CN114107338A - Red algae starch degradation metabolism combined gene and combined enzyme - Google Patents

Red algae starch degradation metabolism combined gene and combined enzyme Download PDF

Info

Publication number
CN114107338A
CN114107338A CN202111477671.3A CN202111477671A CN114107338A CN 114107338 A CN114107338 A CN 114107338A CN 202111477671 A CN202111477671 A CN 202111477671A CN 114107338 A CN114107338 A CN 114107338A
Authority
CN
China
Prior art keywords
ala
gly
val
leu
arg
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202111477671.3A
Other languages
Chinese (zh)
Inventor
于亚慧
刘涛
贾旭利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xiamen University
Ocean University of China
Original Assignee
Xiamen University
Ocean University of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xiamen University, Ocean University of China filed Critical Xiamen University
Priority to CN202111477671.3A priority Critical patent/CN114107338A/en
Publication of CN114107338A publication Critical patent/CN114107338A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/12Transferases (2.) transferring phosphorus containing groups, e.g. kinases (2.7)
    • C12N9/1294Phosphotransferases with paired acceptors (2.7.9)
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01HNEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
    • A01H13/00Algae
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8242Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
    • C12N15/8243Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine
    • C12N15/8245Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine involving modified carbohydrate or sugar alcohol metabolism, e.g. starch biosynthesis
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1048Glycosyltransferases (2.4)
    • C12N9/1051Hexosyltransferases (2.4.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/24Hydrolases (3) acting on glycosyl compounds (3.2)
    • C12N9/2402Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1)
    • C12N9/2405Glucanases
    • C12N9/2408Glucanases acting on alpha -1,4-glucosidic bonds
    • C12N9/2411Amylases
    • C12N9/2414Alpha-amylase (3.2.1.1.)
    • C12N9/2422Alpha-amylase (3.2.1.1.) from plant source
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/24Hydrolases (3) acting on glycosyl compounds (3.2)
    • C12N9/2402Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1)
    • C12N9/2405Glucanases
    • C12N9/2408Glucanases acting on alpha -1,4-glucosidic bonds
    • C12N9/2411Amylases
    • C12N9/2425Beta-amylase (3.2.1.2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/24Hydrolases (3) acting on glycosyl compounds (3.2)
    • C12N9/2402Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1)
    • C12N9/2405Glucanases
    • C12N9/2451Glucanases acting on alpha-1,6-glucosidic bonds
    • C12N9/2457Pullulanase (3.2.1.41)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y204/00Glycosyltransferases (2.4)
    • C12Y204/01Hexosyltransferases (2.4.1)
    • C12Y204/010254-Alpha-glucanotransferase (2.4.1.25)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y207/00Transferases transferring phosphorus-containing groups (2.7)
    • C12Y207/09Phosphotransferases with paired acceptors (2.7.9)
    • C12Y207/09004Alpha-glucan, water dikinase (2.7.9.4)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y207/00Transferases transferring phosphorus-containing groups (2.7)
    • C12Y207/09Phosphotransferases with paired acceptors (2.7.9)
    • C12Y207/09005Phosphoglucan, water dikinase (2.7.9.5)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y302/00Hydrolases acting on glycosyl compounds, i.e. glycosylases (3.2)
    • C12Y302/01Glycosidases, i.e. enzymes hydrolysing O- and S-glycosyl compounds (3.2.1)
    • C12Y302/01001Alpha-amylase (3.2.1.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y302/00Hydrolases acting on glycosyl compounds, i.e. glycosylases (3.2)
    • C12Y302/01Glycosidases, i.e. enzymes hydrolysing O- and S-glycosyl compounds (3.2.1)
    • C12Y302/01002Beta-amylase (3.2.1.2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y302/00Hydrolases acting on glycosyl compounds, i.e. glycosylases (3.2)
    • C12Y302/01Glycosidases, i.e. enzymes hydrolysing O- and S-glycosyl compounds (3.2.1)
    • C12Y302/01041Pullulanase (3.2.1.41)

Abstract

The invention provides a red algae starch catabolism combined gene and a combined enzyme, belonging to the field of genetic engineering. Through the research on the degradation and metabolism mechanism of the red algae starch in the porphyra haitanensis, the invention discovers 2 glucose-water dikinases (PhGWD), 1 glucose-phosphate-water dikinase (PhPWD), 1 beta-amylase (PhBAM), 1 pullulanase (PhPUL), 2 alpha-amylases (PhAMY), 1 phosphoglucan phosphatase (PhSEX4) and 1 transglucosidase (PhDPE2), provides a new degradation and metabolism process of the red algae starch, and provides a theoretical basis for researching the degradation and metabolism process of the red algae starch and the growth and development of the red algae.

Description

Red algae starch degradation metabolism combined gene and combined enzyme
Technical Field
The invention belongs to the field of genetic engineering, and particularly relates to a combined gene and combined enzyme for degrading and metabolizing red algae starch.
Background
Porphyra haitanensis (Pyropia haitanensis), commonly known as laver and black-boned laver, is a large-scale seaweed which can be artificially cultivated. Porphyra of porphyraceae of porphyridium of porphyria of altar, the body of the alga is dark purple green and slightly brownish, is in the shape of a needle, a subaoval or a long oval, is more than 12-30cm long, has a heart shape, a round shape or a wedge shape at the base part, has slight folds or no edges, has sparse sawteeth, has a monolayer of alga bodies and a local bilayer, has single or double color bodies, has round-headed base cells, is a male-female variant plant and a few homologous plants, has warm zone type, and is a main cultivated alga in Zhejiang, Fujian and Guangdong coasts of China. Is rich in protein, polysaccharide and vitamins, and can be used for food or medicine.
Red algae starch is similar in structure to starch granules of higher plants, consisting of a backbone of alpha-1, 4 linkages linked to alpha-1, 6 amylopectin units, with no amylose generally present (except for a few single-celled red algae). Through research on the ultrastructure of red algae, it is found that, unlike green algae and higher plants, in red algae, starch granules are mainly stored in cytosol and are located outside pigment bodies, and some red algae starches cling to the outside of pigment body envelope and are closely related to pigment bodies. The red algae starch granule is in semi-crystal shape, and the size changes with the red algae species and the relative change of cells; the overall storage capacity is closely related to the species of algae and nitrogen uptake. In some red algae, the red algae starch can account for 80% of the total cell volume.
Starch synthesis in higher plants is accomplished in chloroplasts, and synthesis of starch granules in cytosol is accomplished by red algae and other prokaryotes and higher animals without involvement of related transporters. Studies by researchers on various red algae have found that two precursor substances of red algae starch, namely UDP-D-glucose and ADP-glucose, exist, UDP-D-glucose starch synthase and ADP-glucose starch synthase catalyze The connection between precursor monomers to complete The extension of starch chains, and The type of The substrate is currently determined mainly by detecting The activities of two different synthases (Viola R, Nyvall P, Pedersen M. The unique enzymes of starchometalate in red enzyme [ J ]. The Royal Society,2001,268: 1417-. Later studies found that the presence of different precursor types in red algae may also be associated with strong activation of UDP-glucose synthase by citrate during the experiment. Barbier et al found through studies with various single-celled red algae that the precursor for the extension of the starch chains of the red algae in the red algae was UDP-glucose instead of ADP-glucose (Barbier G, Oesterole C, Larson M D, et al. comparative genetics of two closed related to non-acetylmicrobial enzyme, Galeric Sulphuric and Cyaniidiosyncratic merole, Reveals the molecular basis of the colloidal reactivity of Galeric and biochemical in carbohydrate synthesis of broth 11. Plant Physiology,2005,137: 460. 474-. The prior art shows that the synthesis path of red algae starch is single, the influence factor of enzyme is few, and the content is easy to change by the change of environment (Zemke-White W L, Choat JH, et al. A re-evaluation of the diode feeding hypthesis for Marine organism fishers [ J ]. Marine Biology,2002,141: 571-.
The degradation pathway of the red algae starch has a common end product, namely glucose-1-phosphate, and the glucose-1-phosphate finally participates in the synthesis of other polysaccharide products, which is an energy-saving mechanism in the red algae. Alpha-glucosidase regulates the conversion from maltose to glucose, not only catalyzes Red algae Starch Degradation, but also makes it possible to take up free maltose from the outside to participate in the synthesis of structural polysaccharides (Yu Shukun. enzymes of Floridean Starch and Floridoside Degradation in Red Agae [ M ]. Sweden: Uppsala University, 1992.). Among the remaining degradation pathways, α -1,4-glucan phosphorylase is involved in a large number of pathways [16], it catalyzes a wide range of substrates capable of directing various small molecule sugars into the circulating pathway, and it was found from studies of YU [3] that both ADP-glucose and UDP-glucose are potent inhibitors thereof (Nyvall P, Pedersena M, Kenne L, et al. enzyme kinetics and chemical modification x-1,4-glucan kinase from Gracilariosis sp. [ J. ]. Phytochemistry,2000,54: 139-.
The red algae starch is used as an important photosynthetic product and a storage substance and is also a main nutrient substance stored in the red algae. The research on the synthesis and degradation metabolic processes of the red algae starch in the red algae and the related enzyme protein thereof has important significance for the growth and development of the red algae.
Disclosure of Invention
Aiming at the defects, the invention provides a combined gene and combined enzyme for degrading and metabolizing red algae starch. According to the invention, through research on the degradation and metabolism mechanism of red algae starch in porphyra haitanensis, 2 glucose-water dikinase (PhGWD), 1 glucose-phosphate-water dikinase (PhPWD), 1 beta-amylase (PhBAM), 1 pullulanase (PhPUL), 2 alpha-amylase (PhAMY), 1 phosphoglucan phosphatase (PhSEX4) and 1 transglucosidase (PhDPE2) are discovered, and a theoretical basis is provided for researching the degradation and metabolism process of red algae starch and the growth and development of red algae.
In order to achieve the above object, the technical solution of the present invention is as follows:
in one aspect, the invention provides a combined gene for degrading and metabolizing red algae starch, wherein the combined gene comprises a glucose-water double kinase PhGWD gene, a glucose phosphate-water double kinase PhPWD gene, a beta-amylase PhBAM gene, a pullulanase PhPUL gene, an alpha-amylase PhAMY gene, a phosphoglucan phosphatase PhSEX4 gene and/or a transglucosidase PhDPE2 gene.
Specifically, the gene sequence of the glucose-water double kinase PhGWD is a nucleotide sequence shown as SEQ ID No. 1 and/or SEQ ID No. 2.
Specifically, the gene sequence of the phosphoglucose-water double kinase PhPWD is a nucleotide sequence shown in SEQ ID No. 3.
Specifically, the gene sequence of the beta-amylase PhBAM is a nucleotide sequence shown in SEQ ID No. 4.
Specifically, the pullulanase PhPUL gene sequence is a nucleotide sequence shown in SEQ ID No. 5.
Specifically, the alpha-amylase PhAMY gene sequence is a nucleotide sequence shown in SEQ ID No. 6 and/or SEQ ID No. 7.
Specifically, the gene sequence of the phosphoglucan phosphatase PhSEX4 is the nucleotide sequence shown in SEQ ID No. 8.
Specifically, the gene sequence of the transglucosidase PhDPE2 is a nucleotide sequence shown in SEQ ID No. 9.
In another aspect, the invention provides a combined enzyme for degrading and metabolizing red algae starch, wherein the combined enzyme is encoded by the combined gene.
Specifically, the combined enzyme comprises glucose-water double kinase PhGWD, phosphoglucose-water double kinase PhPWD, beta-amylase PhBAM, pullulanase PhPUL, alpha-amylase PhAMY, phosphoglucan phosphatase PhSEX4 and/or transglucosidase PhDPE 2.
More specifically, the amino acid sequence of the glucose-water double kinase PhGWD is a sequence shown as SEQ ID No. 10 and/or SEQ ID No. 11.
More specifically, the amino acid sequence of the phosphoglucose-water double kinase PhPWD is the sequence shown in SEQ ID No. 12.
More specifically, the amino acid sequence of the beta-amylase PhBAM is shown as SEQ ID No. 13.
More specifically, the amino acid sequence of the pullulanase PhPUL is shown as SEQ ID No. 14.
More specifically, the amino acid sequence of the alpha-amylase PhAMY is shown as SEQ ID No. 15 and/or SEQ ID No. 16.
More specifically, the amino acid sequence of the phosphoglucan phosphatase PhSEX4 is shown as SEQ ID No. 17.
More specifically, the amino acid sequence of the transglucosidase PhDPE2 is shown as SEQ ID No. 18.
In still another aspect, the present invention provides a vector comprising the above-described combinatorial gene.
In yet another aspect, the present invention provides a host cell comprising the above-described combinatorial gene or vector.
In still another aspect, the present invention provides a genetically engineered cell comprising the above-described combinatorial gene or vector or producing the above-described combinatorial enzyme.
In another aspect, the invention provides the application of the combined gene, the combined enzyme, the vector, the host cell or the genetically engineered cell in red algae starch degradation and metabolism.
In yet another aspect, the present invention provides a method for degrading and metabolizing starch of red algae, said method comprising the steps of: glucose-water dikinase PhGWD and phosphoglucose-water dikinase PhPWD catalyze phosphorylation of glucose at C6 and C3 positions of red algae starch (Floridean starch); the phosphorylated red algae starch is attacked by beta-amylase PhBAM, pullulanase PhPUL and alpha-amylase PhAMY to generate maltose (beta-maltose) and glucan (alpha-glucans), and the phosphoglucan phosphatase PhSEX4 dephosphorylates the surface of red algae starch particles and soluble phosphoglucan, so that PhBAM further degrades glucan-sugar chains; glucose (α -Glucose) is released and transferred from maltose by transglucosidase (PhDPE 2); whereas dextran was attacked by PhBAM, releasing beta-maltose.
In still another aspect, the invention also provides the application of the combined gene, the combined enzyme, the vector, the host cell or the genetically engineered cell in red algae and plant breeding.
Compared with the prior art, the invention has the advantages that:
the invention discovers a red alga starch degradation and metabolism combined gene and a combined enzyme through research on a red alga starch degradation and metabolism mechanism in porphyra haitanensis, wherein the combined enzyme comprises 2 glucose-water dikinases (PhGWD), 1 phosphoglucose-water dikinase (PhPWD), 1 beta-amylase (PhBAM), 1 pullulanase (PhPUL), 2 alpha-amylases (PhAMY), 1 phosphoglucan phosphatase (PhSEX4) and 1 transglucosidase (PhDPE2), provides a new red alga starch degradation and metabolism process, and provides a theoretical basis for researching the red alga starch degradation and metabolism process and the growth and development of red alga.
Drawings
FIG. 1 is a diagram of the starch catabolism pathway of red algae.
FIG. 2 is a graph showing the content of red algae starch, maltose and glucose in Porphyra haitanensis.
Detailed Description
The present invention will be further illustrated in detail with reference to the following specific examples, which are not intended to limit the present invention but are merely illustrative thereof. The experimental methods used in the following examples are not specifically described, and the materials, reagents and the like used in the following examples are generally commercially available under the usual conditions without specific descriptions.
Example 1
The sample is wild Porphyra haitanensis thallus collected from Dongjia island of Fujian province in 2019, 12 months and 11 days. Porphyra haitanensis was transferred to an indoor aerated culture system and cultured with PES medium (Provasoli, l.,1968) for 48h at 21 ℃ in the dark. After the culture is resumed, the porphyra haitanensis is placed at the temperature of 21 ℃ and the temperature is 50 mol.m-2s-1Culturing under light (12h light, 12h dark) and changing the culture medium every 2 days. Selecting Porphyra haitanensis with almost the same size for gene analysis and content determination when the culture is illuminated for 6h on the 5 th day.
Example 2 Red algae starch catabolic pathway study
The pathway of degradation and metabolism of red algae starch in porphyra haitanensis is shown in figure 1, wherein starch phosphorylation is the first step of degradation of red algae starch, and is initiated by catalyzing glucose at positions C6 and C3 by glucose-water dikinase PhGWD and phosphoglucose-water dikinase PhPWD. The phosphorylated starch is attacked by the β -amylase PhBAM, the pullulanase PhPUL and the α -amylase PhAMY to form maltose and glucan. The phosphoglucan phosphatase PhSEX4 dephosphorylates the surface of the starch granules and the soluble phosphoglucan, which will favor PhBAM to further degrade glucan chains. Glucose is released and transferred from maltose by transglucosidase PhDPE 2. Dextran can also be attacked by PhBAM, releasing beta-maltose.
Example 3 Gene analysis
(1) Homologous sequences involved in the red algae starch degradation metabolic pathway are downloaded from NCBI (https:// www.ncbi.nlm.nih.gov /), MGU (https:// marinegenomics. oil. jp/algae/galery) and Ensembl (http:// plants. ensemble. org/index. html) databases and stored in fasta format;
(2) connecting a porphyra haitanensis genome database on a main server by using Secure FX and Putty software, and formatting the database by operating a command 'format db-iOneKP.faspF' in Putty;
(3) uploading the protein sequence file downloaded to the local computer to a formatted database folder by using a Secure FX;
(4) in Putty, the command of "blastall-p tblastn-d (sequence name) -i (search sequence) -oout- (gene name) -F F-e 1 e-5" is used to carry out sequence retrieval with amino acid as query, and a result file is opened in a txt format and saved in a local computer;
(5) preselected sequences with higher homology in the result file were isolated from the database using Editplus (https:// www.editplus.com /), perl and Tbtools software.
(6) And (3) submitting the sequence obtained by the last step of screening to NCBI Conserved-Domains (https:// www.ncbi.nlm.nih.gov/cdd/.
The genes were analyzed for sequence length, molecular weight, isoelectric point and instability index using the ProtParam tool (http:// web. expasy. org/ProtParam) (Gasteiger et al, 2003). Through detection, the glucose-water double kinase PhGWD gene comprises PhGWD1 and PhGWD2, the sequence of PhGWD1 is a nucleotide sequence shown as SEQ ID No. 1, and the sequence of PhGWD2 is a nucleotide sequence shown as SEQ ID No. 2; the sequence of the glucose phosphate-water dikinase PhPWD gene is a nucleotide sequence shown as SEQ ID No. 3; the sequence of the beta-amylase PhBAM gene is a nucleotide sequence shown in SEQ ID No. 4; the sequence of the pullulanase PhPUL gene is a nucleotide sequence shown as SEQ ID No. 5; the alpha-amylase PhAMY gene comprises PhAMY1 and PhAMY2, the sequence of PhAMY1 is the nucleotide sequence shown in SEQ ID No. 6, and the sequence of PhAMY2 is the nucleotide sequence shown in SEQ ID No. 7; the sequence of the gene PhSEX4 of the phosphoglucan phosphatase is the nucleotide sequence shown in SEQ ID No. 8; the sequence of the transglucosidase PhDPE2 gene is a nucleotide sequence shown as SEQ ID No. 9.
The results of gene characterization are shown in table 1 below.
TABLE 1 Porphyra haitanensis starch degradation pathway gene characteristics
Figure BDA0003394088690000061
Figure BDA0003394088690000071
EXAMPLE 4 cloning expression of Gene and protein purification
The following proteins are expressed and purified by adopting escherichia coli, a pET vector system and a His-tag nickel column purification system, and the specific operation steps are shown in an operation manual of related strains, reagents and kits:
1. glucose-water dual kinase PhGWD: comprises PhGWD1 and PhGWD2, the amino acid sequence of PhGWD1 is shown as SEQ ID No. 10, and the amino acid sequence of PhGWD2 is shown as SEQ ID No. 11.
2. Phosphoglucose-water dikinase PhPWD: the amino acid sequence is shown as SEQ ID No. 12.
3. Beta-amylase PhBAM: the amino acid sequence is shown as SEQ ID No. 13.
4. Pullulanase PhPUL: the amino acid sequence is shown as SEQ ID No. 14.
5. Alpha-amylase PhAMY: comprises PhAMY1 and PhAMY2, the amino acid sequence of PhAMY1 is the sequence shown in SEQ ID No. 15, and the amino acid sequence of PhAMY2 is the sequence shown in SEQ ID No. 16.
6. Phosphoglucan phosphatase PhSEX 4: the amino acid sequence is shown as SEQ ID No. 17.
7. Transglucosidase PhDPE 2: the amino acid sequence is shown as SEQ ID No. 18.
Gene cloning and expression and protein purification are conventional procedures in the art and are not described herein.
The positions of the bands were found to be consistent with the sizes of the proteins predicted by amino acids by SDS-PAGE of the purified proteins.
Example 5 Red algae starch, maltose and glucose assays
1. Red algae starch
The total starch content was determined by modified anthrone spectrophotometry at 620.0nm and calculated by multiplying the glucose content by the conversion factor 0.9 (mccriady R M, et al, 1950, Yang Q, et al, 2018).
(1) Weigh 100mg fresh sample into 15mL test tube, add 4mL 80% ethanol, stand at 70 ℃ for 2h, vortex and mix.
(2) Centrifuging at 10000rpm for 10min, and discarding the supernatant.
(3) Add 4mL 80% ethanol and repeat the above steps 3 times.
(4) Adding 3mL of perchloric acid into the test tube, uniformly mixing by vortex, shaking for 10min, and standing for 5min to fully hydrolyze the starch.
(5) Adding water to a constant volume of 10 mL.
(6) Centrifuging at 10000rpm for 10min, and diluting the sample according to the concentration of the sample.
(7) Sucking 0.4mL of the extractive solution into a new test tube, adding 1.6mL of anthrone reagent, mixing, boiling in water bath for 10min, rapidly cooling to room temperature, and measuring light absorption value at 620 nm.
Starch content (%) ═ C V D/M100 0.9, where C is the result calculated from the standard curve; m is actual weighing mass; v is the total volume of the extracting solution; d is the dilution multiple; 100 is percent conversion; 0.9 is a coefficient of conversion of glucose to starch.
2. Maltose and glucose
(1) 100mg of the crushed powder of the fresh sample is put into a 2.0mL screwed pipe, 700 μ L of 80% ethanol is added, and the mixture is shaken for 2h at 50 ℃.
(2) Adding 700 mu L H2Diluting with O, and centrifuging at 10000rpm for 3 min.
(3) The supernatant was aspirated and transferred to a fresh centrifuge tube, and 700. mu.L of CHCl was added3Centrifuging at 10000rpm for 3 min.
(4) Taking the supernatant out, and testing.
Chromatographic parameters:
the chromatographic system was a Thermo ICS5000(Dionex, Thermo Scientific, Waltham, US) ion chromatographic system using CarboPacTMPA20(250 × 3.0mm) liquid chromatography column with mobile phase a: h2O, B: 200mM NaOH, the detector is an electrochemical detector, the sample injection amount is 25 mu L, the flow rate is 0.5mL/min, and the column temperature is 30 ℃. The mobile phase gradients are shown in table 2 below.
TABLE 2 gradient of mobile phase
Figure BDA0003394088690000081
Through detection, the red algae starch content in the porphyra haitanensis is 28.07mg/g, the glucose content is 0.12mg/g, the maltose content is 6.15mg/g, and the detection result is shown in figure 2.
Example 6 in vitro culture experiments
The red algae starch degradation metabolism mechanism is detected by adopting in vitro culture, the growth environment of porphyra haitanensis is simulated in vitro, 100 muL of glucose-water double kinase PhGWD mixture (50 muL of PhhGWD 1+50 muL of PhGWD2), 100 muL of glucose-water double kinase PhPWD, 100 muL of beta-amylase PhBAM, 100 muL of pullulanase PhPUL, 100 muL of alpha-amylase PhAMY mixture (50 muL of PhhA MY1+50 muL of PhAMY2), 100 muL of phosphoglucan phosphatase PhSEX4 and 100 muL of transglucosidase PhDPE2 and substrate red algae starch (the final concentration is 8mM) which are prepared in the example 4 are added, and the reaction condition is 30 ℃ for 3 h. After the reaction is finished, the red algae starch content is reduced to 0.5mM, and the maltose content and the glucose content are obviously increased to 4mM and 3mM respectively.
The above-mentioned embodiments only express several embodiments of the present invention, and the description thereof is more specific and detailed, but not construed as limiting the scope of the present invention. It should be noted that, for a person skilled in the art, several variations and modifications can be made without departing from the inventive concept, which falls within the scope of the present invention. Therefore, the protection scope of the present patent shall be subject to the appended claims.
SEQUENCE LISTING
<110> Xiamen university of China oceanic university
<120> red algae starch catabolism combined gene and combined enzyme
<130> 20210225
<160> 18
<170> PatentIn version 3.5
<210> 1
<211> 4035
<212> DNA
<213> Artificial sequence (artificial sequence)
<400> 1
atggcgccca ccgagtacga gtcgacgacc gaaatggacc tgggcagcgg cctcgcgctg 60
accatcaccg tcgcccgcac ggcgggcccc gcaggccccg aagtctccgc cacctttctc 120
cgctcgtcgg cgcccgtgca gcggccgggc gagccgctcg tccttcactg gggcatcgtc 180
gcgaccgccg agtcggaccc gcaggtgtat ggcaagccac ccctcgcgat gctccccgac 240
ggcaccgcct accggccggg caagctatcc gtgcggagcc gctttgagcc ggcgtcgggg 300
tccgtccgtc tgggcgtgcc cgaggcggag gcgcccgcgg ggattgtgtt catggtgtac 360
atcctgggcg agggcggctg ctccgagcag tggtttaagc gggggggcgg caagagcttt 420
tttgtgtcca ttgccgacgc ggtctcgccg gccgagcggg accgccgcgc cgccgaggtg 480
gccgagcgcg aggccgtcgc ggccgcggcg gccaagcgcg cggccgaggc ggcggccgcc 540
gaagcggccg agcgggccgc ccgccaggcc cagtacgagg cggagcggga ggcgcgggag 600
gcggccgcgc gggcggagcg ggaccagcgg tcggtggcgg aaaaggccga ggcggctgcg 660
cgggaggcgt cgctgcgcgc ctacctggac gatgcgctcg caggggccga agtggtggac 720
cggcgggact atgactacga ggggctgggc agcctcgtgc tggccgcggt cgcgtcggca 780
aagcggtcgg acgacccaga cgtgctgccg ccgccggcga gcgtcattgt ggcgtcgtcc 840
atcgccgcgg cgggcacgga cctgatcctc cactggggga ttaaggttgc ccggcggaac 900
gggtggaagg cgccgccagg cagcgcgtac ccgcccaaca cgacgcccat gggcgacggc 960
cttgccgtcg acacagtgct cgcgacggtc gcgcccaacg gggtgcgcgg ggtggaaatc 1020
cgaaacctgc ccgaggacgc cgtcgcgctg ctggcggtgc tgtccctccc cgacgcgccc 1080
gccgagtccc agtggctgca cgacgtcggc accggcgggg acatgtgcct gacaattggc 1140
tcgacgccgg cgctgcccgg cctcgtgcac gccgatggct cccccgtgtc gtcgacggcg 1200
gcgcagctgg tggaggcggt ggtggagcgg gaggtggagt acggctcgtg gacgctcatg 1260
caccggtacc gctacgcgga ggagctggtc catggcctgg tgcgggacga ccaggacgcg 1320
tggtcggcaa tctacgtgtg gctgcgctac tcccagctgc gcgtccttga ctggcagcgg 1380
cggttcaaca cgcagccgcg gcaactgtcg tcggcacaga tgaactttgt cacgacgctg 1440
gcgtctcggt ggcggtcgct gccggcgctg cggtgggtca tccgcatgtc catgtcgtgc 1500
gtcggccgtg gtgggagtgg ggatctgggg cagcgcatcc gggacgacat tctggtcatc 1560
ctgcgcaaca accggggctg ggggcacggc agcatgatgg agcagtggca tcagaagttg 1620
cacaacaaca cgtcacctga tgacgtgcac atttgcaacg cgctgctcgc ggggtggcac 1680
gcgtcgggcg accggacggc cgcgtactgg tccaccattt accactttgg gctgacgcgc 1740
gagcggctgg ccggctacga gcagcccatc accagcgacc cagactggcc catgcactgc 1800
cgggacgcga tgattgggga cctatccaac tacctggggg tcctcaaggc cgttcacttt 1860
ggcacggacc tgaactcgat ggtcggccgc gtgcagggct accttgatga tggcacgagg 1920
tcggcagtga acgggtttat gggcactcgc cacggtcagg ccagtctgac agacgttctt 1980
ggctctgcgt cccacgcgcg ctccatgatc atcaagatgc tccagtcggc gggctggctg 2040
gacgacagcc aggcgcggga ccttatctac ctggaactgg ccattgacgc ggacacgcgc 2100
cggcgtgtcg aagggagcgg tgatggcggc ggccacgatg gctccctgtt ctcgcacctg 2160
acggtgctgc gggtggcggc ggcggggctt agcctctcgg agggcgggct cgacacggcg 2220
ggcgcgctgg atcgggccac caacgagctt ggcgccctca ccgaccggct ggccagccac 2280
ggcgagtccc aagacattgg cctccgcgcg gcggctacgc tggtgattct tcgtaacgtg 2340
ctgctggagg tggtggaccg ctaccgcaac agctttgacc cgtgcgcgca ggcaatgggt 2400
gcggcgttca gcgcggacca gggcatcgta tcgaccttcc tggaggaggt tgtccgcggg 2460
ggccctgcct ttgcgctgtc ggccctcctc cgccgagccg aaccggcggt gcggcgggtg 2520
gcccacctgg gcccctactc ggtcattgca ccgctcgagc gcacgacccg cgggccgctg 2580
gtgtgggtgg agcggcttcg ggactcgatg agcatgacgg tccgcacggg cacggtgatt 2640
gtggcgggca gctgcacggg ggaggaagac gttcccgcca agaccgccca cgtggtgatt 2700
ggtagcaccg tggacgtgct gtcgcacgtg gcggtgcggg cgcgcaatga gaagcacggg 2760
cttgtggcgt gtttggaccg ggaggagctc gcgctgctca agggcatgca cgggtgtctg 2820
gtgcaggcca agctcaccgc caacggcttt gaggtggaga ttgtggacga cgctgggcgg 2880
cagtcgccgt cgagcggggt ggagagcgta atgcggtcga tgaagtcggc gggcctcatc 2940
acgccgccgt cgggctcgtt tgaccagatc ccggtgcccg gtatggggcg ccgccagtac 3000
tcatccaaca cgctgtcgcg gatgacgatg cagcgcgacg cgatgcgcaa gcggcaggcc 3060
gcggcggcat gggcggtgcg gccgtcagag ttcagtctgg agctggtcgg caccaagtcg 3120
atgaacctcc agacgctgcg gtcgctgggg ctgcccgact ggatcaagac gcccgtgtcg 3180
ctggccatcc ccaacggcgc gatgcgcaag gtcctggccg acccggccaa cgagacagtg 3240
gcggccgagt acacggggct gctgagcgag ttggacgccg cccccgaggg cgacgtcaag 3300
ctgtgcccca agctccgtgc gtgcatcctg gacctgtctg cgccagcggg cctgcaagac 3360
gccctccgtg gggtgctcga cgaccttggc tgcacggcca ttgacgacaa gctccccgcc 3420
gcgtgggacg cggtcaaggg cgtgtgggcg tcgatgtgga acgagcgtgc gcatctggcg 3480
cgggccaaac tcaacatgcc cgccgatgat gtggacatgg cggtcctgtg ccaggccgtt 3540
gtggatgcag actatgcgtt tgtcatccac acgaccaacc cgctgaccat ggacgacaat 3600
gaggagtacg tggagctggt gtgtggcctt ggcgagagcc tcgtcggcaa cgcgcccggc 3660
caggcgctgg gctttacgat gcgcaaggac cggctgacct ctggcgaacc catcatccgg 3720
tcgtacccgt ccaagcaggt ggcgctgcgg ggcggcgagt tcattttccg ctccgactcc 3780
aacgcagagg acctcgaggg ctttgccggc gcgggcctcc acgactcgat cccaattgtc 3840
aagaaccggg aggtggaggt agactactcg gtggagccgc tcctcaccga cgacgccttc 3900
cgcaccgacc tgtgccgcaa ggtcgcccag attggcaagg ccgtcgagga caccatggac 3960
ggtagcgcgc aggacgtgga aggctgcgtc aaggacggcg tgtactacat tgtgcaggcg 4020
cgtccgcaag tgtaa 4035
<210> 2
<211> 3057
<212> DNA
<213> Artificial sequence (artificial sequence)
<400> 2
atggcgggct tccccgccgg gtgcacgacg ctgttggccg tcgtgcacct ccccgccgcc 60
gccaccgccg acgcgcggtg gctgcacagc ccgtcgggtg gcggcgacct ggcgctgccg 120
ctggtgccgg cggcgccccc ccccggcgcc gccgcggccg ccggcctccc ccccgacgtg 180
cgcgccgtcg tccgcgtcat tgtcgaccgg gaggtgcggg gcgactcgtg gtcgctggtg 240
caccggtttg cgctcgccgg ggagctcgcg gcgggcgccg ccgtcggcgc ccgcgccggc 300
tgctgggcgg cgctcgtcgt gtggctccgc tactcggcgc tccgcgcgct gacctggcag 360
cgccggtacc acacgccgcc gcggcacctg tcgcacgtgc agatggagct ggtgacgcgg 420
gcggcggggg tggcgcggcg gcagccgccg ctgcggtggc tcgcgcgggg cgtcttggcg 480
gcggtcgggc gggggggggc gggcgacctg gggcagcgca tccgcgatga catcctggcg 540
gtgctccggc accaccggcc gtggaagcgg gggagcttga tggaggactg gcaccaaaag 600
ttgcacaaca acaccaccgc ggacgatgtg gtcattggcg aggcgttcct cgccggctgg 660
gcggtcccgc ccggcggcga ccgcgtcgcg gccttttggg cgacgctcgc cgccggcggc 720
ctgaccgccg ccgaccttgc cgcctatgag cagccgctca cccacccgcc cgacgactcg 780
tggcccgagg ccgcccgggg cggcgtggtg ccggacctcc gccgctacgt ggcgctgctc 840
aaggccgtcc acggcggggg ggacctgccc gacgtggccg accgcgtgcg cggggggctg 900
gacggccgca cccgcgacgc ggtcgacgcg gcccttgcgg tccgcgcccg ttgcggcggc 960
cggcggggcg gcgtcgccga cctgggcgac ctgctcaccg ccattgtgtc tgcccgcacc 1020
gcgctggccg cccacacggc cgagccgcac cacgacgacg cgcgggtgcg ggacctgctg 1080
tacctggacc tcgcgctcga cgccgccgcc cggctggccg cgggcctccc caccgccgcc 1140
gccgcccgcg acgtggccgg caccctcgac ggcatcgccg gccgcctcgc cgccgacggc 1200
gtgaccgccg acgctggcct gcgcgtcgcg gccgccgccg ccgccgcggc ggccgtcctc 1260
ggcgacattg tcgaccggca cgcggcgctg ctgggcccgc ccgccgccgc cattggcgcc 1320
ggctgcgcca ttgacccggc cgtcgtcgcg acgtttgtcg agacgaccgt ccgcggcggc 1380
ccggcgtttg cgctgtcggc ctgcctccgc cgcgccgcgc cggccgtgcg ggcggtcgcc 1440
gcgacggggc cgtgggcggt cgtcgcgccg ctgccggcca cgccgaccgt cggcccgctg 1500
ctggcggtgc cgtcgctggc ggcggtgaac ggcgtccgcc tgccgccggg gacggtgctg 1560
gtggccgccg cggtgggtgg cgacgaggac gtgcccgacg ggacggcggt ggtggtcgcg 1620
gcgtcggcgg tggacgtgct gtcgcacctg gcggtgcggg cgcgcaacga ggggcgcggc 1680
ctcgtcgtgt gccacgaggc ggaccgcgtc gcggcgctcc gcgcgctcca cgggggggtg 1740
gtgcgcgcgc gccaagaggg cgacggcctc cacgtggagc tgctggacgg gaaggggggg 1800
ggggtggtcg acccggccgc cgaggggggg gaccttgcca cgctcctgcg gcggccgccg 1860
ccagcgggcc tcggcgctgg cgccgatgcc ggtgccgccg acggcggtgc cgccgacggt 1920
gccgccaatg gcgtggcggc ggcggcgcca gccggggagc acggcgacgc cccagcccgc 1980
gacgcggtgt gggtgccgcc gtcggccgcc gccgcggcgg cgaccgcggc ggcgcgggcg 2040
gcggcgccct gggtgctccg cccccccgcc tttacgcccg accttgtcgg cggcaagtcg 2100
ctcaacctga ccgccctcgc cgcgcggctg ccggcgggcg tcaagacgcc cccgtcgctc 2160
gccatccccg cgggcgcgtt tgaccgcgcc ctcgcgcacc cgcccaacgc ggcggtcgca 2220
tcggacgtag aggacctcct ccgcaccgtc gacgcggcgg cgggcggcgg cgcggcggcg 2280
gccctcgccg cggccgccga cctccgcgcc gcgacgggcc ggctggcgtg cccgcccggc 2340
ctcgacgcgg ccctccgcga cgcgctcgcc acgctcggct gcgcgcccag cgacgtggac 2400
gcggccgcgg cgcccgcgtg ggcggccgtc aaggcggtgt gggcgtcggt gtggggcggc 2460
cgggcggtgc tggcgcggcg gcgggcgggt atcccgcacc gggcggtggc gatggcggtg 2520
ctggtgcagg cggtgctcgc cgccgactac gcgtttgtcg cgcacacggt ccacccggtg 2580
agcggtgacg cggggacggc gtatgtggag gttgtcgcgg ggctggggga ggcgctcgtc 2640
ggcaacgcgc cgggctcggc gctcggcttt acgtaccgca agggcggcgc cgccgccgac 2700
ggcggcggca cagacgacac cgccgccgcg cgggtgcgcg tcgtcacgta cccgtccaag 2760
gcggtgcgcc tcgacggcgg cggctacctc ttccgctccg actccaacgc ggaggacctg 2820
cgcggctttg ccggcgcggg cctgtacgac tcggtccccc tgcacgcggc cgccgcgacg 2880
cccgtcgcgt acgcggccga gccgctgctc gtcgacgacg cgttccgcgc gcgcctgtgc 2940
gggcgcctcg gcgagctgtg cgtggcggtg gaggcggcgc tcggcgggcc gcaggatatc 3000
gaggggtgca tccggggggg ggagctgtac gtcgtgcagg cgcggccgca ggtgtag 3057
<210> 3
<211> 3120
<212> DNA
<213> Artificial sequence (artificial sequence)
<400> 3
atggctcctc ccacggcaac gaccgtccac tttactgtcc gcgccgccgg cagccgcccc 60
ggccaggccg tctacctcgt tggcagcgcg cccgcaaccg gcggctggtc cccagccgcg 120
ggggtgcggc tgtcgaccga cgcgaccacg tttcccgtct ggcgcagccc gccggtggcg 180
gtggccacgg agcggctgcc gctgccgctg tcgtacaagt acgtgctggc ggccgaggcc 240
ggcgtggacc cgggggggga ggtggcgtgg gaggttgacg gccgctcggc ggtgcggacg 300
ctgggcgagg cggatgtcgc cgccgccgcg ccaccaccgc cagggggggg gggggaggtg 360
accattgatg acggcgtgtt tggggtgctg cgccgcgggg gtgtggcggg cggggtcgcc 420
gccgccgccg cgggtggcgg gaagggggcg caccgaaacg gcagcggcgg cggcggcggc 480
ggcggcggcg gcggcggcgg cggcggcggc agtgacccga cgcggggtgg ggacgcggcg 540
tcgctgcgac tggtggagcg ccccctggac gcgctcgagg cggcggtagt ggcggtgaat 600
ggggaccgcc gcagctggcg gcggcgcctg tcgtacgtgc gcgagctgtt taccgacgac 660
gccgccgcga cggcggcggc gtttgacccg cgcaacgtgg gccacctggc gacggtcgtc 720
gtgtacttga cgtttctcac gacggggcag gtgcgttgtg aggaggacgg ggggcaccac 780
cggcccaacc atcacgccgc cgaggccaag gccattgacg aggcgctcgg cgcgctcgac 840
ccgcggtcgg ccgcggccgc cgacgccgcc gacgctgacg cagacgacgg tctgcgcgtg 900
ttcctgctgc gcaaaatcta cccgctgctg ccctcctacg cctcccagtt taccgtgtcg 960
gtgccgatga cgcgcatccg caacattgcg caccgcgggg acatcccgca cgacctcaag 1020
cagcagatca agcacacgct acaaaacaag ctgcaccgct gcgcggggcc agaggacatg 1080
gtcacctgcg agcggctgct cgagcaggtg accgcgcccg gcacgtcgta cagcggcgcg 1140
tttgtctcgg agctccgtac attccgcgac gagctgcgcg agtttttcaa tgccaccgcc 1200
ctcgacgacc gcctgcaggc gctggccgat cgcggcagcg gcacggcggg gcggctgatg 1260
gggctcaagc acgggtgggc gcccgcgctc gagcagctgg cggccgtcaa caccctccgc 1320
gcggagctgc acgctgctcc ggccgcggca gatgcggccg acgcgcaggc cgcgcggctg 1380
gccgacgtgg agctcgaaaa gtacagcgtg acgctgctcg cggcggtcgc ggctgacgtg 1440
gagggcggcc tcgactgggc ggtggggctc gccgcgctcg ccgcggccgc cacctgcctc 1500
gccctctccc gcgtgacgtc gcccgtcgcc gaggccacgg cggtggcggc cgagctgcgc 1560
gcgctggcgg agctggcgac cgccgacgcg ccgccgccgc tgctgcgcgt gcgggcggcg 1620
gtggagcggg cggtgcggct cgtcgacgcg ctctgcggcg gcatcgccgc cgtctatgcc 1680
gaccgcgtcg gcccgctggc cgccgcgctc ggcgtgtcgg gccccgccgc ggcggtcttt 1740
gccgaggcgg aggtgcgcgc gcacgcggcg ttccacatgg cccgcgtcgc gtcggtggtg 1800
ggccgcgccg tccgggcgtc gctgggcctg cccccctggg acgccatctg cccgggcacc 1860
gcggcgggcg tgctcgtcgt tgccgacacg ctcggcgagg tggcccgccc cgcggcggac 1920
gcgcccgtcg tggcggtcgt ggcgcggtcg tcgggggagg aggacgtgcc gggctgggtg 1980
cgcggcgttg ttcttgggca cgacctgccc cacctcagcc acctcggcat tggggcggtg 2040
gacgcgtcgg cgaccgcggt gctggcggca gcggacgtga cggccgcgac gggcggcgcc 2100
aaggccgcgg cggcgggcac gctggagcgc ctcgccgcgg acggcggcgg ctttgccacc 2160
ccgccgtcgg tggtggtgcc gtttggcgtg tacctcgccg ccgtcgacgc ggccgcgtcg 2220
gcgcagtcgt cgtcggcgcc ggcgctgcgc aagctcgccg ccgcatacga cgcggccgac 2280
gcgggcggcg gcgccgccgc cgccgccgcc gccgccgcgc gagcctggat tgagaccgcc 2340
acggccgtgc ctgccggggt ggtggcggcc atcaccgccg cgtttcccgc gggcacgccg 2400
ctgatggtac ggtcgagtgc caactgcgag gacctggcgt cgatgagcgg ggcgggcctg 2460
tatgactcgc tggcggcggt gcgcgccgac gacgccgccg cggtcgcgac cgccgtgcgg 2520
cgggtgtggg gcagcgtctg gagcggccgc gccgcgtcgt cgcgggcaac ggcgggcgtg 2580
ccgcacggcg cggcggccat ggcggtgctg gtgcaggcga tggtgcccgc ggcggtatcg 2640
ttcatcggct tttcgcgcaa cccgctcgcg gcggcggcgg cggcggcggc gggcgcgccc 2700
gccgaggcat acctcgagct ggccgtcggg atgggcgaga cgctcgcgtc ggcggcgtcg 2760
cgtggcaccc cgtaccgcgc ggccgtggca cgggacggta ccgtcactga gtctgcggtc 2820
gcgagctact cggtcgcgct catgccgtcg tcgcggacgt cggcggagga agggggtggg 2880
gggggtgggg ggaccgccca cgacggtctc gtgccgactg tcctcgacta ctcgacggtg 2940
cgcctgacga ccgacgacaa gtaccggatg ggcgtctacg gccgggtggc gcgggtggtg 3000
gcgggcctcg agtccgcgct cggcgggccg caggacacag aaggtgtgct tgacgctgac 3060
ggcgagctgt acgttgtgca gacacggcca atggtggccg cggccggtcg gagcgactga 3120
<210> 4
<211> 1377
<212> DNA
<213> Artificial sequence (artificial sequence)
<400> 4
atggcggcgc aggccgccaa tcagggtggc ggcggcgtgc cggtgtttgt catgctcccg 60
ctcgacacgc tgctggatga tcccgctatg gccgcccctg acctggacga cgcgctggtg 120
gcgctgtccg gcgcccgcgc cgcgggcgtg atgctcgacg tttggtgggg cctgtgcgag 180
ccctcccccg gcgcgtacga ctttgcgcgc gtccggtcgc tggcggcccg gtgtggggag 240
ctggacctgc gggtgcaggc gaccatgagc ttccaccagt gcgggggcaa cattggggac 300
aatgtgacca tccccctgcc gtcgtgggcg ttagacgcgg cggccgcaga gggcctgctg 360
tacacggacg ccgccggttg ggccaacccc gagtgtctat ccctgtcggc tgaccacgtg 420
gcgttcctgc cgtctgccga cgggggggcg ccccgtacgg ccgtgcaggc gtacgtcgcc 480
tacgtgcggg cgtttgtaga tgccatgggc gacctgatca cttctggggt ggtgtctgag 540
ctgcaggtcg gcctgggccc ctgcggcgag ctccgctacc catcctaccc cgccgccggt 600
gggcggtggc tcttccccgg cattggccag tttgtctgcc acgaccggcg gatgctcgcg 660
tcgctggcgg cggccgccga gggcgccggc caccctcccg agtggggccg gccccccaca 720
gacgcggggt cgtacaatga caccccctgg gtggccccct tcttccaccg ctttggcggg 780
tggcggtcac cccgtgggcg cttcttcctg acctggtacg ccgacgcgct gctgcggcat 840
ggggaggacg tccttgctgc cgtgcggggc gtggtgcccc ccggcggaag gctggagctg 900
gcggtcaagg tcagtggcat ccactggtgg cggtccaccg ccagccgcgc cgccgaggcc 960
accgccgggt acgtgtgcct gccgcgggat gggtggtttg ggctgactgg cgggggcgcc 1020
ctcgacggct acgcgcggct ggcgggcctc tttcgccgcc acggggtggt gtttgacttt 1080
acgtgcctag agatgtggac gtggaagcag cccgtgtggt cggcgcgctg cgagcccgag 1140
cgcctcgtgc gagacgcggt ggacgcggcg gccgccgaag gcgtaccgtt tgcgggcgag 1200
aacgcgctgg agcggtacga cgaggacgcg taccggcagg tggggaaggc atttcggcgt 1260
gtcccccggg agttgcggtt tgggttcacg tttttgcggc tggggccgac gctgatggag 1320
gagcccaact gggcccagtt ttgtgcgttt gtggccagga tgggggcaag aaagtga 1377
<210> 5
<211> 5340
<212> DNA
<213> Artificial sequence (artificial sequence)
<400> 5
atggatcggg cggccttccc gccagacgcg gcgcggctgg gcctggcgct cacgcccgcc 60
gccgccgccg ccgccgccgc caccaccacc gccaccgccg ccgccgccgc cgccgccaca 120
ccggcggtgt ggtggtcccc cgccgacggg tcgaccgtgg agctccgcgt cgcgcccgac 180
gggcgggtaa cgcgcggggc ggcggcggcg gcggcgacgg cggcggcggc ggcggcgggg 240
ggtgccaacg gcggcgcacg cggcggcgtg atggtggccg cgcgtgggga tggcggcggc 300
gccgccgcgg cgtcgccgct ggtggtacgc taccagcgct acgcgagcga ctatgccggc 360
tggacgctga ccgcggcggc ggcgggtggc ggcggcggcg gcggggcgct ccgcgtcgcc 420
cgcgcggggc ggctgtacca cgggatggcc acgtacgagg tggccgtgcc ggccgcgtgg 480
cccgccaccg cgcggctgtc gctgcggctg agacccccgc cggcggcggc ggcggcggcg 540
gcgggtgcgg cggtggcgac ggcggcgacg gcggcggcgg cggccaccgc ggcggccgcc 600
gcggcgcacg acacggtggc ggaccgcgag tggacgcccg ccctcgggcg ggacgtggtc 660
atcgcgcagg accgacgcga cgtgcggccg ctgcacgccg cgtcgcggca gctgttttac 720
caccggatgg aggcgctcga cgcggactgg cggcagtggc ggctgcggct gtggacgacc 780
gtcgcggcgg cagcagcggc ggccgccgcc gcgacgcggg gcgatggcgg cggggacacc 840
tcgccgccgc cgccgccgtc gccgccgccg ccgccgccac cacccgtcgt ggaccgacgc 900
cacgagctgc tgccgcggga gctggtcgcc cccggcgtcg tggcgtacga cctgacgccg 960
ctgctcttcc acgacggcgc caccgtccac gtgcagcccg tcaaggtggt gccgctgcgc 1020
tcgcccgcgc ccggcggcgc ggcgcccgac ctcgccgccg ccgtccgccg cgtcgcggcc 1080
gacgtgccgc ggcggtggac ggtcacggcc ggggtggtgc cgtcccggca cgtggtgcag 1140
ggccagccga cggtgtgccg ggacgtggcc gacgtgcgcg ccgcggcggg cggcgcggcc 1200
gtctgcgacg cgccgtcgcg gtggtttgcg ctccgctacc gccggtttgg cggcggcgcc 1260
gccgagtacg cgggctgggc gctggcggcc cgcgacgccg ccaacgccaa cgccgacgcc 1320
gacgccgacg tcgacgtcga cgtcgtcgtc gacgccgacg ccgacgctga cgacgccgac 1380
gccgacggtg gcggcggcgg ggtgaccatt gagccggtgg cggtggaccc ggtggcgggg 1440
gcgctcttct tggtcgaccg cgggcgcttt ggggggggga cccgcctgcg gctggtgccc 1500
cgccacgagg cgcggggggt ggacgacgcc gccgcggcgg tcgtgtggga cgccgccacc 1560
gccgacgcgg cgctgcgggt gcccgccgcg gacgcggcgg cgctcgtcgc ggccgccgcg 1620
cgaggcggcg acggtggcgg cacggcgtcg tcggcggcac tgccgtcgcc gccggcgctg 1680
ctgctggtgc aaggccacgg caggctgctg ccgtcgctgg cggcggagcc gtcgccggtg 1740
gtcgcgtcgg tcgactcccc gtgggacgtg tcggtcgtga cgttttgtcc gctcgagtgg 1800
ctcgacgcgt cccggccggc cacgcactgg gacgccgccg cctccccgtt ggtccgcccc 1860
gcggttacgc tccactaccg cgccgacggt ggcggcacgg tggcgctccc gtgggtgacc 1920
tgggcgcgcc cgtcccccac cgagattgtc ctccgcctgt ccgaggcggt cgccgacggg 1980
cggggcttcc acgaggactt tttggtcgag cgcgtggagg tccgcgcggc gggcatcccg 2040
ccgacgcggc tgggctggcg cgcccaggcg gacgtggacg cctactttta cccgggaccg 2100
ctggggtgca cgtgcaccgc agacgcgacg gcgtttcggg tgtttgcgcc gaccgccgac 2160
gcggtggtgg tggtgctcta tgcggagcca acgggcgacg ctggccgccg cgagctgccg 2220
atgcgccgca tcccgcaggg gtgctggaag gcaaccgtgc cggcctgcct tggcggcacc 2280
tactacaagc tccgcgcgtc gggcgcggac gcccgcctct tccccggcgt cgaggtcatc 2340
gacccctact cgcggtgcaa cacgcaccac acgggccggg ggctgatcct cgggccggac 2400
gacccggccg tggcggcgac cgtgtcgccg cggccggccg ccgacccggc cggcgcgacg 2460
gtcatctggg agctccacct ccgcgacgcg acggtcgatc cggcgagcgg ggtggcgcgc 2520
caccggggaa agtacctcgg cctcacccag ccacacacgg tgctcgcggc ggccgcgccg 2580
tttgccgccg accgccgcgg gatggtggac gtgtcggcgg cggccgacgc gccgcccgcc 2640
gcggccgtcg acggcgccgc cgacggggac gcgccgggcc cgccgccgcc gccgccgccg 2700
ccgccgccgc cgctgacgac ggcgctggcg cacctggtcg agatgggcgc caccgcggtg 2760
cagctgctgc cggtgcagga ctttgacaat gccgaggacg aagcagccgg cgagtacgcc 2820
tggggctaca tgcccgtcca ctttttttcg cccgacggct ggtacgcggc cggcagccgg 2880
gccgactcgt cgcgggtgcg ggagctcaag gcgctcgtgt cggcgctgca caccgcgggc 2940
ctgcgcgtca tcctggacgt ggtatttaac cacacggcgg aggacgtgga cgagcgcaac 3000
ctggacgccc gcttctcgtt caacggcctc gccccgcgct actactaccg cacgtgtggc 3060
aacacgccgg tgtcggcgtc gggccaccgg acgtgtgcga tgacgccggc ggggcgcccg 3120
acgtgcgggg cgtgctactc gaatggcagc ggctgtggga atgagctgcg gagcgaggcg 3180
cccatggcgc gcaagttcat cctcgactgc ctgcgctact gggcgaccga gtacggggtg 3240
gacggcttcc gctttgacct gatgggcctc attgacgtgc cgacgctcac cgccgcggtg 3300
gcggcgctca aggccattga cagcgggatt gtggtgtatg gcgagccgtg gacggggggc 3360
attacgccgg tggcgccaac gtacaagggc acccagcggg ggcgcgggtt tggcgtcttt 3420
aacgacacgt tccgggacgc gctccggggc tcccccttcc acgcgggcgg ctgctttgtg 3480
ctggacggcg tcgcggtgga cgatgtgaag cggggcatta tgggctccat cgacgacttt 3540
gccgacgagc cgaccgaggt catcaactat gtcgagtgcc acgacaaccg cacgctctac 3600
gaccagctgt gggagattta ccgcgggggg gggggcaccg ccgcggacgc ggcgccgcca 3660
gaggacgagc ccgccgccgc ggcggcggcg gcggcggcgg cggcgggggc gggggcgggg 3720
gcggccaagg cggccgcccc cgcccccgac acggcgggcc tatcgcccgc cgcggcggcg 3780
gcggtggcgg ccgccgccgc cgacgcggcg gcggcggcca ccaccgccgc cgccgccgcc 3840
gccgcggcga gcgtgcccgc cctcctccgc cggtgtgcgc tgctcgcgac ggcggtcgtc 3900
ctcaccgcgc agggcgtgcc gctgctgcag ctgggccaag agtttttccg caccaaggcg 3960
ggcgaccaca actcgtacgt ggcccccgac gcggtcaacg cggtgcggtg gcggcgcaag 4020
gcccgccacg cggccgccgc gcgctacgtg gcggggctcg tggcgctccg ccgggcgcac 4080
ccagaggtgt ttgcgctgcc gaccgcggcg ctggtgcgcg cgcggctgct gtttttcgag 4140
acgatgggcg tcgccgtccc ggccggctgc atcgcctacc gcgtggacgg ctgcgccgcc 4200
gacgtgcggg cgcgcgcggc ggcggccgcc gccgccgccg cccccgccac ggccgcggcc 4260
gcggccgcgg ccgccgaggc cgaggccgaa gaggaggccg cccgctggac ggccgtgctg 4320
gtgctcatca acccgctgcg cacggcggtg accttccccc tgcccgaagc cgccgccgac 4380
cagctgtggg cgcccgtcgt ggcgggcacc cgcgccggca ccgcccccgt cggcgcgccc 4440
gtccgccgcg agacgcgcgt cgcgtccacc agcctggccg tcctccgccg ctgctccgcc 4500
gccgacgctg ccgccgcggc ggtggcggac cgcctcgcgg cggtcgccga cgcgggcgcg 4560
gtgccgaccg acggggagcc cacgtcgcgc tacgcggtgg ggctcgccgc cgcgcggggg 4620
cgggcagagg cggcggcgat ggcggccaac gtgcgggcgc ggcgcgccgc cgccccggtc 4680
ggcggcgcgg ccatggccgc cgacgacgcg ccgacgcggc acgtgctggt gcccatcgcg 4740
gacggctctg aggagatgga ggcggtgacg attgtggaca cgctcgtccg cgccggcgcg 4800
gccgtgacgc tcgcgtcggt ctccccctcc accaccgtca cctgctcccg cggggtgcgg 4860
ctcgtcgcgg acgcgccgct ggaggaggtg cccacccccg acggcggctg ggacctcatc 4920
gccctccccg gcggcatgcc cggcgcgtcc acgctcgccg cctccccgcg gttggccgag 4980
ctgctgcggc agcaaaaggc ggcgggccgg tggattggcg ccatctgcgc ggcgccggcg 5040
gtggtgctgg caccgctggg gctcctcgac ggcggcgagg cggccacgtg ctacccgtcg 5100
gccgacttcc tgggcgccct ccccaacccg gtggaggacg cgtttgtcgt gtcggacggg 5160
cggctggtga cgagccaggg gccggggacg gcgctcttgt tttcgctgtg ctgcgtggag 5220
aagctgtacg gcaaagtcgc ggcggagggg caggccgcgg tgatgtgtga ggacccggat 5280
gaggagtggg ggtggacgcc gccggggaag aacaaccagg cggatgggat tgccgtttga 5340
<210> 6
<211> 1344
<212> DNA
<213> Artificial sequence (artificial sequence)
<400> 6
atgagcggcg tcggcgccgc tcagcaggcg gcggccaccg ccgccgaggc ggaccgcaac 60
ggcgtcatgc tccagtactt ttactgggac ctaccgcggg acggccccga cggcggcctg 120
tggcggcagc tgacggcgcg cgcggccgag ctggccgccg cgggcttcac gtccctgtgg 180
ctgccgccgc cggtcaaggg cgcgtcgggc gaccgggacg ttgggtatgg tgtgtacgac 240
ctgtttgacc tgggcgagtt tgaccagcgt ggggcggtgc ggaccaagta cggcacgaag 300
gaggagctgc tggcgggcgt tgccgcggcg cacgcggcgg gcctgcgcgt gtacgcggac 360
gtggtgctca accaccggct cggggcggat gccgcccagc gggtgaccgc caccccctac 420
accgacgccg accggacggt gcaggcgggc ccgccgcgca aggtgctcgc ctacaccaag 480
ttcacctgcc ccggcagggg cggccggtac agcgactttg tgtggaacgc gcacgcgttt 540
gggtcggtcg actatgacgg ccgccgcggg gcggcgcgcg gcgcgaagcg cgtctacctc 600
atcgacggcc acgcgttctc gccgcgcgtg tcgaccgagc gcggcaatta tgactttctg 660
ctcggcgcgg acgtggacac gagccgcccg ccggtcgccg cggagctcgt gcggtggggc 720
cactggctca acgagacgac gggggtcgac ggctaccggc tggacgcggt gaagcacatg 780
gacgcggact ggtacggcgc gacgtggctg ccggccatgc gcgcggccgc cgcgtcgccg 840
ttgcggctcg gcacaccggg cggcggcgcg ccgccgccgc tgtttgccgt tggcgagtac 900
tggtctggcg acgtggacgt gctgacggca tacctgcacg cgacgcacca cagcatggcc 960
ctctttgacg tgcccctgca cgcccgcttt gctgccgccg gacgttgcca cccccaccac 1020
ggccgccgcg gtcaccgccg tgccggcggc gccgccgcca cgccgccgcc cgcggacctc 1080
gccgccctct ttgacggcac gctcgtggcg gcggcgcccg cccacgcggt cacctttgtg 1140
gagaaccacg acacggtggc gggccagtcg ctcgcgtcgc ccgtcgcgcg ctggttcaag 1200
ccactcgcgt acgcggcggt gctgctccgc gccggcggcc tgccctatgc ccgctcttcg 1260
gaggcggccc accccctccc ccccgtccca agcacctccg cgaacaggtg ggcggccagc 1320
gccgccctca gccccaagac atag 1344
<210> 7
<211> 1518
<212> DNA
<213> Artificial sequence (artificial sequence)
<400> 7
atggcgtcgg cggcggacca gggcaacacg accgcccggg ctgcgcaggt ggccgaaggg 60
aacggcgtcc tcttccagta cttttactgg gacctccccg cggacggcgg gctgtggcgg 120
cagctggcgg tggacgcggt ggacctggcc gccgcgggcg tcaccgccgt ctggctgccg 180
ccgccgtaca agggtgacgc cggcgccgcg gacgttggct atggtgtgta cgacacgtac 240
gacctgggcg agtttgacca aaagggctcc gtgcggacca agtacggcac caaggcggag 300
ctggtgtccg ccgtctcggc cgcccacgac gcgggcgtcc aggtctacgc ggacgtggtg 360
ctcaaccacc gggttggcgc ggacggcacg gaggaggtga cggccacccc gtacgccgcc 420
aacgaccggt ccaagccgtc tgggccgccg cgccgcatcc gcgcatacac gcgcttcacc 480
ttccccgggc ggcgtggcaa gtactcggcc tacgagtggg accgtggctc gtttgacgcg 540
gtggactatg acgccaacct gggcggcgcc ggcggcacgg tgtacctcct cgaggggaag 600
agctttgaca agtacacgag cctggagcgc ggcaactatg actacttgct cggcgccgac 660
acggacacgg acgcggagtg ggtgcggcgg gagctggccg actgggggcg ctggctgttc 720
cggacggtcg gcttcgacgg cgcccgcctg gacgcggtga agcacatgga cgcgcggttc 780
ttccgggact cgtggctgcc ggcggtgcgg gaggtgcggc ccgacgcgtt tgcggtgggc 840
gagtactggg aaaacaacgt gcagtcgctg caggcgtaca tcaacaatac ggctggcagc 900
atgtcgctca tggacgtgcc gctgcactac cacatgcacg aggcgtcgct caacggcaac 960
gcgtacgaca tgacgcgcat ctttgagggc accctcgtcg cgacgacgcc caccctggcg 1020
gtcacgtttg tggacaacca cgacacgctg ctcttccacg gcctcgcctc gcccgtcgcg 1080
gactggttca agcccctcgc gtacgcgctc gtcctcctcc gccgcggcgg ctacccggcc 1140
gtcttccacg ccgactacta cggcggcatc acccgcaacg gcgcgacgca gcaggtcatc 1200
acactgccct cccaccggca ggtgatcgat gtgctgctgc gcctgaggcg ggaccacgcg 1260
tacggggagg aggtggactt tttcggcggc ggctcgcggc agctcatcgg gtggacgcgc 1320
gcgggccgcg gcaaggccct cgcggtggtg ctgtcgagcg gcccgggcgg cgcccgtcgc 1380
atgcgcgtcg ccgcgggcgg cggcgcccgc tttgtcgacg ccctcggcca cgtcaagggg 1440
gaggtgacga ccgacggggg ggggtgggcg gacttttcgt gcgcgggtgg ctccgtctcg 1500
gcgtggctgc aggtgtga 1518
<210> 8
<211> 2220
<212> DNA
<213> Artificial sequence (artificial sequence)
<400> 8
atggcggacg gggcacaagc ggggagcgcc tcccctcccg ccacccccgc ggcggtgggg 60
ggaggcgccg cccacgatgc cgccgccgcc gcccccgcgt cggcggcggc ggccgccgac 120
gggggcgacg cgagcagccg cagccgcggc cccagcaccg gcggcggtga tggtggcggt 180
ggcggcggca gcggcggcgg cggcggcggc ggtggccctg gccttcgcct gacctttgcc 240
gtccactacg agtcggcgta cggggagcgg gtgtgggtgg cgggctcccc ccccggcctc 300
ggcgcgtggg cgtggaggac ggcggcgctc aagctgcgct ggtcgcccgg ccacgtctgg 360
cgcggcgccc tgaccgtcga cccgtcggcg ctgcccgtcg acgaggacgg gcggcggcgg 420
ctcgagtaca agtacctggt cgcgcccgac ggcggggacc gcggcgccaa ggcggtattt 480
gaggaagggg ggaaccgcgt gctgctcgtt ccgccgggcg taggggatgc gtcgccgcca 540
gacggcaccg cgccgcccgc cgcgcacgtg cacgacacgt ggggtgcggt acggggggcc 600
gtgcccgtcg tgccgggggg tggtggcggc ggcgtgccgg gggggggcga ggggggagcc 660
agtggtggcg gcggtagtgg tggcggcgtc ggcaccgacc aggccgcgcc cggcattcac 720
ccgcccgcgt ctgactggtc ggtggcggcc ggggaggagg ccgccgacgg cgttgtcgag 780
tttttcatcc actacgagac ggactatggg agcaacgtgt gcgtcgcggg ggggctcccc 840
gagctgggcg cctgggacgc ggccgccgcg cccgcgctga cgaccgtccc cggctacccg 900
tccgcgtggc ggctgcgcct accgctgcag cggcggccgc catcggaccg cggcggcggc 960
ggcggtgacg cggcaagggg gggcgggcgg cggacgccca acgggggaga gtctgacagc 1020
gagtcgccgc caccgccacc tacggcgctc gacgtggcgg cggcgagcca cggtctcgcg 1080
tttgagtaca agtacttttt gcggcggcca gacgggtcgc gggtgtggga ggggggggcc 1140
aaccgcctgg cggccctgtg gccggacgac gccaatggcg ggggggcggc ggcggctgcg 1200
gggacggcgc cgacgggcat gcccgccgcc acaccattgg gcggcgacgg cgcgacggcg 1260
acgacggcgt cggcgacggg gacgcccaac ggggggcccg cggcggacgc tgcgggcgcc 1320
gccaccacca cagccgctgc cgccgccacc ccccgtacgc aggtgctggt gctgaacgac 1380
cggtgggagc gggtgcgctt tgagtttagc atcttcttcc cgacgcgcca ggatgagaca 1440
atgcacatca ccggggaccc tcttgagatt gggggctggt tccgccccgg cccgacgcgg 1500
ctggcgctcg gccgccggca acggctcgag acggacgtgg acggccaaaa gtgggagctc 1560
gccgtgtacg tgccggtgga cacgccaccg tttagttacc gttacatcat catcaacgac 1620
tcgacggggc aggcgctgtg ggagcgggag cccaaccggc ggggcgagtt tgatgcccat 1680
gccgcggcgg tcaactcggt gcgccgtttt gtggacgtga actttgtcgg cggcatggcg 1740
tttgactttg tacccgacga ccttttcatc ggcccctacc cgcagactgc cgacgatgtc 1800
aaggcgctcg ccgcggcggg cgcgaccgcc gtcttcaacg tgcagacgga cgaggacttt 1860
gcgcaccggg gggtgcagtg gcgggagctc ctcgccgcgt acgccgatgc gggcgtcacc 1920
gtcgtgcggt acccgatcgc cgactttgac cgcgcgtcgc tgcgggcgcg cctgcacggc 1980
gccgcgcggg agattgacgc gctcgtctcg gcgggccaca aggtttacat ccactgcacg 2040
gcagggatgg gccgcgcgcc cgcgtcggcg gtcgcttacc tgtgcatggt ccgggggtgg 2100
gacctcgacg aggccgttgc tcacgtcaaa aagcaccggc cggtggcggt gcccaatgtg 2160
ccagtcctcc gtgacgccct caaggagccg tttgtgccgc gcgtgccgcc gccgacgtga 2220
<210> 9
<211> 3045
<212> DNA
<213> Artificial sequence (artificial sequence)
<400> 9
atggcggcca atgctgttgc ggatgaggcg ggcctcggct ctttgtcgct caaggaggcg 60
gccgtctctg ttcgcttcag ccttcagttt gactcgacgt acggccagcg ggtgatcctg 120
tcggggcccg cagtgtcgct gggcaactac gatcccgcca agtccgttgc gctcgactac 180
caacacccag ggcgctggtg cacgacggtg aggttcccac tgccgctggc gctggcccca 240
ccagtggcgc gcgccgaagg ggcggaaggg ggcgctggtt ccccggcagc ggccccggcc 300
gtgacggtag atggtgacgg aacgaacctc gagtacaagt acgcgattgt ggatgagcgc 360
gacgggggct ccatctcgtg ggagctgggc gccccgcggg tgctggcgct cacccccggc 420
gccgctgcgg aaaccccgac gctgcccatc gcgccgctcc tcttggcaca aggggtattt 480
cgggccaagt ccgaccttcc ccgtgacgtc ttttgttcgt cggcgtttac ggacgtggtg 540
ttccgccgag agcccgccac ccgcgtgtcc accgccgtcc gtgccgcccg cgatgcgtcg 600
gcagtggcgg cagcgatggt ggccggtcag ggcgccctgg ccgtccgttt tgtggtgttt 660
gcgccgcggg tcgtggccgg tgacacagtc tgtgtagcgg gggatcacga cgcgctgggg 720
ggcagcgacg gcggggtggc cgccgctgtg ccgcttgacg acacggactt gccatactgg 780
acgggcacgg tggcgtttcc gccggggacg tcccactttt cttaccactt tttggtccgt 840
cgggcagcgg gtggcgacag cagcgcgacg gcagcagacg aagacgcggc cgcggatggc 900
acacttgagg aggtcgtgtc cgaggcgcgc cacagccgcc tgtttgcgct gttggacgat 960
gacgtgactg cggttcgggg cgtgaaggac ggccagacgg ccattgtggt gccaccatcc 1020
gactgttcct ttgcttaccc ccggccgtgg aagggctctg gcgtggcggt gcctgtgttc 1080
agcctccgaa gctcgacggg ctgcggcgtc ggcgagttcg tggacctgga ggcgatggtg 1140
gacctttgcg tggcgtcggg ctggcaaatg ctccagctgc tccccgttaa tgacaccacg 1200
gcctacgggg actaccggga ctcgtatccc tactcggctg tcagtagctt tgccttgcac 1260
ccccagtaca tccacctccc gtctgtcacg gaccttcagg gtgacctggc ggccgagtat 1320
gaggcagagt cggcacgcct taatgccctc cccgagattg attatgtgga cgtgatggcg 1380
gtcaagatgc gcttcctccg ccgaatttac gcgcaagaga aggaggaggt actccagtca 1440
cgagcgttcc ttgactggtt caacaccaac cagagctggg ccgtgccgta cgcgctcttc 1500
cgattcctca tgcacgtcaa cggatcgtgc gagtttgacg gctggggcgc gcggtcgtcc 1560
atgacacccg gcgatatgga ggcgctggcg gcgcctgaca ccttccactt tgatcacgtg 1620
ggtcttgtac tctttaccca gttccatctg catcggcagc tgcaggcggc gtctgcgtac 1680
gcgtcacagc actccgtggt gttcaagggc gacctaccca tcggcgtcaa ccggtactgc 1740
gccgacacgt ggcagcatcc cgagctgttc cgtctgcata tgcaggcggg agcaccgccc 1800
gactttttct ccacggcggg gcaaaactgg ctttttccca cgtacgattg gaatgccatg 1860
gctgccgatg gttacggttg gtggcgcgcc cgccttggtc acatggcgaa ctacttccat 1920
gcctaccgca ttgaccacat cttgggcttt ttccgcatct gggagattcc ccattcctac 1980
ctgacgggca tggccggccg cttccggccg gtgattggga tcaccaagca ggagctcgag 2040
tcacagggcc tctgggacat ggaccgatat acccgcccgt acgtgcggga agggttcctg 2100
tacgatacgt ttggggggcg tgggggggag gtcaaggacc gcttctttgt gcacctgtac 2160
cacgaccgct tgggcttccg accagagtac gacacggagc ggaagctggc ggcggcgctc 2220
ggccctgagg aggcgggcgc cgacggcgat ttcatcaagg ccgtccgcaa ggagttggtc 2280
agcttgctga acaatgtcgt gctgctgacg gacgtggagg aggacggtgt gtaccacccg 2340
cggtttgggc tggagcgcac ctcctccttt gctgagctcc cgtctgaaga gtggaagtcg 2400
tcactgcgcc agctctacca caactacttt ttcgttcggc aagaggcact atggcgcgca 2460
tctgggctgg cgaagttgcc ggccatccag gcggcttccc agatgatggt gtgtggggaa 2520
gatctcggca tgatccccgc ctgtgtgccc gacgtattgg acgagacgtc aatcatgggc 2580
ctccgcgttc agcggatgcc ggagggggac attgagtttg gcgcgcctgc cgagtatccc 2640
tacgcgacgg tgtgcaccac ctcctcccac gacacgtcca ccctacgggc gtggtgggag 2700
gagcaggacg gagcggccaa gaggcgctac tggtctggga ttatggggcg gcatggtgaa 2760
acaccgccag cgacggcaac gggggagctg gtgcgggctg tggtggagga ccacttggcg 2820
tcgccgtcca tgtggactgt cctgccgctg caagactggc tgggcatgga cgaggccgtc 2880
cggcggcctg tcgcgacgga ggagcagatc aatgacccgg gggatccgca gcacatctgg 2940
cgcttccgtc tgcacttgaa cgtgcggtcg ctgctggaga acaaggacct gactggccaa 3000
tgggcgtcga tgagtacgaa ggcgggccga gggccgccat actaa 3045
<210> 10
<211> 1344
<212> PRT
<213> Artificial sequence (artificial sequence)
<400> 10
Met Ala Pro Thr Glu Tyr Glu Ser Thr Thr Glu Met Asp Leu Gly Ser
1 5 10 15
Gly Leu Ala Leu Thr Ile Thr Val Ala Arg Thr Ala Gly Pro Ala Gly
20 25 30
Pro Glu Val Ser Ala Thr Phe Leu Arg Ser Ser Ala Pro Val Gln Arg
35 40 45
Pro Gly Glu Pro Leu Val Leu His Trp Gly Ile Val Ala Thr Ala Glu
50 55 60
Ser Asp Pro Gln Val Tyr Gly Lys Pro Pro Leu Ala Met Leu Pro Asp
65 70 75 80
Gly Thr Ala Tyr Arg Pro Gly Lys Leu Ser Val Arg Ser Arg Phe Glu
85 90 95
Pro Ala Ser Gly Ser Val Arg Leu Gly Val Pro Glu Ala Glu Ala Pro
100 105 110
Ala Gly Ile Val Phe Met Val Tyr Ile Leu Gly Glu Gly Gly Cys Ser
115 120 125
Glu Gln Trp Phe Lys Arg Gly Gly Gly Lys Ser Phe Phe Val Ser Ile
130 135 140
Ala Asp Ala Val Ser Pro Ala Glu Arg Asp Arg Arg Ala Ala Glu Val
145 150 155 160
Ala Glu Arg Glu Ala Val Ala Ala Ala Ala Ala Lys Arg Ala Ala Glu
165 170 175
Ala Ala Ala Ala Glu Ala Ala Glu Arg Ala Ala Arg Gln Ala Gln Tyr
180 185 190
Glu Ala Glu Arg Glu Ala Arg Glu Ala Ala Ala Arg Ala Glu Arg Asp
195 200 205
Gln Arg Ser Val Ala Glu Lys Ala Glu Ala Ala Ala Arg Glu Ala Ser
210 215 220
Leu Arg Ala Tyr Leu Asp Asp Ala Leu Ala Gly Ala Glu Val Val Asp
225 230 235 240
Arg Arg Asp Tyr Asp Tyr Glu Gly Leu Gly Ser Leu Val Leu Ala Ala
245 250 255
Val Ala Ser Ala Lys Arg Ser Asp Asp Pro Asp Val Leu Pro Pro Pro
260 265 270
Ala Ser Val Ile Val Ala Ser Ser Ile Ala Ala Ala Gly Thr Asp Leu
275 280 285
Ile Leu His Trp Gly Ile Lys Val Ala Arg Arg Asn Gly Trp Lys Ala
290 295 300
Pro Pro Gly Ser Ala Tyr Pro Pro Asn Thr Thr Pro Met Gly Asp Gly
305 310 315 320
Leu Ala Val Asp Thr Val Leu Ala Thr Val Ala Pro Asn Gly Val Arg
325 330 335
Gly Val Glu Ile Arg Asn Leu Pro Glu Asp Ala Val Ala Leu Leu Ala
340 345 350
Val Leu Ser Leu Pro Asp Ala Pro Ala Glu Ser Gln Trp Leu His Asp
355 360 365
Val Gly Thr Gly Gly Asp Met Cys Leu Thr Ile Gly Ser Thr Pro Ala
370 375 380
Leu Pro Gly Leu Val His Ala Asp Gly Ser Pro Val Ser Ser Thr Ala
385 390 395 400
Ala Gln Leu Val Glu Ala Val Val Glu Arg Glu Val Glu Tyr Gly Ser
405 410 415
Trp Thr Leu Met His Arg Tyr Arg Tyr Ala Glu Glu Leu Val His Gly
420 425 430
Leu Val Arg Asp Asp Gln Asp Ala Trp Ser Ala Ile Tyr Val Trp Leu
435 440 445
Arg Tyr Ser Gln Leu Arg Val Leu Asp Trp Gln Arg Arg Phe Asn Thr
450 455 460
Gln Pro Arg Gln Leu Ser Ser Ala Gln Met Asn Phe Val Thr Thr Leu
465 470 475 480
Ala Ser Arg Trp Arg Ser Leu Pro Ala Leu Arg Trp Val Ile Arg Met
485 490 495
Ser Met Ser Cys Val Gly Arg Gly Gly Ser Gly Asp Leu Gly Gln Arg
500 505 510
Ile Arg Asp Asp Ile Leu Val Ile Leu Arg Asn Asn Arg Gly Trp Gly
515 520 525
His Gly Ser Met Met Glu Gln Trp His Gln Lys Leu His Asn Asn Thr
530 535 540
Ser Pro Asp Asp Val His Ile Cys Asn Ala Leu Leu Ala Gly Trp His
545 550 555 560
Ala Ser Gly Asp Arg Thr Ala Ala Tyr Trp Ser Thr Ile Tyr His Phe
565 570 575
Gly Leu Thr Arg Glu Arg Leu Ala Gly Tyr Glu Gln Pro Ile Thr Ser
580 585 590
Asp Pro Asp Trp Pro Met His Cys Arg Asp Ala Met Ile Gly Asp Leu
595 600 605
Ser Asn Tyr Leu Gly Val Leu Lys Ala Val His Phe Gly Thr Asp Leu
610 615 620
Asn Ser Met Val Gly Arg Val Gln Gly Tyr Leu Asp Asp Gly Thr Arg
625 630 635 640
Ser Ala Val Asn Gly Phe Met Gly Thr Arg His Gly Gln Ala Ser Leu
645 650 655
Thr Asp Val Leu Gly Ser Ala Ser His Ala Arg Ser Met Ile Ile Lys
660 665 670
Met Leu Gln Ser Ala Gly Trp Leu Asp Asp Ser Gln Ala Arg Asp Leu
675 680 685
Ile Tyr Leu Glu Leu Ala Ile Asp Ala Asp Thr Arg Arg Arg Val Glu
690 695 700
Gly Ser Gly Asp Gly Gly Gly His Asp Gly Ser Leu Phe Ser His Leu
705 710 715 720
Thr Val Leu Arg Val Ala Ala Ala Gly Leu Ser Leu Ser Glu Gly Gly
725 730 735
Leu Asp Thr Ala Gly Ala Leu Asp Arg Ala Thr Asn Glu Leu Gly Ala
740 745 750
Leu Thr Asp Arg Leu Ala Ser His Gly Glu Ser Gln Asp Ile Gly Leu
755 760 765
Arg Ala Ala Ala Thr Leu Val Ile Leu Arg Asn Val Leu Leu Glu Val
770 775 780
Val Asp Arg Tyr Arg Asn Ser Phe Asp Pro Cys Ala Gln Ala Met Gly
785 790 795 800
Ala Ala Phe Ser Ala Asp Gln Gly Ile Val Ser Thr Phe Leu Glu Glu
805 810 815
Val Val Arg Gly Gly Pro Ala Phe Ala Leu Ser Ala Leu Leu Arg Arg
820 825 830
Ala Glu Pro Ala Val Arg Arg Val Ala His Leu Gly Pro Tyr Ser Val
835 840 845
Ile Ala Pro Leu Glu Arg Thr Thr Arg Gly Pro Leu Val Trp Val Glu
850 855 860
Arg Leu Arg Asp Ser Met Ser Met Thr Val Arg Thr Gly Thr Val Ile
865 870 875 880
Val Ala Gly Ser Cys Thr Gly Glu Glu Asp Val Pro Ala Lys Thr Ala
885 890 895
His Val Val Ile Gly Ser Thr Val Asp Val Leu Ser His Val Ala Val
900 905 910
Arg Ala Arg Asn Glu Lys His Gly Leu Val Ala Cys Leu Asp Arg Glu
915 920 925
Glu Leu Ala Leu Leu Lys Gly Met His Gly Cys Leu Val Gln Ala Lys
930 935 940
Leu Thr Ala Asn Gly Phe Glu Val Glu Ile Val Asp Asp Ala Gly Arg
945 950 955 960
Gln Ser Pro Ser Ser Gly Val Glu Ser Val Met Arg Ser Met Lys Ser
965 970 975
Ala Gly Leu Ile Thr Pro Pro Ser Gly Ser Phe Asp Gln Ile Pro Val
980 985 990
Pro Gly Met Gly Arg Arg Gln Tyr Ser Ser Asn Thr Leu Ser Arg Met
995 1000 1005
Thr Met Gln Arg Asp Ala Met Arg Lys Arg Gln Ala Ala Ala Ala
1010 1015 1020
Trp Ala Val Arg Pro Ser Glu Phe Ser Leu Glu Leu Val Gly Thr
1025 1030 1035
Lys Ser Met Asn Leu Gln Thr Leu Arg Ser Leu Gly Leu Pro Asp
1040 1045 1050
Trp Ile Lys Thr Pro Val Ser Leu Ala Ile Pro Asn Gly Ala Met
1055 1060 1065
Arg Lys Val Leu Ala Asp Pro Ala Asn Glu Thr Val Ala Ala Glu
1070 1075 1080
Tyr Thr Gly Leu Leu Ser Glu Leu Asp Ala Ala Pro Glu Gly Asp
1085 1090 1095
Val Lys Leu Cys Pro Lys Leu Arg Ala Cys Ile Leu Asp Leu Ser
1100 1105 1110
Ala Pro Ala Gly Leu Gln Asp Ala Leu Arg Gly Val Leu Asp Asp
1115 1120 1125
Leu Gly Cys Thr Ala Ile Asp Asp Lys Leu Pro Ala Ala Trp Asp
1130 1135 1140
Ala Val Lys Gly Val Trp Ala Ser Met Trp Asn Glu Arg Ala His
1145 1150 1155
Leu Ala Arg Ala Lys Leu Asn Met Pro Ala Asp Asp Val Asp Met
1160 1165 1170
Ala Val Leu Cys Gln Ala Val Val Asp Ala Asp Tyr Ala Phe Val
1175 1180 1185
Ile His Thr Thr Asn Pro Leu Thr Met Asp Asp Asn Glu Glu Tyr
1190 1195 1200
Val Glu Leu Val Cys Gly Leu Gly Glu Ser Leu Val Gly Asn Ala
1205 1210 1215
Pro Gly Gln Ala Leu Gly Phe Thr Met Arg Lys Asp Arg Leu Thr
1220 1225 1230
Ser Gly Glu Pro Ile Ile Arg Ser Tyr Pro Ser Lys Gln Val Ala
1235 1240 1245
Leu Arg Gly Gly Glu Phe Ile Phe Arg Ser Asp Ser Asn Ala Glu
1250 1255 1260
Asp Leu Glu Gly Phe Ala Gly Ala Gly Leu His Asp Ser Ile Pro
1265 1270 1275
Ile Val Lys Asn Arg Glu Val Glu Val Asp Tyr Ser Val Glu Pro
1280 1285 1290
Leu Leu Thr Asp Asp Ala Phe Arg Thr Asp Leu Cys Arg Lys Val
1295 1300 1305
Ala Gln Ile Gly Lys Ala Val Glu Asp Thr Met Asp Gly Ser Ala
1310 1315 1320
Gln Asp Val Glu Gly Cys Val Lys Asp Gly Val Tyr Tyr Ile Val
1325 1330 1335
Gln Ala Arg Pro Gln Val
1340
<210> 11
<211> 1018
<212> PRT
<213> Artificial sequence (artificial sequence)
<400> 11
Met Ala Gly Phe Pro Ala Gly Cys Thr Thr Leu Leu Ala Val Val His
1 5 10 15
Leu Pro Ala Ala Ala Thr Ala Asp Ala Arg Trp Leu His Ser Pro Ser
20 25 30
Gly Gly Gly Asp Leu Ala Leu Pro Leu Val Pro Ala Ala Pro Pro Pro
35 40 45
Gly Ala Ala Ala Ala Ala Gly Leu Pro Pro Asp Val Arg Ala Val Val
50 55 60
Arg Val Ile Val Asp Arg Glu Val Arg Gly Asp Ser Trp Ser Leu Val
65 70 75 80
His Arg Phe Ala Leu Ala Gly Glu Leu Ala Ala Gly Ala Ala Val Gly
85 90 95
Ala Arg Ala Gly Cys Trp Ala Ala Leu Val Val Trp Leu Arg Tyr Ser
100 105 110
Ala Leu Arg Ala Leu Thr Trp Gln Arg Arg Tyr His Thr Pro Pro Arg
115 120 125
His Leu Ser His Val Gln Met Glu Leu Val Thr Arg Ala Ala Gly Val
130 135 140
Ala Arg Arg Gln Pro Pro Leu Arg Trp Leu Ala Arg Gly Val Leu Ala
145 150 155 160
Ala Val Gly Arg Gly Gly Ala Gly Asp Leu Gly Gln Arg Ile Arg Asp
165 170 175
Asp Ile Leu Ala Val Leu Arg His His Arg Pro Trp Lys Arg Gly Ser
180 185 190
Leu Met Glu Asp Trp His Gln Lys Leu His Asn Asn Thr Thr Ala Asp
195 200 205
Asp Val Val Ile Gly Glu Ala Phe Leu Ala Gly Trp Ala Val Pro Pro
210 215 220
Gly Gly Asp Arg Val Ala Ala Phe Trp Ala Thr Leu Ala Ala Gly Gly
225 230 235 240
Leu Thr Ala Ala Asp Leu Ala Ala Tyr Glu Gln Pro Leu Thr His Pro
245 250 255
Pro Asp Asp Ser Trp Pro Glu Ala Ala Arg Gly Gly Val Val Pro Asp
260 265 270
Leu Arg Arg Tyr Val Ala Leu Leu Lys Ala Val His Gly Gly Gly Asp
275 280 285
Leu Pro Asp Val Ala Asp Arg Val Arg Gly Gly Leu Asp Gly Arg Thr
290 295 300
Arg Asp Ala Val Asp Ala Ala Leu Ala Val Arg Ala Arg Cys Gly Gly
305 310 315 320
Arg Arg Gly Gly Val Ala Asp Leu Gly Asp Leu Leu Thr Ala Ile Val
325 330 335
Ser Ala Arg Thr Ala Leu Ala Ala His Thr Ala Glu Pro His His Asp
340 345 350
Asp Ala Arg Val Arg Asp Leu Leu Tyr Leu Asp Leu Ala Leu Asp Ala
355 360 365
Ala Ala Arg Leu Ala Ala Gly Leu Pro Thr Ala Ala Ala Ala Arg Asp
370 375 380
Val Ala Gly Thr Leu Asp Gly Ile Ala Gly Arg Leu Ala Ala Asp Gly
385 390 395 400
Val Thr Ala Asp Ala Gly Leu Arg Val Ala Ala Ala Ala Ala Ala Ala
405 410 415
Ala Ala Val Leu Gly Asp Ile Val Asp Arg His Ala Ala Leu Leu Gly
420 425 430
Pro Pro Ala Ala Ala Ile Gly Ala Gly Cys Ala Ile Asp Pro Ala Val
435 440 445
Val Ala Thr Phe Val Glu Thr Thr Val Arg Gly Gly Pro Ala Phe Ala
450 455 460
Leu Ser Ala Cys Leu Arg Arg Ala Ala Pro Ala Val Arg Ala Val Ala
465 470 475 480
Ala Thr Gly Pro Trp Ala Val Val Ala Pro Leu Pro Ala Thr Pro Thr
485 490 495
Val Gly Pro Leu Leu Ala Val Pro Ser Leu Ala Ala Val Asn Gly Val
500 505 510
Arg Leu Pro Pro Gly Thr Val Leu Val Ala Ala Ala Val Gly Gly Asp
515 520 525
Glu Asp Val Pro Asp Gly Thr Ala Val Val Val Ala Ala Ser Ala Val
530 535 540
Asp Val Leu Ser His Leu Ala Val Arg Ala Arg Asn Glu Gly Arg Gly
545 550 555 560
Leu Val Val Cys His Glu Ala Asp Arg Val Ala Ala Leu Arg Ala Leu
565 570 575
His Gly Gly Val Val Arg Ala Arg Gln Glu Gly Asp Gly Leu His Val
580 585 590
Glu Leu Leu Asp Gly Lys Gly Gly Gly Val Val Asp Pro Ala Ala Glu
595 600 605
Gly Gly Asp Leu Ala Thr Leu Leu Arg Arg Pro Pro Pro Ala Gly Leu
610 615 620
Gly Ala Gly Ala Asp Ala Gly Ala Ala Asp Gly Gly Ala Ala Asp Gly
625 630 635 640
Ala Ala Asn Gly Val Ala Ala Ala Ala Pro Ala Gly Glu His Gly Asp
645 650 655
Ala Pro Ala Arg Asp Ala Val Trp Val Pro Pro Ser Ala Ala Ala Ala
660 665 670
Ala Ala Thr Ala Ala Ala Arg Ala Ala Ala Pro Trp Val Leu Arg Pro
675 680 685
Pro Ala Phe Thr Pro Asp Leu Val Gly Gly Lys Ser Leu Asn Leu Thr
690 695 700
Ala Leu Ala Ala Arg Leu Pro Ala Gly Val Lys Thr Pro Pro Ser Leu
705 710 715 720
Ala Ile Pro Ala Gly Ala Phe Asp Arg Ala Leu Ala His Pro Pro Asn
725 730 735
Ala Ala Val Ala Ser Asp Val Glu Asp Leu Leu Arg Thr Val Asp Ala
740 745 750
Ala Ala Gly Gly Gly Ala Ala Ala Ala Leu Ala Ala Ala Ala Asp Leu
755 760 765
Arg Ala Ala Thr Gly Arg Leu Ala Cys Pro Pro Gly Leu Asp Ala Ala
770 775 780
Leu Arg Asp Ala Leu Ala Thr Leu Gly Cys Ala Pro Ser Asp Val Asp
785 790 795 800
Ala Ala Ala Ala Pro Ala Trp Ala Ala Val Lys Ala Val Trp Ala Ser
805 810 815
Val Trp Gly Gly Arg Ala Val Leu Ala Arg Arg Arg Ala Gly Ile Pro
820 825 830
His Arg Ala Val Ala Met Ala Val Leu Val Gln Ala Val Leu Ala Ala
835 840 845
Asp Tyr Ala Phe Val Ala His Thr Val His Pro Val Ser Gly Asp Ala
850 855 860
Gly Thr Ala Tyr Val Glu Val Val Ala Gly Leu Gly Glu Ala Leu Val
865 870 875 880
Gly Asn Ala Pro Gly Ser Ala Leu Gly Phe Thr Tyr Arg Lys Gly Gly
885 890 895
Ala Ala Ala Asp Gly Gly Gly Thr Asp Asp Thr Ala Ala Ala Arg Val
900 905 910
Arg Val Val Thr Tyr Pro Ser Lys Ala Val Arg Leu Asp Gly Gly Gly
915 920 925
Tyr Leu Phe Arg Ser Asp Ser Asn Ala Glu Asp Leu Arg Gly Phe Ala
930 935 940
Gly Ala Gly Leu Tyr Asp Ser Val Pro Leu His Ala Ala Ala Ala Thr
945 950 955 960
Pro Val Ala Tyr Ala Ala Glu Pro Leu Leu Val Asp Asp Ala Phe Arg
965 970 975
Ala Arg Leu Cys Gly Arg Leu Gly Glu Leu Cys Val Ala Val Glu Ala
980 985 990
Ala Leu Gly Gly Pro Gln Asp Ile Glu Gly Cys Ile Arg Gly Gly Glu
995 1000 1005
Leu Tyr Val Val Gln Ala Arg Pro Gln Val
1010 1015
<210> 12
<211> 1039
<212> PRT
<213> Artificial sequence (artificial sequence)
<400> 12
Met Ala Pro Pro Thr Ala Thr Thr Val His Phe Thr Val Arg Ala Ala
1 5 10 15
Gly Ser Arg Pro Gly Gln Ala Val Tyr Leu Val Gly Ser Ala Pro Ala
20 25 30
Thr Gly Gly Trp Ser Pro Ala Ala Gly Val Arg Leu Ser Thr Asp Ala
35 40 45
Thr Thr Phe Pro Val Trp Arg Ser Pro Pro Val Ala Val Ala Thr Glu
50 55 60
Arg Leu Pro Leu Pro Leu Ser Tyr Lys Tyr Val Leu Ala Ala Glu Ala
65 70 75 80
Gly Val Asp Pro Gly Gly Glu Val Ala Trp Glu Val Asp Gly Arg Ser
85 90 95
Ala Val Arg Thr Leu Gly Glu Ala Asp Val Ala Ala Ala Ala Pro Pro
100 105 110
Pro Pro Gly Gly Gly Gly Glu Val Thr Ile Asp Asp Gly Val Phe Gly
115 120 125
Val Leu Arg Arg Gly Gly Val Ala Gly Gly Val Ala Ala Ala Ala Ala
130 135 140
Gly Gly Gly Lys Gly Ala His Arg Asn Gly Ser Gly Gly Gly Gly Gly
145 150 155 160
Gly Gly Gly Gly Gly Gly Gly Gly Gly Gly Ser Asp Pro Thr Arg Gly
165 170 175
Gly Asp Ala Ala Ser Leu Arg Leu Val Glu Arg Pro Leu Asp Ala Leu
180 185 190
Glu Ala Ala Val Val Ala Val Asn Gly Asp Arg Arg Ser Trp Arg Arg
195 200 205
Arg Leu Ser Tyr Val Arg Glu Leu Phe Thr Asp Asp Ala Ala Ala Thr
210 215 220
Ala Ala Ala Phe Asp Pro Arg Asn Val Gly His Leu Ala Thr Val Val
225 230 235 240
Val Tyr Leu Thr Phe Leu Thr Thr Gly Gln Val Arg Cys Glu Glu Asp
245 250 255
Gly Gly His His Arg Pro Asn His His Ala Ala Glu Ala Lys Ala Ile
260 265 270
Asp Glu Ala Leu Gly Ala Leu Asp Pro Arg Ser Ala Ala Ala Ala Asp
275 280 285
Ala Ala Asp Ala Asp Ala Asp Asp Gly Leu Arg Val Phe Leu Leu Arg
290 295 300
Lys Ile Tyr Pro Leu Leu Pro Ser Tyr Ala Ser Gln Phe Thr Val Ser
305 310 315 320
Val Pro Met Thr Arg Ile Arg Asn Ile Ala His Arg Gly Asp Ile Pro
325 330 335
His Asp Leu Lys Gln Gln Ile Lys His Thr Leu Gln Asn Lys Leu His
340 345 350
Arg Cys Ala Gly Pro Glu Asp Met Val Thr Cys Glu Arg Leu Leu Glu
355 360 365
Gln Val Thr Ala Pro Gly Thr Ser Tyr Ser Gly Ala Phe Val Ser Glu
370 375 380
Leu Arg Thr Phe Arg Asp Glu Leu Arg Glu Phe Phe Asn Ala Thr Ala
385 390 395 400
Leu Asp Asp Arg Leu Gln Ala Leu Ala Asp Arg Gly Ser Gly Thr Ala
405 410 415
Gly Arg Leu Met Gly Leu Lys His Gly Trp Ala Pro Ala Leu Glu Gln
420 425 430
Leu Ala Ala Val Asn Thr Leu Arg Ala Glu Leu His Ala Ala Pro Ala
435 440 445
Ala Ala Asp Ala Ala Asp Ala Gln Ala Ala Arg Leu Ala Asp Val Glu
450 455 460
Leu Glu Lys Tyr Ser Val Thr Leu Leu Ala Ala Val Ala Ala Asp Val
465 470 475 480
Glu Gly Gly Leu Asp Trp Ala Val Gly Leu Ala Ala Leu Ala Ala Ala
485 490 495
Ala Thr Cys Leu Ala Leu Ser Arg Val Thr Ser Pro Val Ala Glu Ala
500 505 510
Thr Ala Val Ala Ala Glu Leu Arg Ala Leu Ala Glu Leu Ala Thr Ala
515 520 525
Asp Ala Pro Pro Pro Leu Leu Arg Val Arg Ala Ala Val Glu Arg Ala
530 535 540
Val Arg Leu Val Asp Ala Leu Cys Gly Gly Ile Ala Ala Val Tyr Ala
545 550 555 560
Asp Arg Val Gly Pro Leu Ala Ala Ala Leu Gly Val Ser Gly Pro Ala
565 570 575
Ala Ala Val Phe Ala Glu Ala Glu Val Arg Ala His Ala Ala Phe His
580 585 590
Met Ala Arg Val Ala Ser Val Val Gly Arg Ala Val Arg Ala Ser Leu
595 600 605
Gly Leu Pro Pro Trp Asp Ala Ile Cys Pro Gly Thr Ala Ala Gly Val
610 615 620
Leu Val Val Ala Asp Thr Leu Gly Glu Val Ala Arg Pro Ala Ala Asp
625 630 635 640
Ala Pro Val Val Ala Val Val Ala Arg Ser Ser Gly Glu Glu Asp Val
645 650 655
Pro Gly Trp Val Arg Gly Val Val Leu Gly His Asp Leu Pro His Leu
660 665 670
Ser His Leu Gly Ile Gly Ala Val Asp Ala Ser Ala Thr Ala Val Leu
675 680 685
Ala Ala Ala Asp Val Thr Ala Ala Thr Gly Gly Ala Lys Ala Ala Ala
690 695 700
Ala Gly Thr Leu Glu Arg Leu Ala Ala Asp Gly Gly Gly Phe Ala Thr
705 710 715 720
Pro Pro Ser Val Val Val Pro Phe Gly Val Tyr Leu Ala Ala Val Asp
725 730 735
Ala Ala Ala Ser Ala Gln Ser Ser Ser Ala Pro Ala Leu Arg Lys Leu
740 745 750
Ala Ala Ala Tyr Asp Ala Ala Asp Ala Gly Gly Gly Ala Ala Ala Ala
755 760 765
Ala Ala Ala Ala Ala Arg Ala Trp Ile Glu Thr Ala Thr Ala Val Pro
770 775 780
Ala Gly Val Val Ala Ala Ile Thr Ala Ala Phe Pro Ala Gly Thr Pro
785 790 795 800
Leu Met Val Arg Ser Ser Ala Asn Cys Glu Asp Leu Ala Ser Met Ser
805 810 815
Gly Ala Gly Leu Tyr Asp Ser Leu Ala Ala Val Arg Ala Asp Asp Ala
820 825 830
Ala Ala Val Ala Thr Ala Val Arg Arg Val Trp Gly Ser Val Trp Ser
835 840 845
Gly Arg Ala Ala Ser Ser Arg Ala Thr Ala Gly Val Pro His Gly Ala
850 855 860
Ala Ala Met Ala Val Leu Val Gln Ala Met Val Pro Ala Ala Val Ser
865 870 875 880
Phe Ile Gly Phe Ser Arg Asn Pro Leu Ala Ala Ala Ala Ala Ala Ala
885 890 895
Ala Gly Ala Pro Ala Glu Ala Tyr Leu Glu Leu Ala Val Gly Met Gly
900 905 910
Glu Thr Leu Ala Ser Ala Ala Ser Arg Gly Thr Pro Tyr Arg Ala Ala
915 920 925
Val Ala Arg Asp Gly Thr Val Thr Glu Ser Ala Val Ala Ser Tyr Ser
930 935 940
Val Ala Leu Met Pro Ser Ser Arg Thr Ser Ala Glu Glu Gly Gly Gly
945 950 955 960
Gly Gly Gly Gly Thr Ala His Asp Gly Leu Val Pro Thr Val Leu Asp
965 970 975
Tyr Ser Thr Val Arg Leu Thr Thr Asp Asp Lys Tyr Arg Met Gly Val
980 985 990
Tyr Gly Arg Val Ala Arg Val Val Ala Gly Leu Glu Ser Ala Leu Gly
995 1000 1005
Gly Pro Gln Asp Thr Glu Gly Val Leu Asp Ala Asp Gly Glu Leu
1010 1015 1020
Tyr Val Val Gln Thr Arg Pro Met Val Ala Ala Ala Gly Arg Ser
1025 1030 1035
Asp
<210> 13
<211> 458
<212> PRT
<213> Artificial sequence (artificial sequence)
<400> 13
Met Ala Ala Gln Ala Ala Asn Gln Gly Gly Gly Gly Val Pro Val Phe
1 5 10 15
Val Met Leu Pro Leu Asp Thr Leu Leu Asp Asp Pro Ala Met Ala Ala
20 25 30
Pro Asp Leu Asp Asp Ala Leu Val Ala Leu Ser Gly Ala Arg Ala Ala
35 40 45
Gly Val Met Leu Asp Val Trp Trp Gly Leu Cys Glu Pro Ser Pro Gly
50 55 60
Ala Tyr Asp Phe Ala Arg Val Arg Ser Leu Ala Ala Arg Cys Gly Glu
65 70 75 80
Leu Asp Leu Arg Val Gln Ala Thr Met Ser Phe His Gln Cys Gly Gly
85 90 95
Asn Ile Gly Asp Asn Val Thr Ile Pro Leu Pro Ser Trp Ala Leu Asp
100 105 110
Ala Ala Ala Ala Glu Gly Leu Leu Tyr Thr Asp Ala Ala Gly Trp Ala
115 120 125
Asn Pro Glu Cys Leu Ser Leu Ser Ala Asp His Val Ala Phe Leu Pro
130 135 140
Ser Ala Asp Gly Gly Ala Pro Arg Thr Ala Val Gln Ala Tyr Val Ala
145 150 155 160
Tyr Val Arg Ala Phe Val Asp Ala Met Gly Asp Leu Ile Thr Ser Gly
165 170 175
Val Val Ser Glu Leu Gln Val Gly Leu Gly Pro Cys Gly Glu Leu Arg
180 185 190
Tyr Pro Ser Tyr Pro Ala Ala Gly Gly Arg Trp Leu Phe Pro Gly Ile
195 200 205
Gly Gln Phe Val Cys His Asp Arg Arg Met Leu Ala Ser Leu Ala Ala
210 215 220
Ala Ala Glu Gly Ala Gly His Pro Pro Glu Trp Gly Arg Pro Pro Thr
225 230 235 240
Asp Ala Gly Ser Tyr Asn Asp Thr Pro Trp Val Ala Pro Phe Phe His
245 250 255
Arg Phe Gly Gly Trp Arg Ser Pro Arg Gly Arg Phe Phe Leu Thr Trp
260 265 270
Tyr Ala Asp Ala Leu Leu Arg His Gly Glu Asp Val Leu Ala Ala Val
275 280 285
Arg Gly Val Val Pro Pro Gly Gly Arg Leu Glu Leu Ala Val Lys Val
290 295 300
Ser Gly Ile His Trp Trp Arg Ser Thr Ala Ser Arg Ala Ala Glu Ala
305 310 315 320
Thr Ala Gly Tyr Val Cys Leu Pro Arg Asp Gly Trp Phe Gly Leu Thr
325 330 335
Gly Gly Gly Ala Leu Asp Gly Tyr Ala Arg Leu Ala Gly Leu Phe Arg
340 345 350
Arg His Gly Val Val Phe Asp Phe Thr Cys Leu Glu Met Trp Thr Trp
355 360 365
Lys Gln Pro Val Trp Ser Ala Arg Cys Glu Pro Glu Arg Leu Val Arg
370 375 380
Asp Ala Val Asp Ala Ala Ala Ala Glu Gly Val Pro Phe Ala Gly Glu
385 390 395 400
Asn Ala Leu Glu Arg Tyr Asp Glu Asp Ala Tyr Arg Gln Val Gly Lys
405 410 415
Ala Phe Arg Arg Val Pro Arg Glu Leu Arg Phe Gly Phe Thr Phe Leu
420 425 430
Arg Leu Gly Pro Thr Leu Met Glu Glu Pro Asn Trp Ala Gln Phe Cys
435 440 445
Ala Phe Val Ala Arg Met Gly Ala Arg Lys
450 455
<210> 14
<211> 1779
<212> PRT
<213> Artificial sequence (artificial sequence)
<400> 14
Met Asp Arg Ala Ala Phe Pro Pro Asp Ala Ala Arg Leu Gly Leu Ala
1 5 10 15
Leu Thr Pro Ala Ala Ala Ala Ala Ala Ala Ala Thr Thr Thr Ala Thr
20 25 30
Ala Ala Ala Ala Ala Ala Ala Thr Pro Ala Val Trp Trp Ser Pro Ala
35 40 45
Asp Gly Ser Thr Val Glu Leu Arg Val Ala Pro Asp Gly Arg Val Thr
50 55 60
Arg Gly Ala Ala Ala Ala Ala Ala Thr Ala Ala Ala Ala Ala Ala Gly
65 70 75 80
Gly Ala Asn Gly Gly Ala Arg Gly Gly Val Met Val Ala Ala Arg Gly
85 90 95
Asp Gly Gly Gly Ala Ala Ala Ala Ser Pro Leu Val Val Arg Tyr Gln
100 105 110
Arg Tyr Ala Ser Asp Tyr Ala Gly Trp Thr Leu Thr Ala Ala Ala Ala
115 120 125
Gly Gly Gly Gly Gly Gly Gly Ala Leu Arg Val Ala Arg Ala Gly Arg
130 135 140
Leu Tyr His Gly Met Ala Thr Tyr Glu Val Ala Val Pro Ala Ala Trp
145 150 155 160
Pro Ala Thr Ala Arg Leu Ser Leu Arg Leu Arg Pro Pro Pro Ala Ala
165 170 175
Ala Ala Ala Ala Ala Gly Ala Ala Val Ala Thr Ala Ala Thr Ala Ala
180 185 190
Ala Ala Ala Thr Ala Ala Ala Ala Ala Ala His Asp Thr Val Ala Asp
195 200 205
Arg Glu Trp Thr Pro Ala Leu Gly Arg Asp Val Val Ile Ala Gln Asp
210 215 220
Arg Arg Asp Val Arg Pro Leu His Ala Ala Ser Arg Gln Leu Phe Tyr
225 230 235 240
His Arg Met Glu Ala Leu Asp Ala Asp Trp Arg Gln Trp Arg Leu Arg
245 250 255
Leu Trp Thr Thr Val Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Thr
260 265 270
Arg Gly Asp Gly Gly Gly Asp Thr Ser Pro Pro Pro Pro Pro Ser Pro
275 280 285
Pro Pro Pro Pro Pro Pro Pro Val Val Asp Arg Arg His Glu Leu Leu
290 295 300
Pro Arg Glu Leu Val Ala Pro Gly Val Val Ala Tyr Asp Leu Thr Pro
305 310 315 320
Leu Leu Phe His Asp Gly Ala Thr Val His Val Gln Pro Val Lys Val
325 330 335
Val Pro Leu Arg Ser Pro Ala Pro Gly Gly Ala Ala Pro Asp Leu Ala
340 345 350
Ala Ala Val Arg Arg Val Ala Ala Asp Val Pro Arg Arg Trp Thr Val
355 360 365
Thr Ala Gly Val Val Pro Ser Arg His Val Val Gln Gly Gln Pro Thr
370 375 380
Val Cys Arg Asp Val Ala Asp Val Arg Ala Ala Ala Gly Gly Ala Ala
385 390 395 400
Val Cys Asp Ala Pro Ser Arg Trp Phe Ala Leu Arg Tyr Arg Arg Phe
405 410 415
Gly Gly Gly Ala Ala Glu Tyr Ala Gly Trp Ala Leu Ala Ala Arg Asp
420 425 430
Ala Ala Asn Ala Asn Ala Asp Ala Asp Ala Asp Val Asp Val Asp Val
435 440 445
Val Val Asp Ala Asp Ala Asp Ala Asp Asp Ala Asp Ala Asp Gly Gly
450 455 460
Gly Gly Gly Val Thr Ile Glu Pro Val Ala Val Asp Pro Val Ala Gly
465 470 475 480
Ala Leu Phe Leu Val Asp Arg Gly Arg Phe Gly Gly Gly Thr Arg Leu
485 490 495
Arg Leu Val Pro Arg His Glu Ala Arg Gly Val Asp Asp Ala Ala Ala
500 505 510
Ala Val Val Trp Asp Ala Ala Thr Ala Asp Ala Ala Leu Arg Val Pro
515 520 525
Ala Ala Asp Ala Ala Ala Leu Val Ala Ala Ala Ala Arg Gly Gly Asp
530 535 540
Gly Gly Gly Thr Ala Ser Ser Ala Ala Leu Pro Ser Pro Pro Ala Leu
545 550 555 560
Leu Leu Val Gln Gly His Gly Arg Leu Leu Pro Ser Leu Ala Ala Glu
565 570 575
Pro Ser Pro Val Val Ala Ser Val Asp Ser Pro Trp Asp Val Ser Val
580 585 590
Val Thr Phe Cys Pro Leu Glu Trp Leu Asp Ala Ser Arg Pro Ala Thr
595 600 605
His Trp Asp Ala Ala Ala Ser Pro Leu Val Arg Pro Ala Val Thr Leu
610 615 620
His Tyr Arg Ala Asp Gly Gly Gly Thr Val Ala Leu Pro Trp Val Thr
625 630 635 640
Trp Ala Arg Pro Ser Pro Thr Glu Ile Val Leu Arg Leu Ser Glu Ala
645 650 655
Val Ala Asp Gly Arg Gly Phe His Glu Asp Phe Leu Val Glu Arg Val
660 665 670
Glu Val Arg Ala Ala Gly Ile Pro Pro Thr Arg Leu Gly Trp Arg Ala
675 680 685
Gln Ala Asp Val Asp Ala Tyr Phe Tyr Pro Gly Pro Leu Gly Cys Thr
690 695 700
Cys Thr Ala Asp Ala Thr Ala Phe Arg Val Phe Ala Pro Thr Ala Asp
705 710 715 720
Ala Val Val Val Val Leu Tyr Ala Glu Pro Thr Gly Asp Ala Gly Arg
725 730 735
Arg Glu Leu Pro Met Arg Arg Ile Pro Gln Gly Cys Trp Lys Ala Thr
740 745 750
Val Pro Ala Cys Leu Gly Gly Thr Tyr Tyr Lys Leu Arg Ala Ser Gly
755 760 765
Ala Asp Ala Arg Leu Phe Pro Gly Val Glu Val Ile Asp Pro Tyr Ser
770 775 780
Arg Cys Asn Thr His His Thr Gly Arg Gly Leu Ile Leu Gly Pro Asp
785 790 795 800
Asp Pro Ala Val Ala Ala Thr Val Ser Pro Arg Pro Ala Ala Asp Pro
805 810 815
Ala Gly Ala Thr Val Ile Trp Glu Leu His Leu Arg Asp Ala Thr Val
820 825 830
Asp Pro Ala Ser Gly Val Ala Arg His Arg Gly Lys Tyr Leu Gly Leu
835 840 845
Thr Gln Pro His Thr Val Leu Ala Ala Ala Ala Pro Phe Ala Ala Asp
850 855 860
Arg Arg Gly Met Val Asp Val Ser Ala Ala Ala Asp Ala Pro Pro Ala
865 870 875 880
Ala Ala Val Asp Gly Ala Ala Asp Gly Asp Ala Pro Gly Pro Pro Pro
885 890 895
Pro Pro Pro Pro Pro Pro Pro Pro Leu Thr Thr Ala Leu Ala His Leu
900 905 910
Val Glu Met Gly Ala Thr Ala Val Gln Leu Leu Pro Val Gln Asp Phe
915 920 925
Asp Asn Ala Glu Asp Glu Ala Ala Gly Glu Tyr Ala Trp Gly Tyr Met
930 935 940
Pro Val His Phe Phe Ser Pro Asp Gly Trp Tyr Ala Ala Gly Ser Arg
945 950 955 960
Ala Asp Ser Ser Arg Val Arg Glu Leu Lys Ala Leu Val Ser Ala Leu
965 970 975
His Thr Ala Gly Leu Arg Val Ile Leu Asp Val Val Phe Asn His Thr
980 985 990
Ala Glu Asp Val Asp Glu Arg Asn Leu Asp Ala Arg Phe Ser Phe Asn
995 1000 1005
Gly Leu Ala Pro Arg Tyr Tyr Tyr Arg Thr Cys Gly Asn Thr Pro
1010 1015 1020
Val Ser Ala Ser Gly His Arg Thr Cys Ala Met Thr Pro Ala Gly
1025 1030 1035
Arg Pro Thr Cys Gly Ala Cys Tyr Ser Asn Gly Ser Gly Cys Gly
1040 1045 1050
Asn Glu Leu Arg Ser Glu Ala Pro Met Ala Arg Lys Phe Ile Leu
1055 1060 1065
Asp Cys Leu Arg Tyr Trp Ala Thr Glu Tyr Gly Val Asp Gly Phe
1070 1075 1080
Arg Phe Asp Leu Met Gly Leu Ile Asp Val Pro Thr Leu Thr Ala
1085 1090 1095
Ala Val Ala Ala Leu Lys Ala Ile Asp Ser Gly Ile Val Val Tyr
1100 1105 1110
Gly Glu Pro Trp Thr Gly Gly Ile Thr Pro Val Ala Pro Thr Tyr
1115 1120 1125
Lys Gly Thr Gln Arg Gly Arg Gly Phe Gly Val Phe Asn Asp Thr
1130 1135 1140
Phe Arg Asp Ala Leu Arg Gly Ser Pro Phe His Ala Gly Gly Cys
1145 1150 1155
Phe Val Leu Asp Gly Val Ala Val Asp Asp Val Lys Arg Gly Ile
1160 1165 1170
Met Gly Ser Ile Asp Asp Phe Ala Asp Glu Pro Thr Glu Val Ile
1175 1180 1185
Asn Tyr Val Glu Cys His Asp Asn Arg Thr Leu Tyr Asp Gln Leu
1190 1195 1200
Trp Glu Ile Tyr Arg Gly Gly Gly Gly Thr Ala Ala Asp Ala Ala
1205 1210 1215
Pro Pro Glu Asp Glu Pro Ala Ala Ala Ala Ala Ala Ala Ala Ala
1220 1225 1230
Ala Ala Gly Ala Gly Ala Gly Ala Ala Lys Ala Ala Ala Pro Ala
1235 1240 1245
Pro Asp Thr Ala Gly Leu Ser Pro Ala Ala Ala Ala Ala Val Ala
1250 1255 1260
Ala Ala Ala Ala Asp Ala Ala Ala Ala Ala Thr Thr Ala Ala Ala
1265 1270 1275
Ala Ala Ala Ala Ala Ser Val Pro Ala Leu Leu Arg Arg Cys Ala
1280 1285 1290
Leu Leu Ala Thr Ala Val Val Leu Thr Ala Gln Gly Val Pro Leu
1295 1300 1305
Leu Gln Leu Gly Gln Glu Phe Phe Arg Thr Lys Ala Gly Asp His
1310 1315 1320
Asn Ser Tyr Val Ala Pro Asp Ala Val Asn Ala Val Arg Trp Arg
1325 1330 1335
Arg Lys Ala Arg His Ala Ala Ala Ala Arg Tyr Val Ala Gly Leu
1340 1345 1350
Val Ala Leu Arg Arg Ala His Pro Glu Val Phe Ala Leu Pro Thr
1355 1360 1365
Ala Ala Leu Val Arg Ala Arg Leu Leu Phe Phe Glu Thr Met Gly
1370 1375 1380
Val Ala Val Pro Ala Gly Cys Ile Ala Tyr Arg Val Asp Gly Cys
1385 1390 1395
Ala Ala Asp Val Arg Ala Arg Ala Ala Ala Ala Ala Ala Ala Ala
1400 1405 1410
Ala Pro Ala Thr Ala Ala Ala Ala Ala Ala Ala Ala Glu Ala Glu
1415 1420 1425
Ala Glu Glu Glu Ala Ala Arg Trp Thr Ala Val Leu Val Leu Ile
1430 1435 1440
Asn Pro Leu Arg Thr Ala Val Thr Phe Pro Leu Pro Glu Ala Ala
1445 1450 1455
Ala Asp Gln Leu Trp Ala Pro Val Val Ala Gly Thr Arg Ala Gly
1460 1465 1470
Thr Ala Pro Val Gly Ala Pro Val Arg Arg Glu Thr Arg Val Ala
1475 1480 1485
Ser Thr Ser Leu Ala Val Leu Arg Arg Cys Ser Ala Ala Asp Ala
1490 1495 1500
Ala Ala Ala Ala Val Ala Asp Arg Leu Ala Ala Val Ala Asp Ala
1505 1510 1515
Gly Ala Val Pro Thr Asp Gly Glu Pro Thr Ser Arg Tyr Ala Val
1520 1525 1530
Gly Leu Ala Ala Ala Arg Gly Arg Ala Glu Ala Ala Ala Met Ala
1535 1540 1545
Ala Asn Val Arg Ala Arg Arg Ala Ala Ala Pro Val Gly Gly Ala
1550 1555 1560
Ala Met Ala Ala Asp Asp Ala Pro Thr Arg His Val Leu Val Pro
1565 1570 1575
Ile Ala Asp Gly Ser Glu Glu Met Glu Ala Val Thr Ile Val Asp
1580 1585 1590
Thr Leu Val Arg Ala Gly Ala Ala Val Thr Leu Ala Ser Val Ser
1595 1600 1605
Pro Ser Thr Thr Val Thr Cys Ser Arg Gly Val Arg Leu Val Ala
1610 1615 1620
Asp Ala Pro Leu Glu Glu Val Pro Thr Pro Asp Gly Gly Trp Asp
1625 1630 1635
Leu Ile Ala Leu Pro Gly Gly Met Pro Gly Ala Ser Thr Leu Ala
1640 1645 1650
Ala Ser Pro Arg Leu Ala Glu Leu Leu Arg Gln Gln Lys Ala Ala
1655 1660 1665
Gly Arg Trp Ile Gly Ala Ile Cys Ala Ala Pro Ala Val Val Leu
1670 1675 1680
Ala Pro Leu Gly Leu Leu Asp Gly Gly Glu Ala Ala Thr Cys Tyr
1685 1690 1695
Pro Ser Ala Asp Phe Leu Gly Ala Leu Pro Asn Pro Val Glu Asp
1700 1705 1710
Ala Phe Val Val Ser Asp Gly Arg Leu Val Thr Ser Gln Gly Pro
1715 1720 1725
Gly Thr Ala Leu Leu Phe Ser Leu Cys Cys Val Glu Lys Leu Tyr
1730 1735 1740
Gly Lys Val Ala Ala Glu Gly Gln Ala Ala Val Met Cys Glu Asp
1745 1750 1755
Pro Asp Glu Glu Trp Gly Trp Thr Pro Pro Gly Lys Asn Asn Gln
1760 1765 1770
Ala Asp Gly Ile Ala Val
1775
<210> 15
<211> 447
<212> PRT
<213> Artificial sequence (artificial sequence)
<400> 15
Met Ser Gly Val Gly Ala Ala Gln Gln Ala Ala Ala Thr Ala Ala Glu
1 5 10 15
Ala Asp Arg Asn Gly Val Met Leu Gln Tyr Phe Tyr Trp Asp Leu Pro
20 25 30
Arg Asp Gly Pro Asp Gly Gly Leu Trp Arg Gln Leu Thr Ala Arg Ala
35 40 45
Ala Glu Leu Ala Ala Ala Gly Phe Thr Ser Leu Trp Leu Pro Pro Pro
50 55 60
Val Lys Gly Ala Ser Gly Asp Arg Asp Val Gly Tyr Gly Val Tyr Asp
65 70 75 80
Leu Phe Asp Leu Gly Glu Phe Asp Gln Arg Gly Ala Val Arg Thr Lys
85 90 95
Tyr Gly Thr Lys Glu Glu Leu Leu Ala Gly Val Ala Ala Ala His Ala
100 105 110
Ala Gly Leu Arg Val Tyr Ala Asp Val Val Leu Asn His Arg Leu Gly
115 120 125
Ala Asp Ala Ala Gln Arg Val Thr Ala Thr Pro Tyr Thr Asp Ala Asp
130 135 140
Arg Thr Val Gln Ala Gly Pro Pro Arg Lys Val Leu Ala Tyr Thr Lys
145 150 155 160
Phe Thr Cys Pro Gly Arg Gly Gly Arg Tyr Ser Asp Phe Val Trp Asn
165 170 175
Ala His Ala Phe Gly Ser Val Asp Tyr Asp Gly Arg Arg Gly Ala Ala
180 185 190
Arg Gly Ala Lys Arg Val Tyr Leu Ile Asp Gly His Ala Phe Ser Pro
195 200 205
Arg Val Ser Thr Glu Arg Gly Asn Tyr Asp Phe Leu Leu Gly Ala Asp
210 215 220
Val Asp Thr Ser Arg Pro Pro Val Ala Ala Glu Leu Val Arg Trp Gly
225 230 235 240
His Trp Leu Asn Glu Thr Thr Gly Val Asp Gly Tyr Arg Leu Asp Ala
245 250 255
Val Lys His Met Asp Ala Asp Trp Tyr Gly Ala Thr Trp Leu Pro Ala
260 265 270
Met Arg Ala Ala Ala Ala Ser Pro Leu Arg Leu Gly Thr Pro Gly Gly
275 280 285
Gly Ala Pro Pro Pro Leu Phe Ala Val Gly Glu Tyr Trp Ser Gly Asp
290 295 300
Val Asp Val Leu Thr Ala Tyr Leu His Ala Thr His His Ser Met Ala
305 310 315 320
Leu Phe Asp Val Pro Leu His Ala Arg Phe Ala Ala Ala Gly Arg Cys
325 330 335
His Pro His His Gly Arg Arg Gly His Arg Arg Ala Gly Gly Ala Ala
340 345 350
Ala Thr Pro Pro Pro Ala Asp Leu Ala Ala Leu Phe Asp Gly Thr Leu
355 360 365
Val Ala Ala Ala Pro Ala His Ala Val Thr Phe Val Glu Asn His Asp
370 375 380
Thr Val Ala Gly Gln Ser Leu Ala Ser Pro Val Ala Arg Trp Phe Lys
385 390 395 400
Pro Leu Ala Tyr Ala Ala Val Leu Leu Arg Ala Gly Gly Leu Pro Tyr
405 410 415
Ala Arg Ser Ser Glu Ala Ala His Pro Leu Pro Pro Val Pro Ser Thr
420 425 430
Ser Ala Asn Arg Trp Ala Ala Ser Ala Ala Leu Ser Pro Lys Thr
435 440 445
<210> 16
<211> 505
<212> PRT
<213> Artificial sequence (artificial sequence)
<400> 16
Met Ala Ser Ala Ala Asp Gln Gly Asn Thr Thr Ala Arg Ala Ala Gln
1 5 10 15
Val Ala Glu Gly Asn Gly Val Leu Phe Gln Tyr Phe Tyr Trp Asp Leu
20 25 30
Pro Ala Asp Gly Gly Leu Trp Arg Gln Leu Ala Val Asp Ala Val Asp
35 40 45
Leu Ala Ala Ala Gly Val Thr Ala Val Trp Leu Pro Pro Pro Tyr Lys
50 55 60
Gly Asp Ala Gly Ala Ala Asp Val Gly Tyr Gly Val Tyr Asp Thr Tyr
65 70 75 80
Asp Leu Gly Glu Phe Asp Gln Lys Gly Ser Val Arg Thr Lys Tyr Gly
85 90 95
Thr Lys Ala Glu Leu Val Ser Ala Val Ser Ala Ala His Asp Ala Gly
100 105 110
Val Gln Val Tyr Ala Asp Val Val Leu Asn His Arg Val Gly Ala Asp
115 120 125
Gly Thr Glu Glu Val Thr Ala Thr Pro Tyr Ala Ala Asn Asp Arg Ser
130 135 140
Lys Pro Ser Gly Pro Pro Arg Arg Ile Arg Ala Tyr Thr Arg Phe Thr
145 150 155 160
Phe Pro Gly Arg Arg Gly Lys Tyr Ser Ala Tyr Glu Trp Asp Arg Gly
165 170 175
Ser Phe Asp Ala Val Asp Tyr Asp Ala Asn Leu Gly Gly Ala Gly Gly
180 185 190
Thr Val Tyr Leu Leu Glu Gly Lys Ser Phe Asp Lys Tyr Thr Ser Leu
195 200 205
Glu Arg Gly Asn Tyr Asp Tyr Leu Leu Gly Ala Asp Thr Asp Thr Asp
210 215 220
Ala Glu Trp Val Arg Arg Glu Leu Ala Asp Trp Gly Arg Trp Leu Phe
225 230 235 240
Arg Thr Val Gly Phe Asp Gly Ala Arg Leu Asp Ala Val Lys His Met
245 250 255
Asp Ala Arg Phe Phe Arg Asp Ser Trp Leu Pro Ala Val Arg Glu Val
260 265 270
Arg Pro Asp Ala Phe Ala Val Gly Glu Tyr Trp Glu Asn Asn Val Gln
275 280 285
Ser Leu Gln Ala Tyr Ile Asn Asn Thr Ala Gly Ser Met Ser Leu Met
290 295 300
Asp Val Pro Leu His Tyr His Met His Glu Ala Ser Leu Asn Gly Asn
305 310 315 320
Ala Tyr Asp Met Thr Arg Ile Phe Glu Gly Thr Leu Val Ala Thr Thr
325 330 335
Pro Thr Leu Ala Val Thr Phe Val Asp Asn His Asp Thr Leu Leu Phe
340 345 350
His Gly Leu Ala Ser Pro Val Ala Asp Trp Phe Lys Pro Leu Ala Tyr
355 360 365
Ala Leu Val Leu Leu Arg Arg Gly Gly Tyr Pro Ala Val Phe His Ala
370 375 380
Asp Tyr Tyr Gly Gly Ile Thr Arg Asn Gly Ala Thr Gln Gln Val Ile
385 390 395 400
Thr Leu Pro Ser His Arg Gln Val Ile Asp Val Leu Leu Arg Leu Arg
405 410 415
Arg Asp His Ala Tyr Gly Glu Glu Val Asp Phe Phe Gly Gly Gly Ser
420 425 430
Arg Gln Leu Ile Gly Trp Thr Arg Ala Gly Arg Gly Lys Ala Leu Ala
435 440 445
Val Val Leu Ser Ser Gly Pro Gly Gly Ala Arg Arg Met Arg Val Ala
450 455 460
Ala Gly Gly Gly Ala Arg Phe Val Asp Ala Leu Gly His Val Lys Gly
465 470 475 480
Glu Val Thr Thr Asp Gly Gly Gly Trp Ala Asp Phe Ser Cys Ala Gly
485 490 495
Gly Ser Val Ser Ala Trp Leu Gln Val
500 505
<210> 17
<211> 739
<212> PRT
<213> Artificial sequence (artificial sequence)
<400> 17
Met Ala Asp Gly Ala Gln Ala Gly Ser Ala Ser Pro Pro Ala Thr Pro
1 5 10 15
Ala Ala Val Gly Gly Gly Ala Ala His Asp Ala Ala Ala Ala Ala Pro
20 25 30
Ala Ser Ala Ala Ala Ala Ala Asp Gly Gly Asp Ala Ser Ser Arg Ser
35 40 45
Arg Gly Pro Ser Thr Gly Gly Gly Asp Gly Gly Gly Gly Gly Gly Ser
50 55 60
Gly Gly Gly Gly Gly Gly Gly Gly Pro Gly Leu Arg Leu Thr Phe Ala
65 70 75 80
Val His Tyr Glu Ser Ala Tyr Gly Glu Arg Val Trp Val Ala Gly Ser
85 90 95
Pro Pro Gly Leu Gly Ala Trp Ala Trp Arg Thr Ala Ala Leu Lys Leu
100 105 110
Arg Trp Ser Pro Gly His Val Trp Arg Gly Ala Leu Thr Val Asp Pro
115 120 125
Ser Ala Leu Pro Val Asp Glu Asp Gly Arg Arg Arg Leu Glu Tyr Lys
130 135 140
Tyr Leu Val Ala Pro Asp Gly Gly Asp Arg Gly Ala Lys Ala Val Phe
145 150 155 160
Glu Glu Gly Gly Asn Arg Val Leu Leu Val Pro Pro Gly Val Gly Asp
165 170 175
Ala Ser Pro Pro Asp Gly Thr Ala Pro Pro Ala Ala His Val His Asp
180 185 190
Thr Trp Gly Ala Val Arg Gly Ala Val Pro Val Val Pro Gly Gly Gly
195 200 205
Gly Gly Gly Val Pro Gly Gly Gly Glu Gly Gly Ala Ser Gly Gly Gly
210 215 220
Gly Ser Gly Gly Gly Val Gly Thr Asp Gln Ala Ala Pro Gly Ile His
225 230 235 240
Pro Pro Ala Ser Asp Trp Ser Val Ala Ala Gly Glu Glu Ala Ala Asp
245 250 255
Gly Val Val Glu Phe Phe Ile His Tyr Glu Thr Asp Tyr Gly Ser Asn
260 265 270
Val Cys Val Ala Gly Gly Leu Pro Glu Leu Gly Ala Trp Asp Ala Ala
275 280 285
Ala Ala Pro Ala Leu Thr Thr Val Pro Gly Tyr Pro Ser Ala Trp Arg
290 295 300
Leu Arg Leu Pro Leu Gln Arg Arg Pro Pro Ser Asp Arg Gly Gly Gly
305 310 315 320
Gly Gly Asp Ala Ala Arg Gly Gly Gly Arg Arg Thr Pro Asn Gly Gly
325 330 335
Glu Ser Asp Ser Glu Ser Pro Pro Pro Pro Pro Thr Ala Leu Asp Val
340 345 350
Ala Ala Ala Ser His Gly Leu Ala Phe Glu Tyr Lys Tyr Phe Leu Arg
355 360 365
Arg Pro Asp Gly Ser Arg Val Trp Glu Gly Gly Ala Asn Arg Leu Ala
370 375 380
Ala Leu Trp Pro Asp Asp Ala Asn Gly Gly Gly Ala Ala Ala Ala Ala
385 390 395 400
Gly Thr Ala Pro Thr Gly Met Pro Ala Ala Thr Pro Leu Gly Gly Asp
405 410 415
Gly Ala Thr Ala Thr Thr Ala Ser Ala Thr Gly Thr Pro Asn Gly Gly
420 425 430
Pro Ala Ala Asp Ala Ala Gly Ala Ala Thr Thr Thr Ala Ala Ala Ala
435 440 445
Ala Thr Pro Arg Thr Gln Val Leu Val Leu Asn Asp Arg Trp Glu Arg
450 455 460
Val Arg Phe Glu Phe Ser Ile Phe Phe Pro Thr Arg Gln Asp Glu Thr
465 470 475 480
Met His Ile Thr Gly Asp Pro Leu Glu Ile Gly Gly Trp Phe Arg Pro
485 490 495
Gly Pro Thr Arg Leu Ala Leu Gly Arg Arg Gln Arg Leu Glu Thr Asp
500 505 510
Val Asp Gly Gln Lys Trp Glu Leu Ala Val Tyr Val Pro Val Asp Thr
515 520 525
Pro Pro Phe Ser Tyr Arg Tyr Ile Ile Ile Asn Asp Ser Thr Gly Gln
530 535 540
Ala Leu Trp Glu Arg Glu Pro Asn Arg Arg Gly Glu Phe Asp Ala His
545 550 555 560
Ala Ala Ala Val Asn Ser Val Arg Arg Phe Val Asp Val Asn Phe Val
565 570 575
Gly Gly Met Ala Phe Asp Phe Val Pro Asp Asp Leu Phe Ile Gly Pro
580 585 590
Tyr Pro Gln Thr Ala Asp Asp Val Lys Ala Leu Ala Ala Ala Gly Ala
595 600 605
Thr Ala Val Phe Asn Val Gln Thr Asp Glu Asp Phe Ala His Arg Gly
610 615 620
Val Gln Trp Arg Glu Leu Leu Ala Ala Tyr Ala Asp Ala Gly Val Thr
625 630 635 640
Val Val Arg Tyr Pro Ile Ala Asp Phe Asp Arg Ala Ser Leu Arg Ala
645 650 655
Arg Leu His Gly Ala Ala Arg Glu Ile Asp Ala Leu Val Ser Ala Gly
660 665 670
His Lys Val Tyr Ile His Cys Thr Ala Gly Met Gly Arg Ala Pro Ala
675 680 685
Ser Ala Val Ala Tyr Leu Cys Met Val Arg Gly Trp Asp Leu Asp Glu
690 695 700
Ala Val Ala His Val Lys Lys His Arg Pro Val Ala Val Pro Asn Val
705 710 715 720
Pro Val Leu Arg Asp Ala Leu Lys Glu Pro Phe Val Pro Arg Val Pro
725 730 735
Pro Pro Thr
<210> 18
<211> 1014
<212> PRT
<213> Artificial sequence (artificial sequence)
<400> 18
Met Ala Ala Asn Ala Val Ala Asp Glu Ala Gly Leu Gly Ser Leu Ser
1 5 10 15
Leu Lys Glu Ala Ala Val Ser Val Arg Phe Ser Leu Gln Phe Asp Ser
20 25 30
Thr Tyr Gly Gln Arg Val Ile Leu Ser Gly Pro Ala Val Ser Leu Gly
35 40 45
Asn Tyr Asp Pro Ala Lys Ser Val Ala Leu Asp Tyr Gln His Pro Gly
50 55 60
Arg Trp Cys Thr Thr Val Arg Phe Pro Leu Pro Leu Ala Leu Ala Pro
65 70 75 80
Pro Val Ala Arg Ala Glu Gly Ala Glu Gly Gly Ala Gly Ser Pro Ala
85 90 95
Ala Ala Pro Ala Val Thr Val Asp Gly Asp Gly Thr Asn Leu Glu Tyr
100 105 110
Lys Tyr Ala Ile Val Asp Glu Arg Asp Gly Gly Ser Ile Ser Trp Glu
115 120 125
Leu Gly Ala Pro Arg Val Leu Ala Leu Thr Pro Gly Ala Ala Ala Glu
130 135 140
Thr Pro Thr Leu Pro Ile Ala Pro Leu Leu Leu Ala Gln Gly Val Phe
145 150 155 160
Arg Ala Lys Ser Asp Leu Pro Arg Asp Val Phe Cys Ser Ser Ala Phe
165 170 175
Thr Asp Val Val Phe Arg Arg Glu Pro Ala Thr Arg Val Ser Thr Ala
180 185 190
Val Arg Ala Ala Arg Asp Ala Ser Ala Val Ala Ala Ala Met Val Ala
195 200 205
Gly Gln Gly Ala Leu Ala Val Arg Phe Val Val Phe Ala Pro Arg Val
210 215 220
Val Ala Gly Asp Thr Val Cys Val Ala Gly Asp His Asp Ala Leu Gly
225 230 235 240
Gly Ser Asp Gly Gly Val Ala Ala Ala Val Pro Leu Asp Asp Thr Asp
245 250 255
Leu Pro Tyr Trp Thr Gly Thr Val Ala Phe Pro Pro Gly Thr Ser His
260 265 270
Phe Ser Tyr His Phe Leu Val Arg Arg Ala Ala Gly Gly Asp Ser Ser
275 280 285
Ala Thr Ala Ala Asp Glu Asp Ala Ala Ala Asp Gly Thr Leu Glu Glu
290 295 300
Val Val Ser Glu Ala Arg His Ser Arg Leu Phe Ala Leu Leu Asp Asp
305 310 315 320
Asp Val Thr Ala Val Arg Gly Val Lys Asp Gly Gln Thr Ala Ile Val
325 330 335
Val Pro Pro Ser Asp Cys Ser Phe Ala Tyr Pro Arg Pro Trp Lys Gly
340 345 350
Ser Gly Val Ala Val Pro Val Phe Ser Leu Arg Ser Ser Thr Gly Cys
355 360 365
Gly Val Gly Glu Phe Val Asp Leu Glu Ala Met Val Asp Leu Cys Val
370 375 380
Ala Ser Gly Trp Gln Met Leu Gln Leu Leu Pro Val Asn Asp Thr Thr
385 390 395 400
Ala Tyr Gly Asp Tyr Arg Asp Ser Tyr Pro Tyr Ser Ala Val Ser Ser
405 410 415
Phe Ala Leu His Pro Gln Tyr Ile His Leu Pro Ser Val Thr Asp Leu
420 425 430
Gln Gly Asp Leu Ala Ala Glu Tyr Glu Ala Glu Ser Ala Arg Leu Asn
435 440 445
Ala Leu Pro Glu Ile Asp Tyr Val Asp Val Met Ala Val Lys Met Arg
450 455 460
Phe Leu Arg Arg Ile Tyr Ala Gln Glu Lys Glu Glu Val Leu Gln Ser
465 470 475 480
Arg Ala Phe Leu Asp Trp Phe Asn Thr Asn Gln Ser Trp Ala Val Pro
485 490 495
Tyr Ala Leu Phe Arg Phe Leu Met His Val Asn Gly Ser Cys Glu Phe
500 505 510
Asp Gly Trp Gly Ala Arg Ser Ser Met Thr Pro Gly Asp Met Glu Ala
515 520 525
Leu Ala Ala Pro Asp Thr Phe His Phe Asp His Val Gly Leu Val Leu
530 535 540
Phe Thr Gln Phe His Leu His Arg Gln Leu Gln Ala Ala Ser Ala Tyr
545 550 555 560
Ala Ser Gln His Ser Val Val Phe Lys Gly Asp Leu Pro Ile Gly Val
565 570 575
Asn Arg Tyr Cys Ala Asp Thr Trp Gln His Pro Glu Leu Phe Arg Leu
580 585 590
His Met Gln Ala Gly Ala Pro Pro Asp Phe Phe Ser Thr Ala Gly Gln
595 600 605
Asn Trp Leu Phe Pro Thr Tyr Asp Trp Asn Ala Met Ala Ala Asp Gly
610 615 620
Tyr Gly Trp Trp Arg Ala Arg Leu Gly His Met Ala Asn Tyr Phe His
625 630 635 640
Ala Tyr Arg Ile Asp His Ile Leu Gly Phe Phe Arg Ile Trp Glu Ile
645 650 655
Pro His Ser Tyr Leu Thr Gly Met Ala Gly Arg Phe Arg Pro Val Ile
660 665 670
Gly Ile Thr Lys Gln Glu Leu Glu Ser Gln Gly Leu Trp Asp Met Asp
675 680 685
Arg Tyr Thr Arg Pro Tyr Val Arg Glu Gly Phe Leu Tyr Asp Thr Phe
690 695 700
Gly Gly Arg Gly Gly Glu Val Lys Asp Arg Phe Phe Val His Leu Tyr
705 710 715 720
His Asp Arg Leu Gly Phe Arg Pro Glu Tyr Asp Thr Glu Arg Lys Leu
725 730 735
Ala Ala Ala Leu Gly Pro Glu Glu Ala Gly Ala Asp Gly Asp Phe Ile
740 745 750
Lys Ala Val Arg Lys Glu Leu Val Ser Leu Leu Asn Asn Val Val Leu
755 760 765
Leu Thr Asp Val Glu Glu Asp Gly Val Tyr His Pro Arg Phe Gly Leu
770 775 780
Glu Arg Thr Ser Ser Phe Ala Glu Leu Pro Ser Glu Glu Trp Lys Ser
785 790 795 800
Ser Leu Arg Gln Leu Tyr His Asn Tyr Phe Phe Val Arg Gln Glu Ala
805 810 815
Leu Trp Arg Ala Ser Gly Leu Ala Lys Leu Pro Ala Ile Gln Ala Ala
820 825 830
Ser Gln Met Met Val Cys Gly Glu Asp Leu Gly Met Ile Pro Ala Cys
835 840 845
Val Pro Asp Val Leu Asp Glu Thr Ser Ile Met Gly Leu Arg Val Gln
850 855 860
Arg Met Pro Glu Gly Asp Ile Glu Phe Gly Ala Pro Ala Glu Tyr Pro
865 870 875 880
Tyr Ala Thr Val Cys Thr Thr Ser Ser His Asp Thr Ser Thr Leu Arg
885 890 895
Ala Trp Trp Glu Glu Gln Asp Gly Ala Ala Lys Arg Arg Tyr Trp Ser
900 905 910
Gly Ile Met Gly Arg His Gly Glu Thr Pro Pro Ala Thr Ala Thr Gly
915 920 925
Glu Leu Val Arg Ala Val Val Glu Asp His Leu Ala Ser Pro Ser Met
930 935 940
Trp Thr Val Leu Pro Leu Gln Asp Trp Leu Gly Met Asp Glu Ala Val
945 950 955 960
Arg Arg Pro Val Ala Thr Glu Glu Gln Ile Asn Asp Pro Gly Asp Pro
965 970 975
Gln His Ile Trp Arg Phe Arg Leu His Leu Asn Val Arg Ser Leu Leu
980 985 990
Glu Asn Lys Asp Leu Thr Gly Gln Trp Ala Ser Met Ser Thr Lys Ala
995 1000 1005
Gly Arg Gly Pro Pro Tyr
1010

Claims (10)

1. A combined gene for degrading and metabolizing red algae starch is characterized in that: the combined gene comprises a glucose-water double kinase PhGWD gene, a glucose phosphate-water double kinase PhPWD gene, a beta-amylase PhBAM gene, a pullulanase PhPUL gene, an alpha-amylase PhAMY gene, a phosphoglucan phosphatase PhSEX4 gene and/or a transglucosidase PhDPE2 gene.
2. The combinatorial gene according to claim 1, characterized in that:
the gene sequence of the glucose-water double kinase PhGWD is a nucleotide sequence shown as SEQ ID No. 1 and/or SEQ ID No. 2;
the gene sequence of the phosphoglucose-water double kinase PhPWD is a nucleotide sequence shown in SEQ ID No. 3;
the gene sequence of the beta-amylase PhBAM is a nucleotide sequence shown in SEQ ID No. 4;
the pullulanase PhPUL gene sequence is a nucleotide sequence shown as SEQ ID No. 5;
the alpha-amylase PhAMY gene sequence is a nucleotide sequence shown in SEQ ID No. 6 and/or SEQ ID No. 7;
the gene sequence of the phosphoglucan phosphatase PhSEX4 is a nucleotide sequence shown as SEQ ID No. 8;
the gene sequence of the transglucosidase PhDPE2 is a nucleotide sequence shown in SEQ ID No. 9.
3. A red algae starch degradation metabolism combined enzyme is characterized in that: the combined enzyme is encoded by the combined gene of any one of claims 1-2; the combined enzyme comprises glucose-water double kinase PhGWD, phosphoglucose-water double kinase PhPWD, beta-amylase PhBAM, pullulanase PhPUL, alpha-amylase PhAMY, phosphoglucan phosphatase PhSEX4 and/or transglucosidase PhDPE 2.
4. The combination enzyme of claim 3, wherein:
the amino acid sequence of the glucose-water double kinase PhGWD is a sequence shown as SEQ ID No. 10 and/or SEQ ID No. 11;
the amino acid sequence of the phosphoglucose-water double kinase PhPWD is a sequence shown in SEQ ID No. 12;
the amino acid sequence of the beta-amylase PhBAM is shown as SEQ ID No. 13;
the amino acid sequence of the pullulanase PhPUL is shown as SEQ ID No. 14;
the amino acid sequence of the alpha-amylase PhAMY is shown as SEQ ID No. 15 and/or SEQ ID No. 16;
the amino acid sequence of the phosphoglucan phosphatase PhSEX4 is shown as SEQ ID No. 17;
the amino acid sequence of the transglucosidase PhDPE2 is shown as SEQ ID No. 18.
5. A carrier, characterized by: the vector comprises the combined gene of any one of claims 1-2.
6. A host cell, characterized in that: the host cell comprising the combinatorial gene according to any one of claims 1-2 or the vector according to claim 5.
7. A genetically engineered cell, characterized by: the genetically engineered cell comprising the combination gene of any one of claims 1-2 or the vector of claim 5, or producing the combination enzyme of any one of claims 3-4.
8. Use of the combined gene of any one of claims 1-2, the combined enzyme of any one of claims 3-4, the vector of claim 5, the host cell of claim 6 or the genetically engineered cell of claim 7 for starch catabolism of red algae.
9. Use of the combined gene of any one of claims 1-2, the combined enzyme of any one of claims 3-4, the vector of claim 5, the host cell of claim 6, or the genetically engineered cell of claim 7 in red algae and plant breeding.
10. A method for degrading and metabolizing red algae starch is characterized by comprising the following steps: the method comprises the following steps: glucose-water dikinase PhGWD and phosphoglucose-water dikinase PhPWD catalyze the phosphorylation of glucose at the C6 and C3 positions of the red algae starch Floridean starch; the phosphorylated red algae starch is attacked by beta-amylase PhBAM, pullulanase PhPUL and alpha-amylase PhAMY to generate maltose beta-maltose and glucan alpha-glucans, and the phosphoglucan phosphatase PhSEX4 dephosphorylates the surface of red algae starch particles and soluble phosphoglucan, so that PhBAM further degrades glucan chains; glucose alpha-Glucose is released and transferred from maltose by the transglucosidase PhDPE 2; whereas dextran was attacked by PhBAM, releasing beta-maltose.
CN202111477671.3A 2021-12-06 2021-12-06 Red algae starch degradation metabolism combined gene and combined enzyme Pending CN114107338A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111477671.3A CN114107338A (en) 2021-12-06 2021-12-06 Red algae starch degradation metabolism combined gene and combined enzyme

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111477671.3A CN114107338A (en) 2021-12-06 2021-12-06 Red algae starch degradation metabolism combined gene and combined enzyme

Publications (1)

Publication Number Publication Date
CN114107338A true CN114107338A (en) 2022-03-01

Family

ID=80366961

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111477671.3A Pending CN114107338A (en) 2021-12-06 2021-12-06 Red algae starch degradation metabolism combined gene and combined enzyme

Country Status (1)

Country Link
CN (1) CN114107338A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1141062A (en) * 1993-10-15 1997-01-22 丹尼斯科有限公司 Use of alpha'-1,4-glucan lyase for preparation of 1,5-D-anhydrofructose
WO1998056935A2 (en) * 1997-06-12 1998-12-17 E.I. Du Pont De Nemours And Company Plant amino acid biosynthetic enzymes

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1141062A (en) * 1993-10-15 1997-01-22 丹尼斯科有限公司 Use of alpha'-1,4-glucan lyase for preparation of 1,5-D-anhydrofructose
WO1998056935A2 (en) * 1997-06-12 1998-12-17 E.I. Du Pont De Nemours And Company Plant amino acid biosynthetic enzymes

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
YU Y 等: "Floridean Starch and Floridoside Metabolic Pathways of Neoporphyra haitanensis and Their Regulatory Mechanism under Continuous Darkness", 《MAR DRUGS》, vol. 19, no. 12, pages 3 *
黄锁义: "《天然产物的提取分离技术及其发展研究》", vol. 1, 长春:吉林大学出版社, pages: 52 - 53 *

Similar Documents

Publication Publication Date Title
US6689601B2 (en) High growth methanotropic bacterial strain
Porchia et al. Sucrose metabolism in cyanobacteria: sucrose synthase from Anabaena sp. strain PCC 7119 is remarkably different from the plant enzymes with respect to substrate affinity and amino-terminal sequence
CN109666683A (en) Acetyl coenzyme A acetyl transferase gene RKAcaT2 and its application
KR20180093083A (en) Kelimycin biosynthesis gene cluster
CN108676766A (en) The bacterial strain of application and its acquisition of genetic modification
CN111621458A (en) BVG90_11450 gene-deleted serratia marcescens engineering bacterium
CN101275141A (en) Biological synthesis gene cluster for Azintamide
CN111051515B (en) Use of bacterial type III polyketide synthases as phloroglucinol synthases
CN113151340B (en) Genetic engineering bacterium for increasing yield of beta-carotene and application thereof
CN114107338A (en) Red algae starch degradation metabolism combined gene and combined enzyme
CN106701788B (en) Pentostatin and arabinosy ladenosine biological synthesis gene cluster and its application
CN111808902B (en) C-glycosyltransferase and application thereof in synthesis of schaftoside and isoschaftoside
US6537786B2 (en) Genes encoding exopolysaccharide production
CN101586112B (en) Gene cluster for biological synthesis of Nosiheptide
CN112195129B (en) Violacein biosynthesis gene cluster and application thereof
CN114990135A (en) Preparation method of transgenic rice with improved grain beta-glucan content
KR100312070B1 (en) Method of Selecting Enzyme Variants Including High Throughput Screening
CN114181959A (en) Red algae starch anabolism combined gene and combined enzyme
CN114196690A (en) Fluorodorside anabolism combined gene and combined enzyme
CN110129244B (en) Streptomyces chassis strain, construction method thereof and application thereof in heterologous expression research
CN114058608B (en) Engineering bacterium and method for producing putrescine
KR20230123366A (en) Novel synthetic promoters and method for producing daptomycin using the same
CN107164394A (en) The biological synthesis gene cluster of atypia square ring chlorins compound nenestatin A a kind of and its application
JP4257933B2 (en) Isoamylase from the red alga Porphyridium
KR100999069B1 (en) Preparation of the Streptomyces strains producing alpha-glucosidase inhibitors transformed by the recombinant vectors harboring the salbostatin biosynthesis gene cluster, and mass-production method of these inhibitors

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination