CN114180588A - Method for preparing magnetic zeolite by using red mud in cooperation with carbon-containing aluminum-silicon waste - Google Patents

Method for preparing magnetic zeolite by using red mud in cooperation with carbon-containing aluminum-silicon waste Download PDF

Info

Publication number
CN114180588A
CN114180588A CN202111452439.4A CN202111452439A CN114180588A CN 114180588 A CN114180588 A CN 114180588A CN 202111452439 A CN202111452439 A CN 202111452439A CN 114180588 A CN114180588 A CN 114180588A
Authority
CN
China
Prior art keywords
red mud
carbon
containing aluminum
silicon waste
magnetic zeolite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202111452439.4A
Other languages
Chinese (zh)
Inventor
燕可洲
郭亚茹
高建明
郭彦霞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanxi University
Original Assignee
Shanxi University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanxi University filed Critical Shanxi University
Priority to CN202111452439.4A priority Critical patent/CN114180588A/en
Publication of CN114180588A publication Critical patent/CN114180588A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/20Silicates
    • C01B33/26Aluminium-containing silicates, i.e. silico-aluminates
    • C01B33/28Base exchange silicates, e.g. zeolites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)

Abstract

The invention aims to provide a method for preparing magnetic zeolite by using red mud and carbon-containing aluminum-silicon waste, belonging to the technical field of solid waste resource utilization, and comprising the following process flows of: uniformly mixing red mud, carbon-containing aluminum silicon wastes (such as coal gangue, gasified slag and the like) and sodium additives (such as sodium hydroxide, sodium carbonate and the like) in proportion, and carrying out reduction roasting for 0.5-3 h at 500-900 ℃ in a non-oxidizing atmosphere; uniformly mixing the reduction roasting clinker with water according to the solid-to-liquid ratio of 0.2-0.5 g/ml, and stirring and aging for 1-12 h at the temperature of 20-60 ℃; and after aging, continuing hydrothermal crystallization at 80-110 ℃ for 6-18 h, and performing solid-liquid separation to obtain the magnetic zeolite. The invention realizes the resource utilization of the red mud and the carbon-containing aluminum silicon waste and obtains the magnetic zeolite. The obtained magnetic zeolite can be used for treating various types of wastewater such as heavy metal, organic matter pollution and the like, and can realize separation, recovery and cyclic utilization in a mode of an external magnetic field.

Description

Method for preparing magnetic zeolite by using red mud in cooperation with carbon-containing aluminum-silicon waste
Technical Field
The invention belongs to the technical field of solid waste resource utilization, and particularly relates to a method for preparing magnetic zeolite by using red mud in cooperation with carbon-containing aluminum-silicon waste.
Background
Red mud is a solid waste produced in the process of producing alumina from bauxite, is red due to being rich in iron oxide, and is called red mud. The output, components and properties of red mud are greatly different due to different bauxite producing areas and different production processes of alumina. Usually, about 0.8-2.0 t of red mud is generated per 1t of alumina, the annual output of the red mud in China is about 1 hundred million tons, and in addition, the historical stock of the red mud exceeds 7.9 hundred million tons. However, due to the characteristics of fine granularity, complex components, strong alkalinity and the like of the red mud, the red mud is difficult to be recycled, and the comprehensive utilization rate of the red mud in China is only about 5 percent. The red mud is produced and stockpiled in large quantity, and cannot be effectively utilized, so that the land is invaded, and serious environmental pollution and ecological damage are caused. The development of the resource comprehensive utilization of the red mud has important significance for the sustainable development of the aluminum industry and the ecological environment protection.
The red mud is typical aluminosilicate waste, contains a large amount of silicon and aluminum, has similar components with zeolite, and can be used as a potential raw material for preparing zeolite. Compared with chemical reagents, the red mud has the advantages of large amount, low price, easy obtainment and the like, and the red mud is used for replacing the chemical reagents to synthesize the zeolite, so that the preparation cost of the zeolite can be reduced, and an effective way can be provided for resource utilization of the red mud. The traditional zeolite has abundant micropores and larger specific surface area, and the crystal structure has certain electronegativity, thereby showing excellent adsorptivity, cation exchange property and molecular sieve characteristic and being widely applied to the field of water treatment; but the fine particles thereof make it difficult to rapidly separate from the aqueous solution after application, thereby affecting the application effect. The method is an effective method for preparing magnetic zeolite by loading magnetic particles in zeolite and then realizing rapid separation by an external magnetic field. At present, the preparation of magnetic zeolites mainly comprises three routes: one is that magnetic particles and zeolite are mixed by physical methods such as grinding, for example, patent CN201510157695.9 discloses a magnetic zeolite and its preparation method, magnetic iron powder is used to cover natural clinoptilolite to prepare magnetic zeolite; secondly, adding a precursor for forming nano magnetite, precipitating the magnetite on the surface of zeolite particles to generate the magnetite, and dissolving ferrous iron and ferric iron salt in water, stirring, adding zeolite powder and compounding to prepare the magnetic zeolite according to the patent CN 201510222596.4; thirdly, magnetic particles are combined with zeolite in the process of synthesizing zeolite, and in patent CN202010258427.7, kaolin slurry is mixed with ferric trichloride hexahydrate, and then the magnetic zeolite is synthesized. Most of the methods have the problems of introduction of additional chemical reagents, uneven loading and the like, and the development of a new method for preparing the magnetic zeolite by resource utilization of the red mud has practical significance.
The red mud is uniformly distributed with iron, aluminum, silicon and other elements, wherein the iron mainly exists in a non-magnetic hematite form and can be converted into magnetic ferroferric oxide by reduction roasting; the aluminum-silicon ratio of the red mud is usually more than 1, and the red mud and aluminosilicate with the aluminum-silicon ratio less than 1 are mixed to prepare materials, so that the aluminum-silicon ratio of the mixed materials can reach the aluminum-silicon ratio required by zeolite; a large amount of alkaline substances are left in the red mud and can react with aluminosilicate in the roasting process to generate a high-activity phase which is easy to be crystallized subsequently.
Disclosure of Invention
The invention aims to provide a method for preparing magnetic zeolite by utilizing red mud and carbon-containing aluminum-silicon wastes, so as to obtain high-performance magnetic zeolite while realizing resource utilization of the red mud and the carbon-containing aluminum-silicon wastes.
The invention adopts the following technical scheme:
the invention provides a method for preparing magnetic zeolite by using red mud and carbon-containing aluminum-silicon waste, wherein the magnetic zeolite is prepared by mixing red mud, carbon-containing aluminum-silicon waste (such as coal gangue, gasified slag and the like) and sodium auxiliary (such as sodium hydroxide, sodium carbonate and the like) through the steps of reduction roasting, aging, crystallization and the like, and the specific steps are as follows:
firstly, mixing materials, namely respectively grinding and sieving red mud and carbon-containing aluminum-silicon waste to be smaller than 100 meshes, and then mixing the red mud and the carbon-containing aluminum-silicon waste with a sodium assistant in proportion to obtain a mixed material;
secondly, reducing and roasting, namely placing the mixed material in an atmosphere furnace to roast under a non-oxidizing atmosphere to obtain reducing and roasting clinker;
step three, aging, namely uniformly mixing the reduction roasting clinker with water according to a proportion, and stirring and aging;
and fourthly, crystallizing, namely transferring the aged material into a crystallization kettle, carrying out hydrothermal crystallization, cooling and filtering a product after the hydrothermal crystallization is finished, and washing and drying to obtain the magnetic zeolite.
Further, in the first step, the aluminum-silicon molar ratio of the red mud is more than 1, the aluminum-silicon molar ratio of the carbon-containing aluminum-silicon waste is less than 1, and the mass percentage content of iron oxide in the red mud is not less than 15%.
Further, in the first step, the red mud, the carbon-containing aluminum silicon waste and the sodium additive are mixed according to the molar ratio of Na, Al and Si of the mixed materials of 2.5:1: 1-5: 1: 1.
Furthermore, in the second step, the roasting temperature is 500-900 ℃, and the roasting time is 0.5-3 h.
Further, in the third step, the solid-to-liquid ratio of the reduction roasting clinker to water is 0.2-0.5 g/ml, the aging temperature is 20-60 ℃, and the aging time is 1-12 hours.
Further, in the fourth step, the crystallization temperature is 80-110 ℃, and the crystallization time is 6-18 h.
The invention provides a method for preparing magnetic zeolite by using red mud and carbon-containing aluminum-silicon wastes, which is characterized in that red mud, carbon-containing aluminum-silicon wastes (such as coal gangue, gasified slag and the like) and sodium auxiliaries (such as sodium hydroxide, sodium carbonate and the like) are subjected to reduction roasting at a specific temperature, so that iron-containing phases and aluminum-silicon phases in the red mud are respectively converted into magnetic phases and high-activity phases, and the magnetic zeolite with uniformly distributed phases is further prepared.
The method for preparing the magnetic zeolite by using the red mud and the carbon-containing aluminum silicon waste has the advantages of simple and controllable process and wide product application prospect.
The invention has the following beneficial effects:
1. and adjusting the aluminum-silicon ratio, namely adjusting the aluminum-silicon ratio of the mixed material to the aluminum-silicon ratio required by the target product, namely adjusting the aluminum-silicon ratio of the mixed material without additionally adding an aluminum source and a silicon source by adjusting the composition ratio of the red mud and the carbon-containing aluminum-silicon waste.
2. The consumption of the sodium assistant is obviously reduced, on one hand, the generation of sodium silicate and other byproducts can be avoided by adjusting the aluminum-silicon ratio, the consumption of the alkali assistant is reduced, and on the other hand, the purpose of reducing the consumption of the alkali assistant can be achieved by utilizing the residual alkaline substances in the red mud.
3. And (2) synchronous magnetization, namely, in the process of adding alkali into aluminosilicate for roasting, synchronously reducing nonmagnetic hematite in the red mud by using carbon residues in solid waste through changing the atmosphere, converting the nonmagnetic hematite into magnetic ferroferric oxide, and keeping magnetism in the hydrothermal process to further synthesize the magnetic zeolite without adding an iron source.
4. The product quality is that the iron-containing phase and the aluminosilicate in the red mud are naturally and uniformly embedded, so that the high-quality magnetic zeolite product with uniformly distributed magnetic phase and zeolite phase can be prepared.
Drawings
FIG. 1 is a process flow diagram of the present invention.
FIG. 2 is the XRD pattern of red mud and coal gangue in example 1.
Figure 3 is the XRD of the magnetic zeolite product of example 1.
Fig. 4 is an SEM image of the magnetic zeolite product of example 1.
Detailed Description
The technical solutions in the embodiments of the present invention will be further described below, and the described embodiments are only a part of the embodiments of the present invention, but not all of the embodiments.
Example 1
Grinding red mud and coal gangue, sieving to be smaller than 100 meshes, adding sodium hydroxide, and uniformly mixing according to the molar ratio of Na, Al and Si of 3.6:1:1 to obtain a mixed raw material for later use; at 600 ℃ N2Reducing and roasting for 1 h under the atmosphere to obtain reducing and roasting clinker; mixing the reduction roasting clinker with water according to the solid-to-liquid ratio of 0.35 g/mL, and stirring and aging at 40 ℃ for 12 hours; transferring the aged material to a crystallization kettle, and carrying out hydrothermal crystallization for 9 hours at 90 ℃; and cooling and filtering the product, and washing and drying to obtain the magnetic zeolite.
Example 2
Grinding red mud and coal gangue, sieving to be smaller than 100 meshes, adding sodium carbonate, and uniformly mixing according to the molar ratio of Na, Al and Si of 4.5:1:1 to obtain a mixed raw material for later use; at 800 ℃ N2Reducing and roasting for 1 h under the atmosphere to obtain reducing and roasting clinker; mixing the reduction roasting clinker with water according to the solid-to-liquid ratio of 0.25 g/mL, and stirring and aging at 50 ℃ for 6 hours; transferring the aged material to a crystallization kettle, and carrying out hydrothermal crystallization for 15 h at 95 ℃; and cooling and filtering the product, and washing and drying to obtain the magnetic zeolite.
Example 3
Grinding red mud and coal gangue, sieving to be smaller than 100 meshes, adding sodium hydroxide, and uniformly mixing according to the molar ratio of Na, Al and Si of 5:1:1 to obtain a mixed raw material for later use; at 600 ℃ N2Reducing and roasting for 1 h under the atmosphere to obtain reducing and roasting clinker; mixing the reduction roasting clinker with water according to the solid-to-liquid ratio of 0.20 g/mL, and stirring and aging at 40 ℃ for 12 hours; transferring the aged material to a crystallization kettle, and carrying out hydrothermal crystallization for 12 hours at 100 ℃; and cooling and filtering the product, and washing and drying to obtain the magnetic zeolite.
Example 4
Grinding red mud and coal gangue, sieving to be smaller than 100 meshes, adding sodium hydroxide, and uniformly mixing according to the molar ratio of Na, Al and Si of 2:1:1 to obtain a mixed raw material for later use; at 500 ℃ N2Reducing and roasting for 2 hours in the atmosphere to obtain reducing and roasting clinker; mixing the reduction roasting clinker with water according to the solid-to-liquid ratio of 0.40 g/mL, and stirring and aging at 50 ℃ for 12 hours; transferring the aged material to a crystallization kettle, and carrying out hydrothermal crystallization for 5 hours at 90 ℃; and cooling and filtering the product, and washing and drying to obtain the magnetic zeolite.

Claims (6)

1. A method for preparing magnetic zeolite by utilizing red mud in cooperation with carbon-containing aluminum silicon waste is characterized by comprising the following steps: the method comprises the following steps:
firstly, mixing materials, namely respectively grinding and sieving red mud and carbon-containing aluminum-silicon waste to be smaller than 100 meshes, and then mixing the red mud and the carbon-containing aluminum-silicon waste with a sodium assistant in proportion to obtain a mixed material;
secondly, reducing and roasting, namely placing the mixed material in an atmosphere furnace to roast under a non-oxidizing atmosphere to obtain reducing and roasting clinker;
step three, aging, namely uniformly mixing the reduction roasting clinker with water according to a proportion, and stirring and aging;
and fourthly, crystallizing, namely transferring the aged material into a crystallization kettle, carrying out hydrothermal crystallization, cooling and filtering a product after the hydrothermal crystallization is finished, and washing and drying to obtain the magnetic zeolite.
2. The method for preparing magnetic zeolite by using red mud in cooperation with carbon-containing aluminum silicon waste according to claim 1, which is characterized in that: in the first step, the aluminum-silicon molar ratio of the red mud is more than 1, the aluminum-silicon molar ratio of the carbon-containing aluminum-silicon waste is less than 1, and the mass percentage content of iron oxide in the red mud is not less than 15%.
3. The method for preparing magnetic zeolite by using red mud in cooperation with carbon-containing aluminum silicon waste according to claim 1, which is characterized in that: in the first step, the red mud, the carbon-containing aluminum silicon waste and the sodium assistant are mixed according to the molar ratio of Na, Al and Si of the mixed material of 2.5:1: 1-5: 1: 1.
4. The method for preparing magnetic zeolite by using red mud in cooperation with carbon-containing aluminum silicon waste according to claim 1, which is characterized in that: in the second step, the roasting temperature is 500-900 ℃, and the roasting time is 0.5-3 h.
5. The method for preparing magnetic zeolite by using red mud in cooperation with carbon-containing aluminum silicon waste according to claim 1, which is characterized in that: in the third step, the solid-to-liquid ratio of the reduction roasting clinker to water is 0.2-0.5 g/ml, the aging temperature is 20-60 ℃, and the aging time is 1-12 hours.
6. The method for preparing magnetic zeolite by using red mud in cooperation with carbon-containing aluminum silicon waste according to claim 1, which is characterized in that: in the fourth step, the crystallization temperature is 80-110 ℃, and the crystallization time is 6-18 h.
CN202111452439.4A 2021-12-01 2021-12-01 Method for preparing magnetic zeolite by using red mud in cooperation with carbon-containing aluminum-silicon waste Pending CN114180588A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111452439.4A CN114180588A (en) 2021-12-01 2021-12-01 Method for preparing magnetic zeolite by using red mud in cooperation with carbon-containing aluminum-silicon waste

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111452439.4A CN114180588A (en) 2021-12-01 2021-12-01 Method for preparing magnetic zeolite by using red mud in cooperation with carbon-containing aluminum-silicon waste

Publications (1)

Publication Number Publication Date
CN114180588A true CN114180588A (en) 2022-03-15

Family

ID=80541085

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111452439.4A Pending CN114180588A (en) 2021-12-01 2021-12-01 Method for preparing magnetic zeolite by using red mud in cooperation with carbon-containing aluminum-silicon waste

Country Status (1)

Country Link
CN (1) CN114180588A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115849869A (en) * 2022-12-10 2023-03-28 佛山市雅博陶瓷发展有限公司 Composite energy-saving ecological stone and manufacturing method thereof
CN115869909A (en) * 2022-12-21 2023-03-31 贵州大学 Method for preparing magnetic porous biochar @ molecular sieve by modifying red mud
CN116715251A (en) * 2023-06-12 2023-09-08 山东建筑大学 Method for preparing magnetic molecular sieve by using low-grade iron tailings

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105331799A (en) * 2015-10-20 2016-02-17 山东建筑大学 Integrated calcination method for dealkalization and magnetization of Bayer process red mud
CN108483460A (en) * 2018-06-04 2018-09-04 陕西师范大学 A method of using gangue be raw material two-step method Synthesis of 4 A-type Zeolite by Hydrothermal
CN109200991A (en) * 2018-09-14 2019-01-15 太原理工大学 A kind of preparation method and applications of red mud one-step synthesis magnetic adsorbent
CN109433213A (en) * 2018-11-29 2019-03-08 山东大学 A kind of method of red mud selectivity dealkalize and enriched iron
CN111170330A (en) * 2020-01-02 2020-05-19 淮阴工学院 Method for preparing magnetic 4A zeolite by taking kaolin and red mud as raw materials
CN111170332A (en) * 2020-01-02 2020-05-19 淮阴工学院 Method for preparing magnetic ZSM-5 zeolite by using clay and red mud as raw materials as slightly soluble agent
CN111217562A (en) * 2020-02-28 2020-06-02 山东大学 Red mud-based sewage treatment agent and preparation method thereof, red mud-based ceramsite concrete and preparation method and application thereof
CN111498864A (en) * 2020-04-29 2020-08-07 河南科技大学 Magnetic zeolite material and preparation method and application thereof
CN112441815A (en) * 2020-12-04 2021-03-05 太原科技大学 Method for preparing microwave absorbing material by utilizing red mud and coal gangue and application thereof
CN112604647A (en) * 2020-12-14 2021-04-06 重庆大学 Preparation method of red mud-based strontium magnetic NaP zeolite adsorption material
CN113562740A (en) * 2021-09-02 2021-10-29 中国矿业大学(北京) Method for preparing zeolite molecular sieve by using gasified slag and red mud

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105331799A (en) * 2015-10-20 2016-02-17 山东建筑大学 Integrated calcination method for dealkalization and magnetization of Bayer process red mud
CN108483460A (en) * 2018-06-04 2018-09-04 陕西师范大学 A method of using gangue be raw material two-step method Synthesis of 4 A-type Zeolite by Hydrothermal
CN109200991A (en) * 2018-09-14 2019-01-15 太原理工大学 A kind of preparation method and applications of red mud one-step synthesis magnetic adsorbent
CN109433213A (en) * 2018-11-29 2019-03-08 山东大学 A kind of method of red mud selectivity dealkalize and enriched iron
CN111170330A (en) * 2020-01-02 2020-05-19 淮阴工学院 Method for preparing magnetic 4A zeolite by taking kaolin and red mud as raw materials
CN111170332A (en) * 2020-01-02 2020-05-19 淮阴工学院 Method for preparing magnetic ZSM-5 zeolite by using clay and red mud as raw materials as slightly soluble agent
CN111217562A (en) * 2020-02-28 2020-06-02 山东大学 Red mud-based sewage treatment agent and preparation method thereof, red mud-based ceramsite concrete and preparation method and application thereof
CN111498864A (en) * 2020-04-29 2020-08-07 河南科技大学 Magnetic zeolite material and preparation method and application thereof
CN112441815A (en) * 2020-12-04 2021-03-05 太原科技大学 Method for preparing microwave absorbing material by utilizing red mud and coal gangue and application thereof
CN112604647A (en) * 2020-12-14 2021-04-06 重庆大学 Preparation method of red mud-based strontium magnetic NaP zeolite adsorption material
CN113562740A (en) * 2021-09-02 2021-10-29 中国矿业大学(北京) Method for preparing zeolite molecular sieve by using gasified slag and red mud

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
张吉元: "赤泥-煤矸石协同还原焙烧回收Fe、Al 有价元素", 环境工程学报, vol. 15, no. 10, pages 3306 - 3315 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115849869A (en) * 2022-12-10 2023-03-28 佛山市雅博陶瓷发展有限公司 Composite energy-saving ecological stone and manufacturing method thereof
CN115849869B (en) * 2022-12-10 2023-08-22 佛山市雅博陶瓷发展有限公司 Manufacturing method of composite energy-saving ecological stone
CN115869909A (en) * 2022-12-21 2023-03-31 贵州大学 Method for preparing magnetic porous biochar @ molecular sieve by modifying red mud
CN116715251A (en) * 2023-06-12 2023-09-08 山东建筑大学 Method for preparing magnetic molecular sieve by using low-grade iron tailings
CN116715251B (en) * 2023-06-12 2024-01-23 山东建筑大学 Method for preparing magnetic molecular sieve by using low-grade iron tailings

Similar Documents

Publication Publication Date Title
CN114180588A (en) Method for preparing magnetic zeolite by using red mud in cooperation with carbon-containing aluminum-silicon waste
CN101875129B (en) Method for comprehensive utilization of high-iron bauxite
Jiang et al. Reaction behaviour of Al2O3 and SiO2 in high alumina coal fly ash during alkali hydrothermal process
CN105802282B (en) The method for preparing red hybrid pigment using red attapulgite stone clay
Bădănoiu et al. Synthesis and properties of new materials produced by alkaline activation of glass cullet and red mud
CN103614547B (en) Method for separating iron, aluminum and silicon from diasporic bauxite
US11767432B2 (en) Method for mechanochemical preparation of high-performance iron red/clay mineral hybrid pigment
CN105664843A (en) Method for preparing micro-nano hybrid mesoporous adsorbing microspheres by utilizing red attapulgite clay
CN109485062B (en) Low-temperature preparation method of lithium slag-based NaA molecular sieve
WO2019184637A1 (en) Calcium magnesium silicate thermal insulation material, preparation method therefor and use thereof
CN106315605B (en) The method that 1.1nm tobermorites are prepared using low-grade attapulgite clay
CN111320400A (en) Method for preparing high-gelling-activity steel slag by high-temperature reconstruction of calcium-aluminum components and application
CN104261421A (en) Hydrothermal method for preparing creamy white attapulgite
CN101306819B (en) Process for abstracting white carbon black from fly ash or slag
Feng et al. Green synthesis of the metakaolin/slag based geopolymer for the effective removal of methylene blue and Pb (II)
CN104108723A (en) Hydrothermal synthesis method of 4A molecular sieve from high-iron bauxite tailings
CN109354036A (en) A kind of preparation method of 4A molecular sieve
Yan et al. Feasible synthesis of magnetic zeolite from red mud and coal gangue: Preparation, transformation and application
CN113479902B (en) Method for synthesizing analcite from illite clay by hydrothermal-alkaline process and analcite
CN107892307B (en) Utilize the method for soda lime sintering process red mud alkaline process synthetic calcium silicate
CN110877911B (en) Synthesis method of magnetic Na-P type zeolite
CN107352554B (en) Preparation method and application of magnetic X-type molecular sieve
CN107986739B (en) Red mud slag building material and preparation method thereof
CN112316894B (en) Method for preparing magnetic mesoporous composite adsorbent by using natural mixed clay
CN1275860C (en) Technology for producing aluminium oxide

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination