-08 | 2017-03-16 | 명지대학교 산학협력단 | Resistance switchable composite material having cortisol conjugated nanoparticle and memory device using the same |
CN105355788A (en) * | 2015-11-06 | 2016-02-24 | 昆明物理研究所 | ZnO nanocrystal and organic polymer heterojunction vertical structure UV photovoltaic detector |
WO2018021966A2 (en) * | 2016-07-27 | 2018-02-01 | Nanyang Technological University | Hot-carrier solar cell, and method to form the same |
CN108417711A (en) * | 2018-05-03 | 2018-08-17 | 无锡智高点技术研发有限公司 | A kind of preparation method of Nonvolatile resistance variation memory |
CN109103336A (en) * | 2018-08-03 | 2018-12-28 | 中国科学院金属研究所 | A kind of flexible UV photodetector and preparation method thereof based on hair |
CN109103213A (en) * | 2018-08-03 | 2018-12-28 | 中国科学院金属研究所 | A kind of flexible optical logic gate and its manufacturing method based on hair |
CN109461814A (en) * | 2018-10-09 | 2019-03-12 | 河北大学 | A kind of memristor based on zinc oxide and preparation method thereof and preparing the application in the bionical device of nerve synapse |
CN111725401A (en) * | 2020-06-30 | 2020-09-29 | 中南大学 | An optical storage composite memristor and its preparation method and application |
Non-Patent Citations (1)
Title |
---|
阻变存储器及其集成技术研究进展;左青云等;《微电子学》;20090820(第04期);全文 * |
Also Published As
Publication number | Publication date |
---|---|
CN114203918A (en) | 2022-03-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Wang et al. | Performance improvement of resistive switching memory achieved by enhancing local-electric-field near electromigrated Ag-nanoclusters | |
Gul et al. | Bipolar resistive switching and conduction mechanism of an Al/ZnO/Al-based memristor | |
Mao et al. | Realization of forming-free ZnO-based resistive switching memory by controlling film thickness | |
JP2022518522A (en) | Composite metal oxide semiconductors and thin film transistors and their applications | |
Shi et al. | Pt/WO 3/FTO memristive devices with recoverable pseudo-electroforming for time-delay switches in neuromorphic computing | |
JP2009099847A (en) | Thin-film transistor, its manufacturing method, and display device | |
KR20140033348A (en) | Oxide for semiconductor layer for thin film transistor, semiconductor layer for thin film transistor which comprises said oxide, and thin film transistor | |
CN108365089A (en) | Prepared by a kind of solution combustion method has analog- and digital- multi-functional NiO bases memory resistor and preparation method | |
Chen et al. | High-performance perovskite memristor by integrating a tip-shape contact | |
CN103151459B (en) | Hafnium-oxynitride-based low-power consumption resistive random access memory and preparation method for same | |
Zhang et al. | Effect of defect content on the unipolar resistive switching characteristics of ZnO thin film memory devices | |
Pei et al. | Forming free bipolar ReRAM of Ag/a-IGZO/Pt with improved resistive switching uniformity through controlling oxygen partial pressure | |
CN103474571B (en) | Resistance memory component and manufacturing method thereof | |
Gao et al. | Effect of annealing temperature on resistance switching behavior of Mg0. 2Zn0. 8O thin films deposited on ITO glass | |
CN108963071A (en) | Resistive formula memory with structure regulating course and preparation method thereof | |
Mohanty et al. | Interface engineering for 3-bit per cell multilevel resistive switching in AlN based memristor | |
Guo et al. | Tuning oxygen vacancies and resistive switching behaviors in amorphous Y2O3 film-based memories | |
CN114203918B (en) | Novel photoelectric memristor based on PVK/ZnO heterostructure | |
Wei et al. | Analysis of the resistive switching behaviors of vanadium oxide thin film | |
CN115275004A (en) | Method for realizing memristor memristance based on ion diffusion and phase change mechanism | |
CN109950394A (en) | Method for realizing quantum conductance effect of resistive memory in non-electrical formation process | |
CN107275480B (en) | A kind of resistance-variable storing device and preparation method thereof of double-layer porous structure amorphous carbon material | |
He et al. | Narrowing the band gap to enhance the resistive switching properties of Pr 3+-doped ZnO thin films by Cd-ion doping | |
Shi et al. | Unipolar resistive switching effects based on Al/ZnO/P++-Si diodes for nonvolatile memory applications | |
Zhang et al. | Modeling of conducting bridge evolution in bipolar vanadium oxide-based resistive switching memory |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |