CN114180630A - 多层纳米板状wo3及其制备方法和应用 - Google Patents

多层纳米板状wo3及其制备方法和应用 Download PDF

Info

Publication number
CN114180630A
CN114180630A CN202111607470.0A CN202111607470A CN114180630A CN 114180630 A CN114180630 A CN 114180630A CN 202111607470 A CN202111607470 A CN 202111607470A CN 114180630 A CN114180630 A CN 114180630A
Authority
CN
China
Prior art keywords
solution
precipitate
annealing
hydrochloric acid
seed layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202111607470.0A
Other languages
English (en)
Inventor
李�赫
张侃
石晓琴
年晓龙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Science and Technology
Original Assignee
Nanjing University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Science and Technology filed Critical Nanjing University of Science and Technology
Priority to CN202111607470.0A priority Critical patent/CN114180630A/zh
Publication of CN114180630A publication Critical patent/CN114180630A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G41/00Compounds of tungsten
    • C01G41/02Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/50Processes
    • C25B1/55Photoelectrolysis
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/055Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/075Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of a single catalytic element or catalytic compound
    • C25B11/077Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of a single catalytic element or catalytic compound the compound being a non-noble metal oxide
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/075Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of a single catalytic element or catalytic compound
    • C25B11/087Photocatalytic compound
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/76Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by a space-group or by other symmetry indications
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/85Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by XPS, EDX or EDAX data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/20Particle morphology extending in two dimensions, e.g. plate-like
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种多层纳米板状WO3及其制备方法和应用。先将钨酸钠溶液和浓盐酸反应得到的沉淀溶解双氧水中,然后加入聚乙烯醇和超纯水制备好种子层溶液,通过旋涂溶液制备含WO3籽晶的FTO衬底,在500℃下在空气中退火2h得到种子层,将钨酸钠溶解于水中后加入盐酸得到沉淀,再加入草酸溶解后得到前驱体溶液;然后将种子层置于前驱体溶液中在180℃下进行水热反应;最后将水热得到的产物在500℃下退火,得到多层纳米板状WO3。本发明通过在前驱体溶液中添加形貌调节剂盐酸和将草酸铵替换为草酸,并调控其水热体积和降温速率成了具有多层纳米板状结构的WO3,提高其在光电催化产双氧水的选择性,选择性可达60.5%。

Description

多层纳米板状WO3及其制备方法和应用
技术领域
本发明属于光电催化材料制备领域,涉及一种多层纳米板状三氧化钨及其制备方法和应用。
背景技术
过氧化氢(H2O2)是当今最重要的化学物质之一,过氧化氢(H2O2)不仅是一种温和、环保的有机合成和环境修复氧化剂,而且是一种很有前途的新型液体燃料,因此受到越来越多的关注。全球年需求量约为400万吨。目前,全球H2O2产量的90%以上基于蒽醌氧化(AO)工艺,该工艺最早于20世纪40年代开发。管在每个AO过程中H2O2的浓度可高达~70 wt%,但仍存在许多缺点,例如发生一系列副反应,需要复杂的分离步骤来去除有机杂质,以及非常高的能耗。因此现场电化学生产H2O2,以降低运输成本和安全问题,并利用可再生电力,这一点越来越受到关注。尽管通过加氢或电化学过程中还原O2的方法在H2O2合成中取得了快速发展,但通常认为将水直接分解为H2和H2O2两种高附加值的化学品是生产H2O2的更理想且经济可行的途径。
从能耗角度考虑,光电催化(PEC)用于H2O2生产的水氧化更可持续,因为它利用光辐射作为反应的驱动力。此外,PEC工艺对H2O2生成的选择性(即 FE(H2O2))与所施加的偏压的相关性较小,而与表面的光电催化工艺相关,因为表面反应是由光生空穴在价带中积累的最大值驱动的。金属氧化物作为光催化剂是有利的,因为它们在反应和制造过程中有着不错的稳定性,且制备过程比较简易。
目前用于光电催化的金属氧化物二维薄膜的制备方法多用物理气相沉积法、化学气相沉积法和水热法等,物理和化学气相沉积的方法能够快速的生长致密的纳米薄膜,但是这种方法生长出来的大部分都是纳米颗粒或者块状结构,晶体结构或者形貌并不具备优势,例如他们的比表面积、载流子收集路径、带隙、电荷转移等方面的表现相对较差。而用水热种子层辅助原位生长的方法能够得到良好的纳米晶体结构,在各方面都能表现出不错的优势。但电催化,光催化和其他非均相催化作用发生在催化剂表面,因此晶体的形貌和结构在决定其性能方面起着至关重要的作用,不同的晶体形貌和结构对于催化的导向十分重要。
发明内容
本发明的目的在于提供一种提供双氧水产率的多层纳米板状三氧化钨的制备方法,通过水热的方法,加入表面形貌调节剂,制备具有多层纳米板状三氧化钨,多层纳米板状三氧化钨能够有效提高光电化学生产双氧水的效率,提高双氧水的选择性,以及光电性能。
实现本发明目的的技术方案如下:
一种多层纳米板状三氧化钨的制备方法,具体步骤如下:
(1)向钨酸钠溶液加入浓盐酸得到沉淀,将离心所得沉淀溶解于双氧水,然后加入超纯水和分散剂聚乙烯醇,搅拌至完全溶解,将所得溶液旋涂在干净的掺氟氧化锡导电玻璃(FTO)表面,然后置于500℃下退火得到种子层;
(2)向钨酸钠溶液加入浓盐酸得到沉淀,然后加入草酸溶解沉淀得到澄清的溶液,得到前驱体溶液;
(3)将带有种子层的FTO浸没在前驱体溶液中,且种子层朝下,在180℃下水热反应,降至一定温度后取出,并快速冷却;
(4)水洗干净后,置于500℃下退火,退火结束后降至室温,得到多层纳米板状三氧化钨。
优选地,步骤(1)中,置于500℃下退火2h。
优选地,步骤(2)中,钨酸钠与浓盐酸的摩尔比为100:3.05。
优选地,步骤(3)中,在180℃下水热反应2h。
优选地,步骤(3)中,降至80~100℃后取出,并用流水快速冷却。
优选地,步骤(4)中,置于500℃下2 h。
优选地,步骤(4)中,升温、降温速率均为15℃/min。
上述多层纳米板状三氧化钨在光电催化水氧化产双氧水上的用途。
与现有技术相比,本发明具有以下优点:
本发明通过在前驱体溶液中添加形貌调节剂Cl-(盐酸),并将草酸铵替换为草酸,并调控其水热体积和降温速率,合成了具有多层纳米板状WO3,提高其在光电催化产双氧水的选择性,由现有的25.7%提高至60.5%,光电流提升了3.1倍。
附图说明
图1为对比例1和实施例1中S-WO3和M-WO3的XRD图。
图2为对比例1和实施例1中S-WO3(a)和M-WO3(b)的SEM图。
图3为对比例1和实施例1中S-WO3(a)和M-WO3(b)的横截面FE-SEM图像。
图4为对比例1和实施例1中S-WO3和M-WO3光电阳极的电流-电压曲线。
图5为对比例1和实施例1中S-WO3(a)和M-WO3(c)的XPS O1s图。
图6为对比例1和实施例1中S-WO3和M-WO3的电化学活性面积图。
图7为对比例1和实施例1中S-WO3和M-WO3的光阳极的极化曲线,数据是无光照条件下收集的。
图8为对比例1和实施例1中在1M NaHCO3电解质中在AM 1.5G照射下S-WO3和M-WO3光阳极的PEC生成H2O2的法拉第效率。
具体实施方式
下面结合实施例和附图对本发明做进一步详述。
金属氧化物作为光催化剂是有利的,因为它们在反应和制造过程中有着较好的稳定性,且制备过程比较简易。从热力学的角度看,调节中间体的热力学过程是一种有效调节对电催化多电子转移反应中所需产物的选择性的方法。热力学上适合于水分解的氧化物却在光催化剂中光吸收差,这是因为其由O2p组成的价带非常深,因此具有大的带隙(> 3eV)。所以可见光响应型氧化物光催化剂像WO3一样,在热力学上不适合用于水分解,因为导带的电势对于E(H+/H2),0 V vs. RHE的H2析出来说太正,[反应式(1)-(2)]表明,H2O2的生成电势比水分解的电势更大。因此,对于氧化物光催化剂而言,生成H2O2的热力学要求不那么严格,所以在光电催化水氧化产H2O2上具有很大的潜力。除此之外WO3还具有良好的光电性能能够很快的达到饱和电流值,是一种十分适合水氧化产双氧水的材料之一。
O2+2H++2e-= H2O2 E(O2/ H2O2)=+0.68V vs. RHE (1)
2H2O= H2O2+2H++2e- E(H2O/H2O2)=+1.77V vs. RHE (2)
实施例1
将1.65 g Na2WO4•2H2O溶解在25mL超纯水中,然后添加3.5ml浓盐酸(32%),出现黄色沉淀。然后分离沉淀物,并在6000 rpm下离心清洗数次。加入5ml H2O2将上一步的黄色沉淀溶解,然后加入0.5g PVA,加入10ml超纯水后,将混合物在超声波浴中保持约30分钟。然后用超纯水将透明溶液稀释至30ml。然后通过旋涂溶液制备含WO3籽晶的FTO衬底,然后在500℃下在空气中退火2h,以进行随后的水热反应。
将0.33 g Na2WO4•2H2O溶解于30 mL超纯水中,然后添加3 mL浓HCl(32%),形成淡黄色沉淀。之后在磁力搅拌下向上述溶液中添加1.8 g H2C2O4•2H2O,直到溶液变透明。用超纯水将得到的澄清溶液稀释至90mL。取60mL制备的前驱体溶液转移到聚四氟乙烯内衬的不锈钢高压釜中。将含有WO3籽晶的FTO玻璃浸入并靠在聚四氟乙烯容器壁上,籽晶层朝下。将高压灭菌器密封并在180℃下保持2小时等温度降到80摄氏度时取出用冷水快速冷却至室温后,取出样品,用超纯水冲洗,然后在室温下干燥。在500℃下在空气中进一步退火2小时,命名为M-WO3
对比例1
种子层制备方法与对实施例1相同
将0.33 g Na2WO4•2H2O溶解于30 mL超纯水中,然后加入3 mL浓HCl(32%),300秒后形成淡黄色沉淀。之后在磁力搅拌下向上述溶液中添加0.15 g (NH42C2O4,直到溶液变透明后用水稀释至90mL,制备好单层板状WO3的前驱体溶液。取60mL放入反应釜内衬中将一块含有WO3籽晶的FTO玻璃浸入并靠在聚四氟乙烯容器壁上,籽晶层朝下放入不锈钢高压釜,在180℃下保持2小时。冷却至室温后,取出样品,用超纯水冲洗,然后在室温下干燥。在500℃下在空气中进一步退火2小时得到S-WO3
如图1所示,S-WO3和M-WO3晶体的两种光阳极的X射线衍射(XRD)图案中的所有衍射峰都可以被标为单斜WO3(JCPDS no. 43–1035)具有良好的指数关系,分别在23.1°、23.6°和24.4°处具有三个特征峰(002)、(020)和(200)面。XRD图显示出了两种光阳极均为WO3且具有良好的结晶性光阳极显示出强烈的(200)和(002)衍射峰,与多晶WO3参比粉末相比,更弱的(202)衍射峰,清楚地表明WO3光阳极优先沿着[200]或[002]晶向定向生长并且由(010)面控制。
通过场发射扫描电子显微镜(FE-SEM)对S-WO3和M-WO3光阳极的形貌进行了表征,结果如图2所示,清晰的展现了单层结构和多层结构,单层的板状结构片层厚度在150nm左右片层宽度在1μm左右,多层板状的结构的片层厚度明显增加多层的片层厚度在400-500nm的片层构成片层宽度也在1μm左右,但是构成单一多层结构中的单层结构的厚度小于100nm。横截面FE-SEM图像显示两个光电阳极均由致密的WO3薄膜组成,厚度约为2.5μm(图3)。
如图4所示M-WO3的光电流密度是S-WO3的3.1倍,在1.76 V vs. RHE的条件下,光电流密度为2.1 mA / cm2。图5为M-WO3和S-WO3的X射线光电子能谱(XPS)所有样品在530.3、531.5、533.2处显示三个明显的O1s峰。这三处的峰分别归因于物理吸附水、表面氧空位附近的O原子和金属氧化物中的晶格氧。其中的O1s峰值显示了多层纳米板状三氧化钨表面氧空位附近的O原子的峰值面积和物理吸附水的O的峰值面积明显增加,表明多层的结构增加了缺陷或不完整的W-O结合。而这种缺陷成为反应的活性位点使得从而提升了光电流,同时会加强对水的吸附能力的增强反应活性。
M-WO3的光电流密度不仅是S-WO3的3.1倍,而且M-WO3有更大的活性面积(图6),水氧化成H2O2的极化曲线显示出M-WO3的阴极过电势偏移120 mV(图7)。在M-WO3上生产H2O2的法拉第效率约为S-WO3的2.4倍(图8)。在相对于RHE的0.6至1.8 V的施加偏压下,M-WO3上生成H2O2的法拉第效率平均值达到60.5%。
水热生长时,因为Cl-作为一种类似于F-的封端离子发挥作用,这种封端效应会被吸附到比表面能大的晶面上进而使其无法与水热溶液接触进而达到抑制其生长的作用,使得晶体只能从俩侧生长而形成这种多层纳米板状的结构。而水热溶液中存在(NH4+的话,他会弱化Cl-的电负性使得他无法被吸附到晶面的表面从而达到了这种单层的纳米板状结构。

Claims (9)

1.一种多层纳米板状三氧化钨的制备方法,其特征在于,具体步骤如下:
(1)向钨酸钠溶液加入浓盐酸得到沉淀,将离心所得沉淀溶解于双氧水,然后加入超纯水和分散剂聚乙烯醇,搅拌至完全溶解,将所得溶液旋涂在干净的FTO表面,然后置于500℃下退火得到种子层;
(2)向钨酸钠溶液加入浓盐酸得到沉淀,然后加入草酸溶解沉淀得到澄清的溶液,得到前驱体溶液;
(3)将带有种子层的FTO浸没在前驱体溶液中,且种子层朝下,在180℃下水热反应,降至一定温度后取出,并快速冷却;
(4)水洗干净后,置于500℃下退火,退火结束后降至室温,得到多层纳米板状三氧化钨。
2.如权利要求1所述的方法,其特征在于,步骤(1)中,置于500℃下退火2h。
3.如权利要求1所述的方法,其特征在于,步骤(2)中,钨酸钠与浓盐酸的摩尔比为100:3.05。
4.如权利要求1所述的方法,其特征在于,步骤(3)中,在180℃下水热反应2h。
5.如权利要求1所述的方法,其特征在于,步骤(3)中,降至80~100℃后取出,并用流水快速冷却。
6. 如权利要求1所述的方法,其特征在于,步骤(4)中,置于500℃下2 h。
7.如权利要求1所述的方法,其特征在于,步骤(4)中,升温、降温速率均为15℃/min。
8.如权利要求1-7任一所述的方法制备的多层纳米板状三氧化钨。
9.如权利要求1-7任一所述的方法制备的多层纳米板状三氧化钨在光电催化水氧化产双氧水上的用途。
CN202111607470.0A 2021-12-27 2021-12-27 多层纳米板状wo3及其制备方法和应用 Pending CN114180630A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111607470.0A CN114180630A (zh) 2021-12-27 2021-12-27 多层纳米板状wo3及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111607470.0A CN114180630A (zh) 2021-12-27 2021-12-27 多层纳米板状wo3及其制备方法和应用

Publications (1)

Publication Number Publication Date
CN114180630A true CN114180630A (zh) 2022-03-15

Family

ID=80545033

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111607470.0A Pending CN114180630A (zh) 2021-12-27 2021-12-27 多层纳米板状wo3及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN114180630A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115043599A (zh) * 2022-07-07 2022-09-13 重庆第二师范学院 一种在介质表面镀膜制备有序纳米片状wo3薄膜的方法
CN115448367A (zh) * 2022-08-31 2022-12-09 浙江大学 一种黄钨酸催化剂的制备方法及在压电催化双氧水中的应用
CN116119719A (zh) * 2023-04-18 2023-05-16 崇义章源钨业股份有限公司 一种超细板状氧化钨及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101381599A (zh) * 2008-10-20 2009-03-11 中国地质大学(武汉) 纳米wo3光致变色粉体及其制备方法
CN105384358A (zh) * 2015-10-29 2016-03-09 上海交通大学 一种wo3纳米片阵列薄膜制备方法及其应用研究
CN107400899A (zh) * 2017-08-10 2017-11-28 黄河科技学院 三氧化钨复合光电极及其制备方法、和在光电催化分解水中的应用
CN109778223A (zh) * 2018-11-26 2019-05-21 宁波工程学院 一种ZnO修饰WO3/BiVO4异质结的制备方法及其在光电催化中的应用
CN110054224A (zh) * 2019-05-30 2019-07-26 福州大学 一种层状三氧化钨光电极材料及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101381599A (zh) * 2008-10-20 2009-03-11 中国地质大学(武汉) 纳米wo3光致变色粉体及其制备方法
CN105384358A (zh) * 2015-10-29 2016-03-09 上海交通大学 一种wo3纳米片阵列薄膜制备方法及其应用研究
CN107400899A (zh) * 2017-08-10 2017-11-28 黄河科技学院 三氧化钨复合光电极及其制备方法、和在光电催化分解水中的应用
CN109778223A (zh) * 2018-11-26 2019-05-21 宁波工程学院 一种ZnO修饰WO3/BiVO4异质结的制备方法及其在光电催化中的应用
CN110054224A (zh) * 2019-05-30 2019-07-26 福州大学 一种层状三氧化钨光电极材料及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
SONGCAN WANG等: "Synergistic crystal facet engineering and structural control of WO3 films exhibiting unprecedented photoelectrochemical performance", 《NANO ENERGY》, pages 94 - 102 *
YUNCHENG CAO等: "Surface Engineering of WO3/BiVO4 to Boost Solar Water-Splitting", 《CATALYSTS》, pages 1 - 10 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115043599A (zh) * 2022-07-07 2022-09-13 重庆第二师范学院 一种在介质表面镀膜制备有序纳米片状wo3薄膜的方法
CN115448367A (zh) * 2022-08-31 2022-12-09 浙江大学 一种黄钨酸催化剂的制备方法及在压电催化双氧水中的应用
CN115448367B (zh) * 2022-08-31 2024-01-05 浙江大学 一种黄钨酸催化剂的制备方法及在压电催化双氧水中的应用
CN116119719A (zh) * 2023-04-18 2023-05-16 崇义章源钨业股份有限公司 一种超细板状氧化钨及其制备方法

Similar Documents

Publication Publication Date Title
Haque et al. Two-dimensional transition metal oxide and chalcogenide-based photocatalysts
Phoon et al. Recent developments of strontium titanate for photocatalytic water splitting application
Zhang et al. Powerful combination of 2D g-C3N4 and 2D nanomaterials for photocatalysis: recent advances
Afroz et al. A heterojunction strategy to improve the visible light sensitive water splitting performance of photocatalytic materials
Liu et al. Bismuth-based complex oxides for photocatalytic applications in environmental remediation and water splitting: A review
Kalanur et al. Recent progress in photoelectrochemical water splitting activity of WO 3 photoanodes
Yang et al. State-of-the-art progress in the rational design of layered double hydroxide based photocatalysts for photocatalytic and photoelectrochemical H2/O2 production
Chen et al. Recent advances in the utilization of copper sulfide compounds for electrochemical CO2 reduction
Zhang et al. Recent advances in ZnIn 2 S 4-based materials towards photocatalytic purification, solar fuel production and organic transformations
CN114180630A (zh) 多层纳米板状wo3及其制备方法和应用
Bashiri et al. Photoelectrochemical water splitting with tailored TiO2/SrTiO3@ g-C3N4 heterostructure nanorod in photoelectrochemical cell
Zhang et al. Recent Advances in TiO2‐based Photoanodes for Photoelectrochemical Water Splitting
Xiang et al. Cadmium chalcogenide (CdS, CdSe, CdTe) quantum dots for solar‐to‐fuel conversion
Zhang et al. Building {0001} and {101 1} facet heterojunctions on hexagonal pyramid CdS single crystals with high photoactivity and photostability for hydrogen evolution
CN110252352A (zh) 一种碳量子点修饰钨酸铋/有序大孔氟掺杂氧化锡复合光催化剂及其制备方法和应用
CN112777634B (zh) 高(010)晶面暴露比钒酸铋的制备方法
Khan et al. Hierarchical nanostructures of titanium dioxide: synthesis and applications
Hu et al. A high-activity bimetallic OER cocatalyst for efficient photoelectrochemical water splitting of BiVO 4
Zou et al. Fabrication, optoelectronic and photocatalytic properties of some composite oxide nanostructures
Han et al. Combined heterostructures between Bi2S3 nanosheets and H2-treated TiO2 nanorods for enhanced photoelectrochemical water splitting
Shankar et al. A concise review: MXene-based photo catalytic and photo electrochemical water splitting reactions for the production of hydrogen
Ma et al. Interface modulation of BiVO4 based photoanode with Bi (III) Bi (V) O4 for enhanced solar water splitting
Hossain et al. Engineering strontium titanate-based photocatalysts for green hydrogen generation: Recent advances and achievements
Lindgren et al. Photo-oxidation of water at hematite electrodes
Zhu et al. Oxygen vacancies engineering in electrocatalysts nitrogen reduction reaction

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination