CN114168887B - 一种计及铁心磁路分级的牵引变压器涡流损耗求解方法 - Google Patents

一种计及铁心磁路分级的牵引变压器涡流损耗求解方法 Download PDF

Info

Publication number
CN114168887B
CN114168887B CN202111238164.4A CN202111238164A CN114168887B CN 114168887 B CN114168887 B CN 114168887B CN 202111238164 A CN202111238164 A CN 202111238164A CN 114168887 B CN114168887 B CN 114168887B
Authority
CN
China
Prior art keywords
iron core
traction transformer
magnetic circuit
magnetic
eddy current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111238164.4A
Other languages
English (en)
Other versions
CN114168887A (zh
Inventor
周利军
李沃阳
袁帅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southwest Jiaotong University
Original Assignee
Southwest Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southwest Jiaotong University filed Critical Southwest Jiaotong University
Priority to CN202111238164.4A priority Critical patent/CN114168887B/zh
Publication of CN114168887A publication Critical patent/CN114168887A/zh
Application granted granted Critical
Publication of CN114168887B publication Critical patent/CN114168887B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/11Complex mathematical operations for solving equations, e.g. nonlinear equations, general mathematical optimization problems
    • G06F17/12Simultaneous equations, e.g. systems of linear equations
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/14Fourier, Walsh or analogous domain transformations, e.g. Laplace, Hilbert, Karhunen-Loeve, transforms
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/18Complex mathematical operations for evaluating statistical data, e.g. average values, frequency distributions, probability functions, regression analysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/34Special means for preventing or reducing unwanted electric or magnetic effects, e.g. no-load losses, reactive currents, harmonics, oscillations, leakage fields
    • H01F27/341Preventing or reducing no-load losses or reactive currents

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Data Mining & Analysis (AREA)
  • Theoretical Computer Science (AREA)
  • Databases & Information Systems (AREA)
  • Software Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Algebra (AREA)
  • Power Engineering (AREA)
  • Operations Research (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Evolutionary Biology (AREA)
  • Probability & Statistics with Applications (AREA)
  • Measuring Magnetic Variables (AREA)

Abstract

本发明公开了一种计及铁心磁路分级的牵引变压器涡流损耗求解方法,通过构建基于非线性媒质关系的硅钢片磁路关系方程,并引入低频率条件下趋肤效应可忽略的特性,针对铁心各级磁路长度互异的特点,提出了适用于铁心磁路分级的牵引变压器铁心涡流损耗的简化计算模型。本发明的有益效果在于有助于提出一种更符合材料物性和运行工况的涡流损耗评估方法,能为牵引变压器生产优化设计和服役性能测评提供必要的数据保障。

Description

一种计及铁心磁路分级的牵引变压器涡流损耗求解方法
技术领域
本发明属于电气设备电磁分析与数值计算领域,具体涉及一种计及铁心磁路分级的牵引变压器涡流损耗求解方法。
背景技术
随着我国综合国力迅速发展,交通运输越发便捷,高速铁路里程数跃居世界第一,电气化铁路成为了人们出行的重要选择。牵引变压器作为牵引供电系统中的核心设备,具备工作环境复杂、空载时间长的运行特点,对其铁心能耗进行研究有着重要的工程价值。而涡流损耗作为铁心能耗的重要组成之一,为对牵引变压器铁心损耗进行更加深入的研究,提出一种足够精确的牵引变压器涡流损耗求解方法具有迫切的工程意义。
磁路是类比于电路提出的概念,在铁磁性材料中,磁通经过的闭合路径叫做磁路。磁路分析的主要目的是,类比于电压电流关系,确定励磁磁通势和它所产生的磁通的关系。由于变压器卷绕形制,牵引变压器铁心各级的几何尺寸不同,将造成铁心各级磁路的磁阻互异,进而导致铁心各级磁场强度、磁通密度分布不均。在传统计算方法中,计算涡流损耗时通常将铁心视为均一化整体,数值上与平均磁通密度呈正相关,这种计算方法无法解释由于磁路分级造成的磁场分布不均,计算误差较大且无法精确描述铁心某一级的涡流损耗,不能满足牵引变压器发展对损耗计算精度更高的要求。为此,提出一种考虑牵引变压器磁路分级的涡流损耗计算公式显得尤为重要。
发明内容
本发明的目的是提供一种计及铁心磁路分级的牵引变压器涡流损耗求解方法,并通过如下技术手段实现:
1)由于电力电子设备的存在与铁心自身的非线性特征,导致励磁电流存在显著低次谐波分量,由于励磁电流函数满足狄利克雷充分条件,为分析其谐波性质对其进行傅里叶变换,展开式为:
Figure GDA0003694740320000011
式中励磁电流Ih被分解为直流分量
Figure GDA0003694740320000012
和相互正交的基波与各次谐波ancosnωt和bnsinnωt。由于供电系统电流不存在直流分量,并具有周期性质,在励磁电流一个周期内,可将上式简化为:
Figure GDA0003694740320000021
式中In表征为励磁电流基波与各次谐波的幅值,In数值依据傅里叶分解性质求得:
Figure GDA0003694740320000022
由于电网为平衡的三相系统,在平衡的三相系统中,偶次谐波互相抵消,可近似忽略励磁电流的偶次谐波,将其表达式简化为:
Figure GDA0003694740320000023
式中k∈{0,1,2,3…},由于谐波幅值与谐波次数呈反比,高次谐波幅值较小,计算仅考虑基波与3次、5次谐波作用,故进一步简化表达式得:
Ih(t)≈I1 sinωt+I3 sin 3ωt+I5 sin 5ωt
式中,Ih(t)代表牵引变压器的励磁电流,I1、I3、I5分别代表励磁电流经傅里叶分解后的基波分量幅值和3次、5次、n次谐波分量幅值,ω为角频率,它满足:ω=2πf,f为励磁频率,t为时间;
2)由于牵引变压器铁心所采用的硅钢片是冷轧取向型,其在卷绕过程中无论是在心柱、铁轭还是拐角,都与导磁性能最佳的方向保持一致,可将全电流定律
Figure GDA0003694740320000024
标量化为
Figure GDA0003694740320000025
式中H为磁场强度、N为线圈匝数、L为牵引变压器铁心横截面的几何中心所在磁路的长度。
同时,考虑牵引变压器铁心各级横截面几何中心所在磁路长度不同,对铁心各级磁场强度分别计算,由此将励磁电流表达式代入得到牵引变压器铁心各级磁场强度表达式:
Figure GDA0003694740320000031
式中,Hi(t)代表牵引变压器铁心第i级的磁场强度,N代表励磁绕组线圈总匝数,L为牵引变压器铁心横截面的几何中心所在磁路的长度,H1、H3、H5、Hn分别代表磁场强度经傅里叶分解后的基波分量幅值和3次、5次、n次谐波分量幅值,a和b分别代牵引变压器铁心磁路长度和磁路宽度,Ri代表第i级磁路弧段半径;
3)由于不同频率、不同幅值的磁场强度对应的硅钢片磁导率不同。依据磁导率计算公式
Figure GDA0003694740320000032
考虑牵引变压器铁心各级磁路基波磁场强度和3次、5次谐波磁场强度对应的磁导率互异,计算得到考虑磁路分级的牵引变压器铁心各级磁通密度表达式:
Figure GDA0003694740320000033
式中,Bi(t)为铁心各级的磁通密度,μi1、μi3和μi5分别代牵引变压器铁心第i级磁路磁场强度基波和3次、5次谐波对应的硅钢片磁导率;
4)涡流损耗通常通过求解麦克斯韦方程组的方法推导得到,当趋肤效应可以忽略时,假设铁心各级磁路内部磁感应强度均匀分布,根据电磁学对涡流损耗的定义,铁心各级磁路涡流损耗表达式为:
Figure GDA0003694740320000034
将推导得到的考虑磁路分级的牵引变压器铁心各级磁通密度表达式代入涡流损耗表达式中,并将铁心各级磁路涡流损耗求和,得到整个牵引变压器铁心考虑磁路分级的涡流损耗Ped表达式为:
Figure GDA0003694740320000035
式中σ为牵引变压器铁心材质的电导率,w为硅钢片厚度。
本发明的有益效果在于提出了一种更符合材料物性和运行工况的考虑磁路分级的牵引变压器涡流损耗计算方式,能为牵引变压器生产优化设计和服役性能测评提供必要的数据保障。
附图说明
图1为本发明中所述牵引变压器铁心磁路分级示意图。
具体实施方式
下面结合附图对本发明的实施流程作进一步的详述。由于电力电子设备的存在与铁心自身的非线性特征,导致励磁电流存在显著低次谐波分量,由于励磁电流函数满足狄利克雷充分条件,为分析其谐波性质对其进行傅里叶变换,展开式为:
Figure GDA0003694740320000041
式中励磁电流Ih被分解为直流分量
Figure GDA0003694740320000042
和相互正交的基波与各次谐波ancosnωt和bnsinnωt。由于供电系统电流不存在直流分量,并具有周期性质,在励磁电流一个周期内,可将上式简化为:
Figure GDA0003694740320000043
式中In表征为励磁电流基波与各次谐波的幅值,In数值依据傅里叶分解性质求得:
Figure GDA0003694740320000044
由于电网为平衡的三相系统,在平衡的三相系统中,偶次谐波互相抵消,可近似忽略励磁电流的偶次谐波,将其表达式简化为:
Figure GDA0003694740320000045
式中k∈{0,1,2,3…},由于谐波幅值与谐波次数呈反比,高次谐波幅值较小,计算仅考虑基波与3次、5次谐波作用,故进一步简化表达式得:
Ih(t)≈I1 sinωt+I3 sin 3ωt+I5 sin 5ωt
式中,Ih(t)代表牵引变压器的励磁电流,I1、I3、I5分别代表励磁电流经傅里叶分解后的基波分量幅值和3次、5次、n次谐波分量幅值,ω为角频率,它满足:ω=2πf,f为励磁频率,t为时间。
由于牵引变压器铁心所采用的硅钢片是冷轧取向型,其在卷绕过程中无论是在心柱、铁轭还是拐角,都与导磁性能最佳的方向保持一致,可将全电流定律
Figure GDA0003694740320000051
标量化为
Figure GDA0003694740320000052
式中H为磁场强度、N为线圈匝数、L为牵引变压器铁心横截面的几何中心所在磁路的长度。
同时,考虑牵引变压器铁心各级横截面几何中心所在磁路长度不同,对铁心各级磁场强度分别计算。
图1为本发明中所述牵引变压器铁心磁路分级示意图,图中以8级为例,由图可见,各级磁路均由四个矩形和四个四分之一圆构成,磁路长度可视为两倍铁心磁路长度、两倍铁心磁路宽度和圆周长之和,由此将励磁电流表达式代入得到牵引变压器铁心各级磁场强度表达式:
Figure GDA0003694740320000053
式中,Hi(t)代表牵引变压器铁心第i级的磁场强度,N代表励磁绕组线圈总匝数,L为牵引变压器铁心横截面的几何中心所在磁路的长度,H1、H3、H5、Hn分别代表磁场强度经傅里叶分解后的基波分量幅值和3次、5次、n次谐波分量幅值,a和b分别代牵引变压器铁心磁路长度和磁路宽度,Ri代表第i级磁路弧段半径。
由于不同频率、不同幅值的磁场强度对应的硅钢片磁导率不同。根据磁导率计算公式
Figure GDA0003694740320000054
考虑牵引变压器铁心各级磁路基波磁场强度和3次、5次谐波磁场强度对应的磁导率互异,计算得到考虑磁路分级的牵引变压器铁心各级磁通密度表达式:
Figure GDA0003694740320000061
式中,Bi(t)为铁心各级的磁通密度,μi1、μi3和μi5分别代牵引变压器铁心第i级磁路磁场强度基波和3次、5次谐波对应的硅钢片磁导率。
涡流损耗通常通过求解麦克斯韦方程组的方法推导得到,当趋肤效应可以忽略时,假设铁心各级磁路内部磁感应强度均匀分布,根据电磁学对涡流损耗的定义,铁心各级磁路涡流损耗表达式为:
Figure GDA0003694740320000062
将推导得到的考虑磁路分级的牵引变压器铁心各级磁通密度表达式代入涡流损耗表达式中,并将铁心各级磁路涡流损耗求和,得到整个牵引变压器铁心考虑磁路分级的涡流损耗Ped表达式为:
Figure GDA0003694740320000063
式中σ为牵引变压器铁心材质的电导率,w为硅钢片厚度。
本发明的有益效果在于提出了一种更符合材料物性和运行工况的考虑磁路分级的牵引变压器涡流损耗计算方式,能为牵引变压器生产优化设计和服役性能测评提供必要的数据保障。

Claims (1)

1.一种计及铁心磁路分级的牵引变压器涡流损耗求解方法,其特征在于,铁心材质为高导磁冷轧晶粒取向硅钢片,包括以下步骤:
1)依据牵引变压器实际工况,得到考虑铁心非线性特征的励磁电流表达式:
Figure FDA0003694740310000011
式中,Ih(t)代表牵引变压器的励磁电流,I1、I3、I5、In分别代表励磁电流经傅里叶分解后的基波分量幅值和3次、5次、n次谐波分量幅值,ω为角频率,它满足:ω=2πf,f为励磁频率,t为时间;
2)根据全电流定律,考虑磁路分级,得到考虑磁路分级的牵引变压器铁心各级磁场强度表达式:
Figure FDA0003694740310000012
式中,Hi(t)代表牵引变压器铁心第i级的磁场强度,N代表励磁绕组线圈总匝数,L为牵引变压器铁心横截面的几何中心所在磁路的长度,H1、H3、H5、Hn分别代表磁场强度经傅里叶分解后的基波分量幅值和3次、5次、n次谐波分量幅值,a和b分别代牵引变压器铁心磁路长度和磁路宽度,Ri代表第i级磁路弧段半径;
3)根据电磁学对磁导率的定义与(2),得到考虑磁路分级的牵引变压器铁心各级磁通密度表达式:
Figure FDA0003694740310000013
式中,Bi(t)为铁心各级的磁通密度,μi1、μi3和μi5分别代牵引变压器铁心第i级磁路磁场强度基波和3次、5次谐波对应的硅钢片磁导率;
4)根据(3)及电磁学对涡流损耗的定义,得到计及铁心磁路分级的牵引变压器平均涡流损耗Ped计算式:
Figure FDA0003694740310000014
式中σ为牵引变压器铁心材质的电导率,w为硅钢片厚度。
CN202111238164.4A 2021-10-25 2021-10-25 一种计及铁心磁路分级的牵引变压器涡流损耗求解方法 Active CN114168887B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111238164.4A CN114168887B (zh) 2021-10-25 2021-10-25 一种计及铁心磁路分级的牵引变压器涡流损耗求解方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111238164.4A CN114168887B (zh) 2021-10-25 2021-10-25 一种计及铁心磁路分级的牵引变压器涡流损耗求解方法

Publications (2)

Publication Number Publication Date
CN114168887A CN114168887A (zh) 2022-03-11
CN114168887B true CN114168887B (zh) 2022-07-26

Family

ID=80477244

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111238164.4A Active CN114168887B (zh) 2021-10-25 2021-10-25 一种计及铁心磁路分级的牵引变压器涡流损耗求解方法

Country Status (1)

Country Link
CN (1) CN114168887B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116127240B (zh) * 2022-11-22 2023-12-05 西南交通大学 一种牵引变压器卷铁心过负荷能力的评估方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112016204A (zh) * 2020-08-27 2020-12-01 西南交通大学 一种考虑自耦变压器卷铁心材料非线性磁性能的涡流损耗分析方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2019121991A (ru) * 2019-07-09 2021-01-12 Федеральное государственное бюджетное образовательное учреждение высшего образования Иркутский государственный университет путей сообщения (ФГБОУ ВО ИрГУПС) Способ определения потерь на вихревые токи и на гистерезис в трансформаторе
CN110399695B (zh) * 2019-07-31 2020-08-18 西南交通大学 一种考虑磁通密度不均匀分布的卷铁心涡流损耗评估方法
CN111931310B (zh) * 2020-08-28 2021-08-13 西南交通大学 一种考虑相异磁边值的卷铁心层间短路涡流损耗评估方法
CN112421932B (zh) * 2020-10-16 2021-09-24 大连理工大学 一种矿用永磁耦合器的涡流损耗功率计算方法
CN112632458B (zh) * 2020-12-23 2021-09-21 西南交通大学 一种计及铁心磁饱和的牵引变压器涡流损耗求解方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112016204A (zh) * 2020-08-27 2020-12-01 西南交通大学 一种考虑自耦变压器卷铁心材料非线性磁性能的涡流损耗分析方法

Also Published As

Publication number Publication date
CN114168887A (zh) 2022-03-11

Similar Documents

Publication Publication Date Title
CN112632458B (zh) 一种计及铁心磁饱和的牵引变压器涡流损耗求解方法
Zhao et al. Measurements and Calculation of Core-Based $ BH $ Curve and Magnetizing Current in DC-Biased Transformers
Chang et al. Characterization and modeling of soft magnetic materials for improved estimation of PWM-induced iron loss
CN112016204B (zh) 一种考虑自耦变压器卷铁心材料非线性磁性能的涡流损耗分析方法
Zagirnyak et al. A refined method for the calculation of steel losses at alternating current
CN114242425B (zh) 一种计及铁心磁路分级的牵引变压器磁滞损耗求解方法
CN114168887B (zh) 一种计及铁心磁路分级的牵引变压器涡流损耗求解方法
Zhu et al. A generalized dynamic circuit model of magnetic cores for low-and high-frequency applications. I. Theoretical calculation of the equivalent core loss resistance
Wang et al. Study for influence of harmonic magnetic fields on vibration properties of core of anode saturable reactor in HVDC converter valve system
Dawood et al. Numerical and experimental comparison of the no-load losses in the different grain-oriented electrical steel materials
Hane et al. Dynamic Hysteresis Modeling Taking Skin Effect Into Account for Magnetic Circuit Analysis and Validation for Various Core Materials
Wang et al. A Higher-Order Loss-Separation Model for Fast Estimation of Core Loss in High-Frequency Transformers
de la Barrière et al. Skin effect and losses in soft magnetic sheets: from low inductions to magnetic saturation
Li et al. Numerical Model for Eddy-current Loss of Wound Core in Single-Phase Transformer
Zhao et al. Calculation and validation of stray‐field loss in magnetic and non‐magnetic components under harmonic magnetizations based on TEAM Problem 21
Qin et al. Compatibility analysis among vector magnetic circuit theory, electrical circuit theory and electromagnetic field theory
Zhao et al. Study on dynamic hysteretic and loss properties of silicon steel sheet under hybrid harmonic and DC bias excitation
Cheng et al. Modeling and validation of stray-field loss inside magnetic and non-magnetic components under harmonics-DC hybrid excitations based on updated TEAM Problem 21
Jing et al. Iron Loss Calculation of High Frequency Transformer Based on A Neural Network Dynamic Hysteresis Model
Moses et al. Power loss of non oriented electrical steel under square wave excitation
Wang et al. Modeling of air gap magnetic characteristics of anode saturable reactors under impulse current excitation
Wang Calculation Method of Core Loss Under Intermediate Frequency Excitation
Ma et al. Notice of Retraction: Study on Eddy Current Loss of Core Tie-plate in Power Transformers
CN114297832B (zh) 一种计及频繁振动的牵引变压器磁滞损耗求解方法
Susnjic et al. Stray losses computation in power transformer

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant