CN114153134A - Small-size space cold atomic clock device based on atom transports - Google Patents

Small-size space cold atomic clock device based on atom transports Download PDF

Info

Publication number
CN114153134A
CN114153134A CN202111337893.5A CN202111337893A CN114153134A CN 114153134 A CN114153134 A CN 114153134A CN 202111337893 A CN202111337893 A CN 202111337893A CN 114153134 A CN114153134 A CN 114153134A
Authority
CN
China
Prior art keywords
cavity
atoms
light
atom
atomic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202111337893.5A
Other languages
Chinese (zh)
Other versions
CN114153134B (en
Inventor
魏荣
赵伟靖
姬清晨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Institute of Optics and Fine Mechanics of CAS
Original Assignee
Shanghai Institute of Optics and Fine Mechanics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Institute of Optics and Fine Mechanics of CAS filed Critical Shanghai Institute of Optics and Fine Mechanics of CAS
Priority to CN202111337893.5A priority Critical patent/CN114153134B/en
Publication of CN114153134A publication Critical patent/CN114153134A/en
Application granted granted Critical
Publication of CN114153134B publication Critical patent/CN114153134B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G04HOROLOGY
    • G04FTIME-INTERVAL MEASURING
    • G04F5/00Apparatus for producing preselected time intervals for use as timing standards
    • G04F5/14Apparatus for producing preselected time intervals for use as timing standards using atomic clocks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/10Nuclear fusion reactors

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Stabilization Of Oscillater, Synchronisation, Frequency Synthesizers (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

A small space cold atomic clock device based on atomic transport comprises an atom capture cavity, a microwave resonant cavity and a detection area. By the method of action of a plurality of moving optical viscose pulses, rapid momentum exchange of cold atom clouds under space microgravity is realized, the cold atom clouds are rapidly transferred in a capture area, an action area and a detection area in 10 milliseconds, and the cold atom clouds can stay in a target area after being transferred. The whole time sequence of the atomic clock is realized in the transportation process by matching with the preparation of cold atoms, the microwave action and the detection time sequence. The invention has the advantages of simple structure, small volume, high performance index and the like.

Description

Small-size space cold atomic clock device based on atom transports
Technical Field
The invention relates to the field of space cold atomic clocks, realizes the rapid momentum exchange of cold atomic clouds by utilizing the action of mobile optical viscose, and has very important function in the related fields of space.
Background
In recent years, with the gradual exploration of space by human beings, in addition to the observation and research of the galaxy, the idea of being able to utilize the microgravity environment in space is gradually popularized, which involves performing some scientific experiments, such as time calibration. The realization of the calibration time has a positive relation with the development and the application of a space clock, and the space clock mainly utilizes the microgravity environment of the space different from the earth environment. Under the condition of microgravity environment, the atomic groups can realize linear motion at a nearly uniform speed. Compared with a cold atomic clock in the earth gravity environment, the precision of an atomic clock signal in the micro-gravity environment is higher, and the line width of a Lamrcy central spectral line obtained in the micro-gravity environment is nearly one order of magnitude narrower than that of a ground cold atomic fountain clock spectral line. And the space cold atomic clock can transmit signals to other satellite atomic clocks in the space without interference, so that the signals obtained by the space cold atomic clock are more accurate than those obtained by a clock group on the land. The successful development of the space cold atomic clock undoubtedly lays a good technical foundation for the development and application of various quantum sensitive devices (such as a space high-precision time-frequency system, a space cold atomic physical system, a space cold atomic interferometer, a space cold atomic gyroscope and the like), and makes important contributions in a series of important technical and scientific development aspects such as gravitational wave measurement, gravitational field measurement, some basic physical constants, global satellite navigation positioning and the like.
With regard to the development of the space cold atomic clock, great progress has been made in recent years, and various space cold atomic clock devices have been developed, including the common integrating sphere cold atomic clock and the field shift space cold atomic clock, wherein the cooling of the integrating sphere cold atomic clock is full light cooling, and a large magnetic field required when a magneto-optical trap is not required to capture cold atoms is not required, so that the power consumption is low, atoms in a larger speed range can be captured, and the cooling efficiency is high. But it can only absorb light in one direction, and we know that the light is transmitted in three-dimensional direction, so the luminous flux of the clock is low, and the utilization rate of the light is low; for the field shift space cold atomic clock, the field shift space cold atomic clock has small volume, light weight and convenient transportation, but just so, the difficulty of fixing atoms is higher and the field shift space cold atomic clock is not easy to realize.
Disclosure of Invention
The invention provides a device and a method for a space cold atomic clock based on atomic transport, which are used for making up the defects of the existing space cold atomic clock. The biggest difference between a transport type space cold atomic clock and a fountain clock running on the ground surface is that the ground surface atomic clock utilizes the factor of gravity to realize the speed change process of atoms, and under the condition of microgravity in space, the space clock realizes the transportation and the stay of cold atoms in different functional areas through an optical method, thereby completing the time sequence of the atomic clock. The invention adopts a method of adding mobile optical viscose to realize momentum exchange of atoms, and uses the light beam feed-in window existing in the atom capture area to repeatedly utilize the mobile optical viscose so that the atoms realize momentum exchange for many times. Therefore, the state selection process and the interaction process of atoms and microwaves are carried out in the microwave cavity, and the method has the advantages of simple structure, small volume, high performance index and the like.
The invention is realized by the following technical scheme:
a device of a small-sized space cold atomic clock based on atomic transport is characterized by comprising a vacuum cavity and an atom capture cavity wound with an external coil magnetic field, wherein an atom detection area and a microwave resonant cavity are arranged in the vacuum cavity, a magnetic shielding cavity is arranged outside the vacuum cavity, a plurality of feed-in windows are arranged on the capture cavity, a detection light incidence window and a fluorescence detection window are arranged in the atom detection area, and a microwave feed-in window is arranged on the microwave resonant cavity.
After the atoms are fed into the atom capturing cavity, the atoms are captured and cooled in the cavity through cooling light and pumping light fed in through a window for feeding in on the capturing cavity and an external coil magnetic field wound outside the cavity, and are thrown outwards, and the atoms directly pass through an atom detection area and reach a microwave resonant cavity, wherein the atom detection area and the microwave resonant cavity are positioned in a vacuum cavity of an external magnetic shielding cavity. The outward thrown radicals complete momentum exchange under the action of the mobile optical viscose generated by the capture cavity so as to stop the radicals in the microwave resonant cavity and realize state selection, then the atom group has the speed of moving to the right through the action of the moving optical viscose again, the microwave fed in through the microwave feeding window completes the first interaction between the atoms and the microwave, when the atoms leave the microwave resonant cavity for the first time, the atoms obtain the speed of moving leftwards due to momentum exchange, so that the atomic group reaches the microwave resonant cavity for the second time to complete the second interaction between the microwave and the atom, and after the interaction is finished, the atomic group leaves the microwave resonant cavity and reaches the atom detection area, the detection light fed in through the detection light incidence window interacts with the pumping light and atoms, and the fluorescence collection of upper and lower energy levels is carried out through the fluorescence detection window.
The window for feeding in on the trapping cavity is used for incidence of various light beams (including cooling light, pumping light and the like), observation of a CCD (charge coupled device), a rubidium source interface, an ion pump interface and the like.
The whole period of atom operation utilizes the mobile optical viscose for three times to realize momentum exchange of atoms, thereby realizing the process that the atoms can complete state selection and twice interaction with microwaves in one microwave cavity.
The atom detection area adopts a double-energy level detection method, four beams of light are needed, two beams of detection light, one beam of push light and one beam of pump light are needed: firstly, one beam of detection light is used for detecting the atom number of the upper energy level, then the pushing light is used for pushing the atoms of the upper energy level away, the pumping light is used for pumping the atoms of the lower energy level to the upper energy level, and finally the other beam of pumping light is used for detecting the lower energy level.
Compared with the prior art, the invention has the following beneficial effects:
1) can absorb light in multiple directions, and has high light utilization rate and high cooling efficiency.
2) Compared with a field-shifting type space cold atomic clock, on the basis of reducing the volume to a certain extent, the atoms are captured by adopting a magneto-optical trap method, so that the atoms are effectively fixed, and the reliability is greatly increased;
3) the process of interaction between the selected state and the microwave is placed in the microwave cavity, the structure is simpler, the implementation is easier, and some unnecessary noises caused by a complex system can be eliminated to a certain extent, which is particularly important for the accurate operation of the space clock.
4) Different from the existing device with mutually independent state selection cavity and microwave cavity, the device selects the state selection of atoms and the interaction between the atoms and the microwaves in the microwave cavity, and after the atoms reach the microwave cavity, the atoms are firstly selected and then interacted with the microwaves.
Drawings
Fig. 1 is a block diagram of a space cold atomic clock device.
Fig. 2 is a schematic diagram of the timing of the operation of atoms in a space cold atomic clock device.
Detailed Description
The following examples illustrate the invention in detail: the embodiment is implemented on the basis of the method of the space cold atom fountain clock, and a detailed implementation mode and a specific operation process are given, but the protection scope of the invention is not limited by the implementation mode.
Examples
Referring to fig. 1, fig. 1 is a block diagram of an apparatus of a space cold atomic clock based on an atomic fountain according to the present invention. As shown in fig. 1, the space cold atom system device of the present invention includes a vacuum chamber and an atom capture chamber wound with an external coil magnetic field, wherein an atom detection region and a microwave resonant cavity are arranged in the vacuum chamber, a magnetic shielding chamber is arranged outside the vacuum chamber, a plurality of windows for feeding are arranged on the capture chamber, a detection light incidence window and a fluorescence detection window are arranged on the atom detection region, and a microwave feeding window is arranged on the microwave resonant cavity. The position relationship is that after atoms are fed into an atom capturing cavity 3, cooling light and pumping light fed in through a window 7 for feeding in on the capturing cavity and an external coil magnetic field 2 wound outside the cavity are captured and cooled in the cavity and are thrown outwards, and the atoms directly pass through an atom detection area 4 to reach a microwave resonant cavity 5, wherein the atom detection area 4 and the microwave resonant cavity 5 are positioned in a vacuum cavity 1 of an external magnetic shielding cavity 6. The outward thrown radicals complete momentum exchange under the action of the mobile optical viscose generated by the capture cavity 3 so as to stop the radicals in the microwave resonant cavity 5 and realize state selection, then the atom group has the speed of moving to the right through the action of the moving optical viscose again, the microwaves fed in through the microwave infeed window 10 complete the first interaction of the atoms with the microwaves, and when the atoms leave the microwave cavity 5 for the first time, the atoms acquire a velocity moving to the left again due to momentum exchange, so that the atomic group reaches the microwave resonant cavity 5 for the second time to complete the second interaction of the microwave and the atoms, after the interaction is finished, the atomic group leaves the microwave resonant cavity 5 and reaches the atom detection area 4, the probe light fed through the probe light incidence window 8 interacts with the pump light and atoms, and the fluorescence of the upper and lower levels is collected through the fluorescence detection window 9.
The main process of the invention is as follows with reference to fig. 2:
atoms are fed into the trapping cavity through a rubidium source, but the atoms are in a discrete state at the moment, the atoms are bound to form atomic groups under the action of a three-dimensional magneto-optical trap, the temperature of the atoms is cooled to a Doppler cooling limit, then sub-Doppler cooling is realized under the action of optical viscose, and finally the temperature of the atoms is reduced to an experimental requirement range through post-cooling (figure 2 (1)); the atomic group obtains the initial throwing speed and is thrown to the right (figure 2(2)), the atom continuously moves forwards, the atom passes through the detection region for the first time (figure 2(3)), the interaction does not occur at the time, then the atom stops in the microwave cavity (figure 2(4)) under the action of the moving optical viscose, the state selection is firstly realized in the microwave cavity, the rightward speed is obtained under the action of the right-direction light beam and the first interaction is carried out with the microwave (figure 2(5)), after the action is finished, the atomic group leaves the microwave cavity and continuously advances, the atom obtains the leftward speed (figure 2(6)) under the action of the reverse force, then the atom enters the microwave cavity for the second time and carries out the second interaction with the microwave (figure 2(7)), the atom enters the detection region after the action is finished, the detection of the atom is realized by adopting the dual-energy detection method (figure 2(8)), so that the probability transition of the atom is obtained, and then some physical processes are solved.
In summary, the device and method of the space cold atomic clock based on atomic transport of the invention realize momentum exchange of atoms by using a multiple moving optical adhesive method, thereby realizing an action system with complete atoms and obtaining a detectable atomic transition probability. The invention simplifies the system, enhances the reliability and has high practical value.

Claims (4)

1. A device of a small-sized space cold atomic clock based on atomic transport is characterized by comprising a vacuum cavity (1) and an atom capture cavity (3) wound with an external coil magnetic field (2), wherein an atom detection area (4) and a microwave resonant cavity (5) are arranged in the vacuum cavity (1), a magnetic shielding cavity (6) is arranged outside the vacuum cavity (1), a plurality of windows (7) for feeding are arranged on the capture cavity (3), a detection light incidence window (8) and a fluorescence detection window (9) are arranged in the atom detection area (4), and a microwave feeding window (10) is arranged on the microwave resonant cavity (5);
after the atoms are fed into the atom capturing cavity (3), cooling light and pumping light fed in through a window (7) for feeding in on the capturing cavity and an external coil magnetic field (2) wound outside the cavity are used for completing capturing and cooling in the cavity and are thrown outwards, and the atoms directly pass through an atom detection region (4) and reach a microwave resonant cavity (5), wherein the atom detection region (4) and the microwave resonant cavity (5) are positioned in a vacuum cavity (1) of an external magnetic shielding cavity (6); the atomic groups thrown out outwards complete momentum exchange under the action of the mobile optical viscose generated by the capture cavity (3) so as to stop in the microwave resonant cavity (5) to realize state selection, then the atomic groups have a rightward motion speed under the action of the mobile optical viscose again, the microwaves fed in through the microwave feeding window (10) complete the first interaction of the atoms and the microwaves, when the atoms leave the microwave resonant cavity (5) for the first time, the atoms obtain a leftward motion speed again due to the momentum exchange, so that the atomic groups reach the microwave resonant cavity (5) for the second time to complete the second interaction of the microwaves and the atoms, after the interaction is finished, the atomic groups leave the microwave resonant cavity (5) to reach the atom detection area (4), and the detection light fed in through the detection light incidence window (8) interacts with the pumping light and the atoms, and simultaneously, the fluorescence collection of upper and lower energy levels is carried out through a fluorescence detection window (9).
2. The atomic transport based small space cold atomic clock device according to claim 1, wherein the windows (7) on the trapping cavities for feeding are used for incidence of various light beams (including cooling light, pumping light, etc.), observation of CCD, rubidium source interface and ion pump interface.
3. The atomic transport-based small space cold atomic clock device as claimed in claim 1, wherein the whole period of atomic operation is three times that the momentum exchange of atoms is realized by using the mobile optical viscose, so that the atoms can complete the processes of selecting states and interacting with microwaves twice in one microwave cavity.
4. The atomic transport based small space cold atomic clock device as claimed in claim 1, wherein said atomic detection region (4) adopts a dual-energy detection method, which requires four beams of light, two beams of detection light, one beam of pushing light and one beam of pumping light: firstly, one beam of detection light is used for detecting the atom number of the upper energy level, then the pushing light is used for pushing the atoms of the upper energy level away, the pumping light is used for pumping the atoms of the lower energy level to the upper energy level, and finally the other beam of pumping light is used for detecting the lower energy level.
CN202111337893.5A 2021-11-10 2021-11-10 Small-size space cold atomic clock device based on atom transports Active CN114153134B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111337893.5A CN114153134B (en) 2021-11-10 2021-11-10 Small-size space cold atomic clock device based on atom transports

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111337893.5A CN114153134B (en) 2021-11-10 2021-11-10 Small-size space cold atomic clock device based on atom transports

Publications (2)

Publication Number Publication Date
CN114153134A true CN114153134A (en) 2022-03-08
CN114153134B CN114153134B (en) 2023-02-10

Family

ID=80460083

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111337893.5A Active CN114153134B (en) 2021-11-10 2021-11-10 Small-size space cold atomic clock device based on atom transports

Country Status (1)

Country Link
CN (1) CN114153134B (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5528028A (en) * 1990-06-01 1996-06-18 Chu; Steven Frequency standard using an atomic stream of optically cooled atoms
US6255647B1 (en) * 1999-03-09 2001-07-03 Kernco, Inc. Atomic frequency standard based on coherent state preparation
CN1658095A (en) * 2005-03-10 2005-08-24 中国科学院上海光学精密机械研究所 Field-displacement space cold-vapour atomic clock
CN101846965A (en) * 2010-04-28 2010-09-29 北京大学 Method for pumping rubidium bubble for outputting standard frequency by lamp pump rubidium gas laser and rubidium atomic clock
CA2741772A1 (en) * 2010-05-26 2011-11-26 British Columbia Institute Of Technology Method and device for accurately measuring the incident flux of ambient particles in a high or ultra-high vacuum environment
CN109031923A (en) * 2018-07-23 2018-12-18 中国科学院上海光学精密机械研究所 Intracavitary cooled atomic clock
WO2020118798A1 (en) * 2018-12-12 2020-06-18 中国船舶重工集团公司第七一七研究所 Control method for rapid trapping and high-frequency opposite ejection of cold atomic group
CN112130444A (en) * 2020-10-12 2020-12-25 成都天奥电子股份有限公司 Fountain type cold atomic clock
CN212659318U (en) * 2020-07-22 2021-03-05 中国科学院精密测量科学与技术创新研究院 Speed-adjustable large beam cold atom source
CN212873222U (en) * 2020-07-31 2021-04-02 中国科学院国家授时中心 Small cold atomic clock device for timekeeping system

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5528028A (en) * 1990-06-01 1996-06-18 Chu; Steven Frequency standard using an atomic stream of optically cooled atoms
US6255647B1 (en) * 1999-03-09 2001-07-03 Kernco, Inc. Atomic frequency standard based on coherent state preparation
CN1658095A (en) * 2005-03-10 2005-08-24 中国科学院上海光学精密机械研究所 Field-displacement space cold-vapour atomic clock
CN101846965A (en) * 2010-04-28 2010-09-29 北京大学 Method for pumping rubidium bubble for outputting standard frequency by lamp pump rubidium gas laser and rubidium atomic clock
CA2741772A1 (en) * 2010-05-26 2011-11-26 British Columbia Institute Of Technology Method and device for accurately measuring the incident flux of ambient particles in a high or ultra-high vacuum environment
CN109031923A (en) * 2018-07-23 2018-12-18 中国科学院上海光学精密机械研究所 Intracavitary cooled atomic clock
WO2020118798A1 (en) * 2018-12-12 2020-06-18 中国船舶重工集团公司第七一七研究所 Control method for rapid trapping and high-frequency opposite ejection of cold atomic group
CN212659318U (en) * 2020-07-22 2021-03-05 中国科学院精密测量科学与技术创新研究院 Speed-adjustable large beam cold atom source
CN212873222U (en) * 2020-07-31 2021-04-02 中国科学院国家授时中心 Small cold atomic clock device for timekeeping system
CN112130444A (en) * 2020-10-12 2020-12-25 成都天奥电子股份有限公司 Fountain type cold atomic clock

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
NING ZHANG: "Michelson laser interferometer-based vibration noise contribution", 《CHIN.PHYS.B》 *
王新文等: "空间冷原子钟原位探测微波腔设计", 《中国激光》 *
边风刚等: "激光冷却铷原子喷泉钟的微波谐振腔设计", 《中国激光》 *

Also Published As

Publication number Publication date
CN114153134B (en) 2023-02-10

Similar Documents

Publication Publication Date Title
Srivastav et al. A highly digital multiantenna ground-penetrating radar (GPR) system
Lukin Noise radar technology
CN103472494B (en) Based on gravity potential three rank difference quotient survey sensor and the method thereof of intervening atom effect
Markov et al. Large-scale Cherenkov detectors in ocean, atmosphere and ice
CN103792535B (en) A kind of method utilizing SAR Satellite observation ionized layer TEC value
CN109781088A (en) A kind of the intervening atom gyroscope equipment and measurement method of miniaturization
CN109188360B (en) Indoor visible light three-dimensional positioning method based on bat algorithm
CN103983981A (en) Three-dimensional compressed imaging method and device based on phase position distance measurement principle
CN104697512A (en) Diamond color center gyroscope based on Aharonov-Anandan geometric phase and angular velocity measuring method
CN105674972A (en) Miniature combined uniaxial cold atom inertial sensor and measuring method thereof
CN105676212B (en) A kind of short range range radar system and the target measuring method based on the system
CN114153134B (en) Small-size space cold atomic clock device based on atom transports
Kocherlakota et al. Gravitomagnetism and pulsar beam precession near a Kerr black hole
CN101943753A (en) Method for measuring microwave radar beam central transverse velocity
CN112904351B (en) Single-source positioning method based on quantum entanglement light correlation characteristic
CN112130444B (en) Fountain type cold atomic clock
Ando et al. Neutrino oscillations, Lorentz/C P T violation, and dark energy
CN103954390B (en) Linear frequency modulation double light beam laser process of heterodyning and Inertia Based on Torsion Pendulum Method is adopted to measure the device of micro-momentum and the measuring method of this device
CN104849769A (en) System and method of three-dimension range imaging
CN103308912B (en) Coherent tracking-before-detection method based on compressive sensing
CN209706745U (en) A kind of mobile device of the measurement charging ratio based on laser sensor
Yu et al. Single photon detection for dynamic targets
Huang et al. A Robust Indoor High-precision Positioning Method Based on Arrayed Pseudolites
CN204065408U (en) A kind of range finder using laser terminal module
Yang et al. [Retracted] Research on Acquisition and Tracking Algorithm of Global Satellite Positioning Receiver Based on UWB

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant