CN114159582A - 改性nTiO2在缓解消化道脂质代紊乱中的应用 - Google Patents

改性nTiO2在缓解消化道脂质代紊乱中的应用 Download PDF

Info

Publication number
CN114159582A
CN114159582A CN202110996559.4A CN202110996559A CN114159582A CN 114159582 A CN114159582 A CN 114159582A CN 202110996559 A CN202110996559 A CN 202110996559A CN 114159582 A CN114159582 A CN 114159582A
Authority
CN
China
Prior art keywords
ntio
choline
metse
stirring
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110996559.4A
Other languages
English (en)
Inventor
王迪铭
蔡杰
臧新威
刘建新
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Publication of CN114159582A publication Critical patent/CN114159582A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/68Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment
    • A61K47/6801Drug-antibody or immunoglobulin conjugates defined by the pharmacologically or therapeutically active agent
    • A61K47/6803Drugs conjugated to an antibody or immunoglobulin, e.g. cisplatin-antibody conjugates
    • A61K47/6811Drugs conjugated to an antibody or immunoglobulin, e.g. cisplatin-antibody conjugates the drug being a protein or peptide, e.g. transferrin or bleomycin
    • A61K47/6815Enzymes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K33/00Medicinal preparations containing inorganic active ingredients
    • A61K33/24Heavy metals; Compounds thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/5005Wall or coating material
    • A61K9/5015Organic compounds, e.g. fats, sugars
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/5005Wall or coating material
    • A61K9/5021Organic macromolecular compounds
    • A61K9/5052Proteins, e.g. albumin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system

Landscapes

  • Health & Medical Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Public Health (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Medicinal Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Medicinal Preparation (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

本发明提了一种Choline修饰MetSe掺杂nTiO2的制备方法,以及该改性改性nTiO2结合肠羧酸酯酶2的分子位点Ces2hp.G148A能显著降低游离脂肪酸的生成,并维持肠道中甘油三酯和酯化胆固醇的浓度,从而保障其肠道脂质代谢的稳态。

Description

改性nTiO2在缓解消化道脂质代紊乱中的应用
技术领域
本发明涉及生物医学技术领域,尤其涉及改性nTiO2结合肠羧酸酯酶2的分子位点在缓解消化道脂质代谢紊乱方面的应用。
背景技术
肠道是外界环境接触人体的窗口,研究发现,儿童容易受到环境危害的影响,从而患上腹泻、食物中毒等由环境因素引起的肠道疾病。据报道,2015年有 526,000多名5岁以下儿童死于腹泻疾病,这是第二大死亡原因。
CES2是编码羧酸酯酶大家族的成员。该家族成员负责各种异生素(例如可卡因和海洛因)以及具有酯、硫酯或酰胺键的内源性底物的水解或酯交换反应。它们可能参与脂肪酰基和胆固醇酯的代谢,并可能在血脑屏障系统中起作用。该基因编码的蛋白质是主要的肠道酶,在肠道药物清除中起作用。
随着纳米技术的快速发展,纳米技术在社会生活各方面取得了巨大的应用,特别在生物医学和药物学领域,纳米材料的应用更是全面和深入的。纳米二氧化钛(nTiO2)是一种广泛使用和大量生产的纳米材料,它的光催化性能、杀菌作用和氧化还原活性促进了其在医药领域的广泛使用。然而,nTiO2可以自发产生电子- 空穴对,从而产生超氧阴离子(O2-)和羟基自由基(·OH),从而引发氧化还原反应。因此,研究肠道对nTiO2毒性的抵御机制,将为进一步开发无毒的nTiO2提供新的科学依据。
发明内容
本发明的目的是开发一种无毒的nTiO2其结合肠羧酸酯酶2的分子位点可以缓解消化道脂质代谢紊乱。
为实现发明目的,本发明采取如下的技术方案:
改性nTiO2在缓解消化道脂质代紊乱中的应用,其特征在于,改性nTiO2结合肠羧酸酯酶2的分子位点Ces2hp.G148A。
进一步地,所述改性nTiO2为Choline修饰MetSe掺杂nTiO2
本发明的另一目的在于所述改性nTiO2的制备方法,采取如下的技术方案:
改性nTiO2的制备方法,包括如下步骤:
1)MetSe-nTiO2纳米颗粒的制备
取蛋氨酸硒粉末,加入无水乙醇,超声震荡得分散体系A;再取乙酸乙酯,边搅拌边逐滴加入到分散系A中,搅拌,得到分散体系B;取醋酸和无水乙醇混合液,边搅拌边逐滴加入分散系B中,继续搅拌;离心分离沉淀物,分别用蒸馏水和无水乙醇清洗,室温下风干;用马弗炉焙烧,碾磨后,过滤、杀菌制得样品;
2)胆碱表面修饰
将碳酸氢钾溶入去离子水中,取碳酸氢钾溶液并使用氢氧化钾和盐酸调溶液 pH值;将胆碱加入所制得的碳酸溶液中,搅拌;将MetSe-TiO2纳米颗粒样品加入去离子水中进行超声分散;将所配制的MetSe-TiO2纳米颗粒悬液在超声的环境下逐滴加入到胆碱Choline溶液中,将混合溶液避光处理,在室温下持续搅拌;最后将制得的Choline-MetSe-TiO2纳米颗粒使用饱和碳酸氢钠溶液和去离子水清洗。
具体地,所述的改性nTiO2的制备方法,包括如下步骤:
1)MetSe-nTiO2纳米颗粒的制备
采用有机试剂沉积法,称取0.14g蛋氨酸硒粉末,加入50mL无水乙醇,超声震荡2h得分散体系A;再量取2.0mL乙酸乙酯,边搅拌边逐滴加入到A分散系中,用磁力搅拌仪搅拌30分钟,得到分散体系B;将体积比1:9的醋酸和无水乙醇混合液10mL,边搅拌边逐滴加入分散系B中,继续搅拌2h;离心分离沉淀物,分别用蒸馏水和无水乙醇清洗两遍,室温下风干;用马弗炉500℃焙烧6h,碾磨后,过滤、杀菌制得样品。
2)胆碱表面修饰
将1g碳酸氢钾溶入100mL的去离子水中,量取40mL碳酸氢钾溶液并使用氢氧化钾和盐酸将溶液pH值调为5.8;将2g胆碱加入所制得的碳酸溶液中,置于磁力搅拌器上搅拌;将MetSe-TiO2纳米颗粒样品加入5mL去离子水中进行超声分散。将所配制的MetSe-TiO2纳米颗粒悬液在超声的环境下逐滴加入到胆碱choline溶液中,将混合溶液避光处理,在室温下持续搅拌36h;最后将制得的 Choline-MetSe-TiO2纳米颗粒使用饱和碳酸氢钠溶液和去离子水各清洗2遍。
本发明的Choline-MetSe-nTiO2对小鼠肠道具有保护作用,与普通nTiO2相比,还能显著降低游离脂肪酸的生成,并维持肠道中甘油三酯和酯化胆固醇的浓度,从而保障其肠道脂质代谢的稳态。
附图说明
图1.A-D:口服普通nTiO2和光激发后的nTiO2后,小鼠消化道微生物菌落的组成变化;E:口服普通nTiO2和光激发后的nTiO2后,小鼠消化道微生物细菌的功能变化。
图2.A:口服普通nTiO2和光激发后的nTiO2后,小鼠小肠上皮发生差异表达的功能基因数量变化;B-C:口服普通nTiO2和光激发后的nTiO2对小鼠小肠上皮脂质代谢和稳态维持相关功能富集的影响。
图3.A:不同处理组条件下,小肠微生物的组成和消化道组织功能基因的表达量进行整合分析;B:响应nTiO2和光激发后nTiO2关键基因的筛选。
图4.A-B-D:口服普通nTiO2和光激发后的nTiO2后,小鼠小肠上皮脂质代谢产物的变化情况。
图5.A:运用molecular docking方法,解析Ces2响应nTiO2的作用方式和结合位点;B:通过体外细胞点突变的方式,确定Ces2响应nTiO2的作用方式和结合位点;图5C:进一步分析发现Ces2与其配体(己酸胆固醇酯)的氢键距离变远;图5D:催化三联体突变后,Ces2催化脂质代谢的效率降低,nTiO2可有效提升该条件下Ces2的催化效率,当进一步用紫外光激活nTiO2后,催化效率的提升更显著。
具体实施例
下面结合实施例对本发明做进一步说明。
实施例1
nTiO2改性方法可综合归纳为有机-无机试剂综合法,具体如下:
1)MetSe-nTiO2纳米颗粒的制备
采用有机试剂沉积法。称取0.14g蛋氨酸硒粉末,加入50mL无水乙醇,超声震荡2h得分散体系A。再量取2.0mL乙酸乙酯,边搅拌边逐滴加入到A分散系中,用磁力搅拌仪搅拌30分钟,得到分散体系B。将体积比1:9的醋酸和无水乙醇混合液10mL,边搅拌边逐滴加入分散系B中,继续搅拌2h。离心分离沉淀物,分别用蒸馏水和无水乙醇清洗两遍,室温下风干。用马弗炉500℃焙烧6h,碾磨后,过滤、杀菌制得样品。
2)胆碱(Choline)表面修饰
将1g碳酸氢钾溶入100mL的去离子水中,量取40mL碳酸氢钾溶液并使用氢氧化钾和盐酸将溶液pH值调为5.8。将2g胆碱加入所制得的碳酸溶液中,置于磁力搅拌器上搅拌。将MetSe-TiO2纳米颗粒样品加入5mL去离子水中进行超声分散。将所配制的MetSe-TiO2纳米颗粒悬液在超声的环境下逐滴加入到choline溶液中,将混合溶液避光处理,在室温下持续搅拌36h。最后将制得的Choline-MetSe-TiO2纳米颗粒使用饱和碳酸氢钠溶液和去离子水各清洗2遍。
验证试验:
获得的MetSe-nTiO2,以ICR小鼠为模型进行油酸修饰纳米二氧化钛的灌胃试验。每组10个小鼠,通过食道灌注生理盐水(对照组)、试验一组(常规的 nTiO2)和试验二组(Choline-MetSe-nTiO2),nTiO2剂量设定为0.2mmol/公斤代谢体重,每天灌注一次,试验期为14天,试验期结束后评估其是否会导致动物肠道脂质代谢紊乱,测定指标主要包括两部分:1)肠道Ces2基因和肠道完整性相关基因(PTEN、IGFBP5、PCNA和OCLN)的表达量;2)肠道脂质代谢相关参数(甘油三酯、游离脂肪酸、总胆固醇和酯化胆固醇),评估 Choline-MetSe-nTiO2的使用对肠道脂质代谢的扰动,具体结果见表1和表2,图 1至图5。
表1添加不同形式的TiO2对小鼠肠道功能基因表达量的影响(以b-actin为内参)
Figure RE-GDA0003492801280000041
表2添加不同形式的TiO2对小鼠肠道中脂质代谢的影响(以b-actin为内参)
Figure RE-GDA0003492801280000051
结果发现,与普通nTiO2相比,给小鼠灌注Choline-MetSe-nTiO2的脂代谢(Ces2)和紧密连接相关基因(PTEN、IGFBP5、PCNA和OCLN)的表达量显著变化,并与对照组保持一致(见表1),提示Choline-MetSe-nTiO2对小鼠肠道完成性具有保护作用。同时,与普通nTiO2相比,给小鼠灌注Choline-MetSe-nTiO2可显著降低游离脂肪酸的生成,并维持肠道中甘油三酯和酯化胆固醇的浓度(见表2),从而保障其肠道脂质代谢的稳态。
从如图1中可以看到通过口腔灌注nTiO2,小肠中的微生物菌群发生紊乱,发生改变的微生物菌落,主要功能均与脂代谢相关,提示nTiO2可使微生物脂质代谢发生紊乱,采用的方法为肠道微生物16srDNA测序。
从图2中可以看到:nTiO2灌注可显著调节小肠中功能基因表达的变化,表达量发生变化基因的功能也主要集中于脂类代谢,采用方法为肠道组织RNA-seq 测序。
从图3中可以看到:CES2功能基因在TiO2诱导的肠道脂质代谢紊乱中起主导作用,采用生物信息学分析,将肠道组织RNA-seq测序结果和肠道内容物 16srDNA测序结果进行整合。
图4中发明人进一步对nTiO2及用光激发后的nTiO2(UVnTiO2)对肠道组织脂质代谢和肠道微生物菌群进行研究,发现其脂代谢发生进一步紊乱,提示nTiO2主要通过肠道脂代谢紊乱导致肠道受损。同时,对CES2基因进行药物激活,发现药物激活后脂质代谢紊乱的情况发生好转,提示了CES2在预防肠道脂质代谢紊乱中发挥重要作用,小鼠试验设计与上所述相同,测定指标为肠道组织中的脂质代谢产物。
图5中通过运用molecular docking的方法进行了研究,发现CES2蛋白中的位点Ces2hp.G148A,在Ces2抵御nTiO2的入侵并缓解肠道脂肪酸代谢紊乱过程中起关键作用。Ces2hp.G148A的特征是:Ces2h基因的特征是在HGGX基序和邻近的催化三联体(Ser,Glu和His,图5A)中形成的氧阴离子空穴通过两步反应促进催化(图5B),其催化过程所需要能量来自·OH或O2-。己酸胆固醇酯是上述催化过程的配体,其催化位点是Ces2hp.G148A(图5C)。

Claims (4)

1.改性nTiO2在缓解消化道脂质代紊乱中的应用,其特征在于,改性nTiO2结合肠羧酸酯酶2的分子位点Ces2hp.G148A。
2.根据权利要求1所述的改性nTiO2在缓解消化道脂质代紊乱中的应用,其特征在于,改性nTiO2为Choline修饰MetSe掺杂nTiO2
3.改性nTiO2的制备方法,其特征在于包括如下步骤:
1)MetSe-nTiO2纳米颗粒的制备
取蛋氨酸硒粉末,加入无水乙醇,超声震荡得分散体系A;再取乙酸乙酯,边搅拌边逐滴加入到分散系A中,搅拌,得到分散体系B;取醋酸和无水乙醇混合液,边搅拌边逐滴加入分散系B中,继续搅拌;离心分离沉淀物,分别用蒸馏水和无水乙醇清洗,室温下风干;用马弗炉焙烧,碾磨后,过滤、杀菌制得样品;
2)胆碱表面修饰
将碳酸氢钾溶入去离子水中,取碳酸氢钾溶液并使用氢氧化钾和盐酸调溶液pH值;将胆碱加入所制得的碳酸溶液中,搅拌;将MetSe-TiO2纳米颗粒样品加入去离子水中进行超声分散;将所配制的MetSe-TiO2纳米颗粒悬液在超声的环境下逐滴加入到胆碱Choline溶液中,将混合溶液避光处理,在室温下持续搅拌;最后将制得的Choline-MetSe-TiO2纳米颗粒使用饱和碳酸氢钠溶液和去离子水清洗。
4.根据权利要求3所述的改性nTiO2的制备方法,其特征在于包括如下步骤:
1)MetSe-nTiO2纳米颗粒的制备
采用有机试剂沉积法,称取0.14g蛋氨酸硒粉末,加入50mL无水乙醇,超声震荡2h得分散体系A;再量取2.0mL乙酸乙酯,边搅拌边逐滴加入到A分散系中,用磁力搅拌仪搅拌30分钟,得到分散体系B;将体积比1:9的醋酸和无水乙醇混合液10mL,边搅拌边逐滴加入分散系B中,继续搅拌2h;离心分离沉淀物,分别用蒸馏水和无水乙醇清洗两遍,室温下风干;用马弗炉500℃焙烧6h,碾磨后,过滤、杀菌制得样品。
2)胆碱表面修饰
将1g碳酸氢钾溶入100mL的去离子水中,量取40mL碳酸氢钾溶液并使用氢氧化钾和盐酸将溶液pH值调为5.8;将2g胆碱加入所制得的碳酸溶液中,置于磁力搅拌器上搅拌;将MetSe-TiO2纳米颗粒样品加入5mL去离子水中进行超声分散。将所配制的MetSe-TiO2纳米颗粒悬液在超声的环境下逐滴加入到胆碱choline溶液中,将混合溶液避光处理,在室温下持续搅拌36h;最后将制得的Choline-MetSe-TiO2纳米颗粒使用饱和碳酸氢钠溶液和去离子水各清洗2遍。
CN202110996559.4A 2021-05-18 2021-08-27 改性nTiO2在缓解消化道脂质代紊乱中的应用 Pending CN114159582A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110541419 2021-05-18
CN2021105414198 2021-05-18

Publications (1)

Publication Number Publication Date
CN114159582A true CN114159582A (zh) 2022-03-11

Family

ID=80476545

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110996559.4A Pending CN114159582A (zh) 2021-05-18 2021-08-27 改性nTiO2在缓解消化道脂质代紊乱中的应用

Country Status (1)

Country Link
CN (1) CN114159582A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115120612A (zh) * 2022-05-10 2022-09-30 华南理工大学 纳米二氧化钛在调节肠道菌群中的新应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101456584A (zh) * 2008-12-03 2009-06-17 宿州学院 聚乙二醇-400改性的纳米TiO2粉末及制备方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101456584A (zh) * 2008-12-03 2009-06-17 宿州学院 聚乙二醇-400改性的纳米TiO2粉末及制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115120612A (zh) * 2022-05-10 2022-09-30 华南理工大学 纳米二氧化钛在调节肠道菌群中的新应用
CN115120612B (zh) * 2022-05-10 2024-01-30 华南理工大学 纳米二氧化钛在调节肠道菌群中的新应用

Similar Documents

Publication Publication Date Title
Zhang et al. Nanozyme-based catalytic theranostics
Zhang et al. The short-and long-term effects of orally administered high-dose reduced graphene oxide nanosheets on mouse behaviors
Ghorbani et al. Nanozyme antioxidants as emerging alternatives for natural antioxidants: Achievements and challenges in perspective
Bednarski et al. The influence of the route of administration of gold nanoparticles on their tissue distribution and basic biochemical parameters: in vivo studies
Joshi et al. Biofilm inhibition in Candida albicans with biogenic hierarchical zinc-oxide nanoparticles
Yang et al. Toxicity, biodistribution and oxidative damage caused by zirconia nanoparticles after intravenous injection
Yu et al. Carbon dots derived from folic acid as an ultra-succinct smart antimicrobial nanosystem for selective killing of S. aureus and biofilm eradication
CN112957457B (zh) 一种促进糖尿病伤口愈合的级联类酶纳米系统及其制备方法和应用
Xiao et al. Selenium nanoparticles inhibit the formation of atherosclerosis in apolipoprotein E deficient mice by alleviating hyperlipidemia and oxidative stress
Tian et al. Dietary whole Goji berry (Lycium barbarum) intake improves colonic barrier function by altering gut microbiota composition in mice
Ul Ashraf et al. Nanoreduction as a technology to exploit β-Glucan from cereal and fungal sources for enhancing its nutraceutical potential
CN114159582A (zh) 改性nTiO2在缓解消化道脂质代紊乱中的应用
WO2019242044A1 (zh) 碳和铜的复合纳米粒子的应用
Lesnichaya et al. Synthesis, toxicity evaluation and determination of possible mechanisms of antimicrobial effect of arabinogalactane-capped selenium nanoparticles
Zhang et al. Lactobacillus fermentum HNU312 alleviated oxidative damage and behavioural abnormalities during brain development in early life induced by chronic lead exposure
Zhao et al. Holothuria leucospilota polysaccharides alleviate liver injury via AMPK and NF-κB signaling pathways in type 2 diabetic rats
Wang et al. Therapeutic applications of nanozymes in chronic inflammatory diseases
Wang et al. Nanoparticles isolated from porcine bone soup ameliorated dextran sulfate sodium-induced colitis and regulated gut microbiota in mice
CN113855802B (zh) 一种仿生纳米诱饵及其制备方法和在脓毒症治疗中应用
Xiao et al. Long-term administration of low-dose selenium nanoparticles with different sizes aggravated atherosclerotic lesions and exhibited toxicity in apolipoprotein E-deficient mice
Lin et al. How to evaluate the potential toxicity of therapeutic carbon nanomaterials? A comprehensive study of carbonized nanogels with multiple animal toxicity test models
Rajendran et al. Toxicological evaluation of biosynthesised hematite nanoparticles in vivo
Xia et al. Ulcerative colitis alleviation of colon-specific delivered rhamnolipid/fullerene nanocomposites via dual modulation in oxidative stress and intestinal microbiome
Todorova et al. Drug-loaded silver nanoparticles—a tool for delivery of a mebeverine precursor in inflammatory bowel diseases treatment
Zeng et al. Black phosphorus quantum dots cause glucose metabolism disorder and insulin resistance in mice

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination