CN114149481A - Preparation method of low-salt high-quality acid hydrolyzed vegetable protein - Google Patents

Preparation method of low-salt high-quality acid hydrolyzed vegetable protein Download PDF

Info

Publication number
CN114149481A
CN114149481A CN202111545184.6A CN202111545184A CN114149481A CN 114149481 A CN114149481 A CN 114149481A CN 202111545184 A CN202111545184 A CN 202111545184A CN 114149481 A CN114149481 A CN 114149481A
Authority
CN
China
Prior art keywords
salt high
low
raw material
solution
quality
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202111545184.6A
Other languages
Chinese (zh)
Inventor
张红艳
何剑飞
郝祥蕊
於慧利
韩粉丽
顾明月
于秋生
冯镇泰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Nong Le Biological Products Co ltd
Original Assignee
Shanghai Nong Le Biological Products Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Nong Le Biological Products Co ltd filed Critical Shanghai Nong Le Biological Products Co ltd
Priority to CN202111545184.6A priority Critical patent/CN114149481A/en
Publication of CN114149481A publication Critical patent/CN114149481A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/14Extraction; Separation; Purification
    • C07K1/30Extraction; Separation; Purification by precipitation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/12General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length by hydrolysis, i.e. solvolysis in general

Abstract

The invention discloses a preparation method of low-salt high-quality acid hydrolyzed vegetable protein, belonging to the technical field of vegetable protein purification and comprising the following steps: defatting vegetable protein material, acid hydrolyzing for 18-24 hr to obtain hydrolysate, and mixing to 20-40% to obtain slurry; adding hydrogen peroxide solution into the filtrate to obtain mixed solution, reacting at 60-80 deg.C for 30-60min, adding catalase into the mixed solution, and reacting in water bath for 10-30min to obtain reaction solution; transferring the reaction liquid into an ionic liquid aqueous two-phase system, oscillating for 10-30min at constant temperature under the conditions of 20-40 ℃ and 300r/min, standing for 10-30min for layering, taking the upper-layer liquid, drying and crushing the residual materials after rotary evaporation, and obtaining the low-salt high-quality acid hydrolyzed plant protein. The quality of the product prepared by the method is far higher than the industrial standard and the current commercial product.

Description

Preparation method of low-salt high-quality acid hydrolyzed vegetable protein
Technical Field
The invention belongs to the technical field of plant protein purification, and particularly relates to a preparation method of low-salt high-quality acid hydrolyzed plant protein.
Background
The acid hydrolyzed vegetable protein is mainly a substance rich in flavor amino acid obtained by degrading food rich in vegetable protein with acid and neutralizing. The material with the taste-enhancing function is prepared by using defatted soybean meal, peanut meal, wheat protein meal (gluten), corn protein meal, rice protein meal and the like containing edible plant protein as raw materials through hydrochloric acid hydrolysis and alkali neutralization, and is widely applied to the fields of seasonings, leisure food, agriculture and the like. At present, the process for industrially preparing plant-derived acid hydrolyzed plant protein products generally comprises the steps of hydrolyzing crude raw materials rich in plant proteins by concentrated hydrochloric acid, adding alkali for neutralization, and degrading the plant proteins to the amino acids forming the plant proteins by acid hydrolysis, wherein the method has the advantages of thorough hydrolysis, economy and high efficiency, but has the inevitable defects, such as: the product has more impurities, carbohydrate generates burnt flavor after high-temperature hydrolysis, the taste is seriously influenced, and the hydrolyzed carbohydrate and protein have Maillard reaction to cause dark color of feed liquid and influence the use of the product; the product has high impurity content and low amino acid content, and the taste of the impurity can influence the taste of the amino acid, so that the delicate flavor is not prominent; due to the acidolysis neutralization process, the salt content in the product is extremely high, which is not in accordance with the concept of healthy life and limits the use of the product; in addition, the residual fat in the raw material forms more 3-chloropropanol in the acidolysis process, and the high-dose 3-chloropropanol has physiological toxicity and can induce tumors to cause the damage of the kidney and the reproductive system.
Therefore, under the condition of not changing the characteristics of the plant-derived acid-hydrolyzed plant protein product, the method reduces the content of impurities and salt in the product, and improves the purity and safety of amino acid, thereby having great significance for the application of the acid-hydrolyzed plant protein product.
Disclosure of Invention
The invention aims to provide a preparation method of low-salt high-quality acid hydrolyzed plant protein, which aims to solve the problems in the background technology.
The purpose of the invention can be realized by the following technical scheme: a preparation method of low-salt high-quality acid hydrolyzed vegetable protein comprises the following steps:
the method comprises the following steps: crushing a vegetable protein raw material, sieving the crushed raw material by a sieve of 80-100 meshes to obtain raw material powder, flatly paving the raw material powder in an enamel tray, transferring the raw material powder to an oven, drying the raw material powder for 24-30h at the temperature of 60-65 ℃, cooling, leaching the raw material powder for 2-3h at the temperature of 20-22 ℃ by using a leaching solution, performing filter pressing after the first leaching, washing, and taking a precipitate; mixing the precipitate obtained by the first extraction with 95% ethanol solution, extracting at 20-22 deg.C for 1-1.5h, centrifuging the mixed solution at 3000-3500g for 30-50min, collecting the precipitate obtained by the second extraction, vacuum freeze drying, drying at 75-85 deg.C for 30-40min, and pulverizing with pulverizer to obtain defatted powder;
the thickness of the raw material powder which is flatly spread during drying is 2-4 mm; the leaching liquor is processed by using normal hexane and 95% ethanol solution according to the mass fraction of 1 mL: 2mL of the mixture is mixed to prepare the composition;
step two: diluting concentrated hydrochloric acid with mass fraction of 37% with water, mixing with degreased material powder, performing acid hydrolysis at 100-120 deg.C for 18-24h to obtain hydrolysate, measuring solid content in the hydrolysate, and mixing to 20-40% to obtain slurry; the dosage ratio of the degreased material powder to the concentrated hydrochloric acid to the water is 1 kg: 1.5-3 kg: 3-5 kg;
step three: adding activated carbon into the slurry, stirring at 60-80 deg.C for 30min, and vacuum filtering to obtain filtrate; the dosage ratio of the active carbon to the slurry is 57-62 g: 100 kg;
step four: adding 50% hydrogen peroxide solution to the filtrate to obtain a mixed solution, reacting at 60-80 deg.C for 30-60min, adding catalase to the mixed solution, and reacting at 30-60 deg.C in water bath for 10-30min to obtain a reaction solution; the dosage ratio of the filtrate, the hydrogen peroxide solution and the catalase is 1 kg: 5-20 g: 1-5 g;
step five: regulating the pH value of the reaction solution to 4-6 by using 15% hydrochloric acid by mass, transferring the reaction solution into an ionic liquid aqueous two-phase system, oscillating for 10-30min at a constant temperature of 20-40 ℃ under the condition of 100-300r/min, standing for 10-30min for layering, enriching the protein into upper liquid, carrying out rotary evaporation on the upper liquid to recover the solvent for reuse, taking out the residual material, drying and crushing to obtain the low-salt high-quality acid hydrolyzed plant protein;
further, in the first step, the vegetable protein raw material is one or more of bean pulp, peanut pulp, corn pulp and wheat pulp which are mixed according to any proportion;
further, the ionic liquid aqueous two-phase system in the fourth step is prepared by using 1-butyl-3-methylimidazolium chloride and K2HPO4Mixed with water, 1-butyl-3-methylimidazolium chloride, K2HPO4And water in an amount ratio of 300-400 mg: 100-200 mg: 1 mL;
further, in the fifth step, the dosage ratio of the mixed solution in the reaction solution and the ionic liquid aqueous two-phase system is 50-100 mg: 1L of the compound.
The invention has the beneficial effects that:
in the preparation method of the low-salt high-quality acid hydrolysis vegetable protein, the vegetable protein raw material is pretreated, the oil in the vegetable protein raw material is further removed, the residual oil is prevented from generating 3-chloropropanol in the acid hydrolysis process, the content of the 3-chloropropanol in a final product is effectively reduced, and the carcinogenic risk of the product approaches zero.
In the ionic liquid aqueous two-phase extraction process, inorganic salt enters a mixed solution of ionic liquid and water to ionize anions and cations, and under a certain inorganic salt concentration, more and more ionic liquid organic cations and inorganic anions in the solution can separate from a brine phase and float upwards to form an independent phase, so that the separation of a target object from the brine phase and the enrichment in the ionic liquid phase are realized; during phase formation, amino acid and small peptide float upwards to form phase and exist in the upper layer liquid, and the removed impurities, such as chloride ions, 3-chloropropanol, partial pigment and the like, are deposited in the lower layer liquid and are separated and removed.
The total nitrogen content of the low-salt high-quality acid hydrolyzed plant protein prepared by the method is more than or equal to 13 percent, the amino acid nitrogen content is more than or equal to 8.5 percent, the ash content is less than or equal to 5 percent, and the 3-chloropropanol content is less than or equal to 0.1mg/kg, and the quality of the finally obtained product is far higher than the industrial standard and the product sold in the market at present. In addition, the preparation method is simple and feasible, can meet the requirements of both laboratory preparation and industrial production, and has important popularization and application values.
Drawings
The invention will be further described with reference to the accompanying drawings.
FIG. 1 is a flow chart of a method for preparing a low-salt high-quality acid hydrolyzed plant protein of the present invention.
Detailed Description
The technical solutions in the embodiments of the present invention will be clearly and completely described below with reference to the embodiments of the present invention, and it is obvious that the described embodiments are only a part of the embodiments of the present invention, and not all of the embodiments. All other embodiments, which can be derived by a person skilled in the art from the embodiments given herein without making any creative effort, shall fall within the protection scope of the present invention.
Example 1
Referring to fig. 1, a low-salt high-quality acid hydrolyzed plant protein is prepared, including the following steps:
the method comprises the following steps: crushing the soybean meal, sieving the crushed soybean meal by a 90-mesh sieve to obtain raw material powder, flatly paving the raw material powder in an enamel tray, transferring the raw material powder to a drying oven, controlling the thickness of the raw material powder to be 3mm, drying the raw material powder for 27 hours at the temperature of 62 ℃, cooling, leaching the raw material powder for 2.5 hours at the temperature of 21 ℃, performing filter pressing after primary leaching, and taking a precipitate;
mixing the precipitate obtained by the first leaching with 95% ethanol solution, leaching at 21 deg.C for 1.2h, centrifuging the mixed solution at 3200g for 40min, collecting the precipitate obtained by the second leaching, vacuum freeze drying, drying at 80 deg.C for 35min, and pulverizing to obtain defatted powder;
diluting 2kg of concentrated hydrochloric acid with mass fraction of 37% by using 4kg of water, mixing the diluted concentrated hydrochloric acid with 1kg of degreased material powder, performing acid hydrolysis for 24 hours at 100 ℃ to obtain hydrolysate, and mixing the hydrolysate to 20% to obtain slurry;
step two: adding 20g of activated carbon into the slurry, stirring for 15min at the temperature of 60 ℃, and performing suction filtration to obtain a filtrate;
step three: adding 5g of 50% hydrogen peroxide solution into 1kg of filtrate to obtain a mixed solution, decoloring at 60 ℃ for 30min, adding 3g of catalase into the mixed solution, reacting at 30 ℃ in a water bath for 10min, and removing redundant hydrogen peroxide to obtain a reaction solution;
step four: 1-butyl-3-methylimidazolium chloride salt and K2HPO4Mixing with water to make the concentration of chloride ion in the mixed solution 350mg/mL, K2HPO4The concentration is 130mg/mL, and mixed liquid of an ionic liquid double-water-phase system is prepared;
step five: adjusting the pH of the reaction solution to 6 by using 15% hydrochloric acid by mass, transferring the reaction solution into an ionic liquid aqueous two-phase system, oscillating for 20min at constant temperature under the conditions of 30 ℃ and 200r/min, standing for 20min for layering, taking the upper layer liquid, putting the upper layer liquid into a rotary evaporator for rotary evaporation to recover the solvent for reuse, taking out the residual material from a concentration ball, drying and crushing to obtain the low-salt high-quality acid hydrolyzed vegetable protein.
Example 2
Referring to fig. 1, a low-salt high-quality acid hydrolyzed plant protein is prepared, including the following steps:
the method comprises the following steps: crushing peanut meal, sieving with a 90-mesh sieve to obtain raw material powder, flatly paving the raw material powder in an enamel tray, transferring the raw material powder to a drying oven, controlling the thickness of the raw material powder to be 3mm, drying the raw material powder for 27 hours at the temperature of 62 ℃, cooling, leaching for 2.5 hours at the temperature of 21 ℃ with a leaching solution, performing filter pressing after primary leaching, and taking a precipitate;
mixing the precipitate obtained by the first leaching with 95% ethanol solution, leaching at 21 deg.C for 1.2h, centrifuging the mixed solution at 3200g for 32min, collecting the precipitate obtained by the second leaching, vacuum freeze drying, drying at 80 deg.C for 35min, and pulverizing to obtain defatted powder;
diluting 2kg of concentrated hydrochloric acid with mass fraction of 37% by using 4kg of water, mixing the diluted concentrated hydrochloric acid with 1kg of degreased powder, performing acid hydrolysis for 24 hours at 100 ℃ to obtain hydrolysate, and mixing the hydrolysate to 20% to obtain slurry;
step two: adding 20g of activated carbon into the slurry, stirring for 15min at the temperature of 60 ℃, and performing suction filtration to obtain a filtrate;
step three: adding 5g of 50% hydrogen peroxide solution into 1kg of filtrate to obtain a mixed solution, decoloring at 60 ℃ for 30min, adding 3g of catalase into the mixed solution, reacting at 30 ℃ in a water bath for 10min, and removing redundant hydrogen peroxide to obtain a reaction solution;
step four: 1-butyl-3-methylimidazolium chloride salt and K2HPO4Mixing with water to make the concentration of chloride ion in the mixed solution 350mg/mL, K2HPO4The concentration is 130mg/mL, and mixed liquid of an ionic liquid double-water-phase system is prepared;
step five: adjusting the pH of the reaction solution to 6 by using 15% hydrochloric acid by mass, transferring the reaction solution into an ionic liquid aqueous two-phase system, oscillating for 20min at constant temperature under the conditions of 30 ℃ and 200r/min, standing for 20min for layering, taking the upper layer liquid, putting the upper layer liquid into a rotary evaporator for rotary evaporation to recover the solvent for reuse, taking out the residual material from a concentration ball, drying and crushing to obtain the low-salt high-quality acid hydrolyzed vegetable protein.
Example 3
Referring to fig. 1, a low-salt high-quality acid hydrolyzed plant protein is prepared, including the following steps:
the method comprises the following steps: crushing the soybean meal, sieving the crushed soybean meal by a 90-mesh sieve to obtain raw material powder, flatly paving the raw material powder in an enamel tray, transferring the raw material powder to a drying oven, controlling the thickness of the raw material powder to be 3mm, drying the raw material powder for 27 hours at the temperature of 62 ℃, cooling, leaching the raw material powder for 2.5 hours at the temperature of 21 ℃, performing filter pressing after primary leaching, and taking a precipitate;
mixing the precipitate obtained by the first leaching with 95% ethanol solution, leaching at 21 deg.C for 1.2h, centrifuging the mixed solution at 3200g for 40min, collecting the precipitate obtained by the second leaching, vacuum freeze drying, drying at 80 deg.C for 35min, and pulverizing to obtain defatted powder;
diluting 1.5kg of concentrated hydrochloric acid with mass fraction of 37% by using 4kg of water, mixing the diluted concentrated hydrochloric acid with 1kg of degreased powder, performing acid hydrolysis for 24 hours at 100 ℃ to obtain hydrolysate, and mixing the hydrolysate to 20% to obtain slurry;
step two: adding 20g of activated carbon into the slurry, stirring for 15min at the temperature of 60 ℃, and performing suction filtration to obtain a filtrate;
step three: adding 5g of 50% hydrogen peroxide solution into 1kg of filtrate to obtain a mixed solution, decoloring at 60 ℃ for 30min, adding 3g of catalase into the mixed solution, reacting at 30 ℃ in a water bath for 10min, and removing redundant hydrogen peroxide to obtain a reaction solution;
step four: 1-butyl-3-methylimidazolium chloride salt and K2HPO4Mixing with water to make the concentration of chloride ion in the mixed solution 350mg/mL, K2HPO4The concentration is 130mg/mL, and mixed liquid of an ionic liquid double-water-phase system is prepared;
step five: adjusting the pH of the reaction solution to 6 by using 15% hydrochloric acid by mass, transferring the reaction solution into an ionic liquid aqueous two-phase system, oscillating for 20min at constant temperature under the conditions of 30 ℃ and 200r/min, standing for 20min for layering, taking the upper layer liquid, putting the upper layer liquid into a rotary evaporator for rotary evaporation to recover the solvent for reuse, taking out the residual material from a concentration ball, drying and crushing to obtain the low-salt high-quality acid hydrolyzed vegetable protein.
Example 4
Referring to fig. 1, a low-salt high-quality acid hydrolyzed plant protein is prepared, including the following steps:
the method comprises the following steps: crushing the soybean meal, sieving with a 80-mesh sieve to obtain raw material powder, flatly paving the raw material powder in an enamel tray, transferring the raw material powder to an oven, controlling the thickness of the raw material powder to be 2mm, drying the raw material powder for 24 hours at the temperature of 60 ℃, cooling, leaching the raw material powder for 2 hours at the temperature of 20 ℃ with a leaching solution, performing filter pressing after primary leaching, and taking a precipitate;
mixing the precipitate obtained by the first extraction with 95% ethanol solution, extracting at 20 deg.C for 1h, centrifuging the mixed solution at 3000g for 30min, collecting the precipitate obtained by the second extraction, vacuum freeze drying, drying at 75 deg.C for 30min, and pulverizing with pulverizer to obtain defatted powder;
diluting 2kg of concentrated hydrochloric acid with mass fraction of 37% by using 4kg of water, mixing the diluted concentrated hydrochloric acid with 1kg of plant powder, performing acid hydrolysis for 24 hours at 100 ℃ to obtain hydrolysate, and mixing the hydrolysate to 20% to obtain slurry;
step two: adding 20g of activated carbon into the slurry, stirring for 15min at the temperature of 60 ℃, and performing suction filtration to obtain a filtrate;
step three: adding 5g of 50% hydrogen peroxide solution into 1kg of filtrate to obtain a mixed solution, decoloring at 60 ℃ for 30min, adding 3g of catalase into the mixed solution, reacting at 30 ℃ in a water bath for 10min, and removing redundant hydrogen peroxide to obtain a reaction solution;
step four: 1-butyl-3-methylimidazolium chloride salt and K2HPO4Mixing with water to make the concentration of chloride ion in the mixed solution 300mg/mL, K2HPO4The concentration is 100mg/mL, and mixed liquid of an ionic liquid double-water-phase system is prepared;
step five: adjusting the pH of the reaction solution to 6 by using 15% hydrochloric acid by mass, transferring the reaction solution into an ionic liquid aqueous two-phase system, oscillating for 20min at constant temperature under the conditions of 30 ℃ and 200r/min, standing for 20min for layering, taking the upper layer liquid, putting the upper layer liquid into a rotary evaporator for rotary evaporation to recover the solvent for reuse, taking out the residual material from a concentration ball, drying and crushing to obtain the low-salt high-quality acid hydrolyzed vegetable protein.
Example 5
Referring to fig. 1, a low-salt high-quality acid hydrolyzed plant protein is prepared, including the following steps:
the method comprises the following steps: crushing corn meal, sieving with a 90-mesh sieve to obtain raw material powder, flatly paving the raw material powder in an enamel tray, transferring the raw material powder to a drying oven, controlling the thickness of the raw material powder to be 3mm, drying the raw material powder for 27 hours at the temperature of 62 ℃, cooling, leaching for 2.5 hours at the temperature of 21 ℃ with a leaching solution, performing filter pressing after primary leaching, and taking a precipitate;
mixing the precipitate obtained by the first leaching with 95% ethanol solution, leaching at 21 deg.C for 1.2h, centrifuging the mixed solution at 3200g for 40min, collecting the precipitate obtained by the second leaching, vacuum freeze drying, drying at 80 deg.C for 35min, and pulverizing to obtain defatted powder;
crushing 1kg of corn meal by using a crusher, diluting 1.5kg of concentrated hydrochloric acid with the mass fraction of 37% by using 3kg of water, mixing the diluted concentrated hydrochloric acid with 1kg of mixed powder, performing acid hydrolysis for 24 hours at the temperature of 100 ℃ to obtain hydrolysate, and mixing the hydrolysate to 20% to obtain slurry;
step two: adding 16g of activated carbon into the slurry, stirring for 30min at the temperature of 60 ℃, and performing suction filtration to obtain a filtrate;
step three: adding 5g of 50% hydrogen peroxide solution into 1kg of filtrate to obtain a mixed solution, decolorizing for 30min at 60 ℃, adding 1g of catalase into the mixed solution, reacting for 15min under the water bath condition of 60 ℃, and removing redundant hydrogen peroxide to obtain a reaction solution;
step four: 1-butyl-3-methylimidazolium chloride salt and K2HPO4Mixing with water to make the concentration of chloride ion in the mixed solution 300mg/mL, K2HPO4The concentration is 100mg/mL, and mixed liquid of an ionic liquid double-water-phase system is prepared;
step five: adjusting the pH value of the reaction solution to 4 by using 15% hydrochloric acid by mass, transferring the reaction solution into an ionic liquid aqueous two-phase system, oscillating for 10min at a constant temperature of 20 ℃ at 100r/min, standing for 10min for layering, taking the upper layer liquid, putting the upper layer liquid into a rotary evaporator for rotary evaporation to recover the solvent for reuse, taking out the residual material from a concentration ball, drying and crushing to obtain the low-salt high-quality acid hydrolyzed vegetable protein.
Example 6
Referring to fig. 1, a low-salt high-quality acid hydrolyzed plant protein is prepared, including the following steps:
the method comprises the following steps:
crushing the soybean meal, sieving with a 100-mesh sieve to obtain raw material powder, flatly paving the raw material powder in an enamel tray, transferring the raw material powder to an oven, controlling the thickness of the raw material powder to be 4mm, drying the raw material powder for 30h at 65 ℃, cooling, leaching the raw material powder for 3h with a leaching solution at 22 ℃, performing filter pressing after primary leaching, and taking a precipitate;
mixing the first leached precipitate with 95% ethanol solution, leaching at 22 deg.C for 1.5h, centrifuging the mixed solution at 3500g for 50min, collecting the second leached precipitate, vacuum freeze drying, drying at 85 deg.C for 40min, and pulverizing to obtain defatted powder;
diluting 3kg of concentrated hydrochloric acid with mass fraction of 37% by using 5kg of water, mixing the diluted concentrated hydrochloric acid with 1kg of degreased powder, performing acid hydrolysis for 24 hours at 100 ℃ to obtain hydrolysate, and mixing the hydrolysate to 40% to obtain slurry;
step two: adding 14g of activated carbon into the slurry, stirring for 30min at 80 ℃, and performing suction filtration to obtain a filtrate;
step three: adding 20g of 50% hydrogen peroxide solution into 1kg of filtrate to obtain a mixed solution, decoloring at 80 ℃ for 60min, adding 5g of catalase into the mixed solution, reacting at 60 ℃ for 30min in a water bath, and removing redundant hydrogen peroxide to obtain a reaction solution;
step four: 1-butyl-3-methylimidazolium chloride salt and K2HPO4Mixing with water to make the concentration of chloride ion in the mixed solution 400mg/mL, K2HPO4The concentration is 200mg/mL, and mixed liquid of an ionic liquid double-aqueous phase system is prepared;
step five: adjusting the pH of the reaction solution to 6 by using 15% hydrochloric acid by mass, transferring the reaction solution into an ionic liquid aqueous two-phase system, oscillating for 30min at constant temperature under the conditions of 40 ℃ and 300r/min, standing for 30min for layering, taking the upper layer liquid, putting the upper layer liquid into a rotary evaporator for rotary evaporation to recover the solvent for reuse, taking out the residual material from a concentration ball, drying and crushing to obtain the low-salt high-quality acid hydrolyzed vegetable protein.
Comparative example 1
The preparation method of the low-salt high-quality acid hydrolyzed vegetable protein comprises the following steps:
the method comprises the following steps: crushing 1kg of soybean meal by using a crusher, diluting 1kg of concentrated hydrochloric acid with the mass fraction of 37% by using 2kg of water, mixing the diluted concentrated hydrochloric acid with plant material protein, performing acid hydrolysis for 24 hours at the temperature of 100 ℃ to obtain hydrolysate, and mixing the hydrolysate to 40% to obtain slurry;
step two: adding 20g of activated carbon into the slurry, stirring for 30min at 80 ℃, and performing suction filtration to obtain a filtrate;
step three: adding 5g of 50% hydrogen peroxide solution into 1kg of filtrate to obtain a mixed solution, decoloring at 60 ℃ for 30min, adding 3g of catalase into the mixed solution, reacting at 30 ℃ in a water bath for 10min, and removing redundant hydrogen peroxide to obtain a reaction solution;
step four: 1-butyl-3-methylimidazolium chloride salt and K2HPO4Mixing with water to make the concentration of chloride ion in the mixed solution be 330mg/mL, K2HPO4The concentration is 130mg/mL, and mixed liquid of an ionic liquid double-water-phase system is prepared;
step five: adjusting the pH of the reaction solution to 6 by using 15% hydrochloric acid by mass, transferring the reaction solution into an ionic liquid aqueous two-phase system, oscillating for 20min at constant temperature under the conditions of 30 ℃ and 200r/min, standing for 20min for layering, taking the upper layer liquid, putting the upper layer liquid into a rotary evaporator for rotary evaporation to recover the solvent for reuse, taking out the residual material from a concentration ball, drying and crushing to obtain the low-salt high-quality acid hydrolyzed vegetable protein.
Comparative example 2
The preparation method of the low-salt high-quality acid hydrolyzed vegetable protein comprises the following steps:
the method comprises the following steps: crushing 1kg of soybean meal by using a crusher, diluting 2kg of concentrated hydrochloric acid with the mass fraction of 37% by using 4kg of water, mixing the diluted concentrated hydrochloric acid with plant material protein, performing acid hydrolysis for 24 hours at the temperature of 100 ℃ to obtain hydrolysate, and mixing the hydrolysate to 20% to obtain slurry;
step two: adding 20g of activated carbon into the slurry, stirring for 15min at the temperature of 60 ℃, and performing suction filtration to obtain a filtrate;
step three: adding 5g of 50% hydrogen peroxide solution into 1kg of filtrate to obtain a mixed solution, decoloring at 60 ℃ for 30min, adding 3g of catalase into the mixed solution, reacting at 30 ℃ in a water bath for 10min, and removing redundant hydrogen peroxide to obtain a reaction solution;
step four: 1-butyl-3-methylimidazolium chloride salt and K2HPO4Mixing with water to make the concentration of chloride ion in the mixed solution be 100mg/mL, K2HPO4The concentration is 130mg/mL, and mixed liquid of an ionic liquid double-water-phase system is prepared;
step five: adjusting the pH of the reaction solution to 6 by using 15% hydrochloric acid by mass, transferring the reaction solution into an ionic liquid aqueous two-phase system, oscillating for 20min at constant temperature under the conditions of 30 ℃ and 200r/min, standing for 20min for layering, taking the upper layer liquid, putting the upper layer liquid into a rotary evaporator for rotary evaporation to recover the solvent for reuse, taking out the residual material from a concentration ball, drying and crushing to obtain the low-salt high-quality acid hydrolyzed vegetable protein.
The examples 1 to 4 and the comparative examples 1 to 2 were subjected to performance tests, and the total nitrogen content, the amino acid content, the ash content and the 3-chloropropanol content were measured according to the national standard detection method, with the results shown in table 1:
TABLE 1
Item Example 1 Example 2 Example 3 Comparative example 1 Comparative example 2
Total nitrogen (%) 13.5 13.1 13.0 11.6 12.1
Amino acid nitrogen (%) 9.5 9.2 9.0 6.5 7.6
Ash (%) 4.3 4.8 4.5 5.0 4.8
3-chloropropanol (mg/kg) 0.03 0.08 0.06 0.11 0.1
As can be seen from Table 1, the products prepared in examples 1-3 meet the requirements of low-salt high-quality acid hydrolyzed vegetable protein, and the change of hydrolysis conditions in comparative examples 1-2 can result in insufficient hydrolysis of the products and the content of amino acid nitrogen can not meet the requirements of low-salt high-quality acid hydrolyzed vegetable protein.
It should be noted that, in this document, the terms "comprises," "comprising," or any other variation thereof, are intended to cover a non-exclusive inclusion, such that a process, method, article, or apparatus that comprises a list of elements does not include only those elements but may include other elements not expressly listed or inherent to such process, method, article, or apparatus.
Although embodiments of the present invention have been shown and described, it will be appreciated by those skilled in the art that changes, modifications, substitutions and alterations can be made in these embodiments without departing from the principles and spirit of the invention, the scope of which is defined in the appended claims and their equivalents.

Claims (9)

1. A preparation method of low-salt high-quality acid hydrolyzed vegetable protein is characterized by comprising the following steps:
the method comprises the following steps: crushing a vegetable protein raw material, sieving the crushed vegetable protein raw material by a sieve of 80-100 meshes to obtain raw material powder, drying the raw material powder for 24-30h at the temperature of 60-65 ℃, cooling, leaching the raw material powder for 2-3h at the temperature of 20-22 ℃ by using a leaching solution, performing filter pressing after primary leaching, washing, taking a precipitate, leaching the precipitate for 1-1.5h at the temperature of 20-22 ℃ by using an ethanol solution, centrifuging, collecting the precipitate obtained by secondary leaching, drying and crushing to obtain degreased material powder; mixing the degreased material powder, concentrated hydrochloric acid and water, performing acid hydrolysis for 18-24h to obtain a hydrolysate, and mixing the slurry to 20-40% to obtain slurry;
step two: adding activated carbon into the slurry, stirring at 60-80 deg.C for 30min, and vacuum filtering to obtain filtrate;
step three: and (4) carrying out post-treatment on the filtrate to obtain the low-salt high-quality acid hydrolyzed vegetable protein.
2. The method for preparing low-salt high-quality acid hydrolyzed plant protein according to claim 1, wherein the post-treatment comprises the following steps: adding hydrogen peroxide solution into the filtrate to obtain mixed solution, reacting at 60-80 deg.C for 30-60min, adding catalase into the mixed solution, and reacting in water bath for 10-30min to obtain reaction solution; transferring the reaction liquid into an ionic liquid aqueous two-phase system, oscillating for 10-30min at constant temperature at 20-40 ℃ and under the condition of 100-300r/min, standing for 10-30min for layering, taking the upper-layer liquid, drying and crushing the residual materials after rotary evaporation.
3. The method for preparing low-salt high-quality acid hydrolyzed vegetable protein according to claim 1, wherein the dosage of the degreased powder, the concentrated hydrochloric acid and the water in the step one is 1 kg: 1.5-3 kg: 3-5kg, and the temperature condition of acid hydrolysis is 100-120 ℃.
4. The method for preparing low-salt high-quality acid hydrolyzed plant protein according to claim 1, wherein the dosage ratio of the activated carbon to the slurry in the second step is 57-62 g: 100 kg.
5. The method for preparing low-salt high-quality acid hydrolyzed plant protein according to claim 2, wherein the temperature of the water bath is 30-60 ℃, and the dosage ratio of the filtrate, the hydrogen peroxide solution and the catalase is 1 kg: 5-20 g: 1-5 g.
6. The method for preparing a low-salt high-quality acid-hydrolyzed plant protein according to claim 2, wherein the pH of the reaction solution is adjusted to 4-6 before the reaction solution is transferred to the ionic liquid aqueous two-phase system.
7. The method for preparing low-salt high-quality acid hydrolyzed plant protein according to claim 2, wherein the dosage ratio of the mixed solution in the reaction solution and the ionic liquid aqueous two-phase system is 50-100 mg: 1L of the compound.
8. The method for preparing a low-salt high-quality acid hydrolyzed plant protein according to claim 1, wherein the plant protein raw material in the step one is one or more of soybean meal, peanut meal, corn meal and wheat meal which are mixed according to any proportion.
9. The method for preparing low-salt high-quality acid hydrolyzed plant protein according to claim 2, wherein the ionic liquid aqueous two-phase system is prepared by 1-butyl-3-methylimidazolium chloride, K2HPO4Mixed with water, 1-butyl-3-methylimidazolium chloride, K2HPO4And water in an amount ratio of 300-400 mg: 100-200 mg: 1mL of。
CN202111545184.6A 2021-12-14 2021-12-14 Preparation method of low-salt high-quality acid hydrolyzed vegetable protein Pending CN114149481A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111545184.6A CN114149481A (en) 2021-12-14 2021-12-14 Preparation method of low-salt high-quality acid hydrolyzed vegetable protein

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111545184.6A CN114149481A (en) 2021-12-14 2021-12-14 Preparation method of low-salt high-quality acid hydrolyzed vegetable protein

Publications (1)

Publication Number Publication Date
CN114149481A true CN114149481A (en) 2022-03-08

Family

ID=80451202

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111545184.6A Pending CN114149481A (en) 2021-12-14 2021-12-14 Preparation method of low-salt high-quality acid hydrolyzed vegetable protein

Country Status (1)

Country Link
CN (1) CN114149481A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115736089A (en) * 2022-11-21 2023-03-07 华南理工大学 Acid hydrolysis plant protein liquid and preparation method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102796163A (en) * 2012-09-06 2012-11-28 南京财经大学 Method for extracting and separating proteins from cake by using ionic liquid and enzyme process
CN106616834A (en) * 2016-12-07 2017-05-10 上海爱普食品工业有限公司 Preparation method of low-salt low-chloropropanol acid hydrolyzed vegetable protein
CN108148108A (en) * 2018-01-05 2018-06-12 重庆汇达柠檬科技集团有限公司 A kind of method of limonin in guanidinium ionic liquid aqueous two-phase extraction lemon peel slag

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102796163A (en) * 2012-09-06 2012-11-28 南京财经大学 Method for extracting and separating proteins from cake by using ionic liquid and enzyme process
CN106616834A (en) * 2016-12-07 2017-05-10 上海爱普食品工业有限公司 Preparation method of low-salt low-chloropropanol acid hydrolyzed vegetable protein
CN108148108A (en) * 2018-01-05 2018-06-12 重庆汇达柠檬科技集团有限公司 A kind of method of limonin in guanidinium ionic liquid aqueous two-phase extraction lemon peel slag

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
吕晓华等: "《食品安全与健康》", 中国医药科技出版社, pages: 84 *
孙乾等: "红花籽粕蛋白脱色工艺的初探", 《食品与发酵工业》, vol. 44, no. 07, pages 233 - 237 *
陈旭伟等: "离子液体在蛋白质萃取分离中的应用", 《化学进展》, vol. 25, no. 5, pages 661 - 668 *
陈梅梅等: "离子液体双水相提取菜籽粕蛋白及其相行为的研究", 《中国粮油学报》, vol. 28, no. 6, pages 56 - 61 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115736089A (en) * 2022-11-21 2023-03-07 华南理工大学 Acid hydrolysis plant protein liquid and preparation method thereof

Similar Documents

Publication Publication Date Title
CN102174627B (en) Method for preparing rapeseed bioactive peptide
EP0460402B1 (en) Water soluble tea extracts
CN114149481A (en) Preparation method of low-salt high-quality acid hydrolyzed vegetable protein
CN111887470A (en) Tobacco extract, preparation method thereof and novel tobacco product
CN1765921A (en) Separated soybean protein preparation process and prepared soybean small peptide and process
CN111072449A (en) A method for preparing natural ferulic acid from nigre containing oryzanol
CN107027974B (en) Threonine production process
CN109757600B (en) Preparation method of perilla peptide
CN111418702A (en) Production process of low-denaturation instant rice protein powder
CN1329362C (en) Method for extracting chlorogenic acid and sunflower protein from sunflower seed cake
CN103404824B (en) Production technology of sauce flavor powder
KR20100107862A (en) Process for preparing salt and soybean paste derived from salicornia herbacea
CN111670956A (en) Mulberry leaf rice bean curd and preparation method thereof
CN114085253B (en) Method for extracting gossypol and raffinose from cottonseed processing waste liquid
DE2359900A1 (en) YEAST PROTEIN ISOLATE, HEFEGLYCAN AND YEAST EXTRACT
CN113813362B (en) Stable small peptide chelated calcium, preparation method and application
CN111374295A (en) Preparation method and application of high-quality food-grade plant-derived compound amino acid
CN112794926B (en) Extraction method and application of tamarind seed polysaccharide
CN113383852A (en) Preparation method for forming polypeptide by utilizing soybean hydrolysis
CN110089618B (en) Soybean polypeptide with low sodium content and preparation method thereof
EP3841886A1 (en) Sunflower seed protein concentrate for food applications and method of manufacturing the same
SU441915A1 (en) The method of obtaining protein food fortifier
CN111418687A (en) Preparation method of coffee-flavored solid beverage
KR20010070692A (en) Development of functional foods on improvement of immune system and antioxidant in utilization of Canavalia glaviata
KR100787823B1 (en) Process for preparing polyphenol extract from dandelion

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination