CN114181531A - 用于制备致动器件的离子聚合物、致动器件及其制备方法 - Google Patents

用于制备致动器件的离子聚合物、致动器件及其制备方法 Download PDF

Info

Publication number
CN114181531A
CN114181531A CN202111455737.9A CN202111455737A CN114181531A CN 114181531 A CN114181531 A CN 114181531A CN 202111455737 A CN202111455737 A CN 202111455737A CN 114181531 A CN114181531 A CN 114181531A
Authority
CN
China
Prior art keywords
casting solution
ionic polymer
salt
actuating device
ionized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202111455737.9A
Other languages
English (en)
Other versions
CN114181531B (zh
Inventor
杜飞鹏
黄潇
张慧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan Institute of Technology
Original Assignee
Wuhan Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan Institute of Technology filed Critical Wuhan Institute of Technology
Priority to CN202111455737.9A priority Critical patent/CN114181531B/zh
Publication of CN114181531A publication Critical patent/CN114181531A/zh
Application granted granted Critical
Publication of CN114181531B publication Critical patent/CN114181531B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/09Forming piezoelectric or electrostrictive materials
    • H10N30/098Forming organic materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/857Macromolecular compositions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2383/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen, or carbon only; Derivatives of such polymers
    • C08J2383/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/16Halogen-containing compounds
    • C08K2003/162Calcium, strontium or barium halides, e.g. calcium, strontium or barium chloride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/16Halogen-containing compounds
    • C08K2003/168Zinc halides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2244Oxides; Hydroxides of metals of zirconium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/16Halogen-containing compounds

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Moulding By Coating Moulds (AREA)

Abstract

本发明公开一种用于制备致动器件的离子聚合物、致动器件及其制备方法,属于功能材料技术领域。该用于制备致动器件的离子聚合物,由离子化聚硅氧烷与金属盐溶于第一溶剂中得到铸膜液,之后干燥制得所述离子聚合物;所述离子化聚硅氧烷与所述金属盐的质量比为1:(2‑11);所述铸膜液中的固含量为30%‑50%。该致动器件的制备方法,包括以下步骤:将电极材料置于第二溶剂中,经分散形成电极层铸膜液;在上述离子聚合物形成的电解质层的上下两面涂覆所述电极层铸膜液,之后干燥形成所述致动器件。制得的致动器件在低电场作用下,具有较高的响应应变和应力。

Description

用于制备致动器件的离子聚合物、致动器件及其制备方法
技术领域
本发明涉及功能材料技术领域,具体涉及一种用于制备致动器件的离子聚合物、致动器件及其制备方法。
背景技术
随着人工智能、自动化技术的不断发展,智能响应材料受到越来越多的关注。智能响应材料因其可受到外界刺激如光、热、电(场)、pH、磁场等做出形状变化,而当外界刺激撤除时,其形变可恢复。据此,可应用于如人工肌肉、电子皮肤、微控开关、智能监测等领域。对于智能响应材料,其响应效率对其在智能应用领域有着重要意义,比如过载保护、温湿检测等需要材料在较短时间产生快速的响应,以便达到监测、警报的目的。又比如在人工肌肉、电子皮肤、人工心脏等需要材料拥有良好的柔韧性,可有效的完成形变的响应及恢复,达到仿生目的。
传统有机硅,又称聚二甲基硅氧烷(PDMS)具有优异的柔性、低弹性模量、光学透明性以及生理惰性,目前已经在日化、医药等领域被广泛应用。但是由于PDMS低极性、低表面张力,疏水表面等导致其在智能材料领域应用受限。如材料间相容性差、粘接力弱、附着力低等缺点,特别是在电致制动器制备上,通常需要外加上千伏电场以完成其介电驱动,且形变响应弱而缓慢。如何获得低电压下具有高相应应变和应力的致动器件是现有技术的难题。
发明内容
为降低驱动电压,致动器必须选择合适的材料,而聚电解质是必须且具有选择性的,高离子电导率以及高柔性赋予致动器高效的制动响应以及形变位移,此外聚电解质的韧性及强度可保障致动器的使用效果及使用寿命。
本发明的目的在于克服上述技术不足,提供一种用于制备致动器件的离子聚合物、致动器件及其制备方法,解决现有技术中如何获得低电压下具有较高的相应应变和应力的致动器件的技术问题。
为达到上述技术目的,本发明的技术方案提供一种用于制备致动器件的离子聚合物、致动器件及其制备方法。
本发明提出一种用于制备致动器件的离子聚合物,由离子化聚硅氧烷与金属盐溶于第一溶剂中得到铸膜液,之后干燥制得所述离子聚合物;所述离子化聚硅氧烷与所述金属盐的质量比为1:(2-11);所述铸膜液中的固含量为30%-50%。
进一步地,所述离子化聚硅氧烷的离子化程度为25%-100%。
进一步地,所述金属盐为锆盐、钙盐、铜盐、铁盐和锌盐中的一种或者多种。
进一步地,所述锆盐为氯氧化锆,所述钙盐为氯化钙,所述铜盐为氯化铜,所述铁盐为氯化铁,所述锌盐为氯化锌。
进一步地,所述第一溶剂为水、甲醇、冰醋酸和四氢呋喃中的一种或者多种。
此外,本发明还提出一种致动器件,包括上述离子聚合物形成的电解质层、以及涂敷于所述电解质层上下两面的电极层。
进一步地,本发明还提出一种上述致动器件的制备方法,包括以下步骤:将电极材料置于第二溶剂中,经分散形成电极层铸膜液;在上述离子聚合物形成的电解质层的上下两面涂覆所述电极层铸膜液,之后干燥形成所述致动器件。
进一步地,所述电极材料为碳纳米管和/或碳纳米管衍生物;所述碳纳米管衍生物优选为酸化碳纳米管。
进一步地,所述第二溶剂为水、甲醇、冰醋酸和四氢呋喃中的一种或者多种。
进一步地,所述电极层铸膜液的固含量为10%-20%。
与现有技术相比,本发明的有益效果包括:按照配比,由离子化程度可控的聚硅氧烷与金属盐溶于第一溶剂中得到铸膜液,之后干燥制得所述性能及强度可调的离子聚合物,该离子聚合物用于制备致动器件,制得的致动器件在低电场作用下,具有较高的响应应变和应力,该致动器在较小驱动电压(1-5V)下,获得较大的形变弯曲,且这种弯曲形变是可逆响应的。
附图说明
图1是本发明具体实施方式提出的致动器件的结构示意图。
附图标记说明:1、电解质层;2、电极层。
具体实施方式
本具体实施方式提供了一种用于制备致动器件的离子聚合物,由离子化聚硅氧烷与金属盐溶于第一溶剂中得到铸膜液,之后干燥制得所述离子聚合物;所述离子化聚硅氧烷与所述金属盐的质量比为1:(2-11);所述铸膜液的固含量为30%-50%;所述离子化聚硅氧烷的离子化程度为25%-100%;所述金属盐为锆盐、钙盐、铜盐、铁盐和锌盐中的一种或者多种;所述锆盐为氯氧化锆,所述钙盐为氯化钙,所述铜盐为氯化铜,所述铁盐为氯化铁,所述锌盐为氯化锌;所述第一溶剂为水、甲醇、冰醋酸和四氢呋喃中的一种或者多种。
本具体实施方式还包括一种致动器件,如图1所示,包括上述离子聚合物形成的电解质层1、以及涂敷于所述电解质层上下两面的电极层2。
本具体实施方式还包括一种上述致动器件的制备方法,包括以下步骤:将电极材料置于第二溶剂中,经分散形成电极层铸膜液;在上述离子聚合物形成的电解质层的上下两面涂覆所述电极层铸膜液,之后干燥形成所述致动器件;进一步地,所述电极材料为碳纳米管和/或碳纳米管衍生物;所述碳纳米管衍生物优选为酸化碳纳米管;所述第二溶剂优选为水、甲醇、冰醋酸和四氢呋喃中的一种或者多种;所述电极层铸膜液固含量为10%-20%。
本发明将环硅氧烷单体开环聚合及点击反应后接枝上离子基团;再将离子化的聚硅氧烷与金属离子络合形成电活性高分子络合物膜;最后在电活性络合物膜材料两表面负载电极层、形成三明治结构的致动器件。
为此,本发明选取甲基乙烯基环硅氧烷作为单体合成聚甲基乙烯基硅氧烷(PMVS),再经过巯烯加成点击反应完成PMVS的改性。
进一步的,所述点击反应中,离子改性剂为巯基化合物,更进一步的,可选为巯基乙磺酸钠、巯基丙磺酸钠或其他烷基链段可调控巯基磺酸盐。
在本发明中,几乎每个高分子链接中硅原子连接有一个乙烯基官能团,通过高效的点击反应,仅需改变原料的比例,PMVS离子化程度可以在0~100%范围精准调节,且得到的离子化PMVS的离子电导率、柔性、极性同样可以精准调控。
进一步的,络合物膜由金属离子(M)与离子化PMVS络合形成;更进一步的,M可选为钙、铜、铁、锌、锆等;更进一步的,二者络合摩尔比例为SO3 -:M=1:0.01~0.1。
在本申请中,PMVS提供稳定的柔性,通过与金属离子络合,改变金属离子用量,实现交联度可控,膜材料兼具强韧性和高力学强度;此外,络合物仅在室温条件下即可进行,合成条件简便快捷。
碳纳米管具有优异的导电性、良好的成膜性和一定的柔韧性,与电活性络合物膜复合后得到的致动器件的柔性不会受到影响,且电极导电性得到有效提升;特别是酸化碳纳米管可有效保障材料间的相容性。
需要说明的是,本申请中固含量是指铸膜液中的液体挥发后剩余的固体与铸膜液总质量的百分比。
形变ε计算公式如下:
Figure BDA0003386575000000051
其中,l为材料长度,d为材料厚度,δ为形变位移。
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
需要说明的是,下述实施例中的离子化聚甲基乙烯基硅氧烷用Ix-PMVS表示,其中x表示PMVS的离子化程度,以百分比计算,例如当x为10时,则表示离子化程度为10%。
实施例1
本实施例提出一种致动器件,由以下步骤制得:
将单壁碳纳米管置于四氢呋喃中,经过高速分散形成均匀的电极层铸膜液,铸膜液中固含量为10%;
将I100-PMVS,氯氧化锆按质量比1:8溶解于水中,得到络合物铸膜液,铸膜液中固含量为30%;
将络合物铸膜液干燥成络合物膜(即为离子聚合物形成的电解质层)后,将电极层铸膜液依次涂敷在络合物膜两面,干燥后得到致动器件。经过拉伸实验测得致动器件的断裂强度为1.6MPa,经过交流阻抗测得络合物膜的离子电导率为8.7×10-5S/cm。将制备的致动器件置于2V直流电压,经过10s,达到1.5%最大驱动形变,反向施加2V直流电压,经过12s回到初始形变,再经过9s,反向达到1.3%最大驱动形变。
实施例2
本实施例提出一种致动器件,由以下步骤制得:
将酸化单壁碳纳米管置于甲醇中,经过高速分散形成均匀的电极层铸膜液,铸膜液中固含量为20%;
将I50-PMVS,氯化钙按质量比1:11溶解于体积比为1:1的水和甲醇溶液中,得到络合物铸膜液,铸膜液中固含量为50%;
将络合物铸膜液干燥成络合物膜(即为离子聚合物形成的电解质层)后,将电极层铸膜液依次涂敷在络合物膜两面,干燥后得到致动器件。经过拉伸实验测得致动器件断裂强度为2.1MPa,经过交流阻抗测得络合物膜的离子电导率为3.6×10-5S/cm。将制备的制动器件置于2V直流电压,经过15s,达到1.1%最大驱动形变,反向施加2V直流电压,经过17s回到初始形变,再经过12s,反向达到1.2%最大驱动形变。
实施例3
本实施例提出一种致动器件,由以下步骤制得:
将多壁碳纳米管置于水中,经过高速分散形成均匀的电极层铸膜液,铸膜液中固含量为10%;
将I75-PMVS,氯化铜按质量比1:7溶解于水中,得到络合物铸膜液,铸膜液中固含量为50%;
将络合物铸膜液干燥成络合物膜(即为离子聚合物形成的电解质层)后,将电极层铸膜液依次涂敷在络合物膜两面,干燥后得到致动器件。经过拉伸实验测得致动器件的断裂强度为1.4MPa,经过交流阻抗测得络合物铸膜离子电导率为4.2×10-5S/cm。将制备的致动器件置于2V直流电压,经过11s,达到0.9%最大驱动形变,反向施加2V直流电压,经过15s回到初始形变,再经过12s,反向达到1.1%最大驱动形变。
实施例4
本实施例提出一种致动器件,由以下步骤制得:
将单壁碳纳米管置于冰醋酸中,经过高速分散形成均匀的电极层铸膜液,铸膜液中固含量为20%。
将I25-PMVS,氯化铁按质量比1:3溶解于体积比为1:1的冰醋酸与甲醇混合溶液中,得到络合物铸膜液,铸膜液中固含量为30%。
将络合物铸膜液干燥成络合物膜(即为离子聚合物形成的电解质层)后,将电极层铸膜液依次涂敷在络合物膜两面,干燥后得到致动器件。经过拉伸实验测得材料断裂强度为0.4MPa,经过交流阻抗测得络合物膜的离子电导率为2.7×10-7S/cm。将制备的致动器件置于5V直流电压,经过20s,达到1.4%最大驱动形变,反向施加5V直流电压,经过17s回到初始形变,再经过17s,反向达到1.3%最大驱动形变。
实施例5
本实施例提出一种致动器件,由以下步骤制得:
将单壁碳纳米管置于四氢呋喃中,经过高速分散形成均匀的电极层铸膜液,铸膜液中固含量为20%;
将I25-PMVS,氯化锌按质量比1:2溶解于水中,得到聚电解质层铸膜液,铸膜液中固含量为30%。
将络合物铸膜液干燥成络合物膜(即为离子聚合物形成的电解质层)后,将电极层铸膜液依次涂敷在络合物膜两面,干燥后得到致动器件。经过拉伸实验测得致动器件的断裂强度为0.5MPa,经过交流阻抗测得络合物膜离子电导率为1.1×10-6S/cm。将制备的制动器件置于5V直流电压,经过15s,达到1.1%最大驱动形变,反向施加5V直流电压,经过17s回到初始形变,再经过17s,反向达到0.8%最大驱动形变。
根据本发明的致动器件,可迅速对外界湿气刺激、电刺激产生有效响应,可广泛应用于电子皮肤、能量收集器、人造肌肉、智能监控等领域。
以上所述本发明的具体实施方式,并不构成对本发明保护范围的限定。任何根据本发明的技术构思所做出的各种其他相应的改变与变形,均应包含在本发明权利要求的保护范围内;另外如选用不同离子化官能团(羧酸类、咪唑类等)、不同的配位金属(K、Mg等)及配合其应用产生的如光热驱动、湿气驱动等都属于本申请的保护范围。

Claims (10)

1.一种用于制备致动器件的离子聚合物,其特征在于,由离子化聚硅氧烷与金属盐溶于第一溶剂中得到铸膜液,之后干燥制得所述离子聚合物;所述离子化聚硅氧烷与所述金属盐的质量比为1:(2-11);所述铸膜液中的固含量为30%-50%。
2.根据权利要求1所述的离子聚合物,其特征在于,所述离子化聚硅氧烷的离子化程度为25%-100%。
3.根据权利要求1所述的离子聚合物,其特征在于,所述金属盐为锆盐、钙盐、铜盐、铁盐和锌盐中的一种或者多种。
4.根据权利要求3所述的离子聚合物,其特征在于,所述锆盐为氯氧化锆,所述钙盐为氯化钙,所述铜盐为氯化铜,所述铁盐为氯化铁,所述锌盐为氯化锌。
5.根据权利要求1所述的离子聚合物,其特征在于,所述第一溶剂为水、甲醇、冰醋酸和四氢呋喃中的一种或者多种。
6.一种致动器件,其特征在于,包括权利要求1-5任一项所述的离子聚合物形成的电解质层、以及涂敷于所述电解质层上下两面的电极层。
7.一种权利要求6所述的致动器件的制备方法,其特征在于,包括以下步骤:将电极材料置于第二溶剂中,经分散形成电极层铸膜液;在权利要求1-5任一项所述的离子聚合物形成的电解质层的上下两面涂覆所述电极层铸膜液,之后干燥形成所述致动器件。
8.根据权利要求7所述的制备方法,其特征在于,所述电极材料为碳纳米管和/或碳纳米管衍生物;所述碳纳米管衍生物优选为酸化碳纳米管。
9.根据权利要求7所述的制备方法,其特征在于,所述第二溶剂为水、甲醇、冰醋酸和四氢呋喃中的一种或者多种。
10.根据权利要求7所述的制备方法,其特征在于,所述电极层铸膜液的固含量为10%-20%。
CN202111455737.9A 2021-12-01 2021-12-01 用于制备致动器件的离子聚合物、致动器件及其制备方法 Active CN114181531B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111455737.9A CN114181531B (zh) 2021-12-01 2021-12-01 用于制备致动器件的离子聚合物、致动器件及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111455737.9A CN114181531B (zh) 2021-12-01 2021-12-01 用于制备致动器件的离子聚合物、致动器件及其制备方法

Publications (2)

Publication Number Publication Date
CN114181531A true CN114181531A (zh) 2022-03-15
CN114181531B CN114181531B (zh) 2022-12-27

Family

ID=80603225

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111455737.9A Active CN114181531B (zh) 2021-12-01 2021-12-01 用于制备致动器件的离子聚合物、致动器件及其制备方法

Country Status (1)

Country Link
CN (1) CN114181531B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114958198A (zh) * 2022-05-25 2022-08-30 武汉工程大学 一种聚合物铸膜液、抗雾涂层及其制备方法和应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1384857A (zh) * 1999-10-26 2002-12-11 莫纳工业公司 两性离子硅氧烷聚合物及由其形成的离子交联聚合物
CN101080435A (zh) * 2004-12-15 2007-11-28 陶氏康宁公司 磺酸盐官能的有机基聚硅氧烷
CN104136500A (zh) * 2012-01-04 2014-11-05 莫门蒂夫性能材料股份有限公司 有机硅离聚物的聚合物复合材料
CN107417919A (zh) * 2012-01-04 2017-12-01 莫门蒂夫性能材料股份有限公司 离子有机硅和含有它的组合物

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1384857A (zh) * 1999-10-26 2002-12-11 莫纳工业公司 两性离子硅氧烷聚合物及由其形成的离子交联聚合物
CN101080435A (zh) * 2004-12-15 2007-11-28 陶氏康宁公司 磺酸盐官能的有机基聚硅氧烷
CN104136500A (zh) * 2012-01-04 2014-11-05 莫门蒂夫性能材料股份有限公司 有机硅离聚物的聚合物复合材料
CN107417919A (zh) * 2012-01-04 2017-12-01 莫门蒂夫性能材料股份有限公司 离子有机硅和含有它的组合物

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114958198A (zh) * 2022-05-25 2022-08-30 武汉工程大学 一种聚合物铸膜液、抗雾涂层及其制备方法和应用
CN114958198B (zh) * 2022-05-25 2023-09-01 武汉工程大学 一种聚合物铸膜液、抗雾涂层及其制备方法和应用

Also Published As

Publication number Publication date
CN114181531B (zh) 2022-12-27

Similar Documents

Publication Publication Date Title
Gan et al. Mussel-inspired redox-active and hydrophilic conductive polymer nanoparticles for adhesive hydrogel bioelectronics
Wu et al. Hydrogels as soft ionic conductors in flexible and wearable triboelectric nanogenerators
Wang et al. Tough, adhesive, self-healable, and transparent ionically conductive zwitterionic nanocomposite hydrogels as skin strain sensors
Zhang et al. One-step preparation of a highly stretchable, conductive, and transparent poly (vinyl alcohol)–phytic acid hydrogel for casual writing circuits
Zhang et al. Flexible and wearable strain sensors based on conductive hydrogels
Zhang et al. A stretchable, environmentally tolerant, and photoactive liquid metal/MXene hydrogel for high performance temperature monitoring, human motion detection and self-powered application
Yang et al. Sandwich-like polypyrrole/reduced graphene oxide nanosheets integrated gelatin hydrogel as mechanically and thermally sensitive skinlike bioelectronics
Xu et al. Strategies in the preparation of conductive polyvinyl alcohol hydrogels for applications in flexible strain sensors, flexible supercapacitors, and triboelectric nanogenerator sensors: an overview
Qian et al. Octopus tentacles inspired triboelectric nanogenerators for harvesting mechanical energy from highly wetted surface
Wang et al. Liquid metal and Mxene enable self-healing soft electronics based on double networks of bacterial cellulose hydrogels
Li et al. Functional conductive hydrogels: from performance to flexible sensor applications
CN110148533A (zh) 一种导电水凝胶的制备方法及超级电容器
Yin et al. Construction of polydopamine reduced graphene oxide/sodium carboxymethyl cellulose/polyacrylamide double network conductive hydrogel with high stretchable, pH-sensitive and strain-sensing properties
Khan et al. Polypyrrole nanoparticles-based soft actuator for artificial muscle applications
CN109912824A (zh) 一种透明导电丝素蛋白材料及其制备方法
Mir et al. A short review on the synthesis and advance applications of polyaniline hydrogels
CN114181531B (zh) 用于制备致动器件的离子聚合物、致动器件及其制备方法
JP7063485B2 (ja) 複合材料及びその製造方法
Zhang Dry and frost resistance conductive hydrogels based on carbon nanotubes hybrids for use as flexible strain sensor
Guo et al. Ultra-stretchable and anti-freezing conductive organohydrogel reinforced with ionic clusters for wearable strain sensors
Saeb et al. Polyaniline/graphene-based nanocomposites
Guo et al. Conductive nanocomposite hydrogels for flexible wearable sensors
Zhu et al. Fabrication of multifunctional polypyrrole hydrogel enhanced by polyvinyl alcohol
Zhou et al. Advanced wearable strain sensors: Ionic double network hydrogels with exceptional stretchability, adhesion, anti-freezing properties, and sensitivity
CN210403231U (zh) 一种富氮多孔碳为电极的电化学驱动器

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant