CN114134185A - Method for producing L-serine by fermentation - Google Patents

Method for producing L-serine by fermentation Download PDF

Info

Publication number
CN114134185A
CN114134185A CN202111278475.3A CN202111278475A CN114134185A CN 114134185 A CN114134185 A CN 114134185A CN 202111278475 A CN202111278475 A CN 202111278475A CN 114134185 A CN114134185 A CN 114134185A
Authority
CN
China
Prior art keywords
serine
culture
fermentation
seq
gene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202111278475.3A
Other languages
Chinese (zh)
Other versions
CN114134185B (en
Inventor
岳明瑞
曹华杰
谢沛
郭永胜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xintai Jiahe Biotech Co ltd
Original Assignee
Xintai Jiahe Biotech Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xintai Jiahe Biotech Co ltd filed Critical Xintai Jiahe Biotech Co ltd
Priority to CN202111278475.3A priority Critical patent/CN114134185B/en
Publication of CN114134185A publication Critical patent/CN114134185A/en
Application granted granted Critical
Publication of CN114134185B publication Critical patent/CN114134185B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/04Alpha- or beta- amino acids
    • C12P13/06Alanine; Leucine; Isoleucine; Serine; Homoserine
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • C07K14/24Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Enterobacteriaceae (F), e.g. Citrobacter, Serratia, Proteus, Providencia, Morganella, Yersinia
    • C07K14/245Escherichia (G)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0006Oxidoreductases (1.) acting on CH-OH groups as donors (1.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1003Transferases (2.) transferring one-carbon groups (2.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1025Acyltransferases (2.3)
    • C12N9/1029Acyltransferases (2.3) transferring groups other than amino-acyl groups (2.3.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1096Transferases (2.) transferring nitrogenous groups (2.6)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/12Transferases (2.) transferring phosphorus containing groups, e.g. kinases (2.7)
    • C12N9/1205Phosphotransferases with an alcohol group as acceptor (2.7.1), e.g. protein kinases
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/88Lyases (4.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/90Isomerases (5.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y101/00Oxidoreductases acting on the CH-OH group of donors (1.1)
    • C12Y101/01Oxidoreductases acting on the CH-OH group of donors (1.1) with NAD+ or NADP+ as acceptor (1.1.1)
    • C12Y101/01095Phosphoglycerate dehydrogenase (1.1.1.95)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y201/00Transferases transferring one-carbon groups (2.1)
    • C12Y201/02Hydroxymethyl-, formyl- and related transferases (2.1.2)
    • C12Y201/02001Glycine hydroxymethyltransferase (2.1.2.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y203/00Acyltransferases (2.3)
    • C12Y203/01Acyltransferases (2.3) transferring groups other than amino-acyl groups (2.3.1)
    • C12Y203/01008Phosphate acetyltransferase (2.3.1.8)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y206/00Transferases transferring nitrogenous groups (2.6)
    • C12Y206/01Transaminases (2.6.1)
    • C12Y206/01017Succinyldiaminopimelate transaminase (2.6.1.17)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y206/00Transferases transferring nitrogenous groups (2.6)
    • C12Y206/01Transaminases (2.6.1)
    • C12Y206/01052Phosphoserine transaminase (2.6.1.52)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y301/00Hydrolases acting on ester bonds (3.1)
    • C12Y301/03Phosphoric monoester hydrolases (3.1.3)
    • C12Y301/03003Phosphoserine phosphatase (3.1.3.3)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y401/00Carbon-carbon lyases (4.1)
    • C12Y401/03Oxo-acid-lyases (4.1.3)
    • C12Y401/03001Isocitrate lyase (4.1.3.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y403/00Carbon-nitrogen lyases (4.3)
    • C12Y403/01Ammonia-lyases (4.3.1)
    • C12Y403/01017L-Serine ammonia-lyase (4.3.1.17)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Biomedical Technology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Biophysics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Virology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

The invention discloses a method for producing L-serine by fermentation, which comprises the following steps: (1) inoculating the seed liquid of L-serine producing bacteria to a fermentation mediumThe fermentation culture is carried out, the temperature of the fermentation culture is 28-32 ℃, the pH value is 6.8-7.2, the dissolved oxygen is 20-40 percent, and the stirring speed is 150-250 rpm; performing fermentation culture until the OD of the fermentation liquid after being diluted by 100 times600When the value is 0.40-0.60, cooling to 27-29 ℃, adding IPTG into the system for induction culture, and performing induction culture for 48-52 h; monitoring the residual sugar content of the system in the culture process, starting to add supplementary materials when the residual sugar content of the system is less than or equal to 1.0g/L, and keeping the glucose concentration in the system at 0.5-1.0g/L by feeding supplementary materials; the supplementary material contains 60-80g/L glucose, 40-60ml/L molasses and 0.3-0.5g/L folic acid; (2) and (3) performing bacterium breaking treatment on the culture after induction culture, separating and collecting supernatant, and thus obtaining the culture solution containing the L-serine. The method can realize the industrial production of the L-serine and obviously improve the yield of the L-serine.

Description

Method for producing L-serine by fermentation
Technical Field
The invention relates to the technical field of bioengineering, in particular to a method for producing L-serine by fermentation.
Background
L-serine is a non-essential amino acid that can be involved in the metabolism of numerous important active substances in the cell. In addition, L-serine, an important industrial product, has been widely used in the fields of food, fine chemicals and medicines. At present, the synthesis of L-serine mainly depends on direct extraction and chemical synthesis, and although the yield is high, both methods cause certain harm to the environment. With the development of metabolic engineering and synthetic biology, microbial reactors are utilized to systematically regulate microbial metabolic pathways so that a large amount of certain metabolic products are accumulated, and the microbial reactors are gradually and widely applied. As a model organism, Escherichia coli has the advantages of high growth speed, simple culture method and the like, and is often used as a host bacterium for microbial fermentation. However, L-serine is accumulated in a low amount in wild-type E.coli as a metabolic intermediate.
In order to improve the yield of L-serine, the genetic engineering modification of wild-type escherichia coli has been studied, but the modified escherichia coli is easy to generate growth inhibition phenomenon in the fermentation process, and the fermentation production effect is influenced. Therefore, the existing methods for producing L-serine by fermentation still need to be further improved.
Disclosure of Invention
In view of the above prior art, it is an object of the present invention to provide a process for the fermentative production of L-serine. The method can realize the industrial production of the L-serine and obviously improve the yield of the L-serine.
In order to achieve the purpose, the invention adopts the following technical scheme:
a method for producing L-serine by fermentation, comprising the steps of:
(1) inoculating the seed liquid of the L-serine production bacteria into a fermentation culture medium for fermentation culture, wherein the temperature of the fermentation culture is 28-32 ℃, the pH value is 6.8-7.2, the Dissolved Oxygen (DO) is 20-40%, and the stirring speed is 150-250 rpm; performing fermentation culture until the OD of the fermentation liquid after being diluted by 100 times600When the value is 0.40-0.60, cooling to 27-29 ℃, adding IPTG into the system for induction culture, and performing induction culture for 48-52 h;
monitoring the residual sugar content of the system in the culture process, starting to add supplementary materials when the residual sugar content of the system is less than or equal to 1.0g/L, and keeping the glucose concentration in the system at 0.5-1.0g/L by feeding supplementary materials; the supplementary material contains 60-80g/L glucose, 40-60ml/L molasses and 0.3-0.5g/L folic acid;
(2) and (3) performing bacterium breaking treatment on the culture after induction culture, separating and collecting supernatant, and thus obtaining the culture solution containing the L-serine.
Preferably, in the step (1), the L-serine producing strain is constructed by the following method:
knocking out gpmA, sdaA, mtfA, pta, glyA, sdaC, serA, sstT, tdcC, aceA and cycA genes in escherichia coli to obtain escherichia coli engineering bacteria;
carrying out enzyme digestion treatment on the serB gene by sphI and AaaI, carrying out enzyme digestion treatment on the serC gene by Nco I and Bgl II, and integrating the serB gene and the serC gene subjected to the enzyme digestion treatment onto a plasmid PQE-N to obtain a first recombinant expression vector (pQE-serB & C);
carrying out double enzyme digestion on pGEX-kan plasmid by ecoNI and Zra I, and integrating serA delta 197 gene to the plasmid pGEX-kan subjected to double enzyme digestion to obtain a second recombinant expression vector (pGEX-serA);
and introducing the obtained first recombinant expression vector and the second recombinant expression vector into the escherichia coli engineering bacteria to construct the L-serine producing bacteria.
More preferably, the nucleotide sequence of serB gene is shown in SEQ ID NO. 1; the nucleotide sequence of the serC gene is shown as SEQ ID NO. 2; the nucleotide sequence of the plasmid PQE-N is shown as SEQ ID NO. 3; the nucleotide sequence of the first recombinant expression vector is shown as SEQ ID NO. 4; the nucleotide sequence of the pGEX-kan plasmid is shown as SEQ ID NO. 5; the nucleotide sequence of the serA delta 197 gene is shown as SEQ ID NO. 7; the nucleotide sequence of the second recombinant expression vector is shown as SEQ ID NO. 8.
Preferably, in step (1), the seed solution of the L-serine-producing bacterium is inoculated in an amount of 10 to 15% by weight based on the fermentation medium.
Preferably, in step (1), the composition of the fermentation medium is: 40ml/L of molasses, 30g/L of glucose, 30g/L of corn steep liquor dry powder, 2g/L of monopotassium phosphate, 0.5g/L of citric acid, (NH)4)2SO4 5g/L、MgSO4·7H2O 0.5g/L、MnSO40.08g/L、FeSO40.06g/L, vitamin B10.025g/L, biotin (VH)3mg/L, kanamycin 50 ppm.
Preferably, in step (1), IPTG is added so that the final concentration of IPTG in the system is 0.5 mmol/L.
Preferably, in the step (1), the feed comprises 70g/L of glucose, 50ml/L of molasses and 0.4g/L of folic acid.
The invention has the beneficial effects that:
(1) in order to improve the yield of L-serine produced by fermentation, the invention firstly constructs a production strain capable of producing L-serine with high yield, and comprehensively analyzes various factors influencing the expression of the L-serine to remove the feedback inhibition of key enzymes in a synthetic route, knock out a decomposition route, over-expression synthetic route and other technical means for combined use, so that more carbon sources flow to the L-serine, thereby obviously improving the yield of the L-serine.
(2) In the process of constructing the production bacteria for high-yield L-serine, a plurality of genes of the escherichia coli are knocked out, so that the fermentation culture medium, the fermentation culture conditions and the like of the L-serine are optimized in order to avoid the inhibition of the growth of thalli of the escherichia coli in the fermentation process. The fermentation medium and the feed supplement of the invention are added with beet molasses as a carbon source, which can provide nutrients such as crude protein, organic alkali, mineral substances and the like for the growth of thalli and can reduce the cost. Folic acid is added in the feed supplement to ensure the normal metabolism of amino acids such as methionine
After fermentation culture, when the bacterial quantity is increased to the target quantity, the culture temperature is reduced to 27-29 ℃ so as to reduce other irrelevant metabolism and further improve the expression of the target product.
In conclusion, the invention realizes the industrial production of the L-serine and obviously improves the yield of the L-serine by constructing the production bacteria and optimizing the fermentation process.
Drawings
FIG. 1: PQE-60 plasmid and its modified structure diagram; wherein, A is a structural schematic diagram of PQE-60 plasmid; b is a structural schematic diagram of the modified plasmid PQE-N.
FIG. 2: pGEX-4T-1 plasmid and the schematic diagram of the modified structure thereof; wherein A is a structural schematic diagram of pGEX-4T-1 plasmid; b is a structural schematic diagram of the modified pGEX-kan plasmid.
FIG. 3: verifying the strain subjected to gene knockout; wherein, 1-11 are knock-out verification results of gpmA, sdaA, mtfA, pta, glyA, sdaC, serA, sstT, tdcC, aceA and cycA genes respectively; in each electrophoretogram, lanes from left to right are: after knocking out the resistance gene, after knocking out the pKD3 gene, the gene needing to be knocked out, and Marker.
FIG. 4: the first recombinant expression vector (pQE-serB & C) constructed by the invention has a structural schematic diagram.
FIG. 5: electrophoretic verification of a first recombinant expression vector (pQE-serB & C) constructed by the invention; the lanes are Marker, PQE-60, PQE-N, pQE-serB & C from left to right.
FIG. 6: the structural diagram of the second recombinant expression vector (pGEX-serA) constructed by the invention is shown.
FIG. 7: the electrophoresis verification of the second recombinant expression vector (pGEX-serA) constructed by the invention; the lane is sequentially Marker, pGEX-4T-1, pGEX-kan and pGEX-serA from left to right.
FIG. 8: the colony PCR verification result of the L-serine producing strain constructed by the invention; in the figure, the left lane is Marker.
FIG. 9: and (3) secondary mass spectrum of L-serine detection.
Detailed Description
It should be noted that the following detailed description is exemplary and is intended to provide further explanation of the disclosure. Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this application belongs.
In order to make the technical solutions of the present application more clearly understood by those skilled in the art, the technical solutions of the present application will be described in detail below with reference to specific embodiments.
The test materials used in the examples and comparative examples of the present invention are those conventional in the art and, unless otherwise specified, are commercially available. Wherein:
escherichia coli strain K-12substr.MG1655, a stock purchased from ATCC in the United states, was used in the present examples and comparative examples.
The PQE-N plasmid (figure 1B) is obtained by genetic engineering based on PQE-60 plasmid (figure 1A), and the sequence of PQE-N plasmid is shown in SEQ ID NO. 3.
The pGEX-kan plasmid (FIG. 2B) is genetically engineered based on the pGEX-4T-1 plasmid (FIG. 2A), and the ampicillin resistance marker in the pGEX-4T-1 plasmid is replaced with a kanamycin resistance marker. The sequence of the modified pGEX-kan plasmid is shown in SEQ ID NO. 5.
The PQE-N plasmid and pGEX-kan plasmid were modified by conventional genetic engineering means, and the PQE-N plasmid and pGEX-kan plasmid were also publicly available for duplication experiments from the applicant within 20 years from the filing date of this patent.
Example 1: construction of L-serine-producing bacterium
1. Constructing engineering bacteria of escherichia coli:
knocking out gpMA, sdaA, mtfA, pta, glyA, sdaC, serA, sstT, tdcC, aceA and cycA genes in Escherichia coli by adopting a Red homologous recombination technology to obtain Escherichia coli engineering bacteria (Escherichia coli delta sstT delta sdaC delta tdcC delta cycA delta mtfA delta glyA delta pta delta sdaA delta aceA delta gpmA delta serA); the specific process is as follows:
1) construction of a linear targeting box:
the knock-out plasmid is selected from pKD3 plasmid and chloramphenicol resistance; the homologous arm primers corresponding to the knocked-out different genes are as follows:
PKD-gpmA-F:GCAGTCGGCTTTCTCATTTTAAACGAATGAC;(SEQ ID NO.9)
PKD-gpmA-R:TTACTCCTCAAATCATCTTTTAATGATAATA。(SEQ ID NO.10)
PKD-sdaA-F:GGAAGTCCAGTCACCTTGTCAGGAGTATTAT;(SEQ ID NO.11)
PKD-sdaA-R:TTCTTACTCGCCCATCTGCAACGGATGGGCG。(SEQ ID NO.12)
PKD-mrfA-F:GGGATAGCTTGACTGTGAAAATCACAGGAGC;(SEQ ID NO.13)
PKD-mrfA-R:TAACAACTTTGCAGATTAATTAACCAATTGA。(SEQ ID NO.14)
PKD-pta-F:AACCCGCCAAATCGGCGGTAACGAAAGAGGA;(SEQ ID NO.15)
PKD-pta-R:TCATCCGCAGCTTTGCGCTGCGGATATCTGA。(SEQ ID NO.16)
PKD-glyA-F:CAACGAGCACATTGACAGCAAATCACCGTTT;(SEQ ID NO.17)
PKD-glyA-R:GCATCTCCTGACTCAGCTAACAATAAAATTT。(SEQ ID NO.18)
PKD-sdaC-F:CTAAAAGCTGAATTATTTGCATTCCTCCAGG;(SEQ ID NO.19)
PKD-sdaC-R:ATTGCAATCTCCGCAATCTTCTACTCTCTGT。(SEQ ID NO.20)
PKD-serA-F:AGTCAGTGACCTGCCCGTTGATTTTCAGAGA;(SEQ ID NO.21)
PKD-serA-R:CCTGTCTTTTGAAATGTTGTGTGCGGATTTG。(SEQ ID NO.22)
PKD-sstT-F:GGGATGTGCGACAACACAATGAAAGGATCGA;(SEQ ID NO.23)
PKD-sst–R:TGTTTAACCCCTTTCGTCTACGGCGGAAGGG。(SEQ ID NO.24)
PKD-tdcC–F:AATTCATTCATCTCTTTTCTCATCCTGAGTT;(SEQ ID NO.25)
PKD-tdcC–R:CCTATCCTCAACGAATTAATTAAGCGTCAAC。(SEQ ID NO.26)
PKD-aceA-F:GTTAGCGTAAACCACCACATAACTATGGAGC;(SEQ ID NO.27)
PKD-aceA-R:ACAACCGTTGCTGACTGTAGGCCGGATAAGG。(SEQ ID NO.28)
PKD-cycA-F:TGAACAACACAGACAGGTACAGGAAGAAAAA;(SEQ ID NO.29)
PKD-cycA-R:CATTATCATGCTGGATGGCGCAATGCCATCC。(SEQ ID NO.30)
the sequence of gene knockouts was: firstly knocking out sstT, sdaC, tdcC and cycA genes, then knocking out mtfA, glyA, pta and sdaA genes, then knocking out aceA and gpmA genes, and finally knocking out serA genes.
The Test primers used after knocking out the different genes were as follows:
Test-gpmA-F:AATGTGCTCCATTGTTAGCAACAAAAAAGCC;(SEQ ID NO.31)
Test-gpmA-R:ATATTGCCGCGACGAAGCAACAGCAATGCTT。(SEQ ID NO.32)
Test-sdaA-F:TACACTATGCGCTGTTATTAGTTCGTTACTG;(SEQ ID NO.33)
Test-sdaA-R:GAATTTATACCCGCTTTCTCGTCTGCTGTAA。(SEQ ID NO.34)
Test-mrfA-F:ACATCTGTATAAGGAATTTTTAAGGTTCGTG;(SEQ ID NO.35)
Test-mrfA-R:AAATGACTTATGAAATTTAGTGTTGACAGAC。(SEQ ID NO.36)
Test-pta-F:CCGCCAGCTCAGCTGGCGGTGCTGTTTTGTA;(SEQ ID NO.37)
Test-pta-R:AACCGGAAATAATCACTATTTCCGGTTTTTT。(SEQ ID NO.38)
Test-glyA-F:ATAAGGCGTTCACGCCGCATCCGGCATGAAC;(SEQ ID NO.39)
Test-glyA-R:TTTGGCCTTTATAGGCGGTCCTGTTGGACAA。(SEQ ID NO.40)
Test-sdaC-F:ACGGTCAGGCACCTTCCCGGGCTGAACTGGC;(SEQ ID NO.41)
Test-sdaC-R:TTCAGCTAAGTCCTTTCGCGCCGCTTTCGGG。(SEQ ID NO.42)
Test-serA-F:CGGTGTGGAGAAGGGATAAAAAAACGGGCAA;(SEQ ID NO.43)
Test-serA-R:GCATCCGCCTTTCAACATATCAAAAAATAAT。(SEQ ID NO.44)
Test-sstT-F:TCCTGAAAGATGCGTCGACAGAACGCACCAG;(SEQ ID NO.45)
Test-sstT-R:GGTTTTCTCAACTTTAAACGGATCAATTCCC。(SEQ ID NO.46)
Test-tdcC-F:GAACCACAGTTAATAACCAAAACAACCGGAA;(SEQ ID NO.47)
Test-tdcC-R:CGAAACCGGTGATTTGAGAGACGCGAGAAAG。(SEQ ID NO.48)
Test-aceA-F:TGATTTCCTGACCCTGCCAGGCTACCGCCTG;(SEQ ID NO.49)
Test-aceA-R:GCGTTCACGCCGCATCCGGCAATCGGTGCAC。(SEQ ID NO.50)
Test-cycA-F:TATCATAGACTGACTAAAGGCCGTAGAGCCT;(SEQ ID NO.51)
Test-cycA-R:CAGCTTTTAGATCACTCACCCGCCAGCGCGC。(SEQ ID NO.52)
2) preparation of an electrically receptive state:
after shaking the cells overnight in a test tube, the cells were inoculated into LB medium in an amount of 1% (by volume) the next day, and cultured at 30 ℃ for 1 hour, 0.3% (by mass) of L-arabinose was added thereto, and the cells were induced at 30 ℃ for 2 hours. Cooling in ice bath. Washed twice with 10% (volume fraction) glycerol, finally concentrated to 200. mu.l, resuspended with 10% glycerol.
3) Electric shock conversion:
the 2mm electric rotor was taken out from 70% (volume fraction) ethanol, washed 2 times with sterilized ultrapure water, and irradiated with an ultraviolet lamp for 30 minutes. And (4) precooling. Take 100. mu.l of the finally resuspended cells, move to a pre-cooled centrifuge tube, add 5. mu.l of a linear targeting box, and mix by gentle pipetting with a gun. Ice-bath for 2 min.
Electric transfer parameters: 2500V, 200 ohm, 25 μ F; after the electric shock, the electric shock time is 4.8 ms.
4) Recovering and coating:
1ml of LB was added at 30 ℃ and 200rpm for 1 hour. Centrifugation was performed prior to plating, and a portion of the supernatant was removed and resuspended, and plated onto AMP plates. And (5) coating and drying. Incubated at 30 ℃ for 24 hours. And screening the recombinants.
5) Removal of resistance genes:
the plasmid pCP20 was transferred to a strain in which the gene was successfully knocked out, and cultured at 30 ℃ for 8 hours and then at 42 ℃ overnight. pCP20 induced expression of FLP endonuclease at 42 ℃ to excise the resistance gene from the genome between the FRT sites.
The strain after gene knockout was verified, and the results are shown in fig. 3. The results show that: the gpmA, sdaA, mtfA, pta, glyA, sdaC, serA, sstT, tdcC, aceA and cycA genes in E.coli were successfully knocked out, and E.coli engineering bacteria (Escherichia coli. DELTA. sstT. DELTA. sdaC. tdcC. DELTA. cycA. mtfA. DELTA. glyA. DELTA. pta. DELTA. sdaA. DELTA. aceA. gpmA. DELTA. serA) were obtained.
2. Construction of the first recombinant expression vector:
(1) extracting the genome DNA of the escherichia coli, using the genome DNA as a template, and performing PCR amplification by using the following primers to obtain a serB gene, wherein the nucleotide sequence of the serB gene is shown as SEQ ID NO. 1.
A forward primer: 5' -CCATGCCTAACATTACCTGGTG-3’;(SEQ ID NO.53)
Reverse primer: 5' -AGCCTGAATCAGAAGTAAGATCT-3’。(SEQ ID NO.54)
The genome DNA of the Escherichia coli is used as a template, and the following primers are utilized to carry out PCR amplification to obtain the serC gene, wherein the nucleotide sequence of the serC gene is shown as SEQ ID NO. 2.
A forward primer: 5' -CCATGGCTCAAATCTTCAATTTTA-3’;(SEQ ID NO.55)
Reverse primer: 5'-TGAGTTCGAACGCCGTCACGGT-3' are provided. (SEQ ID NO.56)
(2) The serB gene is subjected to double enzyme digestion treatment by sphI and AaaI, the serC gene is subjected to double enzyme digestion treatment by NcoI and BglII, the serB gene and the serC gene subjected to enzyme digestion treatment are integrated on the PQE-N plasmid subjected to corresponding enzyme digestion treatment, and a first recombinant expression vector (pQE-serB & C) is constructed and obtained, wherein the structural schematic diagram of the first recombinant expression vector is shown in FIG. 4.
The constructed first recombinant expression vector was subjected to electrophoretic verification, and the result is shown in FIG. 5. The results show that: the serB gene and serC gene have been successfully integrated into the PQE-N plasmid.
3. Construction of the second recombinant expression vector:
carrying out codon optimization and enzyme cutting site adding treatment on a serA delta 197 gene (the nucleotide sequence is shown as SEQ ID NO. 6), wherein the treated nucleotide sequence is shown as SEQ ID NO. 7;
carrying out double enzyme digestion on pGEX-kan plasmid replaced by kanamycin resistance by ecoNI and Zra I, and integrating serA delta 197 gene (shown in SEQ ID NO. 7) subjected to codon optimization and enzyme digestion site addition treatment onto pGEX-kan plasmid subjected to double enzyme digestion treatment to obtain a second recombinant expression vector (pGEX-serA); the schematic structure is shown in fig. 6.
The constructed second recombinant expression vector was subjected to electrophoretic verification, and the result is shown in FIG. 7. The results show that: the serA.DELTA.197 gene (shown in SEQ ID NO. 5) has been successfully integrated into the plasmid pGEX-kan.
4. Construction of L-serine producing bacteria:
the constructed first recombinant expression vector and the second recombinant expression vector are introduced into an Escherichia coli engineering bacterium (Escherichia coli Δ sstT Δ sdaC Δ tdcC Δ cycA Δ mtfA Δ glyA Δ pta Δ sdaA Δ aceA Δ gpmA Δ serA), so as to obtain a transformant.
Transformants were plated on LB plates, and after a single colony had emerged, they were inoculated by photolithography on LB agar plates (kanamycin-resistant, 50. mu.g/ml kanamycin-containing) and AMP plates (LB plates containing 100. mu.g/ml AMP), respectively, and after a single colony had emerged on both resistant plates, a single colony that grew on both LB agar plates (kanamycin-resistant) and AMP plates was picked up by comparing the positions, and was taken as a positive transformant.
Colony PCR verification is carried out on positive transformants, and primers tested by the colony PCR are as follows:
pQE-F:AGCGGATAACAATTTCACACAG;(SEQ ID NO.57)
pQE-R:TTCTGAGGTCATTACTGGATC。(SEQ ID NO.58)
pGEX-F:GGGCTGGCAAGCCACGTTTGGTG;(SEQ ID NO.59)
pGEX-R:CCGGGAGCTGCATGTGTCAGAGG。(SEQ ID NO.60)
the colony PCR validation results are shown in fig. 8, and indicate that: the first recombinant expression vector and the second recombinant expression vector have been introduced into a recipient bacterium.
This proves that: this example has succeeded in constructing a stable L-serine-producing bacterium.
Example 2: fermentative production of L-serine
(1) Activating strains:
the L-serine-producing strain constructed in example 1 was streaked on LB plate containing 50. mu.g/ml kanamycin and cultured at 30 ℃ for 24 hours.
(2) Culturing the first-class strain:
the 1-inoculated mycelia were streaked from the plate and inoculated into a primary seed medium (LB liquid medium supplemented with 50ppm kanamycin) and cultured at 30 ℃ at pH7.0 and 20rpm for 18 hours.
(3) And (3) secondary seed culture:
inoculating the primary seed solution into secondary seed culture medium (LB liquid culture medium containing 50ppm kanamycin) at 1% (volume fraction), culturing at 30 deg.C with Dissolved Oxygen (DO) of 20-40% to OD600nmValues 0.2-0.4 (100 fold dilution).
(4) Fermentation culture:
inoculating a secondary seed solution of the L-serine producing strain into a fermentation culture medium for fermentation culture, wherein the inoculation amount of the secondary seed solution is 10% of the weight of the fermentation culture medium, the temperature of the fermentation culture is 30 ℃, the pH value is 7.0, the Dissolved Oxygen (DO) is 20-40%, and the stirring speed is 200 rpm; performing fermentation culture until the OD of the fermentation liquid after being diluted by 100 times600When the value is 0.50, cooling to 28 ℃, adding IPTG into the system for induction culture to ensure that the final concentration of the IPTG in the system is 0.5mmol/L, and carrying out induction culture for 50 h;
the fermentation medium comprises the following components: beet molasses 40ml/L, glucose 30g/L, corn steep liquor dry powder 30g/L, potassium dihydrogen phosphate 2g/L, citric acid 0.5g/L, (NH)4)2SO4 5g/L、MgSO4·7H2O 0.5g/L、MnSO4 0.08g/L、FeSO40.06g/L, vitamin B10.025g/L, biotin (VH)3mg/L, kanamycin 50 ppm.
Monitoring the residual sugar content of the system in the culture process, starting to add supplementary materials when the residual sugar content of the system is less than or equal to 1.0g/L, and keeping the glucose concentration in the system at 0.5-1.0g/L by feeding supplementary materials; the added feed contains 70g/L glucose, 50ml/L beet molasses and 0.4g/L folic acid.
(5) After the induction culture is finished, putting the tank, and performing bacterium breaking treatment on fermentation liquor after the tank is put by adopting a homogenizer, wherein the conditions of the homogenizing treatment are as follows: homogenizing pressure 12,000PSI, homogenizing flow rate 300L/Hr; homogenizing, centrifuging, and separating supernatant to obtain culture solution containing L-serine.
In the above fermentation process, Dissolved Oxygen (DO) is measured with dissolved oxygen electrode, and the dissolved oxygen is set to 100% with the dissolved oxygen level of the dissolved oxygen electrode in air, and 0 with the dissolved oxygen in saturated sodium sulfite solution. OD600 and pH were determined by sampling.
Comparative example 1:
escherichia coli was used as the L-serine-producing bacterium, and fermentation was carried out in the same manner as in example 2 to obtain culture solution A.
Comparative example 2:
an engineered Escherichia coli bacterium (Escherichia coli. DELTA. sstT. DELTA. sdaC. DELTA. tdcC. DELTA. cycA. mtfA. DELTA. glyA. DELTA. pta. sdaA. DELTA. aceA. DELTA. gpmA. DELTA. serA) constructed in example 1 was used as an L-serine-producing bacterium, and fermentation was carried out in the same manner as in example 2 to produce culture solution B.
Comparative example 3:
a recombinant bacterium obtained by introducing the first recombinant expression vector constructed in example 1 into Escherichia coli was used as an L-serine-producing bacterium, and fermentation was carried out in the same manner as in example 2 to produce a culture solution C.
Comparative example 4:
the recombinant bacterium obtained by introducing the second recombinant expression vector constructed in example 1 into E.coli was used as an L-serine-producing bacterium, and fermentation was carried out in the same manner as in example 2 to produce a culture solution D.
Comparative example 5:
the composition of the fermentation medium in example 2 was adjusted to:
the fermentation medium comprises the following components: 30g/L glucose, 30g/L corn steep liquor dry powder, 2g/L potassium dihydrogen phosphate, 0.5g/L citric acid, (NH)4)2SO4 5g/L、MgSO4·7H2O 0.5g/L、MnSO4 0.08g/L、FeSO40.06g/L, vitaminB10.025g/L, biotin (VH)3mg/L, kanamycin 50 ppm.
The composition of the feed was adjusted to: glucose 70 g/L.
Test example:
l-serine was measured in the culture broth produced in example 2, comparative example 1 to comparative example 5. The measurement method is as follows:
preparing a standard substance stock solution: taking 10mg of L-ser standard substance, dissolving with water and fixing the volume to 10mL to prepare stock solution with the concentration of 1 mg/mL;
preparation of a derivative solution: OPA15mg and NAC100mg were weighed out separately and dissolved in 1mL of methanol, 4mL of 0.1mol/L borax buffer (pH 10.0) was added and mixed well, and stored at 4 ℃ for further use. Before use, 0.1mol/L borax buffer solution (pH 10.0) is added to dilute to the required concentration to be used as a working solution.
90 μ L of culture medium was added with 10uL of internal standard (10 ug/ml-CAN), 20 μ L of derivatizing reagent and 1080 μ L of water, vortexed, reacted for 3min, and then injected.
And (3) derivatization reaction:
Figure BDA0003330429790000101
chromatographic conditions
A chromatographic column: waters Xbridge BEH C18 column (150 mm. times.3 mm, 2.5 um); mobile phase: solution (A) -methanol (B) of 13mmol/LNH4 Ac. Gradient elution: 0-5 min, 5% -20% of B; 5-8 min, 20% -42.5% B; 8-10 min, 42.5% -90% B; 10-11 min, 90% B; 11-11.5 min, 90% -5% B; 11.5-15 min, 5% B. Volume flow rate: 0.4 mL/min; column temperature: 40 ℃; the temperature of the autosampler is 4 ℃; sample introduction amount: 5 μ L.
Mass spectrometric detection parameters
Figure BDA0003330429790000102
And (4) calculating a result: area method
The results are shown in Table 1.
Table 1:
group of L-serine production
Example 2 105g/L
Comparative example 1 3g/L
Comparative example 2 0g/L
Comparative example 3 4g/L
Comparative example 4 5g/L
Comparative example 5 65g/L
The above description is only a preferred embodiment of the present application and is not intended to limit the present application, and various modifications and changes may be made by those skilled in the art. Any modification, equivalent replacement, improvement and the like made within the spirit and principle of the present application shall be included in the protection scope of the present application.
SEQUENCE LISTING
<110> Zea Jia He Biotech Co., Ltd, Xintai City
<120> a method for producing L-serine by fermentation
<130> 2021
<160> 60
<170> PatentIn version 3.5
<210> 1
<211> 969
<212> DNA
<213> serB
<400> 1
atgcctaaca ttacctggtg cgacctgcct gaagatgtct ctttatggcc gggtctgcct 60
ctttcattaa gtggtgatga agtgatgcca ctggattacc acgcaggtcg tagcggctgg 120
ctgctgtatg gtcgtgggct ggataaacaa cgtctgaccc aataccagag caaactgggt 180
gcggcgatgg tgattgttgc cgcctggtgc gtggaagatt atcaggtgat tcgtctggca 240
ggttcactca ccgcacgggc tacacgcctg gcccacgaag cgcagctgga tgtcgccccg 300
ctggggaaaa tcccgcacct gcgcacgccg ggtttgctgg tgatggatat ggactccacc 360
gccatccaga ttgaatgtat tgatgaaatt gccaaactgg ccggaacggg cgagatggtg 420
gcggaagtaa ccgaacgggc gatgcgcggc gaactcgatt ttaccgccag cctgcgcagc 480
cgtgtggcga cgctgaaagg cgctgacgcc aatattctgc aacaggtgcg tgaaaatctg 540
ccgctgatgc caggcttaac gcaactggtg ctcaagctgg aaacgctggg ctggaaagtg 600
gcgattgcct ccggcggctt tactttcttt gctgaatacc tgcgcgacaa gctgcgcctg 660
accgccgtgg tagccaatga actggagatc atggacggta aatttaccgg caatgtgatc 720
ggcgacatcg tagacgcgca gtacaaagcg aaaactctga ctcgcctcgc gcaggagtat 780
gaaatcccgc tggcgcagac cgtggcgatt ggcgatggag ccaatgacct gccgatgatc 840
aaagcggcag ggctggggat tgcctaccat gccaagccaa aagtgaatga aaaggcggaa 900
gtcaccatcc gtcacgctga cctgatgggg gtattctgca tcctctcagg cagcctgaat 960
cagaagtaa 969
<210> 2
<211> 1089
<212> DNA
<213> serC
<400> 2
atggctcaaa tcttcaattt tagttctggt ccggcaatgc taccggcaga ggtgcttaaa 60
caggctcaac aggaactgcg cgactggaac ggtcttggta cgtcggtgat ggaagtgagt 120
caccgtggca aagagttcat tcaggttgca gaggaagccg agaaggattt tcgcgatctt 180
cttaatgtcc cctccaacta caaggtatta ttctgccatg gcggtggtcg cggtcagttt 240
gctgcggtac cgctgaatat tctcggtgat aaaaccaccg cagattatgt tgatgccggt 300
tactgggcgg caagtgccat taaagaagcg aaaaaatact gcacgcctaa tgtctttgac 360
gccaaagtga ctgttgatgg tctgcgcgcg gttaagccaa tgcgtgaatg gcaactctct 420
gataatgctg cttatatgca ttattgcccg aatgaaacca tcgatggtat cgccatcgac 480
gaaacgccag acttcggcgc agatgtggtg gtcgccgctg acttctcttc aaccattctt 540
tcccgtccga ttgacgtcag ccgttatggt gtaatttacg ctggcgcgca gaaaaatatc 600
ggcccggctg gcctgacaat cgtcatcgtt cgtgaagatt tgctgggcaa agcgaatatc 660
gcgtgtccgt cgattctgga ttattccatc ctcaacgata acggctccat gtttaacacg 720
ccgccgacat ttgcctggta tctatctggt ctggtcttta aatggctgaa agcgaacggc 780
ggtgtagctg aaatggataa aatcaatcag caaaaagcag aactgctata tggggtgatt 840
gataacagcg atttctaccg caatgacgtg gcgaaagcta accgttcgcg gatgaacgtg 900
ccgttccagt tggcggacag tgcgcttgac aaattgttcc ttgaagagtc ttttgctgct 960
ggccttcatg cactgaaagg tcaccgtgtg gtcggcggaa tgcgcgcttc tatttataac 1020
gccatgccgc tggaaggcgt taaagcgctg acagacttca tggttgagtt cgaacgccgt 1080
cacggttaa 1089
<210> 3
<211> 2529
<212> DNA
<213> plasmid PQE-N
<400> 3
ctcgagaaat cataaaaaat ttatttgctt tgtgagcgga taacaattat aatagattca 60
attgtgagcg gataacaatt tcacacagaa ttcattaaag aggagaaatt aaccatggga 120
ggatccagat cttaatagta attagctgag cttggactcc tgttgataga tccagtaatg 180
acctcagaac tccatctgga tttgttcaga acgctcggtt gccgccgggc gttttttatt 240
ggtgagaatc caagctagct tggcgagatt ttcaggagct aaggaagcta aaatggagaa 300
aaaaatcact ggatatacca ccgttgatat atcccaatgg catcgtaaag aacattttga 360
ggcatttcag tcagttgctc aatgtaccta taaccagacc gttcagctgg atattacggc 420
ctttttaaag accgtaaaga aaaataagca caagttttat ccggccttta ttcacattct 480
tgcccgcctg atgaatgctc atccggactc gagaaatcat aaaaaattta tttgctttgt 540
gagcggataa caattataat agattcaatt gtgagcggat aacaatttca cacagaattc 600
attaaagagg agaaattaag catgccggcc gtaatagtaa ttaacatgtg agcaaaaggc 660
cagcaaaagg ccaggaaccg taaaaaggcc gcgttgctgg cgtttttcca taggctccgc 720
ccccctgacg agcatcacaa aaatcgacgc tcaagtcaga ggtggcgaaa cccgacagga 780
ctataaagat accaggcgtt tccccctgga agctccctcg tgcgctctcc tgttccgacc 840
ctgccgctta ccggatacct gtccgccttt ctcccttcgg gaagcgtggc gctttctcat 900
agctcacgct gtaggtatct cagttcggtg taggtcgttc gctccaagct gggctgtgtg 960
cacgaacccc ccgttcagcc cgaccgctgc gccttatccg gtaactatcg tcttgagtcc 1020
aacccggtaa gacacgactt atcgccactg gcagcagcca ctggtaacag gattagcaga 1080
gcgaggtatg taggcggtgc tacagagttc ttgaagtggt ggcctaacta cggctacact 1140
agaaggacag tatttggtat ctgcgctctg ctgaagccag ttaccttcgg aaaaagagtt 1200
ggtagctctt gatccggcaa acaaaccacc gctggtagcg gtggtttttt tgtttgcaag 1260
cagcagatta cgcgcagaaa aaaaggatct caagaagatc ctttgatctt ttctacgggg 1320
tctgacgctc agtggaacga aaactcacgt taagggattt tggtcatgag attatcaaaa 1380
aggatcttca cctagatcct tttaaattaa aaatgaagtt ttaaatcaat ctaaagtata 1440
tatgagtaaa cttggtctga cagttaccaa tgcttaatca gtgaggcacc tatctcagcg 1500
atctgtctat ttcgttcatc catagttgcc tgactccccg tcgtgtagat aactacgata 1560
cgggagggct taccatctgg ccccagtgct gcaatgatac cgcgagaccc acgctcaccg 1620
gctccagatt tatcagcaat aaaccagcca gccggaaggg ccgagcgcag aagtggtcct 1680
gcaactttat ccgcctccat ccagtctatt aattgttgcc gggaagctag agtaagtagt 1740
tcgccagtta atagtttgcg caacgttgtt gccattgcta caggcatcgt ggtgtcacgc 1800
tcgtcgtttg gtatggcttc attcagctcc ggttcccaac gatcaaggcg agttacatga 1860
tcccccatgt tgtgcaaaaa agcggttagc tccttcggtc ctccgatcgt tgtcagaagt 1920
aagttggccg cagtgttatc actcatggtt atggcagcac tgcataattc tcttactgtc 1980
atgccatccg taagatgctt ttctgtgact ggtgagtact caaccaagtc attctgagaa 2040
tagtgtatgc ggcgaccgag ttgctcttgc ccggcgtcaa tacgggataa taccgcgcca 2100
catagcagaa ctttaaaagt gctcatcatt ggaaaacgtt cttcggggcg aaaactctca 2160
aggatcttac cgctgttgag atccagttcg atgtaaccca ctcgtgcacc caactgatct 2220
tcagcatctt ttactttcac cagcgtttct gggtgagcaa aaacaggaag gcaaaatgcc 2280
gcaaaaaagg gaataagggc gacacggaaa tgttgaatac tcatactctt cctttttcaa 2340
tattattgaa gcatttatca gggttattgt ctcatgagcg gatacatatt tgaatgtatt 2400
tagaaaaata aacaaatagg ggttccgcgc acatttcccc gaaaagtgcc acctgacgtc 2460
taagaaacca ttattatcat gacattaacc tataaaaata ggcgtatcac gaggcccttt 2520
cgtcttcac 2529
<210> 4
<211> 4570
<212> DNA
<213> pQE-serB&C
<400> 4
ctcgagaaat cataaaaaat ttatttgctt tgtgagcgga taacaattat aatagattca 60
attgtgagcg gataacaatt tcacacagaa ttcattaaag aggagaaatt aaccatggct 120
caaatcttca attttagttc tggtccggca atgctaccgg cagaggtgct taaacaggct 180
caacaggaac tgcgcgactg gaacggtctt ggtacgtcgg tgatggaagt gagtcaccgt 240
ggcaaagagt tcattcaggt tgcagaggaa gccgagaagg attttcgcga tcttcttaat 300
gtcccctcca actacaaggt attattctgc catggcggtg gtcgcggtca gtttgctgcg 360
gtaccgctga atattctcgg tgataaaacc accgcagatt atgttgatgc cggttactgg 420
gcggcaagtg ccattaaaga agcgaaaaaa tactgcacgc ctaatgtctt tgacgccaaa 480
gtgactgttg atggtctgcg cgcggttaag ccaatgcgtg aatggcaact ctctgataat 540
gctgcttata tgcattattg cccgaatgaa accatcgatg gtatcgccat cgacgaaacg 600
ccagacttcg gcgcagatgt ggtggtcgcc gctgacttct cttcaaccat tctttcccgt 660
ccgattgacg tcagccgtta tggtgtaatt tacgctggcg cgcagaaaaa tatcggcccg 720
gctggcctga caatcgtcat cgttcgtgaa gatttgctgg gcaaagcgaa tatcgcgtgt 780
ccgtcgattc tggattattc catcctcaac gataacggct ccatgtttaa cacgccgccg 840
acatttgcct ggtatctatc tggtctggtc tttaaatggc tgaaagcgaa cggcggtgta 900
gctgaaatgg ataaaatcaa tcagcaaaaa gcagaactgc tatatggggt gattgataac 960
agcgatttct accgcaatga cgtggcgaaa gctaaccgtt cgcggatgaa cgtgccgttc 1020
cagttggcgg acagtgcgct tgacaaattg ttccttgaag agtcttttgc tgctggcctt 1080
catgcactga aaggtcaccg tgtggtcggc ggaatgcgcg cttctattta taacgccatg 1140
ccgctggaag gcgttaaagc gctgacagac ttcatggttg agttcgaacg ccgtcacggt 1200
taagatctta atagtaatta gctgagcttg gactcctgtt gatagatcca gtaatgacct 1260
cagaactcca tctggatttg ttcagaacgc tcggttgccg ccgggcgttt tttattggtg 1320
agaatccaag ctagcttggc gagattttca ggagctaagg aagctaaaat ggagaaaaaa 1380
atcactggat ataccaccgt tgatatatcc caatggcatc gtaaagaaca ttttgaggca 1440
tttcagtcag ttgctcaatg tacctataac cagaccgttc agctggatat tacggccttt 1500
ttaaagaccg taaagaaaaa taagcacaag ttttatccgg cctttattca cattcttgcc 1560
cgcctgatga atgctcatcc ggactcgaga aatcataaaa aatttatttg ctttgtgagc 1620
ggataacaat tataatagat tcaattgtga gcggataaca atttcacaca gaattcatta 1680
aagaggagaa attaagcatg cctaacatta cctggtgcga cctgcctgaa gatgtctctt 1740
tatggccggg tctgcctctt tcattaagtg gtgatgaagt gatgccactg gattaccacg 1800
caggtcgtag cggctggctg ctgtatggtc gtgggctgga taaacaacgt ctgacccaat 1860
accagagcaa actgggtgcg gcgatggtga ttgttgccgc ctggtgcgtg gaagattatc 1920
aggtgattcg tctggcaggt tcactcaccg cacgggctac acgcctggcc cacgaagcgc 1980
agctggatgt cgccccgctg gggaaaatcc cgcacctgcg cacgccgggt ttgctggtga 2040
tggatatgga ctccaccgcc atccagattg aatgtattga tgaaattgcc aaactggccg 2100
gaacgggcga gatggtggcg gaagtaaccg aacgggcgat gcgcggcgaa ctcgatttta 2160
ccgccagcct gcgcagccgt gtggcgacgc tgaaaggcgc tgacgccaat attctgcaac 2220
aggtgcgtga aaatctgccg ctgatgccag gcttaacgca actggtgctc aagctggaaa 2280
cgctgggctg gaaagtggcg attgcctccg gcggctttac tttctttgct gaatacctgc 2340
gcgacaagct gcgcctgacc gccgtggtag ccaatgaact ggagatcatg gacggtaaat 2400
ttaccggcaa tgtgatcggc gacatcgtag acgcgcagta caaagcgaaa actctgactc 2460
gcctcgcgca ggagtatgaa atcccgctgg cgcagaccgt ggcgattggc gatggagcca 2520
atgacctgcc gatgatcaaa gcggcagggc tggggattgc ctaccatgcc aagccaaaag 2580
tgaatgaaaa ggcggaagtc accatccgtc acgctgacct gatgggggta ttctgcatcc 2640
tctcaggcag cctgaatcag aagtaacggc cgtaatagta attaacatgt gagcaaaagg 2700
ccagcaaaag gccaggaacc gtaaaaaggc cgcgttgctg gcgtttttcc ataggctccg 2760
cccccctgac gagcatcaca aaaatcgacg ctcaagtcag aggtggcgaa acccgacagg 2820
actataaaga taccaggcgt ttccccctgg aagctccctc gtgcgctctc ctgttccgac 2880
cctgccgctt accggatacc tgtccgcctt tctcccttcg ggaagcgtgg cgctttctca 2940
tagctcacgc tgtaggtatc tcagttcggt gtaggtcgtt cgctccaagc tgggctgtgt 3000
gcacgaaccc cccgttcagc ccgaccgctg cgccttatcc ggtaactatc gtcttgagtc 3060
caacccggta agacacgact tatcgccact ggcagcagcc actggtaaca ggattagcag 3120
agcgaggtat gtaggcggtg ctacagagtt cttgaagtgg tggcctaact acggctacac 3180
tagaaggaca gtatttggta tctgcgctct gctgaagcca gttaccttcg gaaaaagagt 3240
tggtagctct tgatccggca aacaaaccac cgctggtagc ggtggttttt ttgtttgcaa 3300
gcagcagatt acgcgcagaa aaaaaggatc tcaagaagat cctttgatct tttctacggg 3360
gtctgacgct cagtggaacg aaaactcacg ttaagggatt ttggtcatga gattatcaaa 3420
aaggatcttc acctagatcc ttttaaatta aaaatgaagt tttaaatcaa tctaaagtat 3480
atatgagtaa acttggtctg acagttacca atgcttaatc agtgaggcac ctatctcagc 3540
gatctgtcta tttcgttcat ccatagttgc ctgactcccc gtcgtgtaga taactacgat 3600
acgggagggc ttaccatctg gccccagtgc tgcaatgata ccgcgagacc cacgctcacc 3660
ggctccagat ttatcagcaa taaaccagcc agccggaagg gccgagcgca gaagtggtcc 3720
tgcaacttta tccgcctcca tccagtctat taattgttgc cgggaagcta gagtaagtag 3780
ttcgccagtt aatagtttgc gcaacgttgt tgccattgct acaggcatcg tggtgtcacg 3840
ctcgtcgttt ggtatggctt cattcagctc cggttcccaa cgatcaaggc gagttacatg 3900
atcccccatg ttgtgcaaaa aagcggttag ctccttcggt cctccgatcg ttgtcagaag 3960
taagttggcc gcagtgttat cactcatggt tatggcagca ctgcataatt ctcttactgt 4020
catgccatcc gtaagatgct tttctgtgac tggtgagtac tcaaccaagt cattctgaga 4080
atagtgtatg cggcgaccga gttgctcttg cccggcgtca atacgggata ataccgcgcc 4140
acatagcaga actttaaaag tgctcatcat tggaaaacgt tcttcggggc gaaaactctc 4200
aaggatctta ccgctgttga gatccagttc gatgtaaccc actcgtgcac ccaactgatc 4260
ttcagcatct tttactttca ccagcgtttc tgggtgagca aaaacaggaa ggcaaaatgc 4320
cgcaaaaaag ggaataaggg cgacacggaa atgttgaata ctcatactct tcctttttca 4380
atattattga agcatttatc agggttattg tctcatgagc ggatacatat ttgaatgtat 4440
ttagaaaaat aaacaaatag gggttccgcg cacatttccc cgaaaagtgc cacctgacgt 4500
ctaagaaacc attattatca tgacattaac ctataaaaat aggcgtatca cgaggccctt 4560
tcgtcttcac 4570
<210> 5
<211> 4945
<212> DNA
<213> pGEX-kan plasmid
<400> 5
acgttatcga ctgcacggtg caccaatgct tctggcgtca ggcagccatc ggaagctgtg 60
gtatggctgt gcaggtcgta aatcactgca taattcgtgt cgctcaaggc gcactcccgt 120
tctggataat gttttttgcg ccgacatcat aacggttctg gcaaatattc tgaaatgagc 180
tgttgacaat taatcatcgg ctcgtataat gtgtggaatt gtgagcggat aacaatttca 240
cacaggaaac agtattcatg tcccctatac taggttattg gaaaattaag ggccttgtgc 300
aacccactcg acttcttttg gaatatcttg aagaaaaata tgaagagcat ttgtatgagc 360
gcgatgaagg tgataaatgg cgaaacaaaa agtttgaatt gggtttggag tttcccaatc 420
ttccttatta tattgatggt gatgttaaat taacacagtc tatggccatc atacgttata 480
tagctgacaa gcacaacatg ttgggtggtt gtccaaaaga gcgtgcagag atttcaatgc 540
ttgaaggagc ggttttggat attagatacg gtgtttcgag aattgcatat agtaaagact 600
ttgaaactct caaagttgat tttcttagca agctacctga aatgctgaaa atgttcgaag 660
atcgtttatg tcataaaaca tatttaaatg gtgatcatgt aacccatcct gacttcatgt 720
tgtatgacgc tcttgatgtt gttttataca tggacccaat gtgcctggat gcgttcccaa 780
aattagtttg ttttaaaaaa cgtattgaag ctatcccaca aattgataag tacttgaaat 840
ccagcaagta tatagcatgg cctttgcagg gctggcaagc cacgtttggt ggtggcgacc 900
atcctccaaa atcggatctg gttccgcgtg gatccccgga attcccgggt cgactcgagc 960
ggccgcatcg tgactgactg acgatctgcc tcgcgcgttt cggtgatgac ggtgaaaacc 1020
tctgacacat gcagctcccg gagacggtca cagcttgtct gtaagcggat gccgggagca 1080
gacaagcccg tcagggcgcg tcagcgggtg ttggcgggtg tcggggcgca gccatgaccc 1140
agtcacgtag cgatagcgga gtgtataatt cttgaagacg aaagggcctc gtgatacgcc 1200
tatttttata ggttaatgtc atgataataa tggtttctta gacgtcaggt ggactcacgt 1260
taagggattt tggtcatgaa caataaaact gtctgcttac ataaacagta atacaagggg 1320
tgttatgagc catattcaac gggaaacgtc ttgctctagg ccgcgattaa attccaacat 1380
ggatgctgat ttatatgggt ataaatgggc tcgcgataat gtcgggcaat caggtgcgac 1440
aatctatcga ttgtatggga agcccgatgc gccagagttg tttctgaaac atggcaaagg 1500
tagcgttgcc aatgatgtta cagatgagat ggtcagacta aactggctga cggaatttat 1560
gcctcttccg accatcaagc attttatccg tactcctgat gatgcatggt tactcaccac 1620
tgcgatcccc gggaaaacag cattccaggt attagaagaa tatcctgatt caggtgaaaa 1680
tattgttgat gcgctggcag tgttcctgcg ccggttgcat tcgattcctg tttgtaattg 1740
tccttttaac agcgatcgcg tatttcgtct cgctcaggcg caatcacgaa tgaataacgg 1800
tttggttgat gcgagtgatt ttgatgacga gcgtaatggc tggcctgttg aacaagtctg 1860
gaaagaaatg cataaacttt tgccattctc accggattca gtcgtcactc atggtgattt 1920
ctcacttgat aaccttattt ttgacgaggg gaaattaata ggttgtattg atgttggacg 1980
agtcggaatc gcagaccgat accaggatct tgccatccta tggaactgcc tcggtgagtt 2040
ttctccttca ttacagaaac ggctttttca aaaatatggt attgataatc ctgatatgaa 2100
taaattgcag tttcatttga tgctcgatga gtttttctaa gagtcaggca actatggatg 2160
aacgaaatag acagatcgct gagataggtg cctcactgat taagcattgg taactgtcag 2220
accaagttta ctcatatata ctttagattg atttaaaact tcatttttaa tttaaaagga 2280
tctaggtgaa gatccttttt gataatctca tgaccaaaat cccttaacgt gagttttcgt 2340
tccactgagc gtcagacccc gtagaaaaga tcaaaggatc ttcttgagat cctttttttc 2400
tgcgcgtaat ctgctgcttg caaacaaaaa aaccaccgct accagcggtg gtttgtttgc 2460
cggatcaaga gctaccaact ctttttccga aggtaactgg cttcagcaga gcgcagatac 2520
caaatactgt ccttctagtg tagccgtagt taggccacca cttcaagaac tctgtagcac 2580
cgcctacata cctcgctctg ctaatcctgt taccagtggc tgctgccagt ggcgataagt 2640
cgtgtcttac cgggttggac tcaagacgat agttaccgga taaggcgcag cggtcgggct 2700
gaacgggggg ttcgtgcaca cagcccagct tggagcgaac gacctacacc gaactgagat 2760
acctacagcg tgagctatga gaaagcgcca cgcttcccga agggagaaag gcggacaggt 2820
atccggtaag cggcagggtc ggaacaggag agcgcacgag ggagcttcca gggggaaacg 2880
cctggtatct ttatagtcct gtcgggtttc gccacctctg acttgagcgt cgatttttgt 2940
gatgctcgtc aggggggcgg agcctatgga aaaacgccag caacgcggcc tttttacggt 3000
tcctggcctt ttgctggcct tttgctcaca tgttctttcc tgcgttatcc cctgattctg 3060
tggataaccg tattaccgcc tttgagtgag ctgataccgc tcgccgcagc cgaacgaccg 3120
agcgcagcga gtcagtgagc gaggaagcgg aagagcgcct gatgcggtat tttctcctta 3180
cgcatctgtg cggtatttca caccgcataa attccgacac catcgaatgg tgcaaaacct 3240
ttcgcggtat ggcatgatag cgcccggaag agagtcaatt cagggtggtg aatgtgaaac 3300
cagtaacgtt atacgatgtc gcagagtatg ccggtgtctc ttatcagacc gtttcccgcg 3360
tggtgaacca ggccagccac gtttctgcga aaacgcggga aaaagtggaa gcggcgatgg 3420
cggagctgaa ttacattccc aaccgcgtgg cacaacaact ggcgggcaaa cagtcgttgc 3480
tgattggcgt tgccacctcc agtctggccc tgcacgcgcc gtcgcaaatt gtcgcggcga 3540
ttaaatctcg cgccgatcaa ctgggtgcca gcgtggtggt gtcgatggta gaacgaagcg 3600
gcgtcgaagc ctgtaaagcg gcggtgcaca atcttctcgc gcaacgcgtc agtgggctga 3660
tcattaacta tccgctggat gaccaggatg ccattgctgt ggaagctgcc tgcactaatg 3720
ttccggcgtt atttcttgat gtctctgacc agacacccat caacagtatt attttctccc 3780
atgaagacgg tacgcgactg ggcgtggagc atctggtcgc attgggtcac cagcaaatcg 3840
cgctgttagc gggcccatta agttctgtct cggcgcgtct gcgtctggct ggctggcata 3900
aatatctcac tcgcaatcaa attcagccga tagcggaacg ggaaggcgac tggagtgcca 3960
tgtccggttt tcaacaaacc atgcaaatgc tgaatgaggg catcgttccc actgcgatgc 4020
tggttgccaa cgatcagatg gcgctgggcg caatgcgcgc cattaccgag tccgggctgc 4080
gcgttggtgc ggatatctcg gtagtgggat acgacgatac cgaagacagc tcatgttata 4140
tcccgccgtt aaccaccatc aaacaggatt ttcgcctgct ggggcaaacc agcgtggacc 4200
gcttgctgca actctctcag ggccaggcgg tgaagggcaa tcagctgttg cccgtctcac 4260
tggtgaaaag aaaaaccacc ctggcgccca atacgcaaac cgcctctccc cgcgcgttgg 4320
ccgattcatt aatgcagctg gcacgacagg tttcccgact ggaaagcggg cagtgagcgc 4380
aacgcaatta atgtgagtta gctcactcat taggcacccc aggctttaca ctttatgctt 4440
ccggctcgta tgttgtgtgg aattgtgagc ggataacaat ttcacacagg aaacagctat 4500
gaccatgatt acggattcac tggccgtcgt tttacaacgt cgtgactggg aaaaccctgg 4560
cgttacccaa cttaatcgcc ttgcagcaca tccccctttc gccagctggc gtaatagcga 4620
agaggcccgc accgatcgcc cttcccaaca gttgcgcagc ctgaatggcg aatggcgctt 4680
tgcctggttt ccggcaccag aagcggtgcc ggaaagctgg ctggagtgcg atcttcctga 4740
ggccgatact gtcgtcgtcc cctcaaactg gcagatgcac ggttacgatg cgcccatcta 4800
caccaacgta acctatccca ttacggtcaa tccgccgttt gttcccacgg agaatccgac 4860
gggttgttac tcgctcacat ttaatgttga tgaaagctgg ctacaggaag gccagacgcg 4920
aattattttt gatggcgttg gaatt 4945
<210> 6
<211> 999
<212> DNA
<213> serAΔ197
<400> 6
gtgagccaga atggccgtcc ggtagtcctc atcgccgata agcttgcgca gtccactgtt 60
gacgcgcttg gagatgcagt agaagtccgt tgggttgacg gacctaaccg cccagaactg 120
cttgatgcag ttaaggaagc ggacgcactg ctcgtgcgtt ctgctaccac tgtcgatgct 180
gaagtcatcg ccgctgcccc taacttgaag atcgtcggtc gtgccggcgt gggcttggac 240
aacgttgaca tccctgctgc cactgaagct ggcgtcatgg ttgctaacgc accgacctct 300
aatattcact ctgcttgtga gcacgcaatt tctttgctgc tgtctactgc tcgccagatc 360
cctgctgctg atgcgacgct gcgtgagggc gagtggaagc ggtcttcttt caacggtgtg 420
gaaattttcg gaaaaactgt cggtatcgtc ggttttggcc acattggtca gttgtttgct 480
cagcgtcttg ctgcgtttga gaccaccatt gttgcttacg atccttacgc caaccctgct 540
cgtgcagctc agctgaacgt tgagttggtt gagttggatg agctgatgag ccgttctgac 600
tttgtcacca ttcaccttcc taagaccaag gaaactgctg gcatgtttga tgcgcagctc 660
cttgctaagt ccaagaaggg tcagatcatc atcaacgctg ctcgtggcgg tcttgttgat 720
gagcaggctt tggctgatgc gattgagtcc ggtcacattc gtggcgctgg tttcgatgtg 780
tactccaccg agccttgcac tgattctcct ttgttcaagt tgcctcaggt tgttgtgact 840
cctcacttgg gtgcttctac tgaagaggct caggatcgtg cgggtactga tgttgctgat 900
tccgtgctca aggcgctggc tggcgagttc gtggcggatg ctgtgaacgt ttccggtggt 960
cgcgtgggcg aagaggttgc tgtgtggatg gatctggct 999
<210> 7
<211> 1019
<212> DNA
<213> Artificial sequence
<400> 7
tactagggtg tctcagaacg gtcgtccggt tgttctgatc gctgacaaac tggctcagtc 60
taccgttgac gctctgggtg acgctgttga agttcgttgg gttgacggtc cgaaccgtcc 120
ggaactgctg gacgctgtta aagaagctga cgctctgctg gttcgttctg ctaccaccgt 180
tgacgctgaa gttatcgctg ctgctccgaa cctgaaaatc gttggtcgtg ctggtgttgg 240
tctggacaac gttgacatcc cggctgctac cgaagctggt gttatggttg ctaacgctcc 300
gacctctaac atccactctg cttgcgaaca cgctatctct ctgctgctgt ctaccgctcg 360
tcagatcccg gctgctgacg ctaccctgcg tgaaggtgaa tggaaacgtt cttctttcaa 420
cggtgttgaa atcttcggta aaaccgttgg tatcgttggt ttcggtcaca tcggtcagct 480
gttcgctcag cgtctggctg ctttcgaaac caccatcgtt gcttacgacc cgtacgctaa 540
cccggctcgt gctgctcagc tgaacgttga actggttgaa ctggacgaac tgatgtctcg 600
ttctgacttc gttaccatcc acctgccgaa aaccaaagaa accgctggta tgttcgacgc 660
tcagctgctg gctaaatcta aaaaaggtca gatcatcatc aacgctgctc gtggtggtct 720
ggttgacgaa caggctctgg ctgacgctat cgaatctggt cacatccgtg gtgctggttt 780
cgacgtttac tctaccgaac cgtgcaccga ctctccgctg ttcaaactgc cgcaggttgt 840
tgttaccccg cacctgggtg cttctaccga agaagctcag gaccgtgctg gtaccgacgt 900
tgctgactct gttctgaaag ctctggctgg tgaattcgtt gctgacgctg ttaacgtttc 960
tggtggtcgt gttggtgaag aagttgctgt ttggatggac ctggcttaat agcaggtgg 1019
<210> 8
<211> 5037
<212> DNA
<213> pGEX-serA
<400> 8
acgttatcga ctgcacggtg caccaatgct tctggcgtca ggcagccatc ggaagctgtg 60
gtatggctgt gcaggtcgta aatcactgca taattcgtgt cgctcaaggc gcactcccgt 120
tctggataat gttttttgcg ccgacatcat aacggttctg gcaaatattc tgaaatgagc 180
tgttgacaat taatcatcgg ctcgtataat gtgtggaatt gtgagcggat aacaatttca 240
cacaggaaac agtattcatg tcccctatac tagggtgtct cagaacggtc gtccggttgt 300
tctgatcgct gacaaactgg ctcagtctac cgttgacgct ctgggtgacg ctgttgaagt 360
tcgttgggtt gacggtccga accgtccgga actgctggac gctgttaaag aagctgacgc 420
tctgctggtt cgttctgcta ccaccgttga cgctgaagtt atcgctgctg ctccgaacct 480
gaaaatcgtt ggtcgtgctg gtgttggtct ggacaacgtt gacatcccgg ctgctaccga 540
agctggtgtt atggttgcta acgctccgac ctctaacatc cactctgctt gcgaacacgc 600
tatctctctg ctgctgtcta ccgctcgtca gatcccggct gctgacgcta ccctgcgtga 660
aggtgaatgg aaacgttctt ctttcaacgg tgttgaaatc ttcggtaaaa ccgttggtat 720
cgttggtttc ggtcacatcg gtcagctgtt cgctcagcgt ctggctgctt tcgaaaccac 780
catcgttgct tacgacccgt acgctaaccc ggctcgtgct gctcagctga acgttgaact 840
ggttgaactg gacgaactga tgtctcgttc tgacttcgtt accatccacc tgccgaaaac 900
caaagaaacc gctggtatgt tcgacgctca gctgctggct aaatctaaaa aaggtcagat 960
catcatcaac gctgctcgtg gtggtctggt tgacgaacag gctctggctg acgctatcga 1020
atctggtcac atccgtggtg ctggtttcga cgtttactct accgaaccgt gcaccgactc 1080
tccgctgttc aaactgccgc aggttgttgt taccccgcac ctgggtgctt ctaccgaaga 1140
agctcaggac cgtgctggta ccgacgttgc tgactctgtt ctgaaagctc tggctggtga 1200
attcgttgct gacgctgtta acgtttctgg tggtcgtgtt ggtgaagaag ttgctgtttg 1260
gatggacctg gcttaatagc aggtggaaga agatcctttg atcttttcta cggggtctga 1320
cgctcagtgg aacgaaaact cacgttaagg gattttggtc atgaacaata aaactgtctg 1380
cttacataaa cagtaataca aggggtgtta tgagccatat tcaacgggaa acgtcttgct 1440
ctaggccgcg attaaattcc aacatggatg ctgatttata tgggtataaa tgggctcgcg 1500
ataatgtcgg gcaatcaggt gcgacaatct atcgattgta tgggaagccc gatgcgccag 1560
agttgtttct gaaacatggc aaaggtagcg ttgccaatga tgttacagat gagatggtca 1620
gactaaactg gctgacggaa tttatgcctc ttccgaccat caagcatttt atccgtactc 1680
ctgatgatgc atggttactc accactgcga tccccgggaa aacagcattc caggtattag 1740
aagaatatcc tgattcaggt gaaaatattg ttgatgcgct ggcagtgttc ctgcgccggt 1800
tgcattcgat tcctgtttgt aattgtcctt ttaacagcga tcgcgtattt cgtctcgctc 1860
aggcgcaatc acgaatgaat aacggtttgg ttgatgcgag tgattttgat gacgagcgta 1920
atggctggcc tgttgaacaa gtctggaaag aaatgcataa acttttgcca ttctcaccgg 1980
attcagtcgt cactcatggt gatttctcac ttgataacct tatttttgac gaggggaaat 2040
taataggttg tattgatgtt ggacgagtcg gaatcgcaga ccgataccag gatcttgcca 2100
tcctatggaa ctgcctcggt gagttttctc cttcattaca gaaacggctt tttcaaaaat 2160
atggtattga taatcctgat atgaataaat tgcagtttca tttgatgctc gatgagtttt 2220
tctaacgacg gggagtcagg caactatgga tgaacgaaat agacagatcg ctgagatagg 2280
tgcctcactg attaagcatt ggtaactgtc agaccaagtt tactcatata tactttagat 2340
tgatttaaaa cttcattttt aatttaaaag gatctaggtg aagatccttt ttgataatct 2400
catgaccaaa atcccttaac gtgagttttc gttccactga gcgtcagacc ccgtagaaaa 2460
gatcaaagga tcttcttgag atcctttttt tctgcgcgta atctgctgct tgcaaacaaa 2520
aaaaccaccg ctaccagcgg tggtttgttt gccggatcaa gagctaccaa ctctttttcc 2580
gaaggtaact ggcttcagca gagcgcagat accaaatact gtccttctag tgtagccgta 2640
gttaggccac cacttcaaga actctgtagc accgcctaca tacctcgctc tgctaatcct 2700
gttaccagtg gctgctgcca gtggcgataa gtcgtgtctt accgggttgg actcaagacg 2760
atagttaccg gataaggcgc agcggtcggg ctgaacgggg ggttcgtgca cacagcccag 2820
cttggagcga acgacctaca ccgaactgag atacctacag cgtgagctat gagaaagcgc 2880
cacgcttccc gaagggagaa aggcggacag gtatccggta agcggcaggg tcggaacagg 2940
agagcgcacg agggagcttc cagggggaaa cgcctggtat ctttatagtc ctgtcgggtt 3000
tcgccacctc tgacttgagc gtcgattttt gtgatgctcg tcaggggggc ggagcctatg 3060
gaaaaacgcc agcaacgcgg cctttttacg gttcctggcc ttttgctggc cttttgctca 3120
catgttcttt cctgcgttat cccctgattc tgtggataac cgtattaccg cctttgagtg 3180
agctgatacc gctcgccgca gccgaacgac cgagcgcagc gagtcagtga gcgaggaagc 3240
ggaagagcgc ctgatgcggt attttctcct tacgcatctg tgcggtattt cacaccgcat 3300
aaattccgac accatcgaat ggtgcaaaac ctttcgcggt atggcatgat agcgcccgga 3360
agagagtcaa ttcagggtgg tgaatgtgaa accagtaacg ttatacgatg tcgcagagta 3420
tgccggtgtc tcttatcaga ccgtttcccg cgtggtgaac caggccagcc acgtttctgc 3480
gaaaacgcgg gaaaaagtgg aagcggcgat ggcggagctg aattacattc ccaaccgcgt 3540
ggcacaacaa ctggcgggca aacagtcgtt gctgattggc gttgccacct ccagtctggc 3600
cctgcacgcg ccgtcgcaaa ttgtcgcggc gattaaatct cgcgccgatc aactgggtgc 3660
cagcgtggtg gtgtcgatgg tagaacgaag cggcgtcgaa gcctgtaaag cggcggtgca 3720
caatcttctc gcgcaacgcg tcagtgggct gatcattaac tatccgctgg atgaccagga 3780
tgccattgct gtggaagctg cctgcactaa tgttccggcg ttatttcttg atgtctctga 3840
ccagacaccc atcaacagta ttattttctc ccatgaagac ggtacgcgac tgggcgtgga 3900
gcatctggtc gcattgggtc accagcaaat cgcgctgtta gcgggcccat taagttctgt 3960
ctcggcgcgt ctgcgtctgg ctggctggca taaatatctc actcgcaatc aaattcagcc 4020
gatagcggaa cgggaaggcg actggagtgc catgtccggt tttcaacaaa ccatgcaaat 4080
gctgaatgag ggcatcgttc ccactgcgat gctggttgcc aacgatcaga tggcgctggg 4140
cgcaatgcgc gccattaccg agtccgggct gcgcgttggt gcggatatct cggtagtggg 4200
atacgacgat accgaagaca gctcatgtta tatcccgccg ttaaccacca tcaaacagga 4260
ttttcgcctg ctggggcaaa ccagcgtgga ccgcttgctg caactctctc agggccaggc 4320
ggtgaagggc aatcagctgt tgcccgtctc actggtgaaa agaaaaacca ccctggcgcc 4380
caatacgcaa accgcctctc cccgcgcgtt ggccgattca ttaatgcagc tggcacgaca 4440
ggtttcccga ctggaaagcg ggcagtgagc gcaacgcaat taatgtgagt tagctcactc 4500
attaggcacc ccaggcttta cactttatgc ttccggctcg tatgttgtgt ggaattgtga 4560
gcggataaca atttcacaca ggaaacagct atgaccatga ttacggattc actggccgtc 4620
gttttacaac gtcgtgactg ggaaaaccct ggcgttaccc aacttaatcg ccttgcagca 4680
catccccctt tcgccagctg gcgtaatagc gaagaggccc gcaccgatcg cccttcccaa 4740
cagttgcgca gcctgaatgg cgaatggcgc tttgcctggt ttccggcacc agaagcggtg 4800
ccggaaagct ggctggagtg cgatcttcct gaggccgata ctgtcgtcgt cccctcaaac 4860
tggcagatgc acggttacga tgcgcccatc tacaccaacg taacctatcc cattacggtc 4920
aatccgccgt ttgttcccac ggagaatccg acgggttgtt actcgctcac atttaatgtt 4980
gatgaaagct ggctacagga aggccagacg cgaattattt ttgatggcgt tggaatt 5037
<210> 9
<211> 31
<212> DNA
<213> PKD-gpmA-F
<400> 9
gcagtcggct ttctcatttt aaacgaatga c 31
<210> 10
<211> 31
<212> DNA
<213> PKD-gpmA-R
<400> 10
ttactcctca aatcatcttt taatgataat a 31
<210> 11
<211> 31
<212> DNA
<213> PKD-sdaA -F
<400> 11
ggaagtccag tcaccttgtc aggagtatta t 31
<210> 12
<211> 31
<212> DNA
<213> PKD-sdaA -R
<400> 12
ttcttactcg cccatctgca acggatgggc g 31
<210> 13
<211> 31
<212> DNA
<213> PKD-mrfA -F
<400> 13
gggatagctt gactgtgaaa atcacaggag c 31
<210> 14
<211> 31
<212> DNA
<213> PKD-mrfA -R
<400> 14
taacaacttt gcagattaat taaccaattg a 31
<210> 15
<211> 31
<212> DNA
<213> PKD-pta -F
<400> 15
aacccgccaa atcggcggta acgaaagagg a 31
<210> 16
<211> 31
<212> DNA
<213> PKD-pta -R
<400> 16
tcatccgcag ctttgcgctg cggatatctg a 31
<210> 17
<211> 31
<212> DNA
<213> PKD-glyA -F
<400> 17
caacgagcac attgacagca aatcaccgtt t 31
<210> 18
<211> 31
<212> DNA
<213> PKD-glyA -R
<400> 18
gcatctcctg actcagctaa caataaaatt t 31
<210> 19
<211> 31
<212> DNA
<213> PKD-sdaC -F
<400> 19
ctaaaagctg aattatttgc attcctccag g 31
<210> 20
<211> 31
<212> DNA
<213> PKD-sdaC -R
<400> 20
attgcaatct ccgcaatctt ctactctctg t 31
<210> 21
<211> 31
<212> DNA
<213> PKD-serA -F
<400> 21
agtcagtgac ctgcccgttg attttcagag a 31
<210> 22
<211> 31
<212> DNA
<213> PKD-serA -R
<400> 22
cctgtctttt gaaatgttgt gtgcggattt g 31
<210> 23
<211> 31
<212> DNA
<213> PKD-sstT-F
<400> 23
gggatgtgcg acaacacaat gaaaggatcg a 31
<210> 24
<211> 31
<212> DNA
<213> PKD-sst -R
<400> 24
tgtttaaccc ctttcgtcta cggcggaagg g 31
<210> 25
<211> 31
<212> DNA
<213> PKD-tdcC -F
<400> 25
aattcattca tctcttttct catcctgagt t 31
<210> 26
<211> 31
<212> DNA
<213> PKD-tdcC -R
<400> 26
cctatcctca acgaattaat taagcgtcaa c 31
<210> 27
<211> 31
<212> DNA
<213> PKD-aceA-F
<400> 27
gttagcgtaa accaccacat aactatggag c 31
<210> 28
<211> 31
<212> DNA
<213> PKD-aceA-R
<400> 28
acaaccgttg ctgactgtag gccggataag g 31
<210> 29
<211> 31
<212> DNA
<213> PKD-cycA-F
<400> 29
tgaacaacac agacaggtac aggaagaaaa a 31
<210> 30
<211> 31
<212> DNA
<213> PKD-cycA-R
<400> 30
cattatcatg ctggatggcg caatgccatc c 31
<210> 31
<211> 31
<212> DNA
<213> Test- gpmA-F
<400> 31
aatgtgctcc attgttagca acaaaaaagc c 31
<210> 32
<211> 31
<212> DNA
<213> Test- gpmA-R
<400> 32
atattgccgc gacgaagcaa cagcaatgct t 31
<210> 33
<211> 31
<212> DNA
<213> Test- sdaA -F
<400> 33
tacactatgc gctgttatta gttcgttact g 31
<210> 34
<211> 31
<212> DNA
<213> Test- sdaA -R
<400> 34
gaatttatac ccgctttctc gtctgctgta a 31
<210> 35
<211> 31
<212> DNA
<213> Test- mrfA -F
<400> 35
acatctgtat aaggaatttt taaggttcgt g 31
<210> 36
<211> 31
<212> DNA
<213> Test- mrfA -R
<400> 36
aaatgactta tgaaatttag tgttgacaga c 31
<210> 37
<211> 31
<212> DNA
<213> Test- pta -F
<400> 37
ccgccagctc agctggcggt gctgttttgt a 31
<210> 38
<211> 31
<212> DNA
<213> Test- pta -R
<400> 38
aaccggaaat aatcactatt tccggttttt t 31
<210> 39
<211> 31
<212> DNA
<213> Test- glyA -F
<400> 39
ataaggcgtt cacgccgcat ccggcatgaa c 31
<210> 40
<211> 31
<212> DNA
<213> Test- glyA -R
<400> 40
tttggccttt ataggcggtc ctgttggaca a 31
<210> 41
<211> 31
<212> DNA
<213> Test- sdaC -F
<400> 41
acggtcaggc accttcccgg gctgaactgg c 31
<210> 42
<211> 31
<212> DNA
<213> Test- sdaC -R
<400> 42
ttcagctaag tcctttcgcg ccgctttcgg g 31
<210> 43
<211> 31
<212> DNA
<213> Test- serA -F
<400> 43
cggtgtggag aagggataaa aaaacgggca a 31
<210> 44
<211> 31
<212> DNA
<213> Test- serA -R
<400> 44
gcatccgcct ttcaacatat caaaaaataa t 31
<210> 45
<211> 31
<212> DNA
<213> Test- sstT -F
<400> 45
tcctgaaaga tgcgtcgaca gaacgcacca g 31
<210> 46
<211> 31
<212> DNA
<213> Test- sstT -R
<400> 46
ggttttctca actttaaacg gatcaattcc c 31
<210> 47
<211> 31
<212> DNA
<213> Test- tdcC -F
<400> 47
gaaccacagt taataaccaa aacaaccgga a 31
<210> 48
<211> 31
<212> DNA
<213> Test- tdcC -R
<400> 48
cgaaaccggt gatttgagag acgcgagaaa g 31
<210> 49
<211> 31
<212> DNA
<213> Test- aceA -F
<400> 49
tgatttcctg accctgccag gctaccgcct g 31
<210> 50
<211> 31
<212> DNA
<213> Test- aceA -R
<400> 50
gcgttcacgc cgcatccggc aatcggtgca c 31
<210> 51
<211> 31
<212> DNA
<213> Test- cycA -F
<400> 51
tatcatagac tgactaaagg ccgtagagcc t 31
<210> 52
<211> 31
<212> DNA
<213> Test- cycA -R
<400> 52
cagcttttag atcactcacc cgccagcgcg c 31
<210> 53
<211> 22
<212> DNA
<213> Artificial sequence
<400> 53
ccatgcctaa cattacctgg tg 22
<210> 54
<211> 23
<212> DNA
<213> Artificial sequence
<400> 54
agcctgaatc agaagtaaga tct 23
<210> 55
<211> 24
<212> DNA
<213> Artificial sequence
<400> 55
ccatggctca aatcttcaat ttta 24
<210> 56
<211> 22
<212> DNA
<213> Artificial sequence
<400> 56
tgagttcgaa cgccgtcacg gt 22
<210> 57
<211> 22
<212> DNA
<213> Artificial sequence
<400> 57
agcggataac aatttcacac ag 22
<210> 58
<211> 21
<212> DNA
<213> Artificial sequence
<400> 58
ttctgaggtc attactggat c 21
<210> 59
<211> 23
<212> DNA
<213> Artificial sequence
<400> 59
gggctggcaa gccacgtttg gtg 23
<210> 60
<211> 23
<212> DNA
<213> Artificial sequence
<400> 60
ccgggagctg catgtgtcag agg 23

Claims (7)

1. A method for producing L-serine by fermentation, which is characterized by comprising the following steps:
(1) inoculating the seed liquid of the L-serine production bacteria into a fermentation culture medium for fermentation culture, wherein the temperature of the fermentation culture is 28-32 ℃, the pH value is 6.8-7.2, the dissolved oxygen is 20-40%, and the stirring speed is 150-250 rpm; performing fermentation culture until the OD of the fermentation liquid after being diluted by 100 times600When the value is 0.40-0.60, cooling to 27-29 ℃, adding IPTG into the system for induction culture, and performing induction culture for 48-52 h;
monitoring the residual sugar content of the system in the culture process, starting to add supplementary materials when the residual sugar content of the system is less than or equal to 1.0g/L, and keeping the glucose concentration in the system at 0.5-1.0g/L by feeding supplementary materials; the supplementary material contains 60-80g/L glucose, 40-60ml/L molasses and 0.3-0.5g/L folic acid;
(2) and (3) performing bacterium breaking treatment on the culture after induction culture, separating and collecting supernatant, and thus obtaining the culture solution containing the L-serine.
2. The method according to claim 1, wherein the L-serine-producing bacterium is constructed by the following method in step (1):
knocking out gpmA, sdaA, mtfA, pta, glyA, sdaC, serA, sstT, tdcC, aceA and cycA genes in escherichia coli to obtain escherichia coli engineering bacteria;
carrying out enzyme digestion treatment on the serB gene by sphI and AaaI, carrying out enzyme digestion treatment on the serC gene by Nco I and Bgl II, and integrating the serB gene and the serC gene subjected to enzyme digestion treatment onto a plasmid PQE-N to obtain a first recombinant expression vector;
carrying out double enzyme digestion on the pGEX-kan plasmid by ecoNI and Zra I, and integrating the serA delta 197 gene into the plasmid pGEX-kan subjected to double enzyme digestion to obtain a second recombinant expression vector;
and introducing the obtained first recombinant expression vector and the second recombinant expression vector into the escherichia coli engineering bacteria to construct the L-serine producing bacteria.
3. The method according to claim 2, wherein the serB gene has the nucleotide sequence shown in SEQ ID No. 1; the nucleotide sequence of the serC gene is shown as SEQ ID NO. 2; the nucleotide sequence of the plasmid PQE-N is shown as SEQ ID NO. 3; the nucleotide sequence of the first recombinant expression vector is shown as SEQ ID NO. 4; the nucleotide sequence of the pGEX-kan plasmid is shown as SEQ ID NO. 5; the nucleotide sequence of the serA delta 197 gene is shown as SEQ ID NO. 7; the nucleotide sequence of the second recombinant expression vector is shown as SEQ ID NO. 8.
4. The method according to claim 1, wherein the seed solution of the L-serine-producing bacterium is inoculated in an amount of 10 to 15% by weight based on the fermentation medium.
5. The method according to claim 1, wherein in step (1), the composition of the fermentation medium is: 40ml/L of molasses, 30g/L of glucose, 30g/L of corn steep liquor dry powder, 2g/L of monopotassium phosphate, 0.5g/L of citric acid, (NH)4)2SO4 5g/L、MgSO4·7H2O 0.5g/L、MnSO4 0.08g/L、FeSO40.06g/L, vitamin B10.025g/L, biotin 3mg/L, kanamycin 50 ppm.
6. The method of claim 1, wherein in step (1), IPTG is added to give a final concentration of 0.5mmol/L of IPTG in the system.
7. The method according to claim 1, wherein in step (1), the feed comprises 70g/L glucose, 50ml/L molasses and 0.4g/L folic acid.
CN202111278475.3A 2021-10-30 2021-10-30 Method for producing L-serine by fermentation Active CN114134185B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111278475.3A CN114134185B (en) 2021-10-30 2021-10-30 Method for producing L-serine by fermentation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111278475.3A CN114134185B (en) 2021-10-30 2021-10-30 Method for producing L-serine by fermentation

Publications (2)

Publication Number Publication Date
CN114134185A true CN114134185A (en) 2022-03-04
CN114134185B CN114134185B (en) 2024-06-21

Family

ID=80391855

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111278475.3A Active CN114134185B (en) 2021-10-30 2021-10-30 Method for producing L-serine by fermentation

Country Status (1)

Country Link
CN (1) CN114134185B (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040101837A1 (en) * 2000-03-01 2004-05-27 Petra Ziegler Nucleotide sequences coding for proteins involved in the biosynthesis of L-serine, an improved method for the microbial production of L-serine and a genetically modified microorganism suitable therefor
US20060106207A1 (en) * 2002-07-10 2006-05-18 Forschungszentrum Julich Gmbh Nucleotide sequences that encode deregulated phosphoglycerate dehydrogenases of coryneform bacteria and method for producing l-serine
CN101374953A (en) * 2006-01-27 2009-02-25 味之素株式会社 Method for producing l-amino acid
CN102703371A (en) * 2012-07-03 2012-10-03 天津科技大学 Escherichia coli engineering bacteria for producing L-serine with high yield and fermentation method for engineering bacteria
CN105820991A (en) * 2016-04-01 2016-08-03 中国科学院上海高等研究院 Genetically engineered bacterium of Escherichia coli
CN109797126A (en) * 2017-11-17 2019-05-24 中国科学院微生物研究所 Produce the recombinant bacterium and its construction method of Serine
CN114085858A (en) * 2021-10-30 2022-02-25 新泰市佳禾生物科技有限公司 L-serine producing strain and construction method thereof

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040101837A1 (en) * 2000-03-01 2004-05-27 Petra Ziegler Nucleotide sequences coding for proteins involved in the biosynthesis of L-serine, an improved method for the microbial production of L-serine and a genetically modified microorganism suitable therefor
US20060106207A1 (en) * 2002-07-10 2006-05-18 Forschungszentrum Julich Gmbh Nucleotide sequences that encode deregulated phosphoglycerate dehydrogenases of coryneform bacteria and method for producing l-serine
CN101374953A (en) * 2006-01-27 2009-02-25 味之素株式会社 Method for producing l-amino acid
CN102703371A (en) * 2012-07-03 2012-10-03 天津科技大学 Escherichia coli engineering bacteria for producing L-serine with high yield and fermentation method for engineering bacteria
CN105820991A (en) * 2016-04-01 2016-08-03 中国科学院上海高等研究院 Genetically engineered bacterium of Escherichia coli
CN109797126A (en) * 2017-11-17 2019-05-24 中国科学院微生物研究所 Produce the recombinant bacterium and its construction method of Serine
CN114085858A (en) * 2021-10-30 2022-02-25 新泰市佳禾生物科技有限公司 L-serine producing strain and construction method thereof

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
刘岩: "L-丝氨酸基因工程菌的构建及发酵条件优化", 中国优秀硕士学位论文全文数据库 (基础科学辑), 15 June 2016 (2016-06-15), pages 018 - 39 *
崔云风;石斌超;李晶;赵志军;史吉平;张霞;: "大肠杆菌丝氨酸转运系统单基因敲除对丝氨酸生产的影响", 食品工业科技, no. 14, 15 July 2016 (2016-07-15), pages 191 - 195 *
徐达;: "低糖流加法生产L-鸟氨酸的优化研究", 发酵科技通讯, no. 01, 15 January 2011 (2011-01-15), pages 3 - 5 *
来书娟,等: "产L-丝氨酸谷氨酸棒杆菌的代谢工程改造和代谢流分析", 中国科学:生命科学, 20 April 2012 (2012-04-20), pages 295 - 303 *
林琳;窦文芳;张晓梅;许泓瑜;许正宏;王正祥;: "直接利用糖质原料产L-丝氨酸谷氨酸棒杆菌glyA基因序列分析", 生物技术通报, no. 05, 26 October 2008 (2008-10-26), pages 176 - 180 *
石斌超;崔云风;王晨阳;赵志军;史吉平;张霞;: "丝氨酸吸收系统多基因敲除对大肠杆菌产L-丝氨酸的影响", 食品工业科技, no. 16, 5 May 2017 (2017-05-05), pages 106 - 111 *
贾慧慧: "基于代谢工程改造大肠杆菌生产L-丝氨酸", 中国优秀硕士学位论文全文数据库 (基础科学辑), 15 May 2016 (2016-05-15), pages 018 - 42 *
颜文斌;张晓梅;史劲松;许正宏;: "rhtA和tyrP对谷氨酸棒杆菌产L-丝氨酸的影响分析", 食品与发酵工业, no. 11, 16 March 2020 (2020-03-16), pages 9 - 16 *

Also Published As

Publication number Publication date
CN114134185B (en) 2024-06-21

Similar Documents

Publication Publication Date Title
KR102274445B1 (en) Methods for genomic integration
CN114085858B (en) L-serine producing strain and construction method thereof
KR101602972B1 (en) Protein expression systems
KR20210044795A (en) Application of CRISPRi in high-throughput metabolic engineering
KR20190116282A (en) Modular, Universal Plasmid Design Strategy for Assembling and Editing Multiple DNA Constructs for Multiple Hosts
DK2663645T3 (en) Yeast strains modified for the production of ETHANOL FROM GLYCEROL
CN109563505A (en) Package system for eukaryocyte
KR101076602B1 (en) Expression vector for animal cell comprising at least one copy of MAR DNA sequences at the 3′terminal of transcription termination region of a gene and method for the expression of foreign gene using the vector
KR20120099509A (en) Expression of hexose kinase in recombinant host cells
CN101939423A (en) System for capturing and modifying large pieces of genomic DNA and constructing organisms with synthetic chloroplasts
KR20100037031A (en) Gene knockout mesophilic and thermophilic organisms, and methods of use thereof
CN112204147A (en) Cpf 1-based plant transcription regulatory system
KR20140099224A (en) Keto-isovalerate decarboxylase enzymes and methods of use thereof
KR20130032897A (en) Production of alcohol esters and in situ product removal during alcohol fermentation
AU782960B2 (en) Conditional gene trapping construct for the disruption of genes
CN1981039A (en) Methods for assembling multiple expression constructs
CN101001951A (en) Method for isolation of transcription termination sequences
AU2024205703A1 (en) Wheat stem rust resistance genes and methods of use
CN104152572B (en) Triple real-time fluorescence PCR method and kit for simultaneously detecting three streptococci
CN111139259B (en) Method for improving homologous recombination efficiency in gene editing
CN113862166B (en) Saccharomyces cerevisiae for producing naringenin
CN101868545B (en) Plants with altered root architecture, related constructs and methods involving genes encoding leucine rich repeat kinase (LLRK) polypeptides and homologs thereof
CN114134185B (en) Method for producing L-serine by fermentation
CN115161251B (en) Polygene mutant of rhizobium HH103 and application thereof
CN114085160A (en) Method for separating and purifying L-serine from fermentation liquor

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant