CN114182239A - 一种用于合金表面的耐蚀涂层及其制备方法 - Google Patents

一种用于合金表面的耐蚀涂层及其制备方法 Download PDF

Info

Publication number
CN114182239A
CN114182239A CN202111537793.7A CN202111537793A CN114182239A CN 114182239 A CN114182239 A CN 114182239A CN 202111537793 A CN202111537793 A CN 202111537793A CN 114182239 A CN114182239 A CN 114182239A
Authority
CN
China
Prior art keywords
tio
resistant coating
corrosion
sol
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202111537793.7A
Other languages
English (en)
Inventor
王建刚
周啸颖
黄风山
梁志敏
赵永杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hebei University of Science and Technology
Original Assignee
Hebei University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hebei University of Science and Technology filed Critical Hebei University of Science and Technology
Priority to CN202111537793.7A priority Critical patent/CN114182239A/zh
Publication of CN114182239A publication Critical patent/CN114182239A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1254Sol or sol-gel processing
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/1208Oxides, e.g. ceramics
    • C23C18/1216Metal oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1262Process of deposition of the inorganic material involving particles, e.g. carbon nanotubes [CNT], flakes
    • C23C18/127Preformed particles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1295Process of deposition of the inorganic material with after-treatment of the deposited inorganic material

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Thermal Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Nanotechnology (AREA)
  • Chemically Coating (AREA)

Abstract

本发明涉及合金材料的制备技术领域,具体公开一种用于合金表面的耐蚀涂层及其制备方法。用于合金表面的耐蚀涂层的制备方法包括:将合金基体加入TiO2/HA溶胶凝胶中,通过浸渍提拉法在所述合金基体表面形成TiO2/HA薄膜,所述TiO2/HA薄膜干燥后在280‑350℃下进行热处理,形成TiO2/HA溶胶凝胶层,对所述TiO2/HA溶胶凝胶层进行激光扫描处理,得到TiO2/HA耐蚀涂层。本发明提供的制备方法制得的耐蚀涂层致密、平整,且能与基体良好结合,具有极高的显微硬度和耐蚀性,不易开裂,且复合耐蚀涂层中的材料以及涂层与合金基体的相容性好,可对基体进行长期有效保护,尤其适用于镁合金基体表面。

Description

一种用于合金表面的耐蚀涂层及其制备方法
技术领域
本发明涉及合金材料的制备技术领域,尤其涉及一种用于合金表面的耐蚀涂层及其制备方法。
背景技术
镁合金因其密度小、比强度高和铸造及切削加工性能良好等优点被广泛应用于航空航天、电子产品以及汽车工业中。另外,镁合金因具有与骨骼相似的力学性能、良好的生物相容性以及可在人体内降解等优势在生物医用材料领域展现出巨大潜力。但是由于镁合金的硬度低、耐磨性和耐蚀性差等缺点限制了其在航空航天材料和医药领域的利用与发展。近年来,人们通过电镀、化学镀、阳极氧化、转化膜、气相沉积和涂敷等诸多方法来对其进行表面改性和保护。但是这些方法都有很大的局限性,形成的涂层存在结合强度低、粘附性差、易出现裂纹、涂层各成分的结合程度差、使用的设备成本巨大等问题。
溶胶-凝胶法是一种设备要求低的制备陶瓷氧化物的通用技术,已有研究在合金表面沉积TiO2、Al2O3和SiO2等溶胶凝胶涂层来提高合金的耐蚀性能,其中TiO2具有优良的化学稳定性和生物相容性而被广泛使用。但目前的溶胶-凝胶涂层用于合金表面存在以下缺陷:在干燥和致密化过程中由于大量溶剂和水挥发形成的极易形成裂纹和大量孔隙,影响了溶胶-凝胶涂层的阻隔效果。后来出现了在溶胶-凝胶涂层中加入纳米填料以提高其对腐蚀性物质的阻隔作用。羟基磷灰石(HA)是一种典型的生物活性陶瓷材料,具有很好的生物活性。研究发现将HA加入TiO2溶胶-凝胶中,通过溶胶-凝胶法可以进一步提高涂层的阻隔作用。但是,目前采用的溶胶-凝胶法在合金表面形成的涂层与基体合金的结合性差,涂层中涉及两种以上材料时材料之间的相容性差、表面粗糙,在摩擦和腐蚀环境中易剥落,在长期使用过程中仍然无法避免裂纹和气孔的产生,且耐蚀性差,无法实现对基体的长期保护。
发明内容
针对现有用于合金基体表面的溶胶-凝胶涂层存在的上述问题,本发明提供一种用于合金表面的耐蚀涂层及其制备方法,该制备方法制得的耐蚀涂层致密、平整,且能与基体良好结合,具有极高的显微硬度和耐蚀性,不易开裂,且复合耐蚀涂层中的材料以及涂层与合金基体的相容性好,可实现对基体的长期有效保护,尤其适用于镁合金基体表面。
为达到上述发明目的,本发明实施例采用了如下的技术方案:
一种用于合金表面的耐蚀涂层的制备方法,包括:将合金基体加入TiO2/HA溶胶凝胶中,通过浸渍提拉法在所述合金基体表面形成TiO2/HA薄膜,所述TiO2/HA薄膜干燥后在280-350℃下进行热处理,形成TiO2/HA溶胶凝胶层,对所述TiO2/HA溶胶凝胶层进行激光扫描处理,得到TiO2/HA耐蚀涂层。
相对于现有技术,本发明提供的用于合金表面的耐蚀涂层的制备方法先通过浸渍提拉法在所述合金基体表面形成TiO2/HA溶胶凝胶薄膜后,在特定的热处理温度下进行热处理,之后结合激光扫描处理,可以在合金基体表面形成一层致密且平整的TiO2/HA耐蚀涂层。实现了TiO2和HA两种材料之间的良好的相容性,避免了耐蚀涂层在长期使用过程中出现裂纹。
在激光处理过程中,在高能激光束的作用下TiO2/HA溶胶凝胶层迅速烧结成粉与基体合金反应,在基体合金表面生成一层稳定的致密的TiO2/HA耐蚀涂层。对TiO2/HA耐蚀涂层进行XRD衍射分析,发现TiO2/HA耐蚀涂层由Mg、HA、TiO2和高温反应生成的Ca(TiO3)和MgO相组成。说明HA粉末在激光处理过程中与TiO2和合金基体发生良好的熔融,提高了耐蚀涂层与合金基体的结合强度。对TiO2/HA耐蚀涂层硬度和耐蚀性能进行检测,其显微硬度能达到157HV0.1以上,自腐蚀电位达到-1.302V,具有优异的耐蚀性。
综上,本发明提供的溶胶凝胶热处理结合激光扫描处理方法得到TiO2/HA耐蚀涂层可在合金表面生成一层致密且光滑的熔覆层,该熔覆层不仅具有极高的显微硬度和抗裂性能,还具有优异的耐腐蚀性以及与基体良好的结合强度,可实现对合金基体的长期有效保护。
优选的,所述TiO2/HA溶胶凝胶的制备方法为:乙酰丙酮加入乙醇中搅拌均匀后,加入钛酸正丁酯,得到混合溶液;将HA粉末、冰乙酸和水加入乙醇中,搅拌得到混悬液;将所述混悬液加入所述混合溶液中,搅拌均匀,陈化,得到所述TiO2/HA溶胶凝胶。
优选的,所述混合溶液中,所述乙酰丙酮和所述乙醇的体积比为1:30-40。
优选的,所述混合溶液中,所述钛酸正丁酯和所述乙醇的体积比为1:3-4。
优选的,所述混悬液中,所述HA粉末、冰乙酸、水和乙醇的质量体积比为1g:1mL-3mL:1mL-3mL:8mL-12mL。
优选的,所述混悬液和所述混合溶液的体积比为1:1.4-2。
优选的,所述陈化的时间为20h-30h。
优选的,所述浸渍提拉法的浸渍时间为1min-5min、提拉速度为1cm/min-10cm/min。
优选的,所述干燥的温度为75℃-85℃、时间为20min-40min。
优选的,所述热处理的时间为1.5h-3h。
优选的,通过重复所述浸渍提拉法在所述合金基体表面形成4-6层所述TiO2/HA薄膜后后,再进行所述热处理。
优选的,所述激光扫描处理过程中的光斑直径为2.5mm-3.5mm、激光功率为250-300W、扫描速度为8-12mm/s;所述激光扫描处理在氩气气氛中进行。
上述优选的激光扫描处理参数的设置,可以进一步提高TiO2/HA耐蚀涂层的致密度,提高耐蚀涂层与基体的结合强度。
优选的,所述合金基体为镁合金基体。
本发明的TiO2/HA耐蚀涂层通过溶胶涂层结合热处理和激光处理的方式,用于镁合金基体上,可以实现涂层与基体的良好的熔融,使耐蚀涂层达到优异的结合效果和抗裂效果。
本发明还提供了所述用于合金表面的耐蚀涂层的制备方法制得的耐蚀涂层。
附图说明
图1是本发明实施例1中的AZ71镁合金的显微组织图;
图2是本发明试验例中得到的TiO2/HA溶胶凝胶图层的XRD衍射图谱;
图3是本发明试验例中得到的TiO2/HA耐蚀涂层的XRD衍射图谱;
图4是本发明试验例中得到的TiO2/HA溶胶凝胶涂层的微观形貌图;
图5是本发明试验例中得到的TiO2/HA耐蚀涂层的微观形貌图;
图6是本发明试验例中得到的镁合金基体、TiO2/HA溶胶凝胶涂层和TiO2/HA耐蚀涂层的显微硬度统计图;
图7是本发明试验例中得到的TiO2/HA溶胶凝胶涂层的腐蚀形貌图;
图8是本发明试验例中得到的TiO2/HA耐蚀涂层的腐蚀形貌图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
实施例1
一种用于合金表面的耐蚀涂层的制备方法,包括以下步骤:
制备HA(羟基磷灰石)粉末:把纯净水缓慢滴加到已经用无水酒精稀释的亚磷酸三乙酯(C6H15O4P,1mol/L)中,使亚磷酸三乙酯完全水解;把硝酸钙溶于无水酒精中配成2mol/L的溶液,再把硝酸钙溶液和已经水解的亚磷酸三乙酯溶液混合,所用的硝酸钙和亚磷酸三乙酯的摩尔比为1.67:1,70℃下搅拌4h,然后陈化24h,得到溶胶。将陈化好的溶胶放入80℃的干燥箱中干燥10h后放入600℃的高温箱式真空炉中进行1h晶化处理,得到蓬松的块状白色粉体,充分研磨,得到HA粉末。
制备TiO2/HA溶胶凝胶:将1mL乙酰丙酮加入35mL乙醇中搅拌均匀后,加入10mL钛酸正丁酯,搅拌3h得到混合溶液;将2g的HA粉末、2mL冰乙酸和2mL水加入20mL乙醇中,搅拌得到混悬液;将混悬液加入上述混合溶液中,搅拌1h,陈化24h,得到TiO2/HA溶胶凝胶。
将镁合金基体加入上述TiO2/HA溶胶凝胶中,通过浸渍提拉法(浸渍时间为3min、提拉速度为5cm/min)在所述合金基体表面形成TiO2/HA薄膜,TiO2/HA薄膜在80℃下干燥30min后,再重复以上操作,直至在镁合金机体上形成5层TiO2/HA薄膜,然后在300℃下热处理2h,形成TiO2/HA溶胶凝胶层,对该TiO2/HA溶胶凝胶层进行激光扫描处理(激光扫描处理过程中的光斑直径为3mm、激光功率为300W、扫描速度为10mm/s;所述激光扫描处理在氩气气氛中进行),得到TiO2/HA耐蚀涂层。
上述镁合金基体为AZ71镁合金,利用SPECTROMAX型直读光谱仪测得其成分,化学组成如表1所示,显微组织如图1所示,其组织主要由灰白色的α-Mg相和黑色的β-Mg17Al12两相组成。
镁合金基体的试样尺寸为20mm×40mm×15mm。在基体制备耐蚀涂层前需对基体进行预处理,预处理流程依次为:SiC砂纸打磨抛光、丙酮超声波震荡、酒精超声波清洗和吹干。
表1AZ71镁合金化学成分(wt%)
Figure BDA0003413488890000051
实施例2
一种用于合金表面的耐蚀涂层的制备方法,包括以下步骤:
制备TiO2/HA溶胶凝胶:将1mL乙酰丙酮加入30mL乙醇中搅拌均匀后,加入10mL钛酸正丁酯,搅拌3h得到混合溶液;将2g的HA粉末(实施例1中制得的HA粉末)、4mL冰乙酸和4mL水加入16mL乙醇中,搅拌得到混悬液;将混悬液加入上述混合溶液中,搅拌1h,陈化20h,得到TiO2/HA溶胶凝胶。
将镁合金基体(与实施例1中的镁合金基体相同)加入上述TiO2/HA溶胶凝胶中,通过浸渍提拉法(浸渍时间为1min、提拉速度为1cm/min)在所述合金基体表面形成TiO2/HA薄膜,TiO2/HA薄膜在75℃下干燥40min后,再重复以上操作,直至在镁合金机体上形成4层TiO2/HA薄膜,然后在280℃下热处理3h,形成TiO2/HA溶胶凝胶层,对该TiO2/HA溶胶凝胶层进行激光扫描处理(激光扫描处理过程中的光斑直径为2.5mm、激光功率为250W、扫描速度为8mm/s;所述激光扫描处理在氩气气氛中进行),得到TiO2/HA耐蚀涂层。
实施例3
一种用于合金表面的耐蚀涂层的制备方法,包括以下步骤:
制备TiO2/HA溶胶凝胶:将1mL乙酰丙酮加入40mL乙醇中搅拌均匀后,加入10mL钛酸正丁酯,搅拌3h得到混合溶液;将2g的HA粉末(实施例1中制得的HA粉末)、6mL冰乙酸和6mL水加入24mL乙醇中,搅拌得到混悬液;将混悬液加入上述混合溶液中,搅拌1h,陈化30h,得到TiO2/HA溶胶凝胶。
将镁合金基体(与实施例1中的镁合金基体相同)加入上述TiO2/HA溶胶凝胶中,通过浸渍提拉法(浸渍时间为5min、提拉速度为10cm/min)在所述合金基体表面形成TiO2/HA薄膜,TiO2/HA薄膜在85℃下干燥20min后,再重复以上操作,直至在镁合金机体上形成6层TiO2/HA薄膜,然后在350℃下热处理1.5h,形成TiO2/HA溶胶凝胶层,对该TiO2/HA溶胶凝胶层进行激光扫描处理(激光扫描处理过程中的光斑直径为3.5mm、激光功率为300W、扫描速度为12mm/s;所述激光扫描处理在氩气气氛中进行),得到TiO2/HA耐蚀涂层。
试验例
对实施例1中得到的涂层的性能进行测试以及对其微观组织进行观察。
1、方法:
利用VEGA3钨丝扫描电镜和DI Innova型原子力显微镜观察涂层的表面形貌。
物相分析使用D/MAX-2500型X射线衍仪,靶材采用Cu靶(Kα,λ=0.154178nm),管电压为40kV,管电流为150mA,扫描速度为4°/min。
利用TWVS-1显微硬度计测试显微硬度,载荷为100g,加载时间10s。
采用PS-268A型电化学工作站对涂层样品进行腐蚀性能测试,饱和甘汞电极为参比电极,铂电极为辅助电极,试样为工作电极,电解质为3.5%的NaCl溶液。
2、结果与分析:
2.1、物相分析:实施例1中的TiO2/HA溶胶凝胶图层和TiO2/HA耐蚀涂层的X射线衍射图如图2和图3所示,TiO2/HA溶胶凝胶涂层的XRD衍射图谱中出现α-Mg、HA、TiO2和少量的MgO衍射峰,HA和TiO2峰的强度较低,由于涂层的多孔性镁为主峰,相比于镁基体涂层浓度非常低。XRD图谱清晰的显示出HA和TiO2衍射峰,HA与TiO2之间没有发生相互反应,HA也没有发生分解。
TiO2/HA耐蚀涂层由Mg、HA、TiO2和高温反应生成的Ca(TiO3)和MgO相组成。说明HA粉末在激光处理过程中与TiO2和镁基体发生良好的熔融。该过程包括:HA粉末在高温下的分解,HA分解相遇TiO2和镁基体反应,激光处理过程中快熔快凝的非平衡效应。
2.2、涂层表面形貌分析
观察实施例1中的TiO2/HA溶胶凝胶涂层(实施例1中省去激光扫描过程得到的涂层)和TiO2/HA耐蚀涂层的形貌,TiO2/HA溶胶凝胶涂层的裂纹起伏在0-0.9479μm之间,表面粗糙,如图4所示;TiO2/HA耐蚀涂层表面平整,未发现大块裂纹,个别位置出现极其细小的裂纹,如图5所示。
2.3、硬度分析
对镁合金基体、实施例1中的TiO2/HA溶胶凝胶涂层和TiO2/HA耐蚀涂层的显微硬度进行分析,分析结果如图6所示。TiO2/HA溶胶凝胶涂层的硬度为84.86HV0.1,较基材提高29.22HV0.1。TiO2/HA耐蚀涂层的硬度值为157.62HV0.1,较基体提高了101.98HV0.1。
2.4、耐蚀性分析
对镁合金基体、TiO2/HA溶胶凝胶涂层和TiO2/HA耐蚀涂层的耐蚀性进行分析,TiO2/HA溶胶凝胶涂层和TiO2/HA耐蚀涂层的Ecorr向正电位方向移动,Icorr减小。自腐蚀电流与自腐蚀电位如表2所示,TiO2/HA溶胶凝胶涂层的自腐蚀电位为-1.445V,较基体提高81mV,自腐蚀电流降低了0.579mA/cm2。TiO2/HA耐蚀涂层的自腐蚀电位是-1.302V,相比于基体提高了224mV,自腐蚀电流降低了0.725mA/cm2。激光处理后涂层相比于基体和溶胶凝胶涂层耐蚀性得到了显著提高,使得镁合金表面生成的一层致密与基体结合良好的耐蚀涂层。此外,耐蚀涂层还在镁基体表面形成了一定厚度的热影响区,该区域晶粒细小,使其耐蚀性更佳。
表2、基体、TiO2/HA溶胶凝胶涂层和TiO2/HA耐蚀涂层的自腐蚀电流和自腐蚀电位
Figure BDA0003413488890000081
对TiO2/HA溶胶凝胶涂层和TiO2/HA耐蚀涂层的腐蚀形貌进行观察,TiO2/HA溶胶凝胶涂层表面HA粉末数量明显减少,出现轻微的腐蚀坑,如图7所示。激光处理后的TiO2/HA耐蚀涂层与基体结合良好,涂层表面并未发现明显的腐蚀现象,如图8所示。
用上述试验例中的性能测试方法对实施例2和实施例3中的TiO2/HA溶胶凝胶涂层和TiO2/HA耐蚀涂层的微观组织形貌、与基体的结合性能、显微硬度和耐蚀性进行分析。实施例2和实施例3中得到的TiO2/HA溶胶凝胶涂层的相关性能与实施例1中的TiO2/HA溶胶凝胶涂层的性能基本相当;实施例2和实施例3中得到的TiO2/HA耐蚀涂层的相关性能与实施例1中的TiO2/HA耐蚀涂层的性能基本相当。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换或改进等,均应包含在本发明的保护范围之内。

Claims (10)

1.一种用于合金表面的耐蚀涂层的制备方法,其特征在于:包括:将合金基体加入TiO2/HA溶胶凝胶中,通过浸渍提拉法在所述合金基体表面形成TiO2/HA薄膜,所述TiO2/HA薄膜干燥后在280-350℃下进行热处理,形成TiO2/HA溶胶凝胶层,对所述TiO2/HA溶胶凝胶层进行激光扫描处理,得到TiO2/HA耐蚀涂层。
2.如权利要求1所述的用于合金表面的耐蚀涂层的制备方法,其特征在于:所述TiO2/HA溶胶凝胶的制备方法为:将乙酰丙酮加入乙醇中搅拌均匀后,加入钛酸正丁酯,得到混合溶液;将HA粉末、冰乙酸和水加入乙醇中,搅拌得到混悬液;将所述混悬液加入所述混合溶液中,搅拌均匀,陈化,得到所述TiO2/HA溶胶凝胶。
3.如权利要求2所述的用于合金表面的耐蚀涂层的制备方法,其特征在于:所述混合溶液中,所述乙酰丙酮和所述乙醇的体积比为1:30-40;
和/或所述混合溶液中,所述钛酸正丁酯和所述乙醇的体积比为1:3-4;
和/或所述混悬液中,所述HA粉末、冰乙酸、水和乙醇的质量体积比为1g:1mL-3mL:1mL-3mL:8mL-12mL。
4.如权利要求2所述的用于合金表面的耐蚀涂层的制备方法,其特征在于:所述混悬液和所述混合溶液的体积比为1:1.4-2;
和/或所述陈化的时间为20h-30h。
5.如权利要求1所述的用于合金表面的耐蚀涂层的制备方法,其特征在于:所述浸渍提拉法的浸渍时间为1min-5min、提拉速度为1cm/min-10cm/min;
和/或所述干燥的温度为75℃-85℃、时间为20min-40min。
6.如权利要求1所述的用于合金表面的耐蚀涂层的制备方法,其特征在于:所述热处理的时间为1.5h-3h。
7.如权利要求1所述的用于合金表面的耐蚀涂层的制备方法,其特征在于:通过重复所述浸渍提拉法在所述合金基体表面形成4-6层所述TiO2/HA薄膜后,再进行所述热处理。
8.如权利要求1所述的用于合金表面的耐蚀涂层的制备方法,其特征在于:所述激光扫描处理过程中的光斑直径为2.5mm-3.5mm、激光功率为250-300W、扫描速度为8-12mm/s;所述激光扫描处理在氩气气氛中进行。
9.如权利要求1所述的用于合金表面的耐蚀涂层的制备方法,其特征在于:所述合金基体为镁合金基体。
10.权利要求1-9任一项所述的用于合金表面的耐蚀涂层的制备方法制得的耐蚀涂层。
CN202111537793.7A 2021-12-15 2021-12-15 一种用于合金表面的耐蚀涂层及其制备方法 Pending CN114182239A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111537793.7A CN114182239A (zh) 2021-12-15 2021-12-15 一种用于合金表面的耐蚀涂层及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111537793.7A CN114182239A (zh) 2021-12-15 2021-12-15 一种用于合金表面的耐蚀涂层及其制备方法

Publications (1)

Publication Number Publication Date
CN114182239A true CN114182239A (zh) 2022-03-15

Family

ID=80544056

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111537793.7A Pending CN114182239A (zh) 2021-12-15 2021-12-15 一种用于合金表面的耐蚀涂层及其制备方法

Country Status (1)

Country Link
CN (1) CN114182239A (zh)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201203711D0 (en) * 2012-03-02 2012-04-18 Univ Sheffield Hallam Anticorrosion sol-gel coating for metal substrate

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201203711D0 (en) * 2012-03-02 2012-04-18 Univ Sheffield Hallam Anticorrosion sol-gel coating for metal substrate

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
D. SIDANE等: "Biocompatibility of sol-gel hydroxyapatite-titania composite and bilayer coatings", MATERIALS SCIENCE AND ENGINEERING C, pages 650 *
RASMI RANJAN BEHERA等: "Laser cladding with HA and functionally graded TiO2-HA precursors on Ti–6Al–4V alloy for enhancing bioactivity and cyto-compatibility", SURFACE & COATINGS TECHNOLOGY, pages 420 *
韩建业;于振涛;周廉;: "溶胶凝胶法制备羟基磷灰石/TiO_2复合生物活性涂层的研究", 硅酸盐通报, no. 02, pages 334 - 339 *

Similar Documents

Publication Publication Date Title
Walsh et al. Plasma electrolytic oxidation (PEO) for production of anodised coatings on lightweight metal (Al, Mg, Ti) alloys
Bakhsheshi-Rad et al. Preparation and characterization of NiCrAlY/nano-YSZ/PCL composite coatings obtained by combination of atmospheric plasma spraying and dip coating on Mg–Ca alloy
CN102011121B (zh) 大面积TiB-TiC增强钛基复合涂层及其制备方法
Tang et al. Fabrication of hydroxyapatite coatings on AZ31 Mg alloy by micro-arc oxidation coupled with sol–gel treatment
Li et al. An effective low-temperature strategy for sealing plasma sprayed Al2O3-based coatings
Etminanfar et al. The effect of hydroxyapatite coatings on the passivation behavior of oxidized and unoxidized superelastic nitinol alloys
Wang et al. Improved oxidation performance of TiAl alloy by a novel Al–Si composite coating
Narimani et al. A study on the oxidation resistance of electrodeposited and nanostructured YSZ thermal barrier ceramic coatings
Li et al. Plasma electrolytic oxidation of Zircaloy-2 alloy in potassium hydroxide/sodium silicate electrolytes: The effect of silicate concentration
Guo et al. Structure and bioactivity of zirconia nanotube arrays fabricated by anodization
JP4425198B2 (ja) チタン酸カルシウム・非晶質炭素複合物、それを用いた被覆材、およびその製造方法
Hao et al. Dual-electrolyte fabrication of micro arc oxidation coatings on Ta–12W alloy with enhanced wear resistance
Martin et al. A new strategy to prepare alumina-zirconia composite or multilayered coatings by combining cold-spray deposition and plasma electrolytic oxidation
CN101914743A (zh) 一种镁合金表面处理方法
CN1304064C (zh) 表面有TiO2涂层的钛合金生物医学复合材料及其制备方法
Hammood et al. Electrophoretic Deposition of Nanocomposite Hydroxyapatite/Titania Coating on 2205 Duplex Stainless Steel Substrate
Jafarzadeh et al. Synthesis, corrosion and bioactivity evaluation of gelatin/silicon and magnesium Co-doped fluorapatite nanocomposite coating applied on AZ31 Mg alloy
CN114182239A (zh) 一种用于合金表面的耐蚀涂层及其制备方法
Sikdar et al. Plasma electrolytic oxidation (PEO) process—processing, properties, and applications. Nanomaterials 2021, 11, 1375
Çaha et al. Crystallization and additional oxide interlayers improve the tribocorrosion resistance of TiO2 nanotubular surfaces formed on Ti6Al4V
Jeong et al. Surface characteristics of HA coated Ti-Hf binary alloys after nanotube formation
Rakhadilov et al. Research of regimes of applying coats by the method of plasma electrolytic oxidation on Ti-6Al-4V
Yan et al. Effects of Micro-arc Oxidation Process Parameters on Micro-structure and Properties of Al2O3 Coatings Prepared on Sintered 2024 Aluminum Alloy
Amiri et al. Corrosion behavior of aluminum oxide coatings created by electrolytic plasma method under different potential regimes
Rehman et al. Investigation of hybrid PEO coatings on AZ31B magnesium alloy in alkaline K 2 ZrF 6–Na 2 SiO 3 electrolyte solution

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination