CN114130415A - 高光催化性磷掺杂石墨相氮化碳/钨酸铋异质结的制备方法 - Google Patents

高光催化性磷掺杂石墨相氮化碳/钨酸铋异质结的制备方法 Download PDF

Info

Publication number
CN114130415A
CN114130415A CN202111486441.3A CN202111486441A CN114130415A CN 114130415 A CN114130415 A CN 114130415A CN 202111486441 A CN202111486441 A CN 202111486441A CN 114130415 A CN114130415 A CN 114130415A
Authority
CN
China
Prior art keywords
pcn
bwo
phosphorus
doped
heterojunction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202111486441.3A
Other languages
English (en)
Inventor
殷旭东
李德豪
谢文玉
毛玉凤
刘正辉
王儒珍
朱越平
刘志森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangdong University of Petrochemical Technology
Original Assignee
Guangdong University of Petrochemical Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong University of Petrochemical Technology filed Critical Guangdong University of Petrochemical Technology
Priority to CN202111486441.3A priority Critical patent/CN114130415A/zh
Publication of CN114130415A publication Critical patent/CN114130415A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/61310-100 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/633Pore volume less than 0.5 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/6472-50 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/10Heat treatment in the presence of water, e.g. steam
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/34Organic compounds containing oxygen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/34Organic compounds containing oxygen
    • C02F2101/345Phenols
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/38Organic compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Hydrology & Water Resources (AREA)
  • Water Supply & Treatment (AREA)
  • Environmental & Geological Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Toxicology (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了高光催化性磷掺杂石墨相氮化碳/钨酸铋异质结的制备方法,包括将铋源和磷掺杂g‑C3N4于溶剂中混合均匀,之后加入钨源,水热反应,得到的固体洗涤、干燥,升温至280~400℃保温处理,保温处理完成后,冷却,研磨得到磷掺杂g‑C3N4/Bi2WO6异质结。该异质结具有丰富的多孔结构,可抑制光致载流子的复合,具有极高光催化活性,有利于加速光生复合材料表面的光生电子‑空穴对的分离,具有较高的稳定性和良好的性能。具有比现有Bi2WO6基光催化剂更佳的性能。

Description

高光催化性磷掺杂石墨相氮化碳/钨酸铋异质结的制备方法
技术领域
本发明涉及一种光催化降解有机质材料的制备方法,特别涉及一种高光催化性磷掺杂g-C3N4/Bi2WO6异质结的制备方法。
背景技术
光催化因其能吸收和转换太阳能而被广泛应用于降解环境污染物、有机合成、还原CO2和水解制氢等各种领域。随着光催化降解技术发展,人们逐渐清楚这是一种利用反应过程中产生自由基来降解环境中污染物,并在此基础上发生光化学反应的新技术[13]。且该技术具有氧化能力强、经济成本低和易操作性等特点,越来越受到人们的关注。
在铋系催化剂中,钨酸铋(Bi2WO6)是一种典型的Aurivillius氧化物,属于斜方晶系,稳定性强。同时,钨酸铋是钙钛矿层状结构,具有可见-近红外光效应的的同时,其禁带宽度还远小于TiO2 [2],又因其具备有可见-近红外光效应,可见光捕获能力强,在用作光催化剂时能提高了光能的利用效率。成为近年来有效的光催化剂的新贵[8],但是Bi2WO6也是具有一定的局限性。主要表现在:
(1)Bi2WO6因其光吸收波长小而不能充分地利用太阳能[9]
(2)Bi2WO6中大多数电子(e-)-空穴(h+)对在光激发后会出现立即重组现象,这就导致电荷分离效率不高[10]
(3)在可见光照条件下,在Bi2WO6内部结构中的迁移和转化路径较多,不确定性大。首先,e-和h+可以在材料表面进行结合,其次在Bi2WO6内部e-与h+会再结合,这就表示了Bi2WO6不再对污染物起作用;另外,光生e-还可以转移到材料与表面物质的接触面上,通过触发表面物质并与其进行还原反应[2];在Bi2WO6路径中还存在表示到达材料与表面物质的接触面的光生h+发生了氧化反应。
对于Bi2WO6而言,光量子效率低[11]的原因离不开电子-空穴对的重新结合,导致Bi2WO6在处理废水时后劲不足。
钨酸铋局限性限制了它的光催化性能,所以降低钨酸铋中电子-空穴的复合率,需要对钨酸铋进行改性。
降低钨酸铋中电子-空穴的复合率最常用的一种方法是元素掺杂,可分为金属掺杂和非金属掺杂。如Tian合成了Gd掺杂Bi2WO6花球状颗粒,结果表明,最优异的光催化性能的是掺杂了Gd的1%花球状的Gd-Bi2WO6 [2]。Wang等还探讨了N掺杂后对光催化性能的影响,发现掺杂了N样品的光催化活性高于未掺杂的2-3倍[2]
利用Bi2WO6与半导体异质结,从而来获得高性能的。研究表明,TiO2与Bi2WO6结合形成半导体异质结时,能有效地抑制来自两者的光生电子的复合,从而在处理各种污染物时,表现出很强的光催化活性[32]。当然,除了Bi2WO6/TiO2复合材料外,其他材料,如Bi2O3 [12]、C3N4 [13]、WO3 [14]和CdS[15],也是异质结材料的热门[2]
除了两种方法外,还可以利用氧化石墨烯(RGO)、碳纳米管、碳量子点等碳材料与Bi2WO6复合,从而达到提高提高催化剂的光催化能力[16-18];利用银、铂、金等贵金属作为电子受体沉积,贵金属的沉积增加光生空穴-电子对的分离,同时还转移了界面电荷[19],也是研究的方向之一;负载助催化剂,特别是在光催化水分解过程中,以相结合的手段,提高光转换效率和催化剂的稳定[20]
而g-C3N4 [13]作为一种非金属半导体,电荷转移能力较为良好,常与Bi2WO6形成异质结,这不仅仅是因为g-C3N4能调整能带,还能在两者的界面实现电荷定向转移,以促进催化活性。因此,g-C3N4/Bi2WO6又是较为常见的二元异质结。综上所述,传统的钨酸铋光催化剂在性能方面虽有所欠缺,但通过对其改性后,能将电子-空穴的复合率降低到一定水平,在可见光催化上有了一定程度的提高。
如何将Bi2WO6和有效复合,制备得到高光催化性磷掺杂g-C3N4/Bi2WO6异质结,仍是一项有待解决的技术问题。截止目前,磷掺杂g-C3N4和Bi2WO6异质结还未见报道。本发明是以微球状Bi2WO6为载体,微球状Bi2WO6上修饰有磷掺杂g-C3N4纳米片。本发明的复合光催化剂具有光催化活性高、稳定性好等优点,其制备方法具有简单、操作简便、成本低、耗能少等优点。
发明内容
本发明的目的在于克服现有技术的至少一个不足,提供一种高光催化性磷掺杂g-C3N4/Bi2WO6异质结的制备方法。
本发明所采取的技术方案是:
本发明的第一个方面,提供:
一种磷掺杂g-C3N4/Bi2WO6异质结的制备方法,包括如下步骤:
将铋源和磷掺杂g-C3N4于溶剂中混合均匀,得到溶液A;
将钨源溶解于溶剂中,得到溶液B;
将溶液A和溶液B混匀,水热反应,得到的固体洗涤、干燥,升温至280~400℃保温处理,保温处理完成后,冷却,研磨得到磷掺杂g-C3N4/Bi2WO6异质结。
在一些实例中,铋源中的Bi和钨源中的W的摩尔比为(1.5~2.5):1。
在一些实例中,所述磷掺杂g-C3N4中,(NH4)2HPO4占尿素质量比为1~3%。
在一些实例中,所述磷掺杂g-C3N4占磷掺杂g-C3N4/Bi2WO6异质结总质量的0.5~5%。
在一些实例中,所述溶液A和所述溶液B的溶剂为乙二醇。
在一些实例中,所述溶液A中,铋源的浓度为0.01~0.04mmol/mL。
在一些实例中,所述溶液B中,钨源的浓度为0.005~0.02mmol/mL。
在一些实例中,所述水热反应的温度为160~200℃。
在一些实例中,所述水热反应的时间为10~24h。
本发明的第二个方面,提供:
本发明第一个方面所述方法制备得到的磷掺杂g-C3N4/Bi2WO6异质结作为光催化剂的应用。
本发明的有益效果是:
本发明一些实例的磷掺杂g-C3N4/Bi2WO6异质结,水平面上的g-C3N4在呈板片状,而在垂直面上为堆积的块体,Bi2WO6与PCN充分结合,具有丰富的多孔结构。
本发明一些实例的磷掺杂g-C3N4/Bi2WO6异质结,抑制了光致载流子的复合,具有极高光催化活性,有利于加速光生复合材料表面的光生电子-空穴对的分离。
本发明一些实例的磷掺杂g-C3N4/Bi2WO6异质结,1%PCN/BWO光催化剂比纯CN、PCN和Bi2WO6更具有优异的光生电荷转移和分离性能。
本发明一些实例的磷掺杂g-C3N4/Bi2WO6异质结,即使经过3次循环使用,1%PCN/BWO复合光催化剂对TC的降解率仍达到73%及以上;使用过的1%PCN/BWO纳米复合材料的XRD和XPS光谱与新鲜样品基本相同,说明该复合光催化剂具有较高的稳定性和良好的性能。与现有Bi2WO6基光催化剂相比,本发明一些实例的PCN/BWO复合材料具有更佳的性能。
附图说明
图1是CN、PCN、BWO和PCN/BWO的XRD图谱;
图2是SEM图像(a)CN;(b)PCN;(c)BWO;(d)1%PCN/BWO;
图3是1%PCN/BWO的TEM图像(a)、高分辨率TEM图像(b)、EDS元素(Bi、W、P、O、C、N)映射图像(c-h);
图4是CN、PCN、BWO单体与1%PCN/BWO复合光催化剂的XPS能谱总图;
1%PCN/BWO复合光催化剂(a)Bi 4f(b);W 4f(c);O 1s(d);C 1s(e)和N1s(f);
图5是BWO和PCN的XPS价带谱;
图6是CN、PCN、BWO和1%PCN/BWO催化剂红外光谱图;
图7是PCN、BWO和1%PCN/BWO光催化剂拉曼光谱;
图8是CN、BWO、PCN和1%PCN/BWO光催化剂紫外漫反射光谱;
图9是CN、PCN、BWO和1%PCN/BWO光催化剂N2吸附-解吸等温线(a)和孔径分布曲线(b);
图10是CN、PCN、BWO和1%PCN/BWO光催化剂荧光光谱图;
图11是CN、PCN、BWO和1%PCN/BWO光催化剂光电流密度;
图12是在可见光下不同催化剂的TC降解性能,光降解曲线(a);准二级动力学(b);
图13是1%PCN/BWO复合光催化剂光降解TC过程中的UV-Vis变化曲线;
图14是1%PCN/BWO复合光催化剂光催化降解TC的重复实验;
图15是1%PCN/BWO复合光催化剂的XRD谱图(a)和XPS谱图(b)。
具体实施方式
下面结合实例,进一步说明本发明的技术方案。
制备g-C3N4和PCN
磷掺杂石墨相氮化碳(PCN)是通过煅烧法制备而成。将23.53g尿素和0.5g磷酸氢二铵于30mL蒸馏水中充分溶解,放于80℃烘箱干燥,冷却后研磨放入到坩埚中,加上盖子,放入马弗炉中,然后以2℃/min的速度升温到550℃,保持4h;冷却到室温之后,将得到的样品用玛瑙研钵研磨,得到浅黄色、粉末状的磷掺杂g-C3N4,标记为PCN。在不添加磷酸氢二铵的情况下,采用相同的方法制备了纯的g-C3N4,标记为CN。
制备PCN/Bi2WO6复合光催化剂
采用水热和煅烧法制备磷掺杂g-C3N4/Bi2WO6复合材料,具体包括:
首先,准确将0.67mmoL五水合硝酸铋(Bi(NO3)3·5H2O)溶解于30mL乙二醇中,加入一定量2.2.1制备的PCN,搅拌辅助超声30min,为溶液A;将0.34mmoL钨酸钠二水合(Na2WO4·2H2O)溶解于30mL乙二醇中搅拌30min,为溶液B;将B溶液加入到A溶液中,在磁力搅拌器的作用下搅拌1h,然后将AB混合溶液倒入至100mL聚四氟乙烯反应内衬的不锈钢高压反应釜内,置于180℃电热鼓风干燥箱内持续15h。冷却至室温后,倒入50mL规格的离心管中,分别用去离子水和无水乙醇在高速离心各洗涤三次,而后置于80℃烘箱中干燥10h。最后用玛瑙研钵将干燥后的样品研磨成细粉末状,置于马弗炉内以1℃/min的速度升温至300℃,保温3h,冷却至室温,再使用玛瑙研钵研磨后即得到PCN/Bi2WO6复合材料,其中PCN的质量比为0.5wt%、1wt%、5wt%、9.wt%,分别表示为0.5%PCN/BWO、1%PCN/BWO、5%PCN/BWO和9%PCN/BWO。为了对比,在不添加PCN的情况下也制备了纯的Bi2WO6,并标记为BWO,合成步骤与制备PCN/Bi2WO6的方法和以上步骤一致。
催化剂的表征分析
X-射线衍射(XRD)图谱分析
采用X射线衍射光谱对所制备材料的晶型进行表征。CN、PCN、BWO和PCN/BWO复合光催化剂的XRD图谱如图1所示。
当2θ角为12.9°和27.1°时,出现g-C3N4的特征衍射峰,分别对应其晶面(002)和(100),且两峰分别代表氮化碳三嗪环单元的排列和层状堆垛结合[22-24];除了以上两个晶面外,在16.6°处出现PCN特征衍射峰,其对应(110)晶面。而对于纯的Bi2WO6,在28.4°、32.9°、46.9°、56.0°和58.6°处有明显的衍射峰,与钨酸秘的标准卡片(PDF-#79-1578)相符,分别对应(131)、(200)、(202)、(133)和(262)的晶面。而所有PCN/BWO复合光催化剂具有与Bi2WO6相似的衍射图样,且随着Bi2WO6占比的提升,PCN/BWO复合材料中Bi2WO6的特征峰高度略有所降低,这说明,随着PCN的引入对Bi2WO6的取向和结构没有影响。此外,在PCN/BWO复合材料中没有发现g-C3N4和PCN的特殊衍射峰的存在,可能是由于:一方面,衍射峰的缺失是由于其在PCN/BWO复合光催化剂表面的高分散性。另一方面,复合材料中的PCN含量较少,不足以生成相应衍射峰。
SEM、TEM和EDS结果分析
采用扫描电镜(SEM)对材料的形貌进行了表征,如图2所示。可以看出,水平面上的g-C3N4在呈板片状,而在垂直面上为堆积的块体(图2(a));图2(b)是具有多孔结构的块体磷掺杂g-C3N4(PCN),经过修饰后的1%PCN/BWO复合光催化剂,如图2(d),获得与图2(c)中纯Bi2WO6相似,形状是由多孔纳米薄片和分散的纳米小球构建的微球结构,却又能将PCN很好地聚合上。
利用透射电镜(TEM)和HRTEM对1%PCN/BWO的微观结构、基本组成等进行了表征。由图3(a),可以清楚地观察到,黑色的Bi2WO6纳米光催化剂基底部分附有白色的PCN。说明Bi2WO6与PCN充分结合,这与SEM结果一致。图3(b)中HRTEM图像证实了存在Bi2WO6,其晶格条纹的d间距为0.316nm,对应于斜方晶Bi2WO6的(131)晶面。Bi2WO6纳米光催化剂的外部粗糙纹理与多孔PCN材料的覆盖有关。此外,EDS面扫图3(c-h)也证明了Bi、W、P、O、C和N元素共同存在且均匀分布于1%PCN/BWO复合光催化剂中,说明PCN与Bi2WO6之间的密切接触,同时表明PCN/BWO异质结构的成功合成。EDS测试结果中元素所占百分比,如表3.1所示,Bi与W和O的原子比为2:1.06:3.75,Bi与W的比率接近2:1的化学计量比例,也说明了成功引入Bi2WO6
表3.1 1%PCN/BWO中C、N、O、P、W、Bi所占百分比
Figure BDA0003396749880000061
X射线光电子能谱分析
采用X射线光电子能谱(XPS)对CN、PCN、Bi2WO6和1%PCN/BWO复合材料的表面电子价态和官能团进行分析,如图4(a)。完整测量光谱(0-1200eV)中可以得知,所制备的CN、PCN主要由C,N两种元素组成。对于1%PCN/BWO复合光催化剂,从图4(a)可以知道Bi、W、O、C和N元素均被检出。对于BWO和1%PCN/BWO,记录了Bi 4f、W 4f和O1s的高分辨率XPS光谱;并且1%PCN/BWO复合光催化剂还额外增加上了PCN中C1s和N1s的高分辨率XPS光谱。另外,从图4(b)的高分辨率Bi 4f光谱中可以看到,属于Bi 4f7/2和Bi4f5/2分别对应159.4eV和164.6eV的结合能的位置,这表明在1%PCN/BWO中,铋元素大都以Bi3+氧化态的形式存在。图4(c)W4f光谱中,位于35.5eV和39.8eV的两个结合能分别对应的是W 4f7/2和W 4f5/2,这代表的是1%PCN/BWO复合光催化剂中W6+氧化态的特征。而在图4(d),高分辨率O1s光谱中,位于533.3eV、532.0eV和530.2eV的三个拟合峰分别属于晶格氧(Bi-O-W),外部羟基(O-H)和1%PCN/BWO表面吸附的氧物质[27]。在复合光催化剂高分辨率C1s光谱图4(e)中,285.0eV和288.8eV处的两个拟合峰分别来源于C-C和sp2杂化碳N-C=N键[28]。此外,在1%PCN/BWO复合光催化剂的N1s光谱中,如图4(f)。位于399.1eV和402.2eV的两个拟合峰分别来源于C-N=C和N-(C)3,证实了复合光催化剂中N元素的存在。与PCN和CN相比,1%PCN/BWO的C1s和N1s结合能明显降低,而与BWO相比,Bi 4f、W 4f和O1s也有所变化。表示了两种成分之间发生了强烈的相互作用,而不是简单的物理混合[29]。而相互作用可以证明异质结的存在[30]
另外,为了确定BWO和PCN的VB最大值,我们进行测试,得到了图5XPS VB光谱。Bi2WO6和PCN的VB最大值分别为2.17和1.32eV。以上结果表明,BWO的光激发VB空穴具有比PCN更强的氧化能力。
FT-IR光谱分析
用FT-IR光谱分析了制备的CN、BWO、PCN和1%PCN/BWO的组成和官能团结构,如图6所示。
FT-IR分析表明,g-C3N4和PCN在753cm-1处的信号峰存在着三嗪环结构的弯曲震动[31],且g-C3N4的三嗪环结构更为明显,这表明掺杂了磷(P)的g-C3N4的基本结构没有被破坏,而PCN仍然保持有g-C3N4完整典型的π杂化共扼结构,因此它仍然能通过受光能激发来产生电子空穴,进而拥有光催化性能。
在BWO光谱中,其典型信号峰出现在300-760cm-1,说明该位置存在Bi-O、W-O和W-O-W伸缩振动的现象。与此同时,这些特征峰同样存在于1%PCN/BWO光催化剂中,表明BWO本质上没有发生结构变化。在1121-1705cm-1范围内,CN、PCN和1%PCN/BWO复合光催化剂均出现了一些峰,这与C-N和C=N的伸缩振动模式有关[32],而复合材料由于含BWO较多,伸缩振动的幅度有所减轻。此外,CN、PCN和1%PCN/BWO复合材料位于2984-3559cm-1处的吸收峰是N-H或O-H的伸缩振动峰,可归因于吸附的水分子[56],但由于BWO为主要成分,1%PCN/BWO复合材料在该处的吸收峰与BWO更为相似,伸缩振动峰显示不明显。
拉曼光谱分析
用拉曼光谱对样品进行了进一步表征,结果如图7所示。在100-900cm-1中能观察到纯的Bi2WO6,同时,纯Bi2WO6全部特征波段都能在1%PCN/BWO复合光催化剂的拉曼光谱中找到,证实了Bi2WO6修饰在了1%PCN/BWO复合材料中。此外,特征峰分别为475、708、758、980、1140、1220、1310和1490cm-1在PCN的拉曼光谱中可以被观察到,其中,波长1310和1490cm-1分别对应的是PCN光催化剂的D-峰和G-峰,ID/IG比值分别约为0.95,说明该材料存在缺陷和紊乱。然而,在1%PCN/BWO复合光催化剂的拉曼光谱中,PCN的特征峰难以识别,再次说明PCN光催化剂具有较高的分散性。
UV-DRS表征分析
为了研究光学吸收特性对光催化活性的影响,对制备的CN、BWO、PCN和1%PCN/BWO材料进行了漫反射光谱(DRS)进行了研究,结果如图8所示。纯g-C3N4和PCN的吸收阈值分别约为436、459nm,在可见光区域,CN、PCN具有相似的吸收特性,而PCN光吸收特性强于CN,可见光的吸收边界有明显的红移现象,表明磷掺杂的g-C3N4在可见光条件下的光催化活性优于比纯的g-C3N4
此外,Bi2WO6的可见吸收边仅在477nm处。而1%PCN/BWO复合光催化剂的光响应范围比纯的Bi2WO6宽,可扩宽到485nm,从而提高了可见光的利用率。采用Tauc Plot公式对CN、BWO、PCN和1%PCN/BWO的禁带宽度(Eg)进行了分析和计算,深入地了解样品的UV-DRS光谱变化的原因,得知对应的PCN、BWO带隙能量(Eg)分别为2.96和3.10eV。3.7比表面积和孔径(BET)分析
通过N2吸附-解吸实验研究了CN、BWO、PCN和1%PCN/BWO复合材料的比表面积(SBET)。吸附等温线和BJH孔径分布曲线等情况如图9所示。根据IUPAC对氮气吸脱附曲线分类标准,图中CN、BWO、PCN和1%PCN/BWO的氮气等温线均属于IV型[33],具有明显的滞后回路[34]。此外,相应的BJH析如图9(b),发现在材料的孔隙大都落在2-120nm的区间内,主要在4nm左右处聚集。而每个样品均存在少量介孔结构,具备一些介孔材料的表面特性。由表3.2知,纯BWO和PCN的比表面积分别为32.73和57.06m2/g。通过加入少量的PCN,使得1%PCN/BWO的SBET提高至36.19m2/g,说明PCN和BWO的复合可以削弱Bi2WO6的聚集,从而暴露出更多的吸附和光降解活性位点[34]。相应的平均孔径证实了PCN与Bi2WO6的结合可以丰富Bi2WO6的多孔结构。
表3.2 CN、BWO、PCN和1%PCN/BWO光催化剂比表面积、总孔容和平均孔径
Figure BDA0003396749880000091
荧光光谱分析
用光致发光(PL)的分析方法可以研究了样品中光生电子-空穴对的转移、迁移和重组。当光生载流子在太阳光激发后结合,产生的部分能量转移到半导体的荧光中。因此,PL分析可以量化1%PCN/BWO中的电荷转移动力学,结果如图10所示。CN在区域455nm左右有最强的发射峰,而荧光光谱中,光生电子和空穴的复合导致发射峰的出现,这也代表了当光生电子与空穴对的分离率较低[35]时,荧光强度则升高,相比之下,可见CN具有最高的光生载流子复合率。而图中掺杂了P元素的g-C3N4荧光峰强度显著降低,表明P元素能促进g-C3N4光生电子和空穴的传输和分离。另外,不难发现1%PCN/BWO的荧光强度远小于g-C3N4、PCN,说明该复合光催化剂,抑制了光致载流子的复合,得到极高光催化活性,结果表明PCN和Bi2WO6的复合有利于加速光生复合材料表面的光生电子-空穴对的分离。
光电化学特性分析
本文对CN、PCN、BWO和1%PCN/BWO复合光催化剂的光电化学特性进行了测试和分析,以深入了解其光响应能力和传递特性,结果如图11所示。
光电流-时间测量(I-t)显示了样品产生的瞬态光电流响应。在无光照条件下,所有样品的光电流强度都保持在很低的值,但在可见光照射下,光电流强度增加并在设定的时间内保持一个相对恒定的值。不同之处是1%PCN/BWO的光电流响应能力高于CN、PCN和Bi2WO6。光电流越大,光生电荷的分离效率就会越高。光电流-时间光谱结果表明,制备的1%PCN/BWO光催化剂比纯CN、PCN和Bi2WO6更具有优异的光生电荷转移和分离性能。
小结
(1)通过XRD表征,确认1%PCN/BWO中Bi2WO6的存在,并且与PCN的进行复合,不会改变BWO的晶体结构。
(2)通过对1%PCN/BWO复合光催化剂进行SEM表征,发现其具有微球的结构,Bi2WO6微球表面附有较小的PCN多孔纳米小块;EDS面扫证明了Bi、W、C、O、P和N元素共同存在并均匀分布于1%PCN/BWO复合材料中,且Bi与W的比率接近2:1。TEM的表征结果与SEM、EDS和XRD的结果高度一致,证实了1%PCN/BWO光催化剂的成功制备。
(3)通过XPS表征确认1%PCN/BWO复合材料中除了P高度分散外,均存在Bi、W、O、C和N元素,进一步验证了1%PCN/BWO复合光催化剂己被成功制备。且测试出Bi2WO6和PCN的VB最大值分别为2.17和1.32eV。
(4)通过FT-IR测试分析1%PCN/BWO的官能团,确认了复合材料中CN、PCN和BWO三者的共同存在,充分证实说明了1%PCN/BWO三元复合光催化剂的成功制备,但P的掺杂浓度过低,在红外光谱中难以发现与P有关的特征峰,结果与XPS分析一致。
(5)Raman测试分析表明PCN材料存在缺陷和紊乱,对于1%PCN/BWO复合光催化剂,PCN的特征峰难以识别,再次说明PCN光催化剂具有较高的分散性。
(6)通过UV-DRS表征分析发现纯g-C3N4、PCN和Bi2WO6的吸收阈值分别约为436、459和477nm处。而1%PCN/BWO复合光催化剂的光响应范围比单体宽,可扩宽到485nm,具有较高的可见光的利用率,通过计算得知对应的带隙能量(Eg)分别为1.67、2.09、1.10和2.22eV。
(7)通过BET表征说明,CN、PCN、BWO和1%PCN/BWO中的孔隙大部分分布在2-120nm的范围内,集中在4nm左右。且引入PCN可显著提高BWO的表面积和孔容。
(8)通过PL表征说明,1%PCN/BWO的荧光强度远远小于g-C3N4、PCN和BWO,说明复合光催化剂光致载流子的复合受到抑制,光催化活性最高,再次表明PCN和Bi2WO6的复合有利于加速分离光生复合材料表面之间的光生电子-空穴对。
(9)通过分析光电流响应能力分析,相比于CN、PCN和Bi2WO6,1%PCN/BWO复合材料的光电流更大,光生电荷的分离效率更高,再次表明了1%PCN/BWO复合光催化剂更具有优异的光生电荷转移和分离性能。
光催化剂的催化活性研究
不同催化剂的催化性能
不同材料对TC(盐酸四环素)的光催化活性均有不同,可以通过其降解效率直观反映。首先,需要排除TC自身降解的可能,实验表明,在不加催化剂的情况下,几乎可以忽视自身降解的可能。另外,探究催化剂的光催化活性,需要去除黑暗吸附对实验的影响,此前有专门针对此实验专门做了研究,不同材料在黑暗处理30min后,几乎能达到吸附平衡,这里截选了30min,如图12(a)所示为对TC的降解效率,结果表明了1%PCN/BWO(80.41%)复合光催化剂的光催化降解性能显著高于CN(33.88%)、PCN(58.74%)和Bi2WO6单体(74.17%)。并且为了体现磷掺杂的作用,对二元材料1%CN/BWO光催化剂也做了相同实验,最后表现出掺杂了磷的1%PCN/BWO比不掺杂磷的1%CN/BWO有着更高的光催化降解效率。可见,相比于其它单体和二元复合材料,1%PCN/BWO复合材料对TC的光催化降解效率最高,也说明其对光能利用率更好,并且在此降解过程中对光生载流子有更高分离效率[2]。然而,随着PCN含量的进一步增加,Bi2WO6表面的活性位点可能被冗余的PCN覆盖,导致光催化性能开始下降,光催化活性降低,这也是5%PCN/BWO甚至9%PCN/BWO光催化性能低于1%PCN/BWO复合光催化剂的原因。并且针对TC降解动力学,拟一级(式4-1)和二级(式4-2)模型,见表4.1。
-ln(C/C0)=k1t (式4-1)
1/C-1/C0=k2t (式4-2)
其中k1、k2(min-1)是准一级、二级动力学的表观速率常数。C0、C分别为0和t时污染物浓度。
并从表4.1中可知:准二级动力学中R2比准一级更佳,选用二级模型。且在二级动力学中,1%PCN/BWO反应速率为1.82×10-1min-1,是纯Bi2WO6(1.26×10-1min-1)的1.44倍,是PCN(6.17×10-2min-1)的2.95倍和CN(2.12×10-2min-1)的8.5倍以上,同时也是1%CN/BWO(1.31×10-1min-1)二元光催化剂的1.39倍。说明在全部光催化剂中,1%PCN/BWO在动力学中具有一定的优越性。并且从如图12(b)验证1/C-1/C0与时间存在线性关系,符合TC降解的准二级动力学。
此外,研究还采用UV-Vis表征了1%PCN/BWO复合光催化剂光降解TC过程中,探究其最佳吸收峰变化情况。如图13所示,随着光照射时间的增加,TC的吸光度显著降低,但没有出现蓝移或者红移的现象。说明在光催化过程中,存在积累的中间产物与TC分子竞争活性氧化物质[2]的现象。
表4.1 TC降解的准一级、二级动力学
Figure BDA0003396749880000121
光催化剂稳定性
就实际应用而言,光催化剂的可回收性是一个非常重要的因素。1%PCN/BWO对TC的降解作用重复3次。反应完成后,将光催化剂收集、清洗、过滤和干燥,并进行下一轮试验。结果如图14所示,即使经过3次循环使用,1%PCN/BWO复合光催化剂对TC的降解率仍达到73%及以上,说明该复合光催化剂具有较高的稳定性和良好的性能。另外,为了进一步研究光催化剂的结构和化学稳定性,还采用了XRD和XPS对1%PCN/BWO纳米复合材料光催化反应前后的样品进行了表征分析,如图15所示,结果表明,使用过的1%PCN/BWO纳米复合材料的XRD和XPS光谱与新鲜样品基本相同,说明PCN与Bi2WO6复合光催化剂具有良好的稳定性。
与现有Bi2WO6基光催化剂的比较
以10mg/L的TC光催化降解效率,将本发明1%PCN/BWO复合材料与现有文献公开的Bi2WO6基光催化剂进行光催化剂性能的比较,结果如表4.2所示。
表4.2与文献中其他Bi2WO6基光催化剂的比较
Figure BDA0003396749880000131
备注:CN:g-C3N4;CNT:碳纳米管;BWO:Bi2WO6;XL:氙灯
本发明1%PCN/BWO复合材料对10mg/L的TC进行处理,加入催化剂用量为0.2g/L,使用300W氙灯光照60min,降解TC效率达到80.41%。而大多数的研究表明需要达到相同的降解效率,存在使用催化剂量大或光照时间长等因素。说明本发明的PCN/BWO复合材料具有更佳的性能。
参考文献:
[1]A-M Yang,Y Han,S-S Li,H-W Xing,Y-H Pan,W-X Liu.Synthesis andcomparison of photocatalytic properties for Bi2WO6 nanofibers and hierarchicalmicrospheres[J].Journal of Alloys and Compounds,2017,695:915-921.
[2]胡凯.钨酸铋三元复合光催化剂的制备及其光催化降解四环素的研究[D].湖南大学,2019.
[3]葛梦禹.RNA-Seq解析毒力抑制剂弱化水稻细菌性褐条病菌致病力的机制[D].浙江大学,2015.
[4]陈强.钨酸铋微纳米结构材料的制备及其对水中抗生素的去除研究[D].上海第二工业大学,2019
[5]周珂艺.Bi2WO6基光催化剂的制备及其降解抗生素的研究[D].石河子大学,2020.
[6]Qiaoqiao Li,Mengfei Lu,Wenliang Wang,Wenli Zhao,Guoqing Chen,Haifeng Shi.Fabrication of 2D/2D g-C3N4/Au/Bi2WO6 Z-scheme photocatalyst withenhanced visible-light-driven photocatalytic activity[J].Applied SurfaceScience,2020,508:144182.
[7]Steven Y.Reece,Jonathan A.Hamel,Kimberly Sung,Thomas D.Jarvi,Arthur J.Esswein,Joep J.H.Pijpers,Daniel G.Nocera.Wireless Solar WaterSplitting Using Silicon-Based Semiconductors and Earth-Abundant Catalysts[J].Science,2011,334:6056.
[8]董武晶,仝攀瑞,高占尧.钨酸铋光催化剂的研究进展[J].广东化工,2017,44(17):94-96+83.
[9]J.Wang,L.Tang,G Zeng,Y Liu,Y Zhou,Y.Deng,J.Wang,B.Peng.PlasmonicBi metal deposition and G-C3N4 coating on Bi2WO6 microspheres for efficientvisiblelight photocatalysis[J].ACS Sustainable Chemistry Engineering,2016,(1):1062-1072
[10]Z.Zhang,W Wang,L.Wang,S Sun.Enhancement of visible-lightphotocatalysiby coup ling with nairow-band-gap semiconductor:a case study onBi2S3/Bi2WO6[J].ACS applied materials interfaces,2012,4(2):593-597
[11]L.Liu,L.Dig,Y.Liu,W An,S.Lin,Y.Liang,W.Cu.Enhanced visible lightphotocatalytic activity by Cu2O-coupled flower-like Bi2WO6 structures[J].Applied Surface Science,2016,364:505-515
[12]Ming Sheng Gui,Wei De Zhang,Qing Xi Su,Cai Hong.Preparation andvisible light photocatalytic activity of Bi2O3/Bi2WO6 heterojunctionphotocatalysts[J].Journal of Solid State Chemistry,2011,184(8):1977-1982
[13]GE L,HAN C,LIU J.Novel visible light-induced g-C3N4/Bi2WO6composite photocatalysts for efficient degradation of methyl orange[J].Applied Catalysis B Environmental,2011,108-109:100-107
[14]Ming Sheng Gui,Wei De Zhang,Ya Qi Chang,Yu Xiang Yu.One-stephydrothermal preparation strategy for nanostructured WO3/Bi2WO6 heterojunctionwith high visible light photocatalytic activity[J].Chemical EngineeringJournal,2012,197:283-288
[15]GE L,LIU J.Efficient visible light-induced photocatalyticdegradation of methy lorange by QDS sensitized CdS-Bi2WO6[J].Applied CatalysisB:Environmental,2011,105(3-4):289-297
[16]ZHOU F,SHI R,ZHU Y Significant enhancement of the visiblephotocatalytic degradation performances of y-Bi2MoO6 nanoplate by graphenehybridization[J].Journal of Molecular Catalysis A:Chemical,2011,340(1-2):77-82.
[17]Xu Zhao,Hui juan Liu,Yuanli Shen,Jiuhui Qu.Photocatalyticreduction of bromate at C60modified Bi2MoO6 under visible light irradiation[J].Applied Catalysis B,Environmental,2011,106(1).
[18]Tang Di,Zhang,Heng chao,Huang Hui,Liu Ruihua,Han Yu zhi,Liu Yang,Tong Cuiyan,Kang Zhenhui.Carbon quantum dots enhance the photocatalyticperformance of BiVO4 with different exposed facets[J].Dalton transactions(Cambridge,England:2003),2013,42(18).
[19]Jia Ren,Wenzhong Wang,Songmei Sun,Ling Zhang,Jiang Chang.Enhancedphotocatalytic activity of Bi2WO6 loaded with Ag nanoparticles under visiblelight irradiation[J].Applied Catalysis B,Environmental,2009,92(1-2):50-55.
[20]ROHANI BASTAMI T,AHMADPOUR A,AHMADI HEKMATIKAR F.SynthesisofFe3O4/Bi2WO6 nanohybrid for the photocatalytic degradation of pharmaceuticalibuprofen under solar light[J].Journal of Industrial and EngineeringChemistry,2017,51:244-254.
[21]HUANG X,CHEN H.One-pot hydrothermal synthesis of Bi2O2CO3/Bi2WO6visible light photocatalyst with enhanced photocatalytic activity[J].AppliedSurface Science,2013,284:843-848.
[22]Ping Niu,Lili Zhang,Gang Liu,Hui Ming Cheng.Graphene-like carbonnitride nanosheets for improved photocatalytic activities[J].AdvancedFunctional Materials,2012,(22):4763-4770.
[23]Xu J,Zhang L,Shi R,Jing Xu.Chemical exfoliation of graphiticcarbon nitride for efficient heterogeneous photocatalysis[J].Journal ofMaterials Chemistry A,2013,1(46):14766.
[24]Lin z,Wang X.Nanostructure engineering and doping of conjugatedcarbon nitride semiconductors for hydrogen photosynthesis[J].AngewandteChemie International Edition,2013,52(6):1735-1738.
[25]J.Yang,X.Wang,X.Zhao,J.Dai,S.Mo.Synthesis of uniform Bi2WO6reduced graphene oxide nanocomposites with significantly enhancedphotocatalytic reduction activity[J].The Journal of Physical Chemistry C,2015,119(6):3068-3078.
[26]R.Pawar,C.Lee.Single-step sensitization of reduced graphene oxidesheets and CdS nanoparticles on ZnO nanorods as visible-light photocatalysts[J].Appl.Catal.B:Environ,2014,144:57-65.
[27]X.Qian,D.Yue,Z.Tian,M.Reng,Y Zhu,M.Kan,T Zhang,Y Zhao.Carbonquantum dots decorated Bi2WO6 nanocomposite with enhanced photocatalyticoxidation activity for VOCs[J].Applied Catalysis B:Environmental,2016,193:16-21.
[28]Gaoyuan Long,Jiafeng Ding,Lihong Xie,Runze Sun,Mengxia Chen,Yanfang Zhou,Xiuying Huang,Gaorui Han,Yajun Li,Weirong Zhao.Fabrication ofmediator-free g-C3N4/Bi2WO6Z-scheme with enhanced photocatalytic reductiondechlorination performance of 2,4-DCP[J].Applied Surface Science,2018,455:1010-1018.
[29]F.Chen,D.Li,B.Luo,M.Chen,W.Shi.Two-dimensional heterojunctionphotocatalysts constructed by graphite like C3N4,and Bi2WO6,nanosheets:enhanced photocatalytic activities for water purification[J].Alloys Compd,2017,694:193-200.
[30]Wei Guo,Kai Fan,Jiajun Zhang,Chunjian Xu.2D/2D Z-scheme Bi2WO6/Porous-g-C3N4with synergy of adsorption and visible-light-drivenphotodegradation[J].Applied Surface Science:A Journal Devoted to theProperties of Interfaces in Relation to the Synthesis and Behaviour ofMaterials,2018,447:125-134.
[31]Bo Lin,Guidong Yang,Bolun Yang,Yuxin Zhao.B.Lin,B.Yang.Construction of novel three dimensionally ordered macroporous carbonnitride for highly efficient photocatalytic activity[J].Appl.Catal.B,2016,198:276-285.
[32]S.C.Yan,Z.S.Li,Z.G.Zou.Photodegradation performance of g-C3N4fabricated by directly heating melamine[J].Langmuir,2009,25:10397-10401.
[33]G.Li.Electrospinning fabrication and photocatalytic activity ofBi2WO6,nanofibers[J].Mater.Sci.:Mater.Electron,2017,28:12320-12325.
[34]Wei Guo,Kai Fan,Jiajun Zhang,Chunjian Xu,2D/2D Z-scheme Bi2WO6/Porous-g-C3N4with synergy of adsorption and visible-light-drivenphotodegradation[J].Applied Surface Science,2018,447:125-134.
[35]Cong Y,Zhang J,Chen F.Preparation photocatalytic activity andmechanismof nano-TiO2co-doped with Nitrogen and Iron(III)[J].The Journal ofPhysical Chemistry C,2007,111(28):10618-10623.
[36]杨曾.钒酸铋基多元复合催化剂体系构筑及其可见光性能研究[D].成都理工大学,2020.
[37]Hong Liu,Hualei Zhou,Hongda Li,Xintong Liu,Ren,Yichen Liu,WenjunLi,Mai Zhang.Fabrication of Bi2S3@Bi2WO6/WO3 ternary photocatalyst withenhanced photocatalytic performance:synergistic effect of Z-scheme/traditional heterojunction and oxygen vacancy[J].Journal of the TaiwanInstitute of Chemical Engineers,2019,95:94-102.
[38]Deli Jiang,Wanxia Ma,Peng Xiao,Leqiang Shao,Di Li,MinChen.Enhanced photocatalytic activity of graphitic carbon nitride/carbonnanotube/Bi2WO6 ternary Z-scheme heterojunction with carbon nanotube asefficient electron mediator[J].Journal of Colloid and Interface Science,2018,512.
[39]Kai Hu,Changya Chen,Yuan Zhu,Guangming Zeng,Binbin Huang,WenqianChen,Shaoheng Liu,Chao Lei,Bisheng Li,Yang Yang.Ternary Z-schemeheterojunction of Bi2WO6 with reduced graphene oxide(rGO)and meso-tetra(4-carboxyphenyl)porphyrin(TCPP)for enhanced visible-light photocatalysis[J].Journal of Colloid And Interface Science,2019.
[40]Sheng Luo,Jun Ke,Mengqian Yuan,Qi Zhang,Peng Xie,Lidan Deng,Shaobin Wang.CuInS 2quantum dots embedded in Bi2WO6 nanoflowers for enhancedvisible light photocatalytic removal of contaminants[J].Applied Catalysis B:Environmental,2018,221.
[41]Ziyang Wu,Xu Yan,Hao Shen,Jinlin Li,Weidong Shi.Enhanced visible-light-driven photocatalytic activity of Bi12O15Cl6/Bi2WO6 Z-schemeheterojunction photocatalysts for tetracycline degradation[J].MaterialsScience&Engineering B,2018,231.
[42]Junlei Zhang,Zhen Ma.Enhanced visible-light photocatalyticperformance of Ag3VO4/Bi2WO6 heterojunctions in removing aqueous dyes andtetracycline hydrochloride[J].Journal of the Taiwan Institute of ChemicalEngineers,2017,78.
[43]Fen Chen,Di Li,Bifu Luo,Min Chen,Weidong Shi.Two-dimensionalheterojunction photocatalysts constructed by graphite-like C3N4 and Bi2WO6nanosheets:Enhanced photocatalytic activities for water purification[J].Journal of Alloys and Compounds,2017,694.
[44]Yongchao Ma,Zhiwei Chen,Dan Qu,Jinsheng Shi.Synthesis ofchemically bonded BiOCl@Bi2WO6 microspheres with exposed
Figure BDA0003396749880000171
Bi2WO6facets and their enhanced photocatalytic activities under visible lightirradiation[J].North-Holland,2016,361.
[45]Chunmei Li,Gang Chen,Jingxue Sun,Jiancun Rao,Zhonghui Han,YidongHu,Weinan Xing,Congmin Zhang.Doping effect of phosphate in Bi2WO6 anduniversal improved photocatalytic activity for removing various pollutants inwater[J].Applied Catalysis B:Environmental,2016,188.
[46]Wenjing Xue,Danlian Huang,Jing Li,Guangming Zeng,Rui Deng,YangYang,Sha Chen,Zhihao Li,Xiaomin Gong,Bo Li.Assembly of AgI nanoparticles andultrathin g-C3N4 nanosheets codecorated Bi2WO6 direct dual Z-schemephotocatalyst:An efficient,sustainable and heterogeneous catalyst withenhanced photocatalytic performance[J].Chemical Engineering Journal,2019,373.
以上是对本发明所作的进一步详细说明,不可视为对本发明的具体实施的局限。对于本发明所属技术领域的普通技术人员来说,在不脱离本发明构思的简单推演或替换,都在本发明的保护范围之内。

Claims (10)

1.一种磷掺杂g-C3N4/Bi2WO6异质结的制备方法,包括如下步骤:
将铋源和磷掺杂g-C3N4于溶剂中混合均匀,得到溶液A;
将钨源溶解于溶剂中,得到溶液B;
将溶液A和溶液B混匀,水热反应,得到的固体洗涤、干燥,升温至280~400℃保温处理,保温处理完成后,冷却,研磨得到磷掺杂g-C3N4/Bi2WO6异质结。
2.根据权利要求1所述的制备方法,其特征在于:铋源中的Bi和钨源中的W的摩尔比为(1.5~2.5):1。
3.根据权利要求1所述的制备方法,其特征在于:所述磷掺杂g-C3N4中,(NH4)2HPO4占尿素质量比为1~3%。
4.根据权利要求1所述的制备方法,其特征在于:所述磷掺杂g-C3N4占磷掺杂g-C3N4/Bi2WO6异质结总质量的0.5~5%。
5.根据权利要求1~4任一项所述的制备方法,其特征在于:所述溶液A和所述溶液B的溶剂为乙二醇。
6.根据权利要求1~4任一项所述的制备方法,其特征在于:所述溶液A中,铋源的浓度为0.01~0.04 mmol/mL。
7.根据权利要求1~4任一项所述的制备方法,其特征在于:所述溶液B中,钨源的浓度为0.005~0.02 mmol/mL。
8.根据权利要求1~4任一项所述的制备方法,其特征在于:所述水热反应的温度为160~200℃。
9.根据权利要求1~4任一项所述的制备方法,其特征在于:所述水热反应的时间为10~24 h。
10.磷掺杂g-C3N4/Bi2WO6异质结作为光催化剂的应用,所述磷掺杂g-C3N4/Bi2WO6异质结按权利要求1~9任一项所述的方案制备得到。
CN202111486441.3A 2021-12-07 2021-12-07 高光催化性磷掺杂石墨相氮化碳/钨酸铋异质结的制备方法 Pending CN114130415A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111486441.3A CN114130415A (zh) 2021-12-07 2021-12-07 高光催化性磷掺杂石墨相氮化碳/钨酸铋异质结的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111486441.3A CN114130415A (zh) 2021-12-07 2021-12-07 高光催化性磷掺杂石墨相氮化碳/钨酸铋异质结的制备方法

Publications (1)

Publication Number Publication Date
CN114130415A true CN114130415A (zh) 2022-03-04

Family

ID=80384900

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111486441.3A Pending CN114130415A (zh) 2021-12-07 2021-12-07 高光催化性磷掺杂石墨相氮化碳/钨酸铋异质结的制备方法

Country Status (1)

Country Link
CN (1) CN114130415A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114917919A (zh) * 2022-06-10 2022-08-19 哈尔滨理工大学 一种铋钨钴多酸盐与氮化碳复合光催化材料及其制备方法和应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106492871A (zh) * 2016-11-11 2017-03-15 湖南大学 磷杂化石墨相氮化碳纳米片负载钒酸铋复合光催化剂及其制备方法和应用
CN106925329A (zh) * 2017-02-28 2017-07-07 陕西科技大学 一种钨酸铋/氮化碳复合光催化剂及其制备方法和应用
CN111167496A (zh) * 2020-01-09 2020-05-19 南开大学 一种可见光催化材料及其制备方法和应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106492871A (zh) * 2016-11-11 2017-03-15 湖南大学 磷杂化石墨相氮化碳纳米片负载钒酸铋复合光催化剂及其制备方法和应用
CN106925329A (zh) * 2017-02-28 2017-07-07 陕西科技大学 一种钨酸铋/氮化碳复合光催化剂及其制备方法和应用
CN111167496A (zh) * 2020-01-09 2020-05-19 南开大学 一种可见光催化材料及其制备方法和应用
EP3848122A1 (en) * 2020-01-09 2021-07-14 Nankai University Visible light catalytic material and preparation method and application thereof

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"一步法合成磷掺杂石墨相氮化碳及其光催化性能", 无机材料学报, vol. 32, no. 2, pages 2 *
JIANAN MAO ET AL.: "Enhanced Ciprofloxacin Photodegradation of Visible-LightDriven Z-Scheme g-C3N4/Bi2WO6 Nanocomposites and Interface Effect", CHEMISTRYSELECT *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114917919A (zh) * 2022-06-10 2022-08-19 哈尔滨理工大学 一种铋钨钴多酸盐与氮化碳复合光催化材料及其制备方法和应用
CN114917919B (zh) * 2022-06-10 2024-01-26 哈尔滨理工大学 一种铋钨钴多酸盐与氮化碳复合光催化材料及其制备方法和应用

Similar Documents

Publication Publication Date Title
Yang et al. Synthesis and visible-light-driven photocatalytic activity of p–n heterojunction Ag2O/NaTaO3 nanocubes
Li et al. Synthesis and characterization of Cu2O/TiO2 photocatalysts for H2 evolution from aqueous solution with different scavengers
Zhang et al. An ingenious strategy of preparing TiO2/g-C3N4 heterojunction photocatalyst: In situ growth of TiO2 nanocrystals on g-C3N4 nanosheets via impregnation-calcination method
Obregón et al. Cascade charge separation mechanism by ternary heterostructured BiPO4/TiO2/g-C3N4 photocatalyst
Zalfani et al. ZnO quantum dots decorated 3DOM TiO2 nanocomposites: Symbiose of quantum size effects and photonic structure for highly enhanced photocatalytic degradation of organic pollutants
Gurulakshmi et al. Enhanced visible-light photocatalytic activity of V2O5/S-TiO2 nanocomposites
Suzuki et al. Visible light-sensitive mesoporous N-doped Ta 2 O 5 spheres: synthesis and photocatalytic activity for hydrogen evolution and CO 2 reduction
Zhong et al. Comparison of TiO 2 and gC 3 N 4 2D/2D nanocomposites from three synthesis protocols for visible-light induced hydrogen evolution
Perales-Martínez et al. Facile synthesis of InVO4/TiO2 heterojunction photocatalysts with enhanced photocatalytic properties under UV–vis irradiation
Zhu et al. Synthesis of novel visible light response Ag10Si4O13 photocatalyst
Salari et al. Facile template-free synthesis of new α-MnO 2 nanorod/silver iodide p–n junction nanocomposites with high photocatalytic performance
Xie et al. Hierarchical TiO 2 photocatalysts with a one-dimensional heterojunction for improved photocatalytic activities
Pany et al. Facile fabrication of mesoporosity driven N–TiO 2@ CS nanocomposites with enhanced visible light photocatalytic activity
CN104801328B (zh) 一种低温制备TiO2/g‑C3N4复合光催化剂的方法
Huang et al. Synergetic adsorption and photocatalysis performance of g-C3N4/Ce-doped MgAl-LDH in degradation of organic dye under LED visible light
Gündoğmuş et al. Preparation and photocatalytic activity of g-C3N4/TiO2 heterojunctions under solar light illumination
Hermawan et al. Enhanced visible-light-induced photocatalytic NOx degradation over (Ti, C)-BiOBr/Ti3C2Tx MXene nanocomposites: role of Ti and C doping
Shen et al. A facile fabrication of Ag2O-Ag/ZnAl-oxides with enhanced visible-light photocatalytic performance for tetracycline degradation
Fiorenza et al. Photocatalytic H2 production over inverse opal TiO2 catalysts
Chai et al. A novel visible light-driven Ag3PO4/SBA-15 nanocomposite: Preparation and application in the photo-degradation of pollutants
Cui et al. CdS-sensitized K2Ti4O9 composite for photocatalytic hydrogen evolution under visible light irradiation
Li et al. Preparation of titania nanotube-Cd0. 65Zn0. 35S nanocomposite by a hydrothermal sulfuration method for efficient visible-light-driven photocatalytic hydrogen production
Gan et al. Facile ultrasonic-assisted synthesis of micro–nanosheet structure Bi4Ti3O12/g-C3N4 composites with enhanced photocatalytic activity on organic pollutants
Wang et al. Z-scheme heterojunctions composed of 3D graphene aerogel/g-C3N4 nanosheets/porous ZnO nanospheres for the efficient photocatalytic reduction of CO2 with H2O under visible light irradiation
Yan et al. Construction of novel ternary dual Z-scheme Ag3VO4/C3N4/reduced TiO2 composite with excellent visible-light photodegradation activity

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination