CN114181959A - Red algae starch anabolism combined gene and combined enzyme - Google Patents

Red algae starch anabolism combined gene and combined enzyme Download PDF

Info

Publication number
CN114181959A
CN114181959A CN202111477678.5A CN202111477678A CN114181959A CN 114181959 A CN114181959 A CN 114181959A CN 202111477678 A CN202111477678 A CN 202111477678A CN 114181959 A CN114181959 A CN 114181959A
Authority
CN
China
Prior art keywords
ala
gly
leu
val
asp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202111477678.5A
Other languages
Chinese (zh)
Inventor
于亚慧
刘涛
贾旭利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xiamen University
Ocean University of China
Original Assignee
Xiamen University
Ocean University of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xiamen University, Ocean University of China filed Critical Xiamen University
Priority to CN202111477678.5A priority Critical patent/CN114181959A/en
Publication of CN114181959A publication Critical patent/CN114181959A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/90Isomerases (5.)
    • C12N9/92Glucose isomerase (5.3.1.5; 5.3.1.9; 5.3.1.18)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8242Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
    • C12N15/8243Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine
    • C12N15/8245Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine involving modified carbohydrate or sugar alcohol metabolism, e.g. starch biosynthesis
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1048Glycosyltransferases (2.4)
    • C12N9/1051Hexosyltransferases (2.4.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1048Glycosyltransferases (2.4)
    • C12N9/1051Hexosyltransferases (2.4.1)
    • C12N9/1071,4-Alpha-glucan branching enzyme (2.4.1.18)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/12Transferases (2.) transferring phosphorus containing groups, e.g. kinases (2.7)
    • C12N9/1241Nucleotidyltransferases (2.7.7)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/24Hydrolases (3) acting on glycosyl compounds (3.2)
    • C12N9/2402Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1)
    • C12N9/2405Glucanases
    • C12N9/2451Glucanases acting on alpha-1,6-glucosidic bonds
    • C12N9/246Isoamylase (3.2.1.68)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/90Isomerases (5.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y204/00Glycosyltransferases (2.4)
    • C12Y204/01Hexosyltransferases (2.4.1)
    • C12Y204/010181,4-Alpha-glucan branching enzyme (2.4.1.18), i.e. glucan branching enzyme
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y204/00Glycosyltransferases (2.4)
    • C12Y204/01Hexosyltransferases (2.4.1)
    • C12Y204/01021Starch synthase (2.4.1.21)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y207/00Transferases transferring phosphorus-containing groups (2.7)
    • C12Y207/07Nucleotidyltransferases (2.7.7)
    • C12Y207/07009UTP-glucose-1-phosphate uridylyltransferase (2.7.7.9), i.e. UDP-glucose-pyrophosphorylase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y302/00Hydrolases acting on glycosyl compounds, i.e. glycosylases (3.2)
    • C12Y302/01Glycosidases, i.e. enzymes hydrolysing O- and S-glycosyl compounds (3.2.1)
    • C12Y302/01068Isoamylase (3.2.1.68)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y503/00Intramolecular oxidoreductases (5.3)
    • C12Y503/01Intramolecular oxidoreductases (5.3) interconverting aldoses and ketoses (5.3.1)
    • C12Y503/01009Glucose-6-phosphate isomerase (5.3.1.9)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y504/00Intramolecular transferases (5.4)
    • C12Y504/02Phosphotransferases (phosphomutases) (5.4.2)
    • C12Y504/02002Phosphoglucomutase (5.4.2.2)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Microbiology (AREA)
  • Medicinal Chemistry (AREA)
  • Nutrition Science (AREA)
  • Cell Biology (AREA)
  • Plant Pathology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

The invention provides a red wineAn alga starch anabolism combined gene and combined enzyme, belonging to the field of gene engineering. Through research on anabolism mechanism of red algae starch in porphyra haitanensis, 2 types of phosphoglucose isomerase PhPGI, 3 types of phosphoglucomutase PhPGM, 2 types of UDPG pyrophosphorylase PhUGP and 1 type of starch synthase PhSS are discoveredUDPG1 branching enzyme PhBE and 1 isoamylase PhISA, provides a new anabolism process of red algae starch, and provides a theoretical basis for researching the anabolism process of red algae starch and the growth and development of red algae.

Description

Red algae starch anabolism combined gene and combined enzyme
Technical Field
The invention belongs to the field of genetic engineering, and particularly relates to a red algae starch anabolism combined gene and a combined enzyme.
Background
Porphyra haitanensis (Pyropia haitanensis), commonly known as laver and black-boned laver, is a large-scale seaweed which can be artificially cultivated. Porphyra of porphyraceae of porphyridium of porphyria of altar, the body of the alga is dark purple green and slightly brownish, is in the shape of a needle, a subaoval or a long oval, is more than 12-30cm long, has a heart shape, a round shape or a wedge shape at the base part, has slight folds or no edges, has sparse sawteeth, has a monolayer of alga bodies and a local bilayer, has single or double color bodies, has round-headed base cells, is a male-female variant plant and a few homologous plants, has warm zone type, and is a main cultivated alga in Zhejiang, Fujian and Guangdong coasts of China. Is rich in protein, polysaccharide and vitamins, and can be used for food or medicine.
Red algae starch is similar in structure to starch granules of higher plants, consisting of a backbone of alpha-1, 4 linkages linked to alpha-1, 6 amylopectin units, with no amylose generally present (except for a few single-celled red algae). Through research on the ultrastructure of red algae, it is found that, unlike green algae and higher plants, in red algae, starch granules are mainly stored in cytosol and are located outside pigment bodies, and some red algae starches cling to the outside of pigment body envelope and are closely related to pigment bodies. The red algae starch granule is in semi-crystal shape, and the size changes with the red algae species and the relative change of cells; the overall storage capacity is closely related to the species of algae and nitrogen uptake. In some red algae, the red algae starch can account for 80% of the total cell volume.
Starch synthesis in higher plants is accomplished in chloroplasts, and synthesis of starch granules in cytosol is accomplished by red algae and other prokaryotes and higher animals without involvement of related transporters. Studies by researchers on various red algae have found that two precursor substances of red algae starch, namely UDP-D-glucose and ADP-glucose, exist, The connection between precursor monomers is catalyzed by UDP-D-glucose starch synthase and ADP-glucose starch synthase to complete The extension of starch chains, and The type of The substrate is currently determined mainly by activity detection of two different synthases (Viola R, Nyvall P, Pedersen M. The unique enzymes of starch metabolism in red enzyme [ J ]. The Royal Society,2001,268: 1417-. Later studies found that the presence of different precursor types in red algae may also be associated with strong activation of UDP-glucose synthase by citrate during the experiment. Barbier et al found through studies with various single-celled red algae that the precursor for the extension of the starch chains of the red algae in red algae was UDP-glucose instead of ADP-glucose (Barbier G, Oesterolt C, Larson M D, et al. comparative genetics of two closed related non-acetylphilic enzyme, Galeric Sulphuric and Cyanidic molecular sieves, Reveals the molecular sieves of the metallic flexible of Galeric Sulphuric and design genes in carbohydrate metabolism of vegetable Physiology, J. Plant Physiology,2005,137: 460. 474). The prior art shows that the synthesis path of red algae starch is single, the influence factor of enzyme is few, and the content is easy to change by the change of environment (Zemke-White W L, Choat J H, et al. A re-evaluation of the second feeding hypthesis for Marine organism fishers [ J ]. Marine Biology,2002,141: 571-.
The degradation pathway of the red algae starch has a common end product, namely glucose-1-phosphate, and the glucose-1-phosphate finally participates in the synthesis of other polysaccharide products, which is an energy-saving mechanism in the red algae. Alpha-glucosidase regulates the conversion from maltose to glucose, not only catalyzes Red algae Starch Degradation, but also makes it possible to take up free maltose from the outside to participate in the synthesis of structural polysaccharides (Yu Shukun. enzymes of Floridean Starch and Floridoside Degradation in Red Agae [ M ]. Sweden: Uppsala University, 1992.). Among the remaining degradation pathways, α -1,4-glucan phosphorylase is involved in a large number of pathways [16], it catalyzes a wide range of substrates capable of directing various small molecule sugars into the circulating pathway, and it was found from studies of YU [3] that both ADP-glucose and UDP-glucose are potent inhibitors thereof (Nyvall P, Pedersena M, Kenne L, et al. enzyme kinetics and chemical modification x-1,4-glucan kinase from Gracilariosis sp. [ J. ]. Phytochemistry,2000,54: 139-.
The red algae starch is used as an important photosynthetic product and a storage substance and is also a main nutrient substance stored in the red algae. The research on the synthesis and degradation metabolic processes of the red algae starch in the red algae and the related enzyme protein thereof has important significance for the growth and development of the red algae.
Disclosure of Invention
Aiming at the defects, the invention provides a red algae starch anabolism combined gene and a combined enzyme. Through research on anabolism mechanism of red algae starch in porphyra haitanensis, 2 types of phosphoglucose isomerase PhPGI, 3 types of phosphoglucomutase PhPGM, 2 types of UDPG pyrophosphorylase PhUGP and 1 type of starch synthase PhSS are discoveredUDPG1 branching enzyme PhBE and 1 isoamylase PhISA, which provides a theoretical basis for researching anabolism process of red algae starch and growth and development of red algae.
In order to achieve the above object, the technical solution of the present invention is as follows:
in one aspect, the invention provides a red algae starch anabolism combined gene, which comprises a glucose phosphate isomerase PhPGI gene, a glucose phosphate mutase PhPGM gene, a UDPG pyrophosphorylase PhUGP gene and a starch synthase PhSS geneUDPGGenes, isoamylase PhISA genes and/or branching enzyme PhBE genes.
Specifically, the gene sequence of the phosphoglucose isomerase PhPGI is a nucleotide sequence shown in SEQ ID No. 1 and/or SEQ ID No. 2.
Specifically, the phosphoglucomutase PhPGM gene sequence is a nucleotide sequence shown as SEQ ID No. 3, SEQ ID No. 4 and/or SEQ ID No. 5.
Specifically, the gene sequence of the UDPG pyrophosphorylase PhUGP is a nucleotide sequence shown as SEQ ID No. 6 and/or SEQ ID No. 7.
In particular, the starchPowder synthetase PhSSUDPGThe gene sequence is the nucleotide sequence shown in SEQ ID No. 8.
Specifically, the gene sequence of the isoamylase PhISA is a nucleotide sequence shown as SEQ ID No. 9.
Specifically, the gene sequence of the branching enzyme PhBE is a nucleotide sequence shown as SEQ ID No. 10.
In another aspect, the invention provides a combined enzyme for starch anabolism of red algae, wherein the combined enzyme is encoded by the combined gene.
Specifically, the combined enzyme comprises phosphoglucose isomerase PhPGI, phosphoglucomutase PhPGM, UDPG pyrophosphorylase PhUGP and starch synthase PhSSUDPGIsoamylase PhISA and/or branching enzyme PhBE.
More specifically, the amino acid sequence of the phosphoglucose isomerase PhPGI is shown as SEQ ID No. 11 and/or SEQ ID No. 12.
More specifically, the amino acid sequence of the phosphoglucomutase PhPGM is shown as SEQ ID No. 13, SEQ ID No. 14 and/or SEQ ID No. 15.
More specifically, the amino acid sequence of the UDPG pyrophosphorylase PhUGP is shown as SEQ ID No. 16 and/or SEQ ID No. 17.
More specifically, the starch synthetase PhSSUDPGThe amino acid sequence of (A) is shown as SEQ ID No. 18.
More specifically, the amino acid sequence of the isoamylase PhISA is the sequence shown in SEQ ID No. 19.
More specifically, the amino acid sequence of the branching enzyme PhBE is the sequence shown in SEQ ID No. 20.
In still another aspect, the present invention provides a vector comprising the above-described combinatorial gene.
In yet another aspect, the present invention provides a host cell comprising the above-described combinatorial gene or vector.
In still another aspect, the present invention provides a genetically engineered cell comprising the above-described combinatorial gene or vector or producing the above-described combinatorial enzyme.
In another aspect, the invention provides the application of the combined gene, the combined enzyme, the vector, the host cell or the genetically engineered cell in red algae starch anabolism.
In yet another aspect, the present invention provides a method for anabolism of starch from red algae, said method comprising the steps of: fructose-6-phosphate Fru-6-P is converted into glucose-6-Glu-6-P phosphate by glucose phosphate isomerase PhPGI, then converted into glucose-1-Glu-1-P phosphate by glucose mutase PhPGM, Glu-1-P reacts with UTP to generate UDP-glucose UDP-Glu under the catalysis of UDPG pyrophosphorylase PhUGP, and glucose provided by UDP-Glu is converted into starch synthase PhSSUDPGThe red algae starch Floridean starch is generated under the catalysis of branching enzyme PhBE and isoamylase PhISA.
In still another aspect, the invention also provides the application of the combined gene, the combined enzyme, the vector, the host cell or the genetically engineered cell in red algae and plant breeding.
Compared with the prior art, the invention has the advantages that:
the invention discovers a red algae starch anabolism combined gene and combined enzyme by researching a red algae starch anabolism mechanism in porphyra haitanensis, wherein the combined enzyme comprises 2 glucose phosphate isomerases PhPGI, 3 glucose phosphate mutases PhPGM, 2 UDPG pyrophosphorylases PhUGP and 1 starch synthase PhSS UDPG1 branching enzyme PhBE and 1 isoamylase PhISA, provides a new anabolism process of red algae starch, and provides a theoretical basis for researching the anabolism process of red algae starch and the growth and development of red algae.
Drawings
FIG. 1 is a diagram of the anabolic pathway of starch from red algae.
FIG. 2 is a graph showing the measurement of fructose-6-phosphate and red algae starch content in Porphyra haitanensis.
Detailed Description
The present invention will be further illustrated in detail with reference to the following specific examples, which are not intended to limit the present invention but are merely illustrative thereof. The experimental methods used in the following examples are not specifically described, and the materials, reagents and the like used in the following examples are generally commercially available under the usual conditions without specific descriptions.
Example 1
The sample is wild Porphyra haitanensis thallus collected from Dongjia island of Fujian province in 2019, 12 months and 11 days. Porphyra haitanensis was transferred to an indoor aerated culture system and cultured with PES medium (Provasoli, l.,1968) for 48h at 21 ℃ in the dark. After the culture is resumed, the porphyra haitanensis is placed at the temperature of 21 ℃ and the temperature is 50 mol.m-2s-1Culturing under light (12h light, 12h dark) and changing the culture medium every 2 days. Selecting Porphyra haitanensis with almost the same size for gene analysis and content determination when the culture is illuminated for 6h on the 5 th day.
Example 2 Red algae starch anabolic pathway study
The anabolic pathway of starch of red algae in Porphyra haitanensis is shown in figure 1, fructose-6-phosphate Fru-6-P is converted into glucose-6-Glu-6-P by glucose phosphate isomerase PhPGI, and then converted into glucose-1-Glu-1-P by glucose mutase PhPGM, Glu-1-P reacts with UTP to generate UDP-glucose UDP-Glu under the catalysis of UDPG pyrophosphorylase PhUGP, and glucose provided by UDP-Glu is subjected to starch synthase PhSSUDPGThe red algae starch Floridean starch is generated under the catalysis of branching enzyme PhBE and isoamylase PhISA.
Example 3 Gene analysis
(1) Homologous sequences involved in the anabolic pathway of red algae starch are downloaded from NCBI (https:// www.ncbi.nlm.nih.gov /), MGU (https:// marinegenomics. oil. jp/algae/galery) and Ensembl (http:// plants. ensemblel. org/index. html) databases and stored in fasta format;
(2) connecting a porphyra haitanensis genome database on a main server by using Secure FX and Putty software, and formatting the database by operating a command 'format db-iOneKP.faspF' in Putty;
(3) uploading the protein sequence file downloaded to the local computer to a formatted database folder by using a Secure FX;
(4) in Putty, the command of "blastall-p tblastn-d (sequence name) -i (search sequence) -oout- (gene name) -F F-e 1 e-5" is used to carry out sequence retrieval with amino acid as query, and a result file is opened in a txt format and saved in a local computer;
(5) preselected sequences with higher homology in the result file were isolated from the database using Editplus (https:// www.editplus.com /), perl and Tbtools software.
(6) And (3) submitting the sequence obtained by the last step of screening to NCBI Conserved-Domains (https:// www.ncbi.nlm.nih.gov/cdd/.
The genes were analyzed for sequence length, molecular weight, isoelectric point and instability index using the ProtParam tool (http:// web. expasy. org/ProtParam) (Gasteiger et al, 2003). Through detection, the gene PhPGI of the phosphoglucose isomerase comprises PhPGI1 and PhPGI2, the sequence of PhPGI1 is a nucleotide sequence shown in SEQ ID No. 1, and the sequence of PhPGI2 is a nucleotide sequence shown in SEQ ID No. 2; the phosphoglucomutase PhPGM gene comprises PhPGM1, PhPGM2 and PhPGM3, the sequence of PhPGM1 is the nucleotide sequence shown in SEQ ID No. 3, the sequence of PhPGM2 is the nucleotide sequence shown in SEQ ID No. 4, and the sequence of PhPGM3 is the nucleotide sequence shown in SEQ ID No. 5; the PhUGP gene of the UDPG pyrophosphorylase PhUGP comprises PhUGP1 and PhUGP2, the sequence of PhUGP1 is a nucleotide sequence shown as SEQ ID No. 6, and the sequence of PhUGP1 is a nucleotide sequence shown as SEQ ID No. 7; starch synthase PhSSUDPGThe sequence of the gene is a nucleotide sequence shown as SEQ ID No. 8; the sequence of the isoamylase PhISA gene is a nucleotide sequence shown in SEQ ID No. 9; the sequence of the branching enzyme PhBE gene is a nucleotide sequence shown as SEQ ID No. 10.
The results of gene characterization are shown in table 1 below.
TABLE 1 Porphyra haitanensis red algae starch synthesis pathway gene characteristics
Gene name SEQ ID No Amino acids ORF(bp) MV(kDa) pI Introns Instability index
PhGPI1 SEQ ID No:1 559 1680 59.63993 5.86 1 28.18
PhGPI2 SEQ ID No:2 638 1917 70.23072 5.81 0 36.16
PhPGM1 SEQ ID No:3 524 1575 53.45336 4.64 2 31.59
PhPGM2 SEQ ID No:4 430 1293 43.42822 5.43 1 31.2
PhPGM3 SEQ ID No:5 586 1761 61.88904 5.1 1 27.5
PhUGP1 SEQ ID No:6 504 1515 55.60583 6.19 0 28.03
PhUGP2 SEQ ID No:7 510 1533 56.19654 6.34 0 27.52
PhSSUDPG SEQ ID No:8 1767 5304 189.20083 6.04 1 44.02
PhISA SEQ ID No:9 786 2361 84.18759 5.64 0 33.81
PhBE SEQ ID No:10 755 2268 85.18558 5.92 2 37.93
EXAMPLE 4 cloning expression of Gene and protein purification
The following proteins are expressed and purified by adopting escherichia coli, a pET vector system and a His-tag nickel column purification system, and the specific operation steps are shown in an operation manual of related strains, reagents and kits:
1. phosphoglucose isomerase PhPGI: comprises PhPGI1 and PhPGI2, the amino acid sequence of PhPGI1 is the sequence shown in SEQ ID No. 11, and the amino acid sequence of PhPGI2 is the sequence shown in SEQ ID No. 12.
2. Phosphoglucomutase PhPGM: comprises PhPGM1, PhPGM2 and PhPGM3, the amino acid sequence of PhPGM1 is shown as SEQ ID No. 13, the amino acid sequence of PhPGM2 is shown as SEQ ID No. 14, and the amino acid sequence of PhPGM3 is shown as SEQ ID No. 15.
UDPG pyrophosphorylase PhUGP: comprises PhUGP1 and PhUGP2, the amino acid sequence of PhUGP1 is the sequence shown in SEQ ID No. 16, and the amino acid sequence of PhUGP2 is the sequence shown in SEQ ID No. 17.
4. Starch synthase PhSSUDPG: the amino acid sequence is shown as SEQ ID No. 18.
5. Isoamylase PhISA: the amino acid sequence is shown as SEQ ID No. 19.
6. Branching enzyme PhBE: the amino acid sequence is shown as SEQ ID No. 20.
Gene cloning and expression and protein purification are conventional procedures in the art and are not described herein.
The positions of the bands were found to be consistent with the sizes of the proteins predicted by amino acids by SDS-PAGE of the purified proteins.
Example 5 detection of fructose-6-phosphate and Red algae starch
1. Red algae starch
The total starch content was determined by modified anthrone spectrophotometry at 620.0nm and calculated by multiplying the glucose content by the conversion factor 0.9 (mccriady R M, et al, 1950, Yang Q, et al, 2018).
(1) Weigh 100mg fresh sample into 15mL test tube, add 4mL 80% ethanol, stand at 70 ℃ for 2h, vortex and mix.
(2) Centrifuging at 10000rpm for 10min, and discarding the supernatant.
(3) Add 4mL 80% ethanol and repeat the above steps 3 times.
(4) Adding 3mL of perchloric acid into the test tube, uniformly mixing by vortex, shaking for 10min, and standing for 5min to fully hydrolyze the starch.
(5) Adding water to a constant volume of 10 mL.
(6) Centrifuging at 10000rpm for 10min, and diluting the sample according to the concentration of the sample.
(7) Sucking 0.4mL of the extractive solution into a new test tube, adding 1.6mL of anthrone reagent, mixing, boiling in water bath for 10min, rapidly cooling to room temperature, and measuring light absorption value at 620 nm.
Starch content (%) ═ C V D/M100 0.9, where C is the result calculated from the standard curve; m is actual weighing mass; v is the total volume of the extracting solution; d is the dilution multiple; 100 is percent conversion; 0.9 is a coefficient of conversion of glucose to starch.
2. Fructose-6-phosphate
(1) 100mg of the crushed powder of the fresh sample is put into a 2.0mL screwed pipe, and 1.2mL of 50% ethanol is added to the crushed powder and shaken for 1h at 40 ℃.
(2) Centrifuge at 12000rpm for 10 min.
(3) The supernatant was aspirated and transferred to a fresh centrifuge tube, and 700. mu.L of CHCl was added3Centrifuging at 10000rpm for 3 min.
(4) Taking the supernatant out, and testing.
Chromatographic parameters:
the chromatographic system used was a Thermo ICS5000+ ion chromatographic system (ICS5000+, Thermo Fisher Scientific, USA) using DionexTMCarboPacTMPA10 (250X 4.0mm, 10 μm) liquid chromatography column, sample size 20 μ L. Mobile phase a (10mM NaOH), mobile phase B (10mM NaOH, 50mM NaAC), column temperature 30 ℃, analytical detection of monosaccharide components using electrochemical detector. The mobile phase gradients are shown in table 2 below.
TABLE 2 gradient of mobile phase
Figure BDA0003394091440000081
Through detection, the content of fructose-6-phosphate in the porphyra haitanensis is 7.44 mu g/g, the content of red algae starch is 28.07mg/g, and the detection result is shown in figure 2.
Example 6 in vitro culture experiments
The red algae starch anabolism mechanism is detected by adopting in vitro culture, 100 muL of the mixture of glucose isomerase PhPGI phosphate (50 muL of PhPGI1+50 muL of PhPGI2), 100 muL of the mixture of glucose mutase phosphate PhPGM (30 muL of PhPGM1+35 muL of PhPGM2+35 muL of PhPGM3), 100 muL of the mixture of UDPG pyrophosphorylase PhUGP (50 muL of PhUGP1+50 muL of PhUGP2) and 100 muL of starch synthase PhSS are added into the systemUDPG100. mu.L of branching enzyme PhBE and 100. mu.L of isoamylase PhISA, and the substrate fructose-6-phosphate (final concentration 250mM), under reaction conditions of 30 ℃ for 3 hours. After the reaction is finished, the content of the fructose-6-phosphate is reduced to 20mM and the content of the red algae starch is increased to 2.5mM through detection.
The above-mentioned embodiments only express several embodiments of the present invention, and the description thereof is more specific and detailed, but not construed as limiting the scope of the present invention. It should be noted that, for a person skilled in the art, several variations and modifications can be made without departing from the inventive concept, which falls within the scope of the present invention. Therefore, the protection scope of the present patent shall be subject to the appended claims.
SEQUENCE LISTING
<110> Xiamen university of China oceanic university
<120> red algae starch anabolism combined gene and combined enzyme
<130> 20210225
<160> 20
<170> PatentIn version 3.5
<210> 1
<211> 1680
<212> DNA
<213> Artificial sequence (artificial sequence)
<400> 1
atggcgacgg cggtggcgac caaacccgcg gagacggccg cttacacgga tgcgtggtcg 60
gcgcttgagg cgcaagtgga tgcactcaag ggcacccacc tgcgcgacct gttgaaagat 120
gacgatcgtt gctcatccat ggtcgccacc gtccccggcc tgacgctgga ctactctcgt 180
caaaaggcga ccaagaagac gatgttttac ctgcatgagc tggccaaggc ggcgggggtg 240
caggagaagg tggcggccat gatgtcgggc accaagatca actccaccga aggccgctcc 300
gttctgcacg tggcactgcg cgcgtcgcgg gatgctgtga tcgagtcggg cggcgccaac 360
gtcgttcccg acgtccacgc cgtgctggac aaggtgaagg ccttctccga ccgggtgcgg 420
tcgggcgagt gggtgggcgc gacgggtaag gcgcttacgg atgtggtgtc gattggcatt 480
ggtggcagct acctggggcc tgagtttgcg tacgaggccc tccgcatgga cgcgacggcc 540
ggggcggcgg cgtcagggcg gcggctgcgg ttcctcgcca acgtggaccc cgtggacgtg 600
gcgcgcgcac gggagggcct ggaccccgag acgacgttgg tggtggtggt gtccaagacg 660
ttcaccaccg ctgagacgat gctgaacgcc cgcaccatgc gctcgtggct ggtggacgcc 720
ctcggcgagg ccgccgttgc caagcacatg gtggcggtca gcaccaacgc ggacggcgtc 780
aagggctttg gtatggaccc ggaaaacatg tttgggttct gggactgggt cggcggccgc 840
tactcggtgt gctcggctgt aggggtggtg ccactggcgt tgcagtacgg ctttgacgtt 900
gtcgaccgct tcctcgctgg cgcacgggac atggacaccc actttgcgac ggcggcgccc 960
gaggccaacc tgcccatcct gatgggcctg ctcggcgtct ggaacaacac gttccttggc 1020
cacgcgacgc gcgcgctgct gccctaccag caagcactgc tgaagctggc cccccacatc 1080
cagcaagtgg acatggagag caatggcaag ggcgtgaagc tggacggcag cccgctgggc 1140
cacgcgggcg ggccggtcaa ctttggtgag ccgggcacca acgggcagca ctctttctac 1200
cagctgatgc accagggccg ggtggtgccc gccgactttg tgggcgtcat tgccccccag 1260
acgcccatcc acctggaggg cgagccagtc agcaaccacg aggagctgat gtgcaacttc 1320
tttgcgcagc cggacgcgct cgcactgggc aagacggctg agcagctggc ggaggagggt 1380
gtgccgtctg agctgatccc gcacaagacg ttcacgggcg accggccgag cagcagcatc 1440
ctgatggacc ggctggatgc cttctccctg ggccagctgc tcgcactctt tgagcaccgc 1500
accgccgtcg agggctttgt gtgggggatc aactcgtttg atcagtgggg ggtggagctg 1560
ggtaaggtgc ttgccaagca ggtacggacg acgattgcgg gcgtgcggtc caagggcggg 1620
gatgtgagcg gctttaattc gtccactacg gcgctgctga agaagttctt gcaagggtag 1680
<210> 2
<211> 1917
<212> DNA
<213> Artificial sequence (artificial sequence)
<400> 2
atggcggacg cggcctttgt cgggttgacc gcggcggcgg cccgccaaac gctgccgcag 60
cagatgcggc gcgtcctgtc tacgtctacg agccggcccc tgccgcggcg atcggctggt 120
gccgctcccg ccgggggcgc ccccctccgg atggtggccg ccgagccggt gccgtcgggg 180
tcgcccgccc ccaacccccc ctccccccca tcgacgcggc ttatctcgca cacgcccgaa 240
tgggcggcgc ttctcgcgca caaacgggaa gtcattgacc cttcgcacct gcgggagctg 300
ctgaccgacg tgccccgcac gatggccctc tacgccgagc acgacggcgt gtcgctcgac 360
tatgcgcgcc agcgggtgac ggtcgacacg atgcggctgc tgtttgacct ggccaaggcg 420
gccaacctgc aaggcaagat ggcggccatg gcgcggggcg accgcatcaa caagacggag 480
gaccggtcgg tgctgcacat ggcgctgcgg gcggccaagg gggacaccct catggtcgac 540
ggcgtggacg tgaacgctga cgtctggaac gtccttgacc gcatccggac gtttacggaa 600
cgggtgcggt cgggggagca ccggggtgcc accggcaagg tcattaagaa cgtgattgcg 660
gtgggcattg gcggctcgta cctcggccct gactttgtgc acgaggcgct aaagacggac 720
cgggatgcgt ccaaggcagc cggtgatcgc acgctccgtt tcctctccaa cgtagacccc 780
gtggacgtcc tccgcaacac ccgggacctg gaccccgagg agacggtggt ggtggtcatc 840
tccaagacgt ttacgacgcg ggagaccaag gtgaatgcca agacgctgcg cgactggctc 900
cgcaactcga tgggccgcgc ccccgaggtg gttgcccagc acatggtggc gtgctccacc 960
aacatggagg gcacgtctga gtttggcatc agccccgaga acgtgtttcc gttttgggac 1020
tgggttggcg gccgcttttc cgtgtgctcc tctgtgggtg cgctgcccat tgcgctgcag 1080
tacggctttg actcgtttga gcggttcctt gaaggcgccc gctccatgga ccagcactgg 1140
ctgacggcgc cgatggagcg caacctaccc gtcttgatgg gcctcttggg cgtgtggaac 1200
atgtccttcc tcggctacag cacccgcgcg ctgcacccgt atacagaggc gctgctcaag 1260
ttccctgcgc acgtgcagca ggtggacatg gagtccaacg gcaagcacgt gacgctcgac 1320
ggggacctgg tggactaccc ggtgggggag gtggactttg gggagcccgg caccaacggc 1380
cagcactcgt tcttccagct cctccacatg ggccaaaccg tcccgtgcga ctttatcggc 1440
tttatggagt cgcaaaaccc catctgtgag gagggggagc ccgtctccaa tcacgacgag 1500
ctggtggcca actttttcgc gcagcccgac gcgctggcga atggcaagac cgccgacgag 1560
tgccgcgccg agggccgcgc cgaggagctc gtcccgcacg tgaccttcct cggcaaccgc 1620
ccgtccgtgt cgctgctgct gcccatctgc aacgcgtaca gctgcggcca gctgctggcg 1680
ctgtacgagc accggacggc ggtggagggc ttcatctgga atatcaactc gtttgaccag 1740
tggggggtgg agctgggcaa ggtgctcgcc atcaaggtgc ggcagcagat caaccagacg 1800
cgctaccaca accggccgat caaggagacg ttcaacgcgt cgacgacgcg gctgctggac 1860
cgcttcctca atggcagcgt cgggtgtgcg tttgaagaca ttgtggtgga tgagtag 1917
<210> 3
<211> 1575
<212> DNA
<213> Artificial sequence (artificial sequence)
<400> 3
atgcgcctcc aaaacgggtc tgacgtgcgc ggcgtggcgc tgccgctggt gcccgccgag 60
cccgtgacgc tcacccccgc cgccgccgcc gacctcggcg ccgcgtttgc cgcgtgggcg 120
gccgccgccg ccggcgtccc cgtcgccgac gtgaccgtca cggtcgggcg cgacagccgc 180
ctgtctgggc cggcgctcgc cgaggcgacc gccgcgggcg tcctcgccgc cggcgcgcgg 240
gtggtggacg ttggcctcgc cacgacgccg gccatgttca tgtccacggt gctgccgttt 300
ggcggccgcg cggcgcccgc gacggcgggg gtgatgctga cggcgagcca cctgccgccc 360
aaccggaacg gcctaaagtt cttcaccgcc gcggggggga cgtccaaggc ggacgtcgcc 420
gcgatcattg acgcggccgc gacggcgcgc gacgcgcgcg gcgggccgcc cgccgtgacc 480
gtcgacgcgc ccctgccgac gcaccccttt ctcgacgact atggggtgca cctggcgggg 540
ctgatccgcg acgcgtgcgg cgcgggcgag accccgctgg acggcttcca cattgtcgtg 600
gacgcgggca acggcgcggg cggcttcttt gcgggcgtcc tcgagtcgct cggcgcgaat 660
accgccggct cccagttcct cgaccccgac ggcacgttcc ccaaccacgt gcccaacccg 720
gaagacgcgg acgcgatggc cgcgctcgtc gccgccacca ccgccgccgg cgccgacctg 780
ggcgtcatct ttgacacgga cgtggaccgg agcggggtgt gcgaccggac gggcgggtcg 840
gtcaaccgca accggctgat cgccatggtc gcccgcatcg ccctccgcga ggcgccgggg 900
ggggtcatcg tcaccgactc ggtgacgagc aacgggctgg cgcggttcat tgaggggctg 960
ggcgggaagc acctgcggta tcgcaagggt tacaagaaca tcattgacaa gggcatcgag 1020
gtggacgcgc cgctggcgat tgagacgtcg ggccacggcg caatgaagga gaactacatg 1080
ctcgacgacg gctgctacct ggcggtcaag atcattgttg agatggtgcg cctgcgcgcc 1140
gccggcgaag agcgtggcat tgccgccctc cttgacggcc tcagcgagcc gctggcctcc 1200
cacgagttcc gcctgccctt catcgacggc tccgactttg ccgccgaggg ggtggccctc 1260
ctcgacgcct ttcccgcgtt tgtcgccgac acccccggct ggactgtcga cgagcccaac 1320
tacgagggcg tccgcgtgtc agtggacgag ggggacggcc gggccggctg gctgctgctg 1380
cggcagagtc tgcacgaccc gctgctgccg ctcaacattg agacggagac gccggggggg 1440
gtggtcgcga cgctccgcac cctccgcgac ggcttcttgg ccaagttccc caacattgac 1500
acgtccagcc tggacgagta cgaggcggcc gcccccgacc gtgctgccgc gccaagcacg 1560
gccgcgggtg cttag 1575
<210> 4
<211> 1293
<212> DNA
<213> Artificial sequence (artificial sequence)
<400> 4
atggtcgccg cgacgggcgc cgcggggggg gtcggcctca ccgcgtcgca caacgcggcg 60
gggcccgccg gggactgggg catcaagttc caggcgccga ccggcgggcc cgcgccagag 120
gccctcaccg accggattgt ggcggcgacg cgggtggtct cgcaggtgcg ggcggtggac 180
tttggggcgg cggccgtcga cgtgtcgacg ctgggggagc agtcgttttt tgggggggcg 240
tttgtggtgg acgtcgtcga cccggcggcg gcgtacgtgg cgcgcctgcg ggaggtgttt 300
gactttgacg ccctccgcgc gtacgtgtcg acgccgggct ttggcctctg ctttgacgcc 360
atggccgccg tcaccggccc gtacgcgcgg gcgctgtttg tcgacgcgct cggcctgccg 420
gcgggctcca tcctccgcgg gacgcccctg gaggactttg gcggcggcca cccggacccg 480
tcgcccgcgc acgtgcccga cctggtcgcc gcgctcgcgg cgcccggctc gggcctgacg 540
ctcggcgccg cgtcggacgg cgacggcgac cgcaacctca tcctcggccc cggctttgcc 600
gtcacgcccg ccgactcgct cgccatcctc accgagtacg ccggcacggc catcccgtgg 660
tttgcccgcc gccccggcgg cctcgccggc gtcgcccgct ccatgcccac cgcccccgcc 720
gtcgaccgcg tcgcggccgc cctccgcatc cccgtctacg agacgcccac cgggtggaag 780
tggtttggct ccctcctcgc cgcccgccgc gttggggtgt gtggggagga gagctacggg 840
acgagcggcg accacgtggc ggaaaaggac gggctgtggg cggtctgcgc gtggctgtcg 900
gtgctggccg tcgccgccgc cgcggcgggg cggctggtgg gggtggagga ggtcgtgcgg 960
gggcactggg cgcgccacgg ccgcaccttt tccgcgcgct gggactacat tggcgtgccg 1020
ggtgcggcgg cggcggcggt gatggacggc ctccggtccg ggggcgtgcg cctgtacttt 1080
gcgtcgggcg cccgcggcgt cgtgcggctc agcggcacgg acgcgacggc ggcggcgacg 1140
ctgcgcgtct acctcgacgc gtaccggccg tggggggcgg gcgtcgcgga cgcggcgccg 1200
gcagacgtgc tggggggggt ggggggggag gttgcgcggc tcgcgaggat cgcggagctc 1260
actgggcgcg acgcgcccac ggcggtggtg tga 1293
<210> 5
<211> 1761
<212> DNA
<213> Artificial sequence (artificial sequence)
<400> 5
atggcgggct ccttccgcgt cgtcgatgtc aagaccgctc cgatcgatgg gcaaaagacg 60
ggcacgtctg gcctccgcaa gaaggtggcc gagttcaaga agcccaacta cctggccaac 120
tgggtgcagt cgctgttctc ttccattgat gggttgaagg gctcctcgat tgcccttggt 180
ggtgacggcc gctattggaa caaggacgcg gtgcgcatca tctgtcgcat tgccgcggcc 240
aacggtgtgg ccaaggttct cgttggccag aatggtatcc tctgcacgcc cgccctcagc 300
gcgattgtgc gccgtcggga gctgcttggt ggcatcatct tgactgcatc gcacaacccc 360
gggggcccca acgcggactt tggcatcaag tacaacgtgt ccaacggcgg ccccgccccc 420
gagtcggtca ccgacaagat cctgaccaac accaagacga ttactacgta cgggatggcg 480
tgtgtggagg gcgccgacgc gggcacagaa gcagacccgt ttgcgtctgt cgacctgtcg 540
gtggtaggcg cgtctgagtt caagtccacg gacggcgccg cgtttaccat tgacgtggtg 600
gactcggcgg ctgactatgt ggagctgctg cagtccatgt ttgactttga ggcgctcaag 660
gcgctatttg cacgctcaga cttttctttc ctgttcgatg ccatgtcggg cgtgacgggg 720
ccgtatgcga aacgcatttt tgtcgagctg ctgggtgggc ccgccgactg cgtgatgcgc 780
ggcgagccgc tggaggactt tggtggggcc caccccgacc ccaacctcac ctacgcggcg 840
gaccttgtgg cgtcgtgtga ccccaagaag tcggccaacg cgccggccat gggcgcggca 900
tcggacggcg acggcgaccg gaacatgatt ttgggccgtg gcttctttgt gaccccttca 960
gactccctgg cggtaattgc cgccaaggcc aaggtagcga tccccttttt caaggacggc 1020
ctgacgggcg ttgcgcgctc catgccgact gccagcgcgg tggaccacgt tgccaccaag 1080
atgggcatct cgtgctttga gacgcccacc gggtggaagt tctttggcaa tctcctcgat 1140
gcgggcaagg cccaaatctg tggcgaggag tcgtttggta cgggtgcctt ccacgtgcgc 1200
gagaaggacg gcatctttgc ggtgctgtgc tggttggcgg tgctcgcaca cgagaacgcg 1260
agcacgaagg agggcgagct catctccatc gagtccatcg tcaccgatca ctggaaggtg 1320
tatgggcgca acttcttctc ccgctacgac tacgaggagg tggacagcga ggcgggcgcg 1380
aagctgatgg ccaccgtcac caaagtgcag gaggaaatgg ccgcggctgc ggacagcact 1440
ggcgccatga cgctcggcga cttccctgtc aaggtcacca ccgctgacaa cttttcgtac 1500
acggacccca ttgacgggag tgtcgcaaag gggcagggcc tccgctttgt gttcgcggac 1560
cacagccggc tggtcttccg gttgagcggc accggctcgt cgggcgccac catccgcttg 1620
tacgccgagc aatacgagaa ggacgaagcc aagcagggag cggacgcgca ggaggcgctc 1680
aagccgctca ttgacttggc gctcaaggtg tccaacctga cagagatcac ggggcgctct 1740
tcgccgacgg tcatcacgta g 1761
<210> 6
<211> 1515
<212> DNA
<213> Artificial sequence (artificial sequence)
<400> 6
atgaacggga gctccgccat gtcgcgcacg atggggctca agtcccagtc cctggccgag 60
atgatgaaca ttacggacac gagcacgcag cggctggtgg cggagaagct gacccgccac 120
aatgaggtgg cggacgagat ggccaagatg accgacacgg agctgaaggg cttcctcagc 180
ctgtacggcc ggtacatgtc ggagaagagc accaaggcgg cgctcagctg ggacaaaatc 240
cagcagcccg acgcgaacat gctcaagccg tatgacgagc tgcccgcggc gggcgacacg 300
gccagtgagg gggagctcct caagaagctg gcggtgctca agctgaatgg tggcctcggt 360
acctcgatgg ggtgcactgg ccccaagtcg gtcattgagg tgcacaacga ctcgacgttc 420
ctggacctga ttgtgcagca gattgagcac atcaacaaga agtacgaggg cgccgacgtg 480
ccgctgctgc tgatgaacag cttcaacacg gacggggaga cggccaagat cattcaaaag 540
taccaggaca cgaatgtgac catcaccacc ttccagcagt cgcgcttccc tcggattgac 600
aaggacacaa tggagccgct gccgctttct cacgcgggct accagcacag cgactggtac 660
ccgccaggcc acggtgacgt ctttgagtcg gtgttcaact cggggctggt ggacacactg 720
ctcgcacaag gaaaggagta tctgtttgtg tccaacgtgg acaacctggg cgcgacggtg 780
gacaccaaaa tcctgcggat gctggaggag accgagtgcg agtactgcat ggagctgacc 840
gacaagacgc gggcggacgt caagggtggc accatcatct cgtacgacgg caaggtgtcg 900
ctgctggagg tggcgcaggt gcccaagcag tacctggagc agttcaagtc gatcaaaaag 960
ttcaaggtgt tcaacaccaa caacatctgg ctgtcgttgc gggcgatcaa gcgggtgatg 1020
cagaccggcg cgctgcagct ggacattatt gtgaacaaca aggcggtggg ggacaagaag 1080
gtggtgcagc tggagacggc gattggggcg gccatctcgt actttaagaa cgcgtgtggc 1140
gtcaacgtgc cgcggtcgcg gttcctgccc gtcaagtcga cgtcggacct gatgctcatc 1200
cagtccaaca tgtttacact caagagcggg tcgctggtga agaacccgct gcgcgagttt 1260
gccaccaccc ctgtcgtcaa gctgggcgat gagttcaaaa aggtgagctc ctacctgtcc 1320
cgctttggct ccatcccgga cgtgctggag ctggaccacc tgaccgtatc gggcgacgtg 1380
tcgtttgggt cggacgtggt cctcaagggc accgtcatca ttgtggtcaa cacggggtcc 1440
aaggtcatga tccctcgggg gtcgattttg gaaaaccagg tcatcacggg cgacctgcac 1500
atcacgtcgc attga 1515
<210> 7
<211> 1533
<212> DNA
<213> Artificial sequence (artificial sequence)
<400> 7
atgaacggcg gggccgccat gaccatgggc catacgcagc ccgatgtggt gcctgtctcc 60
cagtctctgg ccgacctgac gcttgtgacg gacacgagca ccctgcgtca agtggctgag 120
aagatgagcc gccacaacaa ctccgtgcca gatgacatgg ccaagatgac ggacatggag 180
gtgaggggct tcctcaacct gtatggccgc tacatggcgg agaagagtac caagccggcc 240
atcagttggg gcaaaatcca gcagcctgac gcaaacatgc tcaagccgta tgacgagctg 300
cccgcggcgg gcgacacggc cagcgagggg gagctcctca agaagctggc ggtgctcaag 360
ctgaatggtg gtctcggcac ctcgatgggg tgcactggcc ccaagtcggt cattgaggta 420
cgcaacgact cgacgttcct ggacctgatt gtgcagcaga ttgagcacat caacaagaag 480
tacgagggcg ccgacgtgcc gctgctgctg atgaacagct tcaacacgga cggggagacg 540
gccaagatca ttcaaaagta ccaggacacg aatgtgacca tcaccacctt ccagcagtcg 600
cgcttccccc ggattgacaa ggacacgctg gagccgctgc cgctctccca cacgcgctac 660
cagcacagcg actggtaccc gccaggccat ggtgatgtct ttgaggcggt gttcaactcg 720
gggctggtgg acacgctgct cgcgcaagga aaggagtacc tgtttgtgtc caacgtggac 780
aacctgggcg cgacggtgga caccaaaatc ctgcggatgc tggaggagac cgagtgtgag 840
tactgcatgg agctgaccga caagacgcgg gcggacgtca agggtggcac catcatctcg 900
tacgacggca aggtgtcgct gctggaggtg gcgcaggtgc ccaagcagta cctggagcag 960
ttcaagtcga tcaaaaagtt caaggtgttc aacaccaaca acatctggct gtcgctgcgg 1020
gcgatcaagc gggtgatgca gaccggcgcg ctgcagctgg acattattgt gaacaacaag 1080
gcggtggggg acaagaaggt ggtgcagctg gagacggcga ttggggcggc catctcgtac 1140
tttaagaacg cgtgtggcgt caacgtgccg cggtcgcggt tcctgcccgt caagtcgacg 1200
tcggacctga tgctcatcca gtccaacatg tttacgctca agagcgggtc gctggtgaag 1260
aacccgctgc gcgagtttgc caccaccccc gtcgtcaagc tgggcgatga gttcaaaaag 1320
gtgagctcct acctgtcccg ctttggctcc atcccggacg tgctggagct ggaccacctg 1380
accgtatcgg gcgacgtgtc gtttgggtcg gacgtggtcc tcaagggcac cgtcatcatt 1440
gtggtcaaca cggggtccaa ggtcatgatc cctcgggggt cgattttgga aaaccaggtc 1500
atcacgggcg acctgcacat cacgtcgcat tga 1533
<210> 8
<211> 5304
<212> DNA
<213> Artificial sequence (artificial sequence)
<400> 8
atgatgagcg cgctcgtatc tcgccttggc agtggtggcg gcggcccagc gcccgcgggc 60
caagcaaagc cgtctgcagc gacgcggcgg cgggcggaaa aatgggcgca gggcctgacg 120
acgcgggatg ccacggcggc gaccgacacg atggcggacg tgcaggcggc gctgctcgac 180
gcgcaggcca cctcgtacgc gcggtgcccc gatgtggtga cggtcattga ggcgacgctc 240
atcgccgcgc tcggcaacct gcacgcgtcg gtgcgggagg cggcggtggt gctgctcaat 300
gtgctgtacg acgggcacgc gatgcagctg gagaacgcgc tgacgccggc cgtgtcgtcg 360
gtgggggagg cgccggtcgt gcggctcagc cttccccaga cggatcccac gcagccgacg 420
gtgctgccaa aggggtccct caccctgcgc ctgtttgggc ccgttgacgc gggccgcccg 480
ccgcggtgga cgacgcacga cgtcacgtcg acggcggggg gggggctccg cgtgcggctg 540
cccccgtttc cccggcctgg ctactatgac tggctcgtcg cgcacgcggc ggacggggac 600
tttatgcccg acgcggaccg gagctcgccg ccagacccgt cggtggcaag cacgggcgcg 660
gcgccggcgg cagctgggaa tggcgaggcc ggcgccaccg ccggcagtga cgcccccgac 720
gcgggtgccg acccgctgag caacatggac cgccgccgcc tgtgtggccg ctttgtcgtg 780
cagccggcgg gcacgcgcga gtcgctcgtt gccgaggtgc cggtggacca ggtgggtgcg 840
tcgtggaacg cggggacggg ccagctggag acgcgcggct cgtttggggc cgtgctcgag 900
acgctgcccg agctgaaaat ggcgggcgcc accgccgtgt acctgatggg cgccctcgag 960
cggccgattg acgagcccga tgcgccgcca atggcggcgg cggatcgggg ggtgctggcc 1020
aaggtgctcg gcggcgggga ggactttgcg gcgctgacgt ccgaaattcg gcgactggga 1080
atggtgccgg ttgtggacgc cctggagcgg gtctcccggc ggcgggcaca ccgcaagtat 1140
acgtcgcttg gggtgatgac tcgggacgag cggggtgtgc tcgtctccca cccgggcacg 1200
gatgggcggg tgatcacgtg ggaggagtcg gcgctgctca actaccgcaa ggtggagacg 1260
tgggcgctgc tcatttccga agtgaagcgc cttgcacggg actatggggt gcgaggcatc 1320
cggctggaca atgcccagtc gtgtccgccc atcatgacga tggacgcgga ggagctcttt 1380
cggctggacc cagacggcgt gccgcactac tccctgtctg acatcttgta cggaacggtg 1440
gtgctgcgca acgaggagag cggctactgg gcgagcgaag cgggcgcaga ctgtcgctac 1500
gccaacccct tcctggtgaa gctcacgcgc gagctgtgga acgagtaccc gacgtttatg 1560
gtgctcggtg agagccactt ccaccgggag ccccagctgg tagcgtcggg agtggtgcct 1620
cacagcatgc gggtatcgca gattctggcg tccatctctg gcatgtccct ccggcgggac 1680
gggtcggtgg cggtgctgcc accgcacaag cgctcgactg cgaataccct cgcgcggctg 1740
taccgagccg acaaagcgga cctcccccgc gacgccatcc tcgcatcgtg cacgtgcacg 1800
cacgcgtccc cctaccctgg cgctctctac cgccggcggt cgtggattgc tgtggacctg 1860
ctcttctttc tgccccacat gccagtgctg ctgtgggggg aggatgccgg ccgggcgctg 1920
cgggtggata tggcgccggt ggtagaggtg gaggaggatt ccgtatacga tgtcaactat 1980
gacgcggtgc tgcccaagag ccctcgtctg cgacactcgg ggtcgcagcc cgtgtccccg 2040
tctgccgggc ttgccaatgc cagccacgag atgtcggagc tgtccttggg tgaagctgcg 2100
ctgggcggtt cggcttccgg cggtggcggg ctacgggcac ctccctactc ctcctcccag 2160
tccgcgtcgg tgagccccat ggatgggctt gcaggcggag ctgcaccacc acttccggcg 2220
gcgaccgcca atgccaccac tgcaggtggc gggcgcggcc tgggtggcgt tggcggcggc 2280
atgcgcaagc gctccaactc gagcctcaac ctgcgctcca tgtccatggg cggtcggaag 2340
cccagttttg gcaacctcgc cgcggcggtc aacgcgccgc cgtcgtctcc cggccgggac 2400
accgcggctg gccgagccgc cgggggggcg gccccgccgg cggcttccaa ggccaagaca 2460
ctcacctcgg gtgtgcgccg cacgtcgtct gtgtcgtcgc tggtgcggag ccaaacgacg 2520
gacgagggca agcgtcttgc cgtgcgcggc gtgggtgcca gtgacctgat ggcgattgcg 2580
gaccaggagg cgcggttgcg ggccgagatt gggccgcagc tcgggtttga cctgtcccag 2640
atccgtggcc actacaccca ccgctcgctg atgcggcagc agctgccggc gctgcgcctt 2700
ggcaagatgg ttgtggtgcc cgtggacccg tcggtgaagg agcaggtgtt tgcgtttgcg 2760
cgcttcacca ccgagcaaat agttgtggtg gcacttaacc tcaaggacgg gcgtgacgga 2820
gaggcgtttg aggcgggcgt caatgtggac ctggacctgc ggccgctgtg gtcggcgctg 2880
cccgaggagt ttatcagtcg ccgcgcggac ctcttcaacg cctttgacgt ggtcgccggc 2940
gctgaggagc cgtttgtgac ggagggcctg ttgactcttg aggagctgat gttccgccgc 3000
ctgtcgctgc atttgaggcc catgtcttct tccgtgctag aattgcgggc ggagcccaac 3060
gggtcggccg atgagcacta tgcacagtcg atcacgcggt tgacgctgga ggacgctggg 3120
gatatcaagg acccgcgcga gaatactgtg ctgtcggagc tcgcgcgtgg ggcggctacg 3180
tcccttaccg cctttgcagc ggcgctggag aaggccaggt gtggcctcgc agccgagggc 3240
ctggaagcgt cggagatttg gcgtgtcctg cagctgggtc tgcagcgtgc gtcgtcgctg 3300
ctcttctccg tcttgtacga ggggacggtg gcgcccaagg actttgtacc acctgtgggt 3360
gagcgcctgg tatccttcct tgccatgctg tcgctgtcgg cggcgaaccc agacaccaag 3420
gcgctcgcac ggtcactctt ggccaacgcc actgccattg ggccgattgt gctcctcacc 3480
cctgagctgg gtcgcttttc tacggccggt ggccttggcg tcatggtgga tgacctggca 3540
aaggagctgg ctgcgcttgg cctggaagtg catgtcatca ccccctacta cacgctgaac 3600
cggaagaata agacgggcta cctgggcgac aacatccgtt ggacgcgcaa catcaaggtg 3660
gacttgggct cccatgtggt ggaggttggc atctttcagg gcaaggaggc gggtgtcaac 3720
ctgctctttt tggagcgcgg tgatctgctg ccgaaggtgt acgctgaccc agggggtgcg 3780
gccaagcacc tgcagaccgt cgtcctgttc tcgatgggcg ctcttgaggc gtgttgcgcg 3840
acgagcttgg tgccgtcggt cgtgatttcc aacgactggc tgccgagtat ggcggctggg 3900
tatgccaaga acgggttctt tggaccgtac tttgacaaca ccagcttctt tcacctggtg 3960
cacaaccttg gcgatgcggc gtacgaaggc cgcgtgtacc ccaaccccca tgagggggac 4020
tttggtgtca tccaccggct gcccaggaat ctgttggttg acccctggtg gtcccgtgtg 4080
gtggtcaacc cgtcgcgctg cgcgttcatg acatccgaca cgtggggcac ggtgtcgccc 4140
aactatctca aggagctgct ggcaggccac ccgctgaaga acctgctggc gatggccaag 4200
tcgccgtttg cctacccaaa cggcatccgg atcaaggaac gagaggcgtc gttggcggcc 4260
ctcaacatca agacgcacgc gcaggccaag gagatggttc agaagaagta ctttggcttc 4320
aacgcggcgg accactccat tcccctgttt gcgtttgtgg ggcgggtcac ctcccagaag 4380
ggcgtgcacc tcatcctaaa cgccgtggac gagctcattg cccataccgg cggcaagatc 4440
cagatcctgg tcggcggccc cgccaacgag gccgacccgt acgccgccgc gtgtgcgcgg 4500
cacatgcggg acctgtctcg ccggcacaag tggtgctttt gggccgcgcc cgaggagttc 4560
ttcacggatg gcctgctggt ggacgcgggc gcagactttg ggtttgtgcc gtcgttgttt 4620
gagcctgccg gcctgcggca aatcgagtcg tttgtgggtg ccggcgacgg cacgccggtc 4680
attgcgcacg cggtgggggg gctcgtggac acggtgtttg agtgggacct cgagtcgggc 4740
agcggcaacg gcttcctctt ccacgagtac aaccatcaca acttcttggg cgcggtcaag 4800
cgggcgctgc gggtcttctc caagactgac gagtttgccg agctccgtcg tgccacccgc 4860
acgacggcca ttgacgtgcg ggatgctgcg tgggcgtgga gctctgagtt ccatcggctg 4920
cgcaacagca tctacgtgcg gcggcccatc tttagggagg acctggatgg ggtggtggaa 4980
gaggactcgg aggctcttga ccctgccgct accgtccatg tggtgcggtg gacggcagcg 5040
ggcgaggacg tggtcgtcaa gggctcctgg gacgggtggg ctcgcgagtg gccgctgacg 5100
gacgggccca ctccgattga cggtgagggc gcggaggagg ccgccgacgg cagcgtgccc 5160
gtggagaagc atatggtgcg gctgcggctt ccgccggggg actacgagtt caagttcaag 5220
gtggacggca agtgggggct ggccaaggac ttgccgacga ggggggaggg cgctttcacc 5280
aacaacctcc tctcggtgcc ttga 5304
<210> 9
<211> 2361
<212> DNA
<213> Artificial sequence (artificial sequence)
<400> 9
atggtgacct ctgcggcggg cgcccctgcg tggggcgact ccatttccat tgctcaccgg 60
gggcggccgc tgccgtacgg ctgcaccccc gccagcgccg ctgccgccgc tgacactggc 120
ggcggcggcg gcggcgcgct caacttttcc atctttacca aggaggccac ccacgttgtg 180
ctgctgctct tccctcccac ccgtgaggcg cccgcggcgg gtgccgacgg cggtgacggc 240
gcggcggcgg cgggcggcgg ggcgccgccg ccgccgccgc cggtggagct gcgcctggac 300
gccgcccagc accggacggg catggtgtgg cacgtgaagg tggcgggtgt cccgccccgc 360
tccgagtacc tgtggcgggt aggcgcggcg gcggaccccc gctggtacac caacgagtgc 420
ctcgacccgt acgcgcggga ggtgtcgtcg ccagtgggcg cgcgcatgta caacgccacg 480
gacgtgcggg gggagtaccg cccacggggg gtggtgccag cggtgggcgc cccggcgttt 540
gactggcagg gggtggtgcc gccacgcatc ccgcagcacg agctggtcat ttatgagatg 600
cacgtccgtg gctttacgct gtatgcagac gctggtggcg ccgccactgc cggtggtggt 660
ggtgccgacg gcggcgccga cgcggacggg gaggccaagg ggggggccaa ggcgacgccg 720
gcgggggggg gcgcggacac caacggcacc tttctgggcg tgattgacaa gatcccttac 780
ctccgtgcgc tgggcgtcaa ctgtgtggag ctgctgccag tgatggagtt taacgagacg 840
gagtggtcgt ttatcaaccc cgtcacgaag cagcgcctgt cgcagtactg ggggtactct 900
accgtcgcct tttttgcgcc catgaaccgg tttgcgcggg cagacgcgac ggtcgagttc 960
cagacgatgg tccgggagct ccaccgcgcc ggcattgagg tcatcctgga cgtggtgtac 1020
aaccacacgg ccgagatggg cctggacttt ttgccgccgg ggcactatgg gcaaaagacg 1080
ctcgcgccgg gcacgtacta catgctcgag gacaatggcg ccaagtttgt caactactcg 1140
ggctgtggca acaccctgtc gtgcaacaac ccggtgaccg cagagtggat ccacgagtcc 1200
ctccgctact gggcgctgac catgggcgtc gacggcttcc gctttgacct ggcgtccatc 1260
ctgacacggg gcatggacgg ggcggcgctg gccaacccgc ccgttgtgga acgcatcacc 1320
aaggacccgt gcatgcgcga cgtcaagttg attgccgaac cgtgggactg tgggggcctc 1380
taccaggtgg gcaccttccc tcactatggg gtctggtccg agtggaatgg caagttccgc 1440
gacgtggtgc gtcagtttgt caagggcgac cgcggcctca agggcgcgtt tgcgtcgcgc 1500
ctgtgtgggt cccaggatat gtacggcccg tcggggcggg caccatacca ctcgatcaac 1560
tttgtgacgg cacacgatgg cttctccctg tacgacctgg tatcgtacaa tgacaagcac 1620
aacgagcaca atggggagaa caacaacgac ggggagcagc acaacaacag ctggaactgt 1680
ggcgccgagg gcgagacggc cgacgcagag gtgcggtcgc gccgtgaccg gcagatgcgc 1740
aacatgctgg tggcgctgct cttgtcggcg ggcaccccga tgctgtgcat gggcgacgag 1800
tacgggcata ccaagggcgg caacaacaat ggctggtgcc aagacggcct gctaaccgcg 1860
tttgactggg ccgcgctgcg ggacggcctc ggcggcctcc cccgcttcct tgccaaactc 1920
atccgcctgc gcacgcagac ggcgccattc ctggcgcgca ccactttcta ctcgggctcg 1980
gagattgtgt ggcacgggga gcgtgtcggg gagcccgggt gggacgaccc ctacaacttt 2040
ctggctttca ccatccccga cccgcggccg gccaacggcg cggacctgta cgtggcgttc 2100
aacgcgggcg gcgagccgcg gactgcgaca ctccccccgg cgcccgccgg cggctcgtgg 2160
gggcgcctcg ttgacacggc actgccgccg ccgcgggact gcagcgacga cccggcggcg 2220
cacctcatcg accggtcgta cgggctgcag ccctactcgg cggtggtgct ggtgcacgtc 2280
cgccgcgcgt gcgtggccac gcccgccgcc gaggacgtga ccgcggcgct ccgcgcgggg 2340
ctggctcggg tggggctcta a 2361
<210> 10
<211> 2268
<212> DNA
<213> Artificial sequence (artificial sequence)
<400> 10
atggcggaga aggatggcca ctttgatgct tggaaggata agaaggatgg cacccaggtg 60
attgccgccg accgctacct ggagccttat gcggattcgc tgcggtatcg cttcaccaag 120
tacaacgaga tcaaaaacgc catcgaggag agcgaaggcg gcctgggaaa gtttgcgcag 180
tcctacaagt cgtttggcct gcacgctgta gaggggggcg ttgagtaccg tgagtgggct 240
cctggcgctc agtccgtgtc tgtctttggc gacttcaacg gctggaaccg gaactcgcat 300
cagctgacgc gtggggagtt tgggatttgg acgaccacca ttccggacaa tgaggacggt 360
tccccggcgg tgccgcacgg ctccaaggtg aaggtgtgca ttgtgactcc cggcgggatg 420
cacctggatc ggaacccggc gtgggccacg tacctcatcc agaacccgtc gacgctcctg 480
tttgatacgg tgttttggaa cccgccggag gagcacaagt accagtggaa gcaccagaag 540
caccccccgg ccccagagtg catgcgcatc tacgaatgcc acgtcgggat gggctcggcc 600
gaccccaagg tgggcaccta cgacgaattc accgacaaca tcctgccgcg gattaaggac 660
ctgggcttca cagccatcca gattatggcc atcatggagc atgcgtacta cggttctttt 720
ggttaccacg tcaccaactt ttttgccatt tcttctcgga gcggcgatcc agaagggctc 780
aagcgcttga ttgacacggc gcatggcatg gggcttgttg tcctgatgga tgtcgttcac 840
agccacgcct cctccaactc gatggatggg atcaaccagt ttgatggcac cgaccaccag 900
tacttccatg agggcgagcg cggtcggcac tcgctgtggg actcgcggct gttcaactat 960
gggcagtggg aggttattcg cttcctgctt tccaacctgc gctggtacat ggaggagtac 1020
cactttgacg ggttccgctt tgacggggtt acgtccatgc tgtacaagca ccacggcatc 1080
caggtgcagt tctcgggcga ctaccgcgag tactttggca tgcacgtcga tgttgacgcg 1140
tgcgtctacc tcatgttggc gaacgacctt gtgcggcagg tgaacccgga ttcgggaatc 1200
accattgctg aggacgtgtc gggcatgcct accgtgtgcc gcccggtcgt ggagggcggg 1260
ttgggctttg actaccggtt gggcatgtct gtgcctgaca agtggattga gctgctgtcc 1320
aaggagaagg acgaggcgtg gaacatgggc aatattgcgt tcaccctgac caaccggcgt 1380
tggaacgagg ccaccattgg ctacgctgag tcccacgacc aggcgctggt gggggataag 1440
acgctggctt tttggctaat ggacgcggct atgtacacta gcatggggat ggatcaacaa 1500
tccccggtgg tggagcgcgg tatcgcgctg cacaaaatga tccggctgat ctcttatggc 1560
ttggctggtg aaggctacct gaccttcatg ggcaacgagt ttggtcaccc cgagtgggtg 1620
gacttccctc gggccggcaa cggtttttcg tacgagaagg cgcggcggcg gtgggacctg 1680
gcggacaaca agggcctccg ctactcccat atgcagctgt gggagaagct gatgcacgag 1740
cttgagacca gccacttctt ttgccgcaag gcggtgcacc agtacgttgt gcttgcgcat 1800
gaccaggaca aggtggtggc gtttgagaag ggagaccggc tgctgtttgt cttcaacttc 1860
catcctacca agtcgtacac cgattaccgc atcggcactc actggggcgg aaagtaccgc 1920
ctggtgctag attcggacgg gaccaacgtg ggtggccaag gccgggtaca ctggcacgtg 1980
gtgcaccgga cctccagctc gccatggcag tcgcggtctc actcgctcca gttgtacctg 2040
ccgtcgcgca cctgccaagt gtatcattgc tttgagctgg actcgaaggc ggaggaggca 2100
gcgcacaagg cggcacctgc ggctgcggcg gcgactacag cagagactgt cgctgaggtt 2160
gacgcggcta aggcggcgcc cgcagccaag actgctgctt ccccaacaga cgcggctgcc 2220
ccggaagagg ctgtgaaggc agatggagcc aagaaggcct ctgcctaa 2268
<210> 11
<211> 559
<212> PRT
<213> Artificial sequence (artificial sequence)
<400> 11
Met Ala Thr Ala Val Ala Thr Lys Pro Ala Glu Thr Ala Ala Tyr Thr
1 5 10 15
Asp Ala Trp Ser Ala Leu Glu Ala Gln Val Asp Ala Leu Lys Gly Thr
20 25 30
His Leu Arg Asp Leu Leu Lys Asp Asp Asp Arg Cys Ser Ser Met Val
35 40 45
Ala Thr Val Pro Gly Leu Thr Leu Asp Tyr Ser Arg Gln Lys Ala Thr
50 55 60
Lys Lys Thr Met Phe Tyr Leu His Glu Leu Ala Lys Ala Ala Gly Val
65 70 75 80
Gln Glu Lys Val Ala Ala Met Met Ser Gly Thr Lys Ile Asn Ser Thr
85 90 95
Glu Gly Arg Ser Val Leu His Val Ala Leu Arg Ala Ser Arg Asp Ala
100 105 110
Val Ile Glu Ser Gly Gly Ala Asn Val Val Pro Asp Val His Ala Val
115 120 125
Leu Asp Lys Val Lys Ala Phe Ser Asp Arg Val Arg Ser Gly Glu Trp
130 135 140
Val Gly Ala Thr Gly Lys Ala Leu Thr Asp Val Val Ser Ile Gly Ile
145 150 155 160
Gly Gly Ser Tyr Leu Gly Pro Glu Phe Ala Tyr Glu Ala Leu Arg Met
165 170 175
Asp Ala Thr Ala Gly Ala Ala Ala Ser Gly Arg Arg Leu Arg Phe Leu
180 185 190
Ala Asn Val Asp Pro Val Asp Val Ala Arg Ala Arg Glu Gly Leu Asp
195 200 205
Pro Glu Thr Thr Leu Val Val Val Val Ser Lys Thr Phe Thr Thr Ala
210 215 220
Glu Thr Met Leu Asn Ala Arg Thr Met Arg Ser Trp Leu Val Asp Ala
225 230 235 240
Leu Gly Glu Ala Ala Val Ala Lys His Met Val Ala Val Ser Thr Asn
245 250 255
Ala Asp Gly Val Lys Gly Phe Gly Met Asp Pro Glu Asn Met Phe Gly
260 265 270
Phe Trp Asp Trp Val Gly Gly Arg Tyr Ser Val Cys Ser Ala Val Gly
275 280 285
Val Val Pro Leu Ala Leu Gln Tyr Gly Phe Asp Val Val Asp Arg Phe
290 295 300
Leu Ala Gly Ala Arg Asp Met Asp Thr His Phe Ala Thr Ala Ala Pro
305 310 315 320
Glu Ala Asn Leu Pro Ile Leu Met Gly Leu Leu Gly Val Trp Asn Asn
325 330 335
Thr Phe Leu Gly His Ala Thr Arg Ala Leu Leu Pro Tyr Gln Gln Ala
340 345 350
Leu Leu Lys Leu Ala Pro His Ile Gln Gln Val Asp Met Glu Ser Asn
355 360 365
Gly Lys Gly Val Lys Leu Asp Gly Ser Pro Leu Gly His Ala Gly Gly
370 375 380
Pro Val Asn Phe Gly Glu Pro Gly Thr Asn Gly Gln His Ser Phe Tyr
385 390 395 400
Gln Leu Met His Gln Gly Arg Val Val Pro Ala Asp Phe Val Gly Val
405 410 415
Ile Ala Pro Gln Thr Pro Ile His Leu Glu Gly Glu Pro Val Ser Asn
420 425 430
His Glu Glu Leu Met Cys Asn Phe Phe Ala Gln Pro Asp Ala Leu Ala
435 440 445
Leu Gly Lys Thr Ala Glu Gln Leu Ala Glu Glu Gly Val Pro Ser Glu
450 455 460
Leu Ile Pro His Lys Thr Phe Thr Gly Asp Arg Pro Ser Ser Ser Ile
465 470 475 480
Leu Met Asp Arg Leu Asp Ala Phe Ser Leu Gly Gln Leu Leu Ala Leu
485 490 495
Phe Glu His Arg Thr Ala Val Glu Gly Phe Val Trp Gly Ile Asn Ser
500 505 510
Phe Asp Gln Trp Gly Val Glu Leu Gly Lys Val Leu Ala Lys Gln Val
515 520 525
Arg Thr Thr Ile Ala Gly Val Arg Ser Lys Gly Gly Asp Val Ser Gly
530 535 540
Phe Asn Ser Ser Thr Thr Ala Leu Leu Lys Lys Phe Leu Gln Gly
545 550 555
<210> 12
<211> 638
<212> PRT
<213> Artificial sequence (artificial sequence)
<400> 12
Met Ala Asp Ala Ala Phe Val Gly Leu Thr Ala Ala Ala Ala Arg Gln
1 5 10 15
Thr Leu Pro Gln Gln Met Arg Arg Val Leu Ser Thr Ser Thr Ser Arg
20 25 30
Pro Leu Pro Arg Arg Ser Ala Gly Ala Ala Pro Ala Gly Gly Ala Pro
35 40 45
Leu Arg Met Val Ala Ala Glu Pro Val Pro Ser Gly Ser Pro Ala Pro
50 55 60
Asn Pro Pro Ser Pro Pro Ser Thr Arg Leu Ile Ser His Thr Pro Glu
65 70 75 80
Trp Ala Ala Leu Leu Ala His Lys Arg Glu Val Ile Asp Pro Ser His
85 90 95
Leu Arg Glu Leu Leu Thr Asp Val Pro Arg Thr Met Ala Leu Tyr Ala
100 105 110
Glu His Asp Gly Val Ser Leu Asp Tyr Ala Arg Gln Arg Val Thr Val
115 120 125
Asp Thr Met Arg Leu Leu Phe Asp Leu Ala Lys Ala Ala Asn Leu Gln
130 135 140
Gly Lys Met Ala Ala Met Ala Arg Gly Asp Arg Ile Asn Lys Thr Glu
145 150 155 160
Asp Arg Ser Val Leu His Met Ala Leu Arg Ala Ala Lys Gly Asp Thr
165 170 175
Leu Met Val Asp Gly Val Asp Val Asn Ala Asp Val Trp Asn Val Leu
180 185 190
Asp Arg Ile Arg Thr Phe Thr Glu Arg Val Arg Ser Gly Glu His Arg
195 200 205
Gly Ala Thr Gly Lys Val Ile Lys Asn Val Ile Ala Val Gly Ile Gly
210 215 220
Gly Ser Tyr Leu Gly Pro Asp Phe Val His Glu Ala Leu Lys Thr Asp
225 230 235 240
Arg Asp Ala Ser Lys Ala Ala Gly Asp Arg Thr Leu Arg Phe Leu Ser
245 250 255
Asn Val Asp Pro Val Asp Val Leu Arg Asn Thr Arg Asp Leu Asp Pro
260 265 270
Glu Glu Thr Val Val Val Val Ile Ser Lys Thr Phe Thr Thr Arg Glu
275 280 285
Thr Lys Val Asn Ala Lys Thr Leu Arg Asp Trp Leu Arg Asn Ser Met
290 295 300
Gly Arg Ala Pro Glu Val Val Ala Gln His Met Val Ala Cys Ser Thr
305 310 315 320
Asn Met Glu Gly Thr Ser Glu Phe Gly Ile Ser Pro Glu Asn Val Phe
325 330 335
Pro Phe Trp Asp Trp Val Gly Gly Arg Phe Ser Val Cys Ser Ser Val
340 345 350
Gly Ala Leu Pro Ile Ala Leu Gln Tyr Gly Phe Asp Ser Phe Glu Arg
355 360 365
Phe Leu Glu Gly Ala Arg Ser Met Asp Gln His Trp Leu Thr Ala Pro
370 375 380
Met Glu Arg Asn Leu Pro Val Leu Met Gly Leu Leu Gly Val Trp Asn
385 390 395 400
Met Ser Phe Leu Gly Tyr Ser Thr Arg Ala Leu His Pro Tyr Thr Glu
405 410 415
Ala Leu Leu Lys Phe Pro Ala His Val Gln Gln Val Asp Met Glu Ser
420 425 430
Asn Gly Lys His Val Thr Leu Asp Gly Asp Leu Val Asp Tyr Pro Val
435 440 445
Gly Glu Val Asp Phe Gly Glu Pro Gly Thr Asn Gly Gln His Ser Phe
450 455 460
Phe Gln Leu Leu His Met Gly Gln Thr Val Pro Cys Asp Phe Ile Gly
465 470 475 480
Phe Met Glu Ser Gln Asn Pro Ile Cys Glu Glu Gly Glu Pro Val Ser
485 490 495
Asn His Asp Glu Leu Val Ala Asn Phe Phe Ala Gln Pro Asp Ala Leu
500 505 510
Ala Asn Gly Lys Thr Ala Asp Glu Cys Arg Ala Glu Gly Arg Ala Glu
515 520 525
Glu Leu Val Pro His Val Thr Phe Leu Gly Asn Arg Pro Ser Val Ser
530 535 540
Leu Leu Leu Pro Ile Cys Asn Ala Tyr Ser Cys Gly Gln Leu Leu Ala
545 550 555 560
Leu Tyr Glu His Arg Thr Ala Val Glu Gly Phe Ile Trp Asn Ile Asn
565 570 575
Ser Phe Asp Gln Trp Gly Val Glu Leu Gly Lys Val Leu Ala Ile Lys
580 585 590
Val Arg Gln Gln Ile Asn Gln Thr Arg Tyr His Asn Arg Pro Ile Lys
595 600 605
Glu Thr Phe Asn Ala Ser Thr Thr Arg Leu Leu Asp Arg Phe Leu Asn
610 615 620
Gly Ser Val Gly Cys Ala Phe Glu Asp Ile Val Val Asp Glu
625 630 635
<210> 13
<211> 524
<212> PRT
<213> Artificial sequence (artificial sequence)
<400> 13
Met Arg Leu Gln Asn Gly Ser Asp Val Arg Gly Val Ala Leu Pro Leu
1 5 10 15
Val Pro Ala Glu Pro Val Thr Leu Thr Pro Ala Ala Ala Ala Asp Leu
20 25 30
Gly Ala Ala Phe Ala Ala Trp Ala Ala Ala Ala Ala Gly Val Pro Val
35 40 45
Ala Asp Val Thr Val Thr Val Gly Arg Asp Ser Arg Leu Ser Gly Pro
50 55 60
Ala Leu Ala Glu Ala Thr Ala Ala Gly Val Leu Ala Ala Gly Ala Arg
65 70 75 80
Val Val Asp Val Gly Leu Ala Thr Thr Pro Ala Met Phe Met Ser Thr
85 90 95
Val Leu Pro Phe Gly Gly Arg Ala Ala Pro Ala Thr Ala Gly Val Met
100 105 110
Leu Thr Ala Ser His Leu Pro Pro Asn Arg Asn Gly Leu Lys Phe Phe
115 120 125
Thr Ala Ala Gly Gly Thr Ser Lys Ala Asp Val Ala Ala Ile Ile Asp
130 135 140
Ala Ala Ala Thr Ala Arg Asp Ala Arg Gly Gly Pro Pro Ala Val Thr
145 150 155 160
Val Asp Ala Pro Leu Pro Thr His Pro Phe Leu Asp Asp Tyr Gly Val
165 170 175
His Leu Ala Gly Leu Ile Arg Asp Ala Cys Gly Ala Gly Glu Thr Pro
180 185 190
Leu Asp Gly Phe His Ile Val Val Asp Ala Gly Asn Gly Ala Gly Gly
195 200 205
Phe Phe Ala Gly Val Leu Glu Ser Leu Gly Ala Asn Thr Ala Gly Ser
210 215 220
Gln Phe Leu Asp Pro Asp Gly Thr Phe Pro Asn His Val Pro Asn Pro
225 230 235 240
Glu Asp Ala Asp Ala Met Ala Ala Leu Val Ala Ala Thr Thr Ala Ala
245 250 255
Gly Ala Asp Leu Gly Val Ile Phe Asp Thr Asp Val Asp Arg Ser Gly
260 265 270
Val Cys Asp Arg Thr Gly Gly Ser Val Asn Arg Asn Arg Leu Ile Ala
275 280 285
Met Val Ala Arg Ile Ala Leu Arg Glu Ala Pro Gly Gly Val Ile Val
290 295 300
Thr Asp Ser Val Thr Ser Asn Gly Leu Ala Arg Phe Ile Glu Gly Leu
305 310 315 320
Gly Gly Lys His Leu Arg Tyr Arg Lys Gly Tyr Lys Asn Ile Ile Asp
325 330 335
Lys Gly Ile Glu Val Asp Ala Pro Leu Ala Ile Glu Thr Ser Gly His
340 345 350
Gly Ala Met Lys Glu Asn Tyr Met Leu Asp Asp Gly Cys Tyr Leu Ala
355 360 365
Val Lys Ile Ile Val Glu Met Val Arg Leu Arg Ala Ala Gly Glu Glu
370 375 380
Arg Gly Ile Ala Ala Leu Leu Asp Gly Leu Ser Glu Pro Leu Ala Ser
385 390 395 400
His Glu Phe Arg Leu Pro Phe Ile Asp Gly Ser Asp Phe Ala Ala Glu
405 410 415
Gly Val Ala Leu Leu Asp Ala Phe Pro Ala Phe Val Ala Asp Thr Pro
420 425 430
Gly Trp Thr Val Asp Glu Pro Asn Tyr Glu Gly Val Arg Val Ser Val
435 440 445
Asp Glu Gly Asp Gly Arg Ala Gly Trp Leu Leu Leu Arg Gln Ser Leu
450 455 460
His Asp Pro Leu Leu Pro Leu Asn Ile Glu Thr Glu Thr Pro Gly Gly
465 470 475 480
Val Val Ala Thr Leu Arg Thr Leu Arg Asp Gly Phe Leu Ala Lys Phe
485 490 495
Pro Asn Ile Asp Thr Ser Ser Leu Asp Glu Tyr Glu Ala Ala Ala Pro
500 505 510
Asp Arg Ala Ala Ala Pro Ser Thr Ala Ala Gly Ala
515 520
<210> 14
<211> 430
<212> PRT
<213> Artificial sequence (artificial sequence)
<400> 14
Met Val Ala Ala Thr Gly Ala Ala Gly Gly Val Gly Leu Thr Ala Ser
1 5 10 15
His Asn Ala Ala Gly Pro Ala Gly Asp Trp Gly Ile Lys Phe Gln Ala
20 25 30
Pro Thr Gly Gly Pro Ala Pro Glu Ala Leu Thr Asp Arg Ile Val Ala
35 40 45
Ala Thr Arg Val Val Ser Gln Val Arg Ala Val Asp Phe Gly Ala Ala
50 55 60
Ala Val Asp Val Ser Thr Leu Gly Glu Gln Ser Phe Phe Gly Gly Ala
65 70 75 80
Phe Val Val Asp Val Val Asp Pro Ala Ala Ala Tyr Val Ala Arg Leu
85 90 95
Arg Glu Val Phe Asp Phe Asp Ala Leu Arg Ala Tyr Val Ser Thr Pro
100 105 110
Gly Phe Gly Leu Cys Phe Asp Ala Met Ala Ala Val Thr Gly Pro Tyr
115 120 125
Ala Arg Ala Leu Phe Val Asp Ala Leu Gly Leu Pro Ala Gly Ser Ile
130 135 140
Leu Arg Gly Thr Pro Leu Glu Asp Phe Gly Gly Gly His Pro Asp Pro
145 150 155 160
Ser Pro Ala His Val Pro Asp Leu Val Ala Ala Leu Ala Ala Pro Gly
165 170 175
Ser Gly Leu Thr Leu Gly Ala Ala Ser Asp Gly Asp Gly Asp Arg Asn
180 185 190
Leu Ile Leu Gly Pro Gly Phe Ala Val Thr Pro Ala Asp Ser Leu Ala
195 200 205
Ile Leu Thr Glu Tyr Ala Gly Thr Ala Ile Pro Trp Phe Ala Arg Arg
210 215 220
Pro Gly Gly Leu Ala Gly Val Ala Arg Ser Met Pro Thr Ala Pro Ala
225 230 235 240
Val Asp Arg Val Ala Ala Ala Leu Arg Ile Pro Val Tyr Glu Thr Pro
245 250 255
Thr Gly Trp Lys Trp Phe Gly Ser Leu Leu Ala Ala Arg Arg Val Gly
260 265 270
Val Cys Gly Glu Glu Ser Tyr Gly Thr Ser Gly Asp His Val Ala Glu
275 280 285
Lys Asp Gly Leu Trp Ala Val Cys Ala Trp Leu Ser Val Leu Ala Val
290 295 300
Ala Ala Ala Ala Ala Gly Arg Leu Val Gly Val Glu Glu Val Val Arg
305 310 315 320
Gly His Trp Ala Arg His Gly Arg Thr Phe Ser Ala Arg Trp Asp Tyr
325 330 335
Ile Gly Val Pro Gly Ala Ala Ala Ala Ala Val Met Asp Gly Leu Arg
340 345 350
Ser Gly Gly Val Arg Leu Tyr Phe Ala Ser Gly Ala Arg Gly Val Val
355 360 365
Arg Leu Ser Gly Thr Asp Ala Thr Ala Ala Ala Thr Leu Arg Val Tyr
370 375 380
Leu Asp Ala Tyr Arg Pro Trp Gly Ala Gly Val Ala Asp Ala Ala Pro
385 390 395 400
Ala Asp Val Leu Gly Gly Val Gly Gly Glu Val Ala Arg Leu Ala Arg
405 410 415
Ile Ala Glu Leu Thr Gly Arg Asp Ala Pro Thr Ala Val Val
420 425 430
<210> 15
<211> 586
<212> PRT
<213> Artificial sequence (artificial sequence)
<400> 15
Met Ala Gly Ser Phe Arg Val Val Asp Val Lys Thr Ala Pro Ile Asp
1 5 10 15
Gly Gln Lys Thr Gly Thr Ser Gly Leu Arg Lys Lys Val Ala Glu Phe
20 25 30
Lys Lys Pro Asn Tyr Leu Ala Asn Trp Val Gln Ser Leu Phe Ser Ser
35 40 45
Ile Asp Gly Leu Lys Gly Ser Ser Ile Ala Leu Gly Gly Asp Gly Arg
50 55 60
Tyr Trp Asn Lys Asp Ala Val Arg Ile Ile Cys Arg Ile Ala Ala Ala
65 70 75 80
Asn Gly Val Ala Lys Val Leu Val Gly Gln Asn Gly Ile Leu Cys Thr
85 90 95
Pro Ala Leu Ser Ala Ile Val Arg Arg Arg Glu Leu Leu Gly Gly Ile
100 105 110
Ile Leu Thr Ala Ser His Asn Pro Gly Gly Pro Asn Ala Asp Phe Gly
115 120 125
Ile Lys Tyr Asn Val Ser Asn Gly Gly Pro Ala Pro Glu Ser Val Thr
130 135 140
Asp Lys Ile Leu Thr Asn Thr Lys Thr Ile Thr Thr Tyr Gly Met Ala
145 150 155 160
Cys Val Glu Gly Ala Asp Ala Gly Thr Glu Ala Asp Pro Phe Ala Ser
165 170 175
Val Asp Leu Ser Val Val Gly Ala Ser Glu Phe Lys Ser Thr Asp Gly
180 185 190
Ala Ala Phe Thr Ile Asp Val Val Asp Ser Ala Ala Asp Tyr Val Glu
195 200 205
Leu Leu Gln Ser Met Phe Asp Phe Glu Ala Leu Lys Ala Leu Phe Ala
210 215 220
Arg Ser Asp Phe Ser Phe Leu Phe Asp Ala Met Ser Gly Val Thr Gly
225 230 235 240
Pro Tyr Ala Lys Arg Ile Phe Val Glu Leu Leu Gly Gly Pro Ala Asp
245 250 255
Cys Val Met Arg Gly Glu Pro Leu Glu Asp Phe Gly Gly Ala His Pro
260 265 270
Asp Pro Asn Leu Thr Tyr Ala Ala Asp Leu Val Ala Ser Cys Asp Pro
275 280 285
Lys Lys Ser Ala Asn Ala Pro Ala Met Gly Ala Ala Ser Asp Gly Asp
290 295 300
Gly Asp Arg Asn Met Ile Leu Gly Arg Gly Phe Phe Val Thr Pro Ser
305 310 315 320
Asp Ser Leu Ala Val Ile Ala Ala Lys Ala Lys Val Ala Ile Pro Phe
325 330 335
Phe Lys Asp Gly Leu Thr Gly Val Ala Arg Ser Met Pro Thr Ala Ser
340 345 350
Ala Val Asp His Val Ala Thr Lys Met Gly Ile Ser Cys Phe Glu Thr
355 360 365
Pro Thr Gly Trp Lys Phe Phe Gly Asn Leu Leu Asp Ala Gly Lys Ala
370 375 380
Gln Ile Cys Gly Glu Glu Ser Phe Gly Thr Gly Ala Phe His Val Arg
385 390 395 400
Glu Lys Asp Gly Ile Phe Ala Val Leu Cys Trp Leu Ala Val Leu Ala
405 410 415
His Glu Asn Ala Ser Thr Lys Glu Gly Glu Leu Ile Ser Ile Glu Ser
420 425 430
Ile Val Thr Asp His Trp Lys Val Tyr Gly Arg Asn Phe Phe Ser Arg
435 440 445
Tyr Asp Tyr Glu Glu Val Asp Ser Glu Ala Gly Ala Lys Leu Met Ala
450 455 460
Thr Val Thr Lys Val Gln Glu Glu Met Ala Ala Ala Ala Asp Ser Thr
465 470 475 480
Gly Ala Met Thr Leu Gly Asp Phe Pro Val Lys Val Thr Thr Ala Asp
485 490 495
Asn Phe Ser Tyr Thr Asp Pro Ile Asp Gly Ser Val Ala Lys Gly Gln
500 505 510
Gly Leu Arg Phe Val Phe Ala Asp His Ser Arg Leu Val Phe Arg Leu
515 520 525
Ser Gly Thr Gly Ser Ser Gly Ala Thr Ile Arg Leu Tyr Ala Glu Gln
530 535 540
Tyr Glu Lys Asp Glu Ala Lys Gln Gly Ala Asp Ala Gln Glu Ala Leu
545 550 555 560
Lys Pro Leu Ile Asp Leu Ala Leu Lys Val Ser Asn Leu Thr Glu Ile
565 570 575
Thr Gly Arg Ser Ser Pro Thr Val Ile Thr
580 585
<210> 16
<211> 504
<212> PRT
<213> Artificial sequence (artificial sequence)
<400> 16
Met Asn Gly Ser Ser Ala Met Ser Arg Thr Met Gly Leu Lys Ser Gln
1 5 10 15
Ser Leu Ala Glu Met Met Asn Ile Thr Asp Thr Ser Thr Gln Arg Leu
20 25 30
Val Ala Glu Lys Leu Thr Arg His Asn Glu Val Ala Asp Glu Met Ala
35 40 45
Lys Met Thr Asp Thr Glu Leu Lys Gly Phe Leu Ser Leu Tyr Gly Arg
50 55 60
Tyr Met Ser Glu Lys Ser Thr Lys Ala Ala Leu Ser Trp Asp Lys Ile
65 70 75 80
Gln Gln Pro Asp Ala Asn Met Leu Lys Pro Tyr Asp Glu Leu Pro Ala
85 90 95
Ala Gly Asp Thr Ala Ser Glu Gly Glu Leu Leu Lys Lys Leu Ala Val
100 105 110
Leu Lys Leu Asn Gly Gly Leu Gly Thr Ser Met Gly Cys Thr Gly Pro
115 120 125
Lys Ser Val Ile Glu Val His Asn Asp Ser Thr Phe Leu Asp Leu Ile
130 135 140
Val Gln Gln Ile Glu His Ile Asn Lys Lys Tyr Glu Gly Ala Asp Val
145 150 155 160
Pro Leu Leu Leu Met Asn Ser Phe Asn Thr Asp Gly Glu Thr Ala Lys
165 170 175
Ile Ile Gln Lys Tyr Gln Asp Thr Asn Val Thr Ile Thr Thr Phe Gln
180 185 190
Gln Ser Arg Phe Pro Arg Ile Asp Lys Asp Thr Met Glu Pro Leu Pro
195 200 205
Leu Ser His Ala Gly Tyr Gln His Ser Asp Trp Tyr Pro Pro Gly His
210 215 220
Gly Asp Val Phe Glu Ser Val Phe Asn Ser Gly Leu Val Asp Thr Leu
225 230 235 240
Leu Ala Gln Gly Lys Glu Tyr Leu Phe Val Ser Asn Val Asp Asn Leu
245 250 255
Gly Ala Thr Val Asp Thr Lys Ile Leu Arg Met Leu Glu Glu Thr Glu
260 265 270
Cys Glu Tyr Cys Met Glu Leu Thr Asp Lys Thr Arg Ala Asp Val Lys
275 280 285
Gly Gly Thr Ile Ile Ser Tyr Asp Gly Lys Val Ser Leu Leu Glu Val
290 295 300
Ala Gln Val Pro Lys Gln Tyr Leu Glu Gln Phe Lys Ser Ile Lys Lys
305 310 315 320
Phe Lys Val Phe Asn Thr Asn Asn Ile Trp Leu Ser Leu Arg Ala Ile
325 330 335
Lys Arg Val Met Gln Thr Gly Ala Leu Gln Leu Asp Ile Ile Val Asn
340 345 350
Asn Lys Ala Val Gly Asp Lys Lys Val Val Gln Leu Glu Thr Ala Ile
355 360 365
Gly Ala Ala Ile Ser Tyr Phe Lys Asn Ala Cys Gly Val Asn Val Pro
370 375 380
Arg Ser Arg Phe Leu Pro Val Lys Ser Thr Ser Asp Leu Met Leu Ile
385 390 395 400
Gln Ser Asn Met Phe Thr Leu Lys Ser Gly Ser Leu Val Lys Asn Pro
405 410 415
Leu Arg Glu Phe Ala Thr Thr Pro Val Val Lys Leu Gly Asp Glu Phe
420 425 430
Lys Lys Val Ser Ser Tyr Leu Ser Arg Phe Gly Ser Ile Pro Asp Val
435 440 445
Leu Glu Leu Asp His Leu Thr Val Ser Gly Asp Val Ser Phe Gly Ser
450 455 460
Asp Val Val Leu Lys Gly Thr Val Ile Ile Val Val Asn Thr Gly Ser
465 470 475 480
Lys Val Met Ile Pro Arg Gly Ser Ile Leu Glu Asn Gln Val Ile Thr
485 490 495
Gly Asp Leu His Ile Thr Ser His
500
<210> 17
<211> 510
<212> PRT
<213> Artificial sequence (artificial sequence)
<400> 17
Met Asn Gly Gly Ala Ala Met Thr Met Gly His Thr Gln Pro Asp Val
1 5 10 15
Val Pro Val Ser Gln Ser Leu Ala Asp Leu Thr Leu Val Thr Asp Thr
20 25 30
Ser Thr Leu Arg Gln Val Ala Glu Lys Met Ser Arg His Asn Asn Ser
35 40 45
Val Pro Asp Asp Met Ala Lys Met Thr Asp Met Glu Val Arg Gly Phe
50 55 60
Leu Asn Leu Tyr Gly Arg Tyr Met Ala Glu Lys Ser Thr Lys Pro Ala
65 70 75 80
Ile Ser Trp Gly Lys Ile Gln Gln Pro Asp Ala Asn Met Leu Lys Pro
85 90 95
Tyr Asp Glu Leu Pro Ala Ala Gly Asp Thr Ala Ser Glu Gly Glu Leu
100 105 110
Leu Lys Lys Leu Ala Val Leu Lys Leu Asn Gly Gly Leu Gly Thr Ser
115 120 125
Met Gly Cys Thr Gly Pro Lys Ser Val Ile Glu Val Arg Asn Asp Ser
130 135 140
Thr Phe Leu Asp Leu Ile Val Gln Gln Ile Glu His Ile Asn Lys Lys
145 150 155 160
Tyr Glu Gly Ala Asp Val Pro Leu Leu Leu Met Asn Ser Phe Asn Thr
165 170 175
Asp Gly Glu Thr Ala Lys Ile Ile Gln Lys Tyr Gln Asp Thr Asn Val
180 185 190
Thr Ile Thr Thr Phe Gln Gln Ser Arg Phe Pro Arg Ile Asp Lys Asp
195 200 205
Thr Leu Glu Pro Leu Pro Leu Ser His Thr Arg Tyr Gln His Ser Asp
210 215 220
Trp Tyr Pro Pro Gly His Gly Asp Val Phe Glu Ala Val Phe Asn Ser
225 230 235 240
Gly Leu Val Asp Thr Leu Leu Ala Gln Gly Lys Glu Tyr Leu Phe Val
245 250 255
Ser Asn Val Asp Asn Leu Gly Ala Thr Val Asp Thr Lys Ile Leu Arg
260 265 270
Met Leu Glu Glu Thr Glu Cys Glu Tyr Cys Met Glu Leu Thr Asp Lys
275 280 285
Thr Arg Ala Asp Val Lys Gly Gly Thr Ile Ile Ser Tyr Asp Gly Lys
290 295 300
Val Ser Leu Leu Glu Val Ala Gln Val Pro Lys Gln Tyr Leu Glu Gln
305 310 315 320
Phe Lys Ser Ile Lys Lys Phe Lys Val Phe Asn Thr Asn Asn Ile Trp
325 330 335
Leu Ser Leu Arg Ala Ile Lys Arg Val Met Gln Thr Gly Ala Leu Gln
340 345 350
Leu Asp Ile Ile Val Asn Asn Lys Ala Val Gly Asp Lys Lys Val Val
355 360 365
Gln Leu Glu Thr Ala Ile Gly Ala Ala Ile Ser Tyr Phe Lys Asn Ala
370 375 380
Cys Gly Val Asn Val Pro Arg Ser Arg Phe Leu Pro Val Lys Ser Thr
385 390 395 400
Ser Asp Leu Met Leu Ile Gln Ser Asn Met Phe Thr Leu Lys Ser Gly
405 410 415
Ser Leu Val Lys Asn Pro Leu Arg Glu Phe Ala Thr Thr Pro Val Val
420 425 430
Lys Leu Gly Asp Glu Phe Lys Lys Val Ser Ser Tyr Leu Ser Arg Phe
435 440 445
Gly Ser Ile Pro Asp Val Leu Glu Leu Asp His Leu Thr Val Ser Gly
450 455 460
Asp Val Ser Phe Gly Ser Asp Val Val Leu Lys Gly Thr Val Ile Ile
465 470 475 480
Val Val Asn Thr Gly Ser Lys Val Met Ile Pro Arg Gly Ser Ile Leu
485 490 495
Glu Asn Gln Val Ile Thr Gly Asp Leu His Ile Thr Ser His
500 505 510
<210> 18
<211> 1767
<212> PRT
<213> Artificial sequence (artificial sequence)
<400> 18
Met Met Ser Ala Leu Val Ser Arg Leu Gly Ser Gly Gly Gly Gly Pro
1 5 10 15
Ala Pro Ala Gly Gln Ala Lys Pro Ser Ala Ala Thr Arg Arg Arg Ala
20 25 30
Glu Lys Trp Ala Gln Gly Leu Thr Thr Arg Asp Ala Thr Ala Ala Thr
35 40 45
Asp Thr Met Ala Asp Val Gln Ala Ala Leu Leu Asp Ala Gln Ala Thr
50 55 60
Ser Tyr Ala Arg Cys Pro Asp Val Val Thr Val Ile Glu Ala Thr Leu
65 70 75 80
Ile Ala Ala Leu Gly Asn Leu His Ala Ser Val Arg Glu Ala Ala Val
85 90 95
Val Leu Leu Asn Val Leu Tyr Asp Gly His Ala Met Gln Leu Glu Asn
100 105 110
Ala Leu Thr Pro Ala Val Ser Ser Val Gly Glu Ala Pro Val Val Arg
115 120 125
Leu Ser Leu Pro Gln Thr Asp Pro Thr Gln Pro Thr Val Leu Pro Lys
130 135 140
Gly Ser Leu Thr Leu Arg Leu Phe Gly Pro Val Asp Ala Gly Arg Pro
145 150 155 160
Pro Arg Trp Thr Thr His Asp Val Thr Ser Thr Ala Gly Gly Gly Leu
165 170 175
Arg Val Arg Leu Pro Pro Phe Pro Arg Pro Gly Tyr Tyr Asp Trp Leu
180 185 190
Val Ala His Ala Ala Asp Gly Asp Phe Met Pro Asp Ala Asp Arg Ser
195 200 205
Ser Pro Pro Asp Pro Ser Val Ala Ser Thr Gly Ala Ala Pro Ala Ala
210 215 220
Ala Gly Asn Gly Glu Ala Gly Ala Thr Ala Gly Ser Asp Ala Pro Asp
225 230 235 240
Ala Gly Ala Asp Pro Leu Ser Asn Met Asp Arg Arg Arg Leu Cys Gly
245 250 255
Arg Phe Val Val Gln Pro Ala Gly Thr Arg Glu Ser Leu Val Ala Glu
260 265 270
Val Pro Val Asp Gln Val Gly Ala Ser Trp Asn Ala Gly Thr Gly Gln
275 280 285
Leu Glu Thr Arg Gly Ser Phe Gly Ala Val Leu Glu Thr Leu Pro Glu
290 295 300
Leu Lys Met Ala Gly Ala Thr Ala Val Tyr Leu Met Gly Ala Leu Glu
305 310 315 320
Arg Pro Ile Asp Glu Pro Asp Ala Pro Pro Met Ala Ala Ala Asp Arg
325 330 335
Gly Val Leu Ala Lys Val Leu Gly Gly Gly Glu Asp Phe Ala Ala Leu
340 345 350
Thr Ser Glu Ile Arg Arg Leu Gly Met Val Pro Val Val Asp Ala Leu
355 360 365
Glu Arg Val Ser Arg Arg Arg Ala His Arg Lys Tyr Thr Ser Leu Gly
370 375 380
Val Met Thr Arg Asp Glu Arg Gly Val Leu Val Ser His Pro Gly Thr
385 390 395 400
Asp Gly Arg Val Ile Thr Trp Glu Glu Ser Ala Leu Leu Asn Tyr Arg
405 410 415
Lys Val Glu Thr Trp Ala Leu Leu Ile Ser Glu Val Lys Arg Leu Ala
420 425 430
Arg Asp Tyr Gly Val Arg Gly Ile Arg Leu Asp Asn Ala Gln Ser Cys
435 440 445
Pro Pro Ile Met Thr Met Asp Ala Glu Glu Leu Phe Arg Leu Asp Pro
450 455 460
Asp Gly Val Pro His Tyr Ser Leu Ser Asp Ile Leu Tyr Gly Thr Val
465 470 475 480
Val Leu Arg Asn Glu Glu Ser Gly Tyr Trp Ala Ser Glu Ala Gly Ala
485 490 495
Asp Cys Arg Tyr Ala Asn Pro Phe Leu Val Lys Leu Thr Arg Glu Leu
500 505 510
Trp Asn Glu Tyr Pro Thr Phe Met Val Leu Gly Glu Ser His Phe His
515 520 525
Arg Glu Pro Gln Leu Val Ala Ser Gly Val Val Pro His Ser Met Arg
530 535 540
Val Ser Gln Ile Leu Ala Ser Ile Ser Gly Met Ser Leu Arg Arg Asp
545 550 555 560
Gly Ser Val Ala Val Leu Pro Pro His Lys Arg Ser Thr Ala Asn Thr
565 570 575
Leu Ala Arg Leu Tyr Arg Ala Asp Lys Ala Asp Leu Pro Arg Asp Ala
580 585 590
Ile Leu Ala Ser Cys Thr Cys Thr His Ala Ser Pro Tyr Pro Gly Ala
595 600 605
Leu Tyr Arg Arg Arg Ser Trp Ile Ala Val Asp Leu Leu Phe Phe Leu
610 615 620
Pro His Met Pro Val Leu Leu Trp Gly Glu Asp Ala Gly Arg Ala Leu
625 630 635 640
Arg Val Asp Met Ala Pro Val Val Glu Val Glu Glu Asp Ser Val Tyr
645 650 655
Asp Val Asn Tyr Asp Ala Val Leu Pro Lys Ser Pro Arg Leu Arg His
660 665 670
Ser Gly Ser Gln Pro Val Ser Pro Ser Ala Gly Leu Ala Asn Ala Ser
675 680 685
His Glu Met Ser Glu Leu Ser Leu Gly Glu Ala Ala Leu Gly Gly Ser
690 695 700
Ala Ser Gly Gly Gly Gly Leu Arg Ala Pro Pro Tyr Ser Ser Ser Gln
705 710 715 720
Ser Ala Ser Val Ser Pro Met Asp Gly Leu Ala Gly Gly Ala Ala Pro
725 730 735
Pro Leu Pro Ala Ala Thr Ala Asn Ala Thr Thr Ala Gly Gly Gly Arg
740 745 750
Gly Leu Gly Gly Val Gly Gly Gly Met Arg Lys Arg Ser Asn Ser Ser
755 760 765
Leu Asn Leu Arg Ser Met Ser Met Gly Gly Arg Lys Pro Ser Phe Gly
770 775 780
Asn Leu Ala Ala Ala Val Asn Ala Pro Pro Ser Ser Pro Gly Arg Asp
785 790 795 800
Thr Ala Ala Gly Arg Ala Ala Gly Gly Ala Ala Pro Pro Ala Ala Ser
805 810 815
Lys Ala Lys Thr Leu Thr Ser Gly Val Arg Arg Thr Ser Ser Val Ser
820 825 830
Ser Leu Val Arg Ser Gln Thr Thr Asp Glu Gly Lys Arg Leu Ala Val
835 840 845
Arg Gly Val Gly Ala Ser Asp Leu Met Ala Ile Ala Asp Gln Glu Ala
850 855 860
Arg Leu Arg Ala Glu Ile Gly Pro Gln Leu Gly Phe Asp Leu Ser Gln
865 870 875 880
Ile Arg Gly His Tyr Thr His Arg Ser Leu Met Arg Gln Gln Leu Pro
885 890 895
Ala Leu Arg Leu Gly Lys Met Val Val Val Pro Val Asp Pro Ser Val
900 905 910
Lys Glu Gln Val Phe Ala Phe Ala Arg Phe Thr Thr Glu Gln Ile Val
915 920 925
Val Val Ala Leu Asn Leu Lys Asp Gly Arg Asp Gly Glu Ala Phe Glu
930 935 940
Ala Gly Val Asn Val Asp Leu Asp Leu Arg Pro Leu Trp Ser Ala Leu
945 950 955 960
Pro Glu Glu Phe Ile Ser Arg Arg Ala Asp Leu Phe Asn Ala Phe Asp
965 970 975
Val Val Ala Gly Ala Glu Glu Pro Phe Val Thr Glu Gly Leu Leu Thr
980 985 990
Leu Glu Glu Leu Met Phe Arg Arg Leu Ser Leu His Leu Arg Pro Met
995 1000 1005
Ser Ser Ser Val Leu Glu Leu Arg Ala Glu Pro Asn Gly Ser Ala
1010 1015 1020
Asp Glu His Tyr Ala Gln Ser Ile Thr Arg Leu Thr Leu Glu Asp
1025 1030 1035
Ala Gly Asp Ile Lys Asp Pro Arg Glu Asn Thr Val Leu Ser Glu
1040 1045 1050
Leu Ala Arg Gly Ala Ala Thr Ser Leu Thr Ala Phe Ala Ala Ala
1055 1060 1065
Leu Glu Lys Ala Arg Cys Gly Leu Ala Ala Glu Gly Leu Glu Ala
1070 1075 1080
Ser Glu Ile Trp Arg Val Leu Gln Leu Gly Leu Gln Arg Ala Ser
1085 1090 1095
Ser Leu Leu Phe Ser Val Leu Tyr Glu Gly Thr Val Ala Pro Lys
1100 1105 1110
Asp Phe Val Pro Pro Val Gly Glu Arg Leu Val Ser Phe Leu Ala
1115 1120 1125
Met Leu Ser Leu Ser Ala Ala Asn Pro Asp Thr Lys Ala Leu Ala
1130 1135 1140
Arg Ser Leu Leu Ala Asn Ala Thr Ala Ile Gly Pro Ile Val Leu
1145 1150 1155
Leu Thr Pro Glu Leu Gly Arg Phe Ser Thr Ala Gly Gly Leu Gly
1160 1165 1170
Val Met Val Asp Asp Leu Ala Lys Glu Leu Ala Ala Leu Gly Leu
1175 1180 1185
Glu Val His Val Ile Thr Pro Tyr Tyr Thr Leu Asn Arg Lys Asn
1190 1195 1200
Lys Thr Gly Tyr Leu Gly Asp Asn Ile Arg Trp Thr Arg Asn Ile
1205 1210 1215
Lys Val Asp Leu Gly Ser His Val Val Glu Val Gly Ile Phe Gln
1220 1225 1230
Gly Lys Glu Ala Gly Val Asn Leu Leu Phe Leu Glu Arg Gly Asp
1235 1240 1245
Leu Leu Pro Lys Val Tyr Ala Asp Pro Gly Gly Ala Ala Lys His
1250 1255 1260
Leu Gln Thr Val Val Leu Phe Ser Met Gly Ala Leu Glu Ala Cys
1265 1270 1275
Cys Ala Thr Ser Leu Val Pro Ser Val Val Ile Ser Asn Asp Trp
1280 1285 1290
Leu Pro Ser Met Ala Ala Gly Tyr Ala Lys Asn Gly Phe Phe Gly
1295 1300 1305
Pro Tyr Phe Asp Asn Thr Ser Phe Phe His Leu Val His Asn Leu
1310 1315 1320
Gly Asp Ala Ala Tyr Glu Gly Arg Val Tyr Pro Asn Pro His Glu
1325 1330 1335
Gly Asp Phe Gly Val Ile His Arg Leu Pro Arg Asn Leu Leu Val
1340 1345 1350
Asp Pro Trp Trp Ser Arg Val Val Val Asn Pro Ser Arg Cys Ala
1355 1360 1365
Phe Met Thr Ser Asp Thr Trp Gly Thr Val Ser Pro Asn Tyr Leu
1370 1375 1380
Lys Glu Leu Leu Ala Gly His Pro Leu Lys Asn Leu Leu Ala Met
1385 1390 1395
Ala Lys Ser Pro Phe Ala Tyr Pro Asn Gly Ile Arg Ile Lys Glu
1400 1405 1410
Arg Glu Ala Ser Leu Ala Ala Leu Asn Ile Lys Thr His Ala Gln
1415 1420 1425
Ala Lys Glu Met Val Gln Lys Lys Tyr Phe Gly Phe Asn Ala Ala
1430 1435 1440
Asp His Ser Ile Pro Leu Phe Ala Phe Val Gly Arg Val Thr Ser
1445 1450 1455
Gln Lys Gly Val His Leu Ile Leu Asn Ala Val Asp Glu Leu Ile
1460 1465 1470
Ala His Thr Gly Gly Lys Ile Gln Ile Leu Val Gly Gly Pro Ala
1475 1480 1485
Asn Glu Ala Asp Pro Tyr Ala Ala Ala Cys Ala Arg His Met Arg
1490 1495 1500
Asp Leu Ser Arg Arg His Lys Trp Cys Phe Trp Ala Ala Pro Glu
1505 1510 1515
Glu Phe Phe Thr Asp Gly Leu Leu Val Asp Ala Gly Ala Asp Phe
1520 1525 1530
Gly Phe Val Pro Ser Leu Phe Glu Pro Ala Gly Leu Arg Gln Ile
1535 1540 1545
Glu Ser Phe Val Gly Ala Gly Asp Gly Thr Pro Val Ile Ala His
1550 1555 1560
Ala Val Gly Gly Leu Val Asp Thr Val Phe Glu Trp Asp Leu Glu
1565 1570 1575
Ser Gly Ser Gly Asn Gly Phe Leu Phe His Glu Tyr Asn His His
1580 1585 1590
Asn Phe Leu Gly Ala Val Lys Arg Ala Leu Arg Val Phe Ser Lys
1595 1600 1605
Thr Asp Glu Phe Ala Glu Leu Arg Arg Ala Thr Arg Thr Thr Ala
1610 1615 1620
Ile Asp Val Arg Asp Ala Ala Trp Ala Trp Ser Ser Glu Phe His
1625 1630 1635
Arg Leu Arg Asn Ser Ile Tyr Val Arg Arg Pro Ile Phe Arg Glu
1640 1645 1650
Asp Leu Asp Gly Val Val Glu Glu Asp Ser Glu Ala Leu Asp Pro
1655 1660 1665
Ala Ala Thr Val His Val Val Arg Trp Thr Ala Ala Gly Glu Asp
1670 1675 1680
Val Val Val Lys Gly Ser Trp Asp Gly Trp Ala Arg Glu Trp Pro
1685 1690 1695
Leu Thr Asp Gly Pro Thr Pro Ile Asp Gly Glu Gly Ala Glu Glu
1700 1705 1710
Ala Ala Asp Gly Ser Val Pro Val Glu Lys His Met Val Arg Leu
1715 1720 1725
Arg Leu Pro Pro Gly Asp Tyr Glu Phe Lys Phe Lys Val Asp Gly
1730 1735 1740
Lys Trp Gly Leu Ala Lys Asp Leu Pro Thr Arg Gly Glu Gly Ala
1745 1750 1755
Phe Thr Asn Asn Leu Leu Ser Val Pro
1760 1765
<210> 19
<211> 786
<212> PRT
<213> Artificial sequence (artificial sequence)
<400> 19
Met Val Thr Ser Ala Ala Gly Ala Pro Ala Trp Gly Asp Ser Ile Ser
1 5 10 15
Ile Ala His Arg Gly Arg Pro Leu Pro Tyr Gly Cys Thr Pro Ala Ser
20 25 30
Ala Ala Ala Ala Ala Asp Thr Gly Gly Gly Gly Gly Gly Ala Leu Asn
35 40 45
Phe Ser Ile Phe Thr Lys Glu Ala Thr His Val Val Leu Leu Leu Phe
50 55 60
Pro Pro Thr Arg Glu Ala Pro Ala Ala Gly Ala Asp Gly Gly Asp Gly
65 70 75 80
Ala Ala Ala Ala Gly Gly Gly Ala Pro Pro Pro Pro Pro Pro Val Glu
85 90 95
Leu Arg Leu Asp Ala Ala Gln His Arg Thr Gly Met Val Trp His Val
100 105 110
Lys Val Ala Gly Val Pro Pro Arg Ser Glu Tyr Leu Trp Arg Val Gly
115 120 125
Ala Ala Ala Asp Pro Arg Trp Tyr Thr Asn Glu Cys Leu Asp Pro Tyr
130 135 140
Ala Arg Glu Val Ser Ser Pro Val Gly Ala Arg Met Tyr Asn Ala Thr
145 150 155 160
Asp Val Arg Gly Glu Tyr Arg Pro Arg Gly Val Val Pro Ala Val Gly
165 170 175
Ala Pro Ala Phe Asp Trp Gln Gly Val Val Pro Pro Arg Ile Pro Gln
180 185 190
His Glu Leu Val Ile Tyr Glu Met His Val Arg Gly Phe Thr Leu Tyr
195 200 205
Ala Asp Ala Gly Gly Ala Ala Thr Ala Gly Gly Gly Gly Ala Asp Gly
210 215 220
Gly Ala Asp Ala Asp Gly Glu Ala Lys Gly Gly Ala Lys Ala Thr Pro
225 230 235 240
Ala Gly Gly Gly Ala Asp Thr Asn Gly Thr Phe Leu Gly Val Ile Asp
245 250 255
Lys Ile Pro Tyr Leu Arg Ala Leu Gly Val Asn Cys Val Glu Leu Leu
260 265 270
Pro Val Met Glu Phe Asn Glu Thr Glu Trp Ser Phe Ile Asn Pro Val
275 280 285
Thr Lys Gln Arg Leu Ser Gln Tyr Trp Gly Tyr Ser Thr Val Ala Phe
290 295 300
Phe Ala Pro Met Asn Arg Phe Ala Arg Ala Asp Ala Thr Val Glu Phe
305 310 315 320
Gln Thr Met Val Arg Glu Leu His Arg Ala Gly Ile Glu Val Ile Leu
325 330 335
Asp Val Val Tyr Asn His Thr Ala Glu Met Gly Leu Asp Phe Leu Pro
340 345 350
Pro Gly His Tyr Gly Gln Lys Thr Leu Ala Pro Gly Thr Tyr Tyr Met
355 360 365
Leu Glu Asp Asn Gly Ala Lys Phe Val Asn Tyr Ser Gly Cys Gly Asn
370 375 380
Thr Leu Ser Cys Asn Asn Pro Val Thr Ala Glu Trp Ile His Glu Ser
385 390 395 400
Leu Arg Tyr Trp Ala Leu Thr Met Gly Val Asp Gly Phe Arg Phe Asp
405 410 415
Leu Ala Ser Ile Leu Thr Arg Gly Met Asp Gly Ala Ala Leu Ala Asn
420 425 430
Pro Pro Val Val Glu Arg Ile Thr Lys Asp Pro Cys Met Arg Asp Val
435 440 445
Lys Leu Ile Ala Glu Pro Trp Asp Cys Gly Gly Leu Tyr Gln Val Gly
450 455 460
Thr Phe Pro His Tyr Gly Val Trp Ser Glu Trp Asn Gly Lys Phe Arg
465 470 475 480
Asp Val Val Arg Gln Phe Val Lys Gly Asp Arg Gly Leu Lys Gly Ala
485 490 495
Phe Ala Ser Arg Leu Cys Gly Ser Gln Asp Met Tyr Gly Pro Ser Gly
500 505 510
Arg Ala Pro Tyr His Ser Ile Asn Phe Val Thr Ala His Asp Gly Phe
515 520 525
Ser Leu Tyr Asp Leu Val Ser Tyr Asn Asp Lys His Asn Glu His Asn
530 535 540
Gly Glu Asn Asn Asn Asp Gly Glu Gln His Asn Asn Ser Trp Asn Cys
545 550 555 560
Gly Ala Glu Gly Glu Thr Ala Asp Ala Glu Val Arg Ser Arg Arg Asp
565 570 575
Arg Gln Met Arg Asn Met Leu Val Ala Leu Leu Leu Ser Ala Gly Thr
580 585 590
Pro Met Leu Cys Met Gly Asp Glu Tyr Gly His Thr Lys Gly Gly Asn
595 600 605
Asn Asn Gly Trp Cys Gln Asp Gly Leu Leu Thr Ala Phe Asp Trp Ala
610 615 620
Ala Leu Arg Asp Gly Leu Gly Gly Leu Pro Arg Phe Leu Ala Lys Leu
625 630 635 640
Ile Arg Leu Arg Thr Gln Thr Ala Pro Phe Leu Ala Arg Thr Thr Phe
645 650 655
Tyr Ser Gly Ser Glu Ile Val Trp His Gly Glu Arg Val Gly Glu Pro
660 665 670
Gly Trp Asp Asp Pro Tyr Asn Phe Leu Ala Phe Thr Ile Pro Asp Pro
675 680 685
Arg Pro Ala Asn Gly Ala Asp Leu Tyr Val Ala Phe Asn Ala Gly Gly
690 695 700
Glu Pro Arg Thr Ala Thr Leu Pro Pro Ala Pro Ala Gly Gly Ser Trp
705 710 715 720
Gly Arg Leu Val Asp Thr Ala Leu Pro Pro Pro Arg Asp Cys Ser Asp
725 730 735
Asp Pro Ala Ala His Leu Ile Asp Arg Ser Tyr Gly Leu Gln Pro Tyr
740 745 750
Ser Ala Val Val Leu Val His Val Arg Arg Ala Cys Val Ala Thr Pro
755 760 765
Ala Ala Glu Asp Val Thr Ala Ala Leu Arg Ala Gly Leu Ala Arg Val
770 775 780
Gly Leu
785
<210> 20
<211> 755
<212> PRT
<213> Artificial sequence (artificial sequence)
<400> 20
Met Ala Glu Lys Asp Gly His Phe Asp Ala Trp Lys Asp Lys Lys Asp
1 5 10 15
Gly Thr Gln Val Ile Ala Ala Asp Arg Tyr Leu Glu Pro Tyr Ala Asp
20 25 30
Ser Leu Arg Tyr Arg Phe Thr Lys Tyr Asn Glu Ile Lys Asn Ala Ile
35 40 45
Glu Glu Ser Glu Gly Gly Leu Gly Lys Phe Ala Gln Ser Tyr Lys Ser
50 55 60
Phe Gly Leu His Ala Val Glu Gly Gly Val Glu Tyr Arg Glu Trp Ala
65 70 75 80
Pro Gly Ala Gln Ser Val Ser Val Phe Gly Asp Phe Asn Gly Trp Asn
85 90 95
Arg Asn Ser His Gln Leu Thr Arg Gly Glu Phe Gly Ile Trp Thr Thr
100 105 110
Thr Ile Pro Asp Asn Glu Asp Gly Ser Pro Ala Val Pro His Gly Ser
115 120 125
Lys Val Lys Val Cys Ile Val Thr Pro Gly Gly Met His Leu Asp Arg
130 135 140
Asn Pro Ala Trp Ala Thr Tyr Leu Ile Gln Asn Pro Ser Thr Leu Leu
145 150 155 160
Phe Asp Thr Val Phe Trp Asn Pro Pro Glu Glu His Lys Tyr Gln Trp
165 170 175
Lys His Gln Lys His Pro Pro Ala Pro Glu Cys Met Arg Ile Tyr Glu
180 185 190
Cys His Val Gly Met Gly Ser Ala Asp Pro Lys Val Gly Thr Tyr Asp
195 200 205
Glu Phe Thr Asp Asn Ile Leu Pro Arg Ile Lys Asp Leu Gly Phe Thr
210 215 220
Ala Ile Gln Ile Met Ala Ile Met Glu His Ala Tyr Tyr Gly Ser Phe
225 230 235 240
Gly Tyr His Val Thr Asn Phe Phe Ala Ile Ser Ser Arg Ser Gly Asp
245 250 255
Pro Glu Gly Leu Lys Arg Leu Ile Asp Thr Ala His Gly Met Gly Leu
260 265 270
Val Val Leu Met Asp Val Val His Ser His Ala Ser Ser Asn Ser Met
275 280 285
Asp Gly Ile Asn Gln Phe Asp Gly Thr Asp His Gln Tyr Phe His Glu
290 295 300
Gly Glu Arg Gly Arg His Ser Leu Trp Asp Ser Arg Leu Phe Asn Tyr
305 310 315 320
Gly Gln Trp Glu Val Ile Arg Phe Leu Leu Ser Asn Leu Arg Trp Tyr
325 330 335
Met Glu Glu Tyr His Phe Asp Gly Phe Arg Phe Asp Gly Val Thr Ser
340 345 350
Met Leu Tyr Lys His His Gly Ile Gln Val Gln Phe Ser Gly Asp Tyr
355 360 365
Arg Glu Tyr Phe Gly Met His Val Asp Val Asp Ala Cys Val Tyr Leu
370 375 380
Met Leu Ala Asn Asp Leu Val Arg Gln Val Asn Pro Asp Ser Gly Ile
385 390 395 400
Thr Ile Ala Glu Asp Val Ser Gly Met Pro Thr Val Cys Arg Pro Val
405 410 415
Val Glu Gly Gly Leu Gly Phe Asp Tyr Arg Leu Gly Met Ser Val Pro
420 425 430
Asp Lys Trp Ile Glu Leu Leu Ser Lys Glu Lys Asp Glu Ala Trp Asn
435 440 445
Met Gly Asn Ile Ala Phe Thr Leu Thr Asn Arg Arg Trp Asn Glu Ala
450 455 460
Thr Ile Gly Tyr Ala Glu Ser His Asp Gln Ala Leu Val Gly Asp Lys
465 470 475 480
Thr Leu Ala Phe Trp Leu Met Asp Ala Ala Met Tyr Thr Ser Met Gly
485 490 495
Met Asp Gln Gln Ser Pro Val Val Glu Arg Gly Ile Ala Leu His Lys
500 505 510
Met Ile Arg Leu Ile Ser Tyr Gly Leu Ala Gly Glu Gly Tyr Leu Thr
515 520 525
Phe Met Gly Asn Glu Phe Gly His Pro Glu Trp Val Asp Phe Pro Arg
530 535 540
Ala Gly Asn Gly Phe Ser Tyr Glu Lys Ala Arg Arg Arg Trp Asp Leu
545 550 555 560
Ala Asp Asn Lys Gly Leu Arg Tyr Ser His Met Gln Leu Trp Glu Lys
565 570 575
Leu Met His Glu Leu Glu Thr Ser His Phe Phe Cys Arg Lys Ala Val
580 585 590
His Gln Tyr Val Val Leu Ala His Asp Gln Asp Lys Val Val Ala Phe
595 600 605
Glu Lys Gly Asp Arg Leu Leu Phe Val Phe Asn Phe His Pro Thr Lys
610 615 620
Ser Tyr Thr Asp Tyr Arg Ile Gly Thr His Trp Gly Gly Lys Tyr Arg
625 630 635 640
Leu Val Leu Asp Ser Asp Gly Thr Asn Val Gly Gly Gln Gly Arg Val
645 650 655
His Trp His Val Val His Arg Thr Ser Ser Ser Pro Trp Gln Ser Arg
660 665 670
Ser His Ser Leu Gln Leu Tyr Leu Pro Ser Arg Thr Cys Gln Val Tyr
675 680 685
His Cys Phe Glu Leu Asp Ser Lys Ala Glu Glu Ala Ala His Lys Ala
690 695 700
Ala Pro Ala Ala Ala Ala Ala Thr Thr Ala Glu Thr Val Ala Glu Val
705 710 715 720
Asp Ala Ala Lys Ala Ala Pro Ala Ala Lys Thr Ala Ala Ser Pro Thr
725 730 735
Asp Ala Ala Ala Pro Glu Glu Ala Val Lys Ala Asp Gly Ala Lys Lys
740 745 750
Ala Ser Ala
755

Claims (10)

1. A combined gene for anabolism of red algae starch is characterized in that: the combined gene comprises a phosphoglucose isomerase PhPGI gene, a phosphoglucomutase PhPGM gene, an UDPG pyrophosphorylase PhUGP gene and a starch synthase PhSS geneUDPGGenes, isoamylase PhISA genes and/or branching enzyme PhBE genes.
2. The combinatorial gene according to claim 1, characterized in that:
the gene sequence of the phosphoglucose isomerase PhPGI is a nucleotide sequence shown in SEQ ID No. 1 and/or SEQ ID No. 2;
the phosphoglucomutase PhPGM gene sequence is a nucleotide sequence shown as SEQ ID No. 3, SEQ ID No. 4 and/or SEQ ID No. 5;
the gene sequence of the UDPG pyrophosphorylase PhUGP is a nucleotide sequence shown as SEQ ID No. 6 and/or SEQ ID No. 7;
the starch synthetase PhSSUDPGThe gene sequence is a nucleotide sequence shown as SEQ ID No. 8;
the gene sequence of the isoamylase PhISA is a nucleotide sequence shown in SEQ ID No. 9;
the gene sequence of the branching enzyme PhBE is a nucleotide sequence shown in SEQ ID No. 10.
3. A red algae starch anabolism combined enzyme is characterized in that: the combined enzyme is encoded by the combined gene of any one of claims 1-2; the combined enzyme comprises phosphoglucose isomerase PhPGI, phosphoglucomutase PhPGM, UDPG pyrophosphorylase PhUGP and starch synthase PhSSUDPGIsoamylase PhISA and/or branching enzyme PhBE.
4. The combination enzyme of claim 3, wherein:
the amino acid sequence of the phosphoglucose isomerase PhPGI is shown as SEQ ID No. 11 and/or SEQ ID No. 12;
the amino acid sequence of the phosphoglucomutase PhPGM is shown as SEQ ID No. 13, SEQ ID No. 14 and/or SEQ ID No. 15;
the amino acid sequence of the UDPG pyrophosphorylase PhUGP is shown as SEQ ID No. 16 and/or SEQ ID No. 17;
the starch synthetase PhSSUDPGThe amino acid sequence of (A) is shown as SEQ ID No. 18;
the amino acid sequence of the isoamylase PhISA is a sequence shown as SEQ ID No. 19;
the amino acid sequence of the branching enzyme PhBE is shown as SEQ ID No. 20.
5. A carrier, characterized by: the vector comprises the combined gene of any one of claims 1-2.
6. A host cell, characterized in that: the host cell comprising the combinatorial gene according to any one of claims 1-2 or the vector according to claim 5.
7. A genetically engineered cell, characterized by: the genetically engineered cell comprising the combination gene of any one of claims 1-2 or the vector of claim 5, or producing the combination enzyme of any one of claims 3-4.
8. Use of the combined gene of any one of claims 1-2, the combined enzyme of any one of claims 3-4, the vector of claim 5, the host cell of claim 6 or the genetically engineered cell of claim 7 for starch anabolism in red algae.
9. Use of the combined gene of any one of claims 1-2, the combined enzyme of any one of claims 3-4, the vector of claim 5, the host cell of claim 6, or the genetically engineered cell of claim 7 in red algae and plant breeding.
10. A method for anabolism of red algae starch is characterized by comprising the following steps: the method comprises the following steps: fructose-6-phosphate Fru-6-P is converted into glucose-6-Glu-6-P phosphate by glucose phosphate isomerase PhPGI, then converted into glucose-1-Glu-1-P phosphate by glucose mutase PhPGM, Glu-1-P reacts with UTP to generate UDP-glucose UDP-Glu under the catalysis of UDPG pyrophosphorylase PhUGP, and glucose provided by UDP-Glu is converted into starch synthase PhSSUDPGThe red algae starch Floridean starch is generated under the catalysis of branching enzyme PhBE and isoamylase PhISA.
CN202111477678.5A 2021-12-06 2021-12-06 Red algae starch anabolism combined gene and combined enzyme Pending CN114181959A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111477678.5A CN114181959A (en) 2021-12-06 2021-12-06 Red algae starch anabolism combined gene and combined enzyme

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111477678.5A CN114181959A (en) 2021-12-06 2021-12-06 Red algae starch anabolism combined gene and combined enzyme

Publications (1)

Publication Number Publication Date
CN114181959A true CN114181959A (en) 2022-03-15

Family

ID=80542432

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111477678.5A Pending CN114181959A (en) 2021-12-06 2021-12-06 Red algae starch anabolism combined gene and combined enzyme

Country Status (1)

Country Link
CN (1) CN114181959A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004283121A (en) * 2003-03-24 2004-10-14 Japan Science & Technology Agency Isoamylase derived from porphyridium belonging to rhodophyta
US20050160494A1 (en) * 2003-12-23 2005-07-21 Pioneer Hi-Bred International, Inc. Alteration of oil traits in plants
KR101857260B1 (en) * 2017-03-08 2018-05-11 전남대학교산학협력단 strains introduced polynucleotide encoding mutant ascorbate peroxidase derived laver that increase resistance to oxidative stress and lipid production methods using the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004283121A (en) * 2003-03-24 2004-10-14 Japan Science & Technology Agency Isoamylase derived from porphyridium belonging to rhodophyta
US20050160494A1 (en) * 2003-12-23 2005-07-21 Pioneer Hi-Bred International, Inc. Alteration of oil traits in plants
KR101857260B1 (en) * 2017-03-08 2018-05-11 전남대학교산학협력단 strains introduced polynucleotide encoding mutant ascorbate peroxidase derived laver that increase resistance to oxidative stress and lipid production methods using the same

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
YU Y 等: "Floridean Starch and Floridoside Metabolic Pathways of Neoporphyra haitanensis and Their Regulatory Mechanism under Continuous Darkness", 《MAR DRUGS》, vol. 19, no. 12, pages 3 *
宋韵琳 等: "小麦籽粒淀粉理化特性与品质关系及其生理机制研究进展", 《麦类作物学报》, vol. 38, no. 11, pages 1338 - 1351 *
黄锁义: "《天然产物的提取分离技术及其发展研究》", vol. 1, 长春:吉林大学出版社, pages: 52 - 53 *

Similar Documents

Publication Publication Date Title
Chang et al. The LPB1 gene is important for acclimation of Chlamydomonas reinhardtii to phosphorus and sulfur deprivation
CN112795551B (en) High Wen Ni-resistant transcriptase mutant and application thereof
Fu et al. Lycopene cyclases determine high α-/β-carotene ratio and increased carotenoids in bananas ripening at high temperatures
CN111344399B (en) UDP-glucosyltransferase mutant, application thereof and method for preparing rebaudioside D by using same
CN112795546B (en) High-temperature-resistant reverse transcriptase mutant with high reverse transcription efficiency and application thereof
Lu et al. An analysis of expressed sequence tags of developing castor endosperm using a full-length cDNA library
CN106574231A (en) Use of green microalgae lacking functional DYRKP-1 gene for increased production of feedstock
German et al. LeFRK4, a novel tomato (Lycopersicon esculentum Mill.) fructokinase specifically expressed in stamens
CN112795547A (en) Reverse transcriptase mutant with high reverse transcription efficiency
CN114181959A (en) Red algae starch anabolism combined gene and combined enzyme
CN113430181A (en) Bacterial laccase derived from Asian elephant intestinal metagenome and gene thereof
CN111808902B (en) C-glycosyltransferase and application thereof in synthesis of schaftoside and isoschaftoside
Kang et al. Characterization of 5-O-glucosyltransferase involved in anthocyanin biosynthesis in Cyclamen purpurascens
CN108588098A (en) Eucalyptus urophylla CAD genes and its application
CN107177601B (en) A kind of cornstarch synthesis regulation gene ZmMIKC2a and its application
CN113817704B (en) Cyclodextrin glucosyltransferase with improved organic solvent tolerance and preparation method thereof
CN114196690A (en) Fluorodorside anabolism combined gene and combined enzyme
CN114107338A (en) Red algae starch degradation metabolism combined gene and combined enzyme
CN111808836B (en) Heat-resistant mutant enzyme of pullulanase I and preparation method and application thereof
Takahashi et al. Microarray analysis of sink-source transition in rice leaf sheaths
Kuzina et al. Genes involved in carotene synthesis and mating in Blakeslea trispora
CN109777814B (en) Application of ceramide synthetase gene in regulation and control of ganoderma triterpene biosynthesis
CN115838699B (en) Pteridium glaucescens C-glycosyltransferase and encoding gene and application thereof
CN114292826B (en) Application of peanut glycosyltransferase AhUGT4 in glycosylation of resveratrol
CN114058608B (en) Engineering bacterium and method for producing putrescine

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination