CN114129571A - 一种基于金属-有机共组装的无载体纳米药物及其制备与应用 - Google Patents

一种基于金属-有机共组装的无载体纳米药物及其制备与应用 Download PDF

Info

Publication number
CN114129571A
CN114129571A CN202111441191.1A CN202111441191A CN114129571A CN 114129571 A CN114129571 A CN 114129571A CN 202111441191 A CN202111441191 A CN 202111441191A CN 114129571 A CN114129571 A CN 114129571A
Authority
CN
China
Prior art keywords
drug
nano
sorafenib
carrier
organic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202111441191.1A
Other languages
English (en)
Other versions
CN114129571B (zh
Inventor
邵敬伟
张文钟
赵瑞瑞
方伊凡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuzhou University
Original Assignee
Fuzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuzhou University filed Critical Fuzhou University
Priority to CN202111441191.1A priority Critical patent/CN114129571B/zh
Publication of CN114129571A publication Critical patent/CN114129571A/zh
Application granted granted Critical
Publication of CN114129571B publication Critical patent/CN114129571B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/56Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/44Non condensed pyridines; Hydrogenated derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/52Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an inorganic compound, e.g. an inorganic ion that is complexed with the active ingredient
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/69Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit
    • A61K47/6921Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere
    • A61K47/6927Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being a solid microparticle having no hollow or gas-filled cores
    • A61K47/6929Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being a solid microparticle having no hollow or gas-filled cores the form being a nanoparticle, e.g. an immuno-nanoparticle
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y5/00Nanobiotechnology or nanomedicine, e.g. protein engineering or drug delivery

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Nanotechnology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Molecular Biology (AREA)
  • Medical Informatics (AREA)
  • Biotechnology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Immunology (AREA)
  • Medicinal Preparation (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

本发明属于生物医药技术领域,具体涉及一种基于金属‑有机共组装的无载体纳米药物及其制备与应用。本发明将疏水性天然产物熊果酸、疏水性抗癌药物索拉非尼以及铁离子通过一种绿色、简单的方法自组装成无载体纳米粒,不仅解决了纳米载体潜在的安全性问题,同时达到天然产物熊果酸与索拉非尼的协同抗肿瘤作用,铁离子的加入进一步提高索拉非尼的抗肝癌效果,具有较大的临床应用潜力。

Description

一种基于金属-有机共组装的无载体纳米药物及其制备与 应用
技术领域
本发明属于生物医药技术领域,特别涉及一种基于金属-有机共组装的无载体纳米药物及其制备与应用。
背景技术
癌症通常又称为恶性肿瘤,是目前全世界范围内致死率高、治疗最为棘手的疾病之一。肝癌是目前致死率和死亡率较高的癌症之一。如今抗肝癌药物种类繁多,以索拉非尼为代表的分子靶向药,可促进肿瘤细胞凋亡以及抑制肿瘤细胞增殖和血管生成,具有双重的抗肿瘤作用。此外,研究表明索拉非尼还可诱导铁死亡的产生。然而,长期大剂量服用造成的毒副作用以及耐药现象已成为索拉非尼有效发挥抗肝癌作用的主要障碍。因此,寻找新的药物与索拉非尼联合应用于肝癌治疗以降低毒副作用和克服耐药问题,是当下广大科研工作者的重要研究方向。
熊果酸作为一种天然产物来源于三萜类化合物,以低毒高效、多环节调控的抗肿瘤特性受到了广泛关注,其被认为是有望克服化学耐药性的佐剂。中国专利CN201610518377.5公开了一种熊果酸与索拉非尼的药物组合物及其在制备抗肿瘤药物中的应用,将熊果酸与索拉非尼联合使用可对肝癌细胞的生长产生协同抑制作用,同时对正常细胞的毒性较小。由此可见,将熊果酸与索拉非尼联合应用于临床肝癌治疗具有较大的潜力。然而,这两种药物均存在水溶性差、生物利用度低等缺陷,因此,开发一种更好的药物递送系统十分重要。
近年来,各种纳米化策略应用于抗肿瘤药物的递送以提高生物利用度。常见的纳米载体递送系统存在制备复杂、载药量低等问题,因此,多数研究者将目光转向载药量高、制备简单的无载体纳米递药系统。这种载药系统的载体是药物本身,通过“以药递药”的方式效避免传统无机载体带来的潜在毒性,为癌症治疗领域提供了新思路。目前应用于生物医药领域的无载体纳米递药系统分为前药自递送、纯药物自递送、基于治疗载体的自递送、基于小分子药物的金属有机配位自递送等几种类型。其中基于小分子药物的金属有机配位纳米自递送系统不仅增强了纳米药物的稳定性,同时通过与金属与药物联用起到协同抗肿瘤效果。如中国专利CN201710102120.6报道了一种由阿霉素与肿瘤增敏剂Banoxantrone通过铜离子配位搭桥,形成粒度均一、生理稳定性良好的无载体纳米粒,该纳米粒可提高肿瘤细胞的药物敏感性,在降低用药剂量下发挥药物协同抗肿瘤活性;另一中国专利CN202110489072.7 报道了由巴诺蒽醌和锰离子配位制得的一种负载巴诺蒽醌无载体纳米递药系统,在肿瘤微酸环境下可有效释放药物,同时兼具治疗与造影成像作用。然而,尚未见索拉非尼、熊果酸与金属离子联合应用于肿瘤治疗的报道。
基于上述研究背景,本发明拟构建一种基于索拉非尼、熊果酸双药共组装的纳米系统,并进一步引入金属铁离子与药物之间形成配位,以增强纳米药物的结构稳定性,同时提高药物的抗肿瘤效果。本发明的纳米递药系统无需借助外源载体,纳米骨架全部由药物组成,通过两种药物和金属离子三者之间“以药递药”,从而使其药效大于简单联合给药,最终实现协同抗肝癌作用,具有广阔的应用前景。
发明内容
本发明的目的在于提供一种基于金属-有机共组装的无载体纳米药物及其制备与应用,为无载体纳米药物在防治肝癌中提供理论依据。
为实现上述目的,本发明采用如下技术方案:
本发明提供了一种基于金属-有机共组装的无载体纳米药物,该无载体纳米药物是由疏水性天然产物、疏水性抗癌药物与铁离子通过多重配位、π-π 堆积、静电和疏水作用力共组装而成。
其中,所述疏水性天然产物为熊果酸,所述疏水性抗癌药物为索拉非尼。
本发明还提供了上述一种基于金属-有机共组装的无载体纳米药物的制备方法,所述制备方法具体包括如下步骤:
(1)将熊果酸与索拉非尼分别溶于甲醇中,得到熊果酸-甲醇混合液和索拉非尼-甲醇混合液;
(2)将熊果酸-甲醇混合液和索拉非尼-甲醇混合液混合均匀作为有机相,以FeCl3·6H2O水溶液作为水相,在搅拌状态下,将有机相加入到水相中,将混合液静置一段时间,氮气吹干甲醇,即得到熊果酸、索拉非尼和Fe3+三者共组装所形成的纳米药物的水溶液。
其中,步骤(1)中,所述熊果酸-甲醇混合液中熊果酸的浓度为10 mM,所述索拉非尼-甲醇混合液中索拉非尼的浓度为10 mM。
其中,步骤(2)中,所述静置时间为10~15 h。
其中,步骤(2)中,所述熊果酸:索拉非尼:Fe3+的摩尔比为1 : 2~8 : 6。
其中,步骤(2)中,所述纳米药物的粒径为100-150 nm。
本发明还提供了上述一种基于金属-有机共组装的无载体纳米药物在制备抗肿瘤药物中的应用。
本发明的优点在于:
(1)本发明所制备的纳米药物共载熊果酸和索拉非尼双药,利用高通透性和滞留效应实现药物靶向递送到肿瘤组织,可有效发挥天然药物和分子靶向药物的协同抗肿瘤作用。
(2)本发明所制备的一种基于金属-有机共组装的无载体纳米药物制备过程简单、绿色,可以克服传统纳米载体存在的组成复杂、载药量低以及可能带来的系统毒性的缺陷,可为以后新药研发和制备提供新的思路。
(3)本发明所制备的一种基于金属-有机共组装的无载体纳米药物具备出色的生理稳定性。
(4)本发明所制备的一种基于金属-有机共组装的无载体纳米药物可通过实体瘤的高通透性和滞留(EPR)效应提高纳米药物在肿瘤部位的集聚作用。
附图说明
图1为实施例2中通过激光共聚焦监测HepG2细胞对纳米药物的摄取情况。
图2为实施例3中通过流式细胞分析仪定量HepG2细胞对纳米药物的摄取情况。
图3为实施例4中纳米药物的SEM图。
图4为实施例5中纳米药物在水中和含体积分数10% FBS 培养基中的稳定性图。
图5为实施例6中纳米药物体内抑制肿瘤生长情况。
具体实施方式
根据下述实施例,可以更好地理解本发明,下面结合具体实施方式对本发明所述的技术方案作进一步的说明,但是本发明不仅限于此。
实施例1
本实施例提供了一种基于金属-有机共组装的无载体纳米药物的制备方法,所述制备方法具体包括如下步骤:
(1)准确称取0.00457 g 熊果酸粉末和0.00465 g索拉非尼粉末,分别溶于1ml甲醇中,超声辅助溶解,配置成熊果酸-甲醇混合液(其中熊果酸的浓度为10 mM)和索拉非尼-甲醇混合液(其中索拉非尼的浓度为10 mM);
(2)取不同体积的熊果酸-甲醇混合液和索拉非尼-甲醇混合液混合均匀,作为有机相,以FeCl3·6H2O 水溶液作为水相,在搅拌状态下将有机相快速加入到水相中,将混合液静置10~15 h,氮气吹干甲醇,即得到熊果酸、索拉非尼和Fe3+三者共组装形成的纳米药物的水溶液。
其中,步骤(2)中,所述熊果酸、索拉非尼和Fe3+的摩尔比例分别为 1 : 2: 6、1 :4 : 6或1 : 8 : 6。通过不同摩尔比所制备的纳米药物的平均水合粒径、尺寸均一性(PDI)、电势如表1所示。
表1 不同摩尔比下的纳米药物的平均粒径、PDI及电势
Figure DEST_PATH_IMAGE001
实施例2
通过激光共聚焦监测HepG2细胞对实施例1所制备的纳米药物的摄取情况。
首先制备吲哚菁绿标记的纳米药物:将1 mL实施例1制备好的纳米药物的水溶液在15000 rpm的条件下离心30 min,收集沉淀并用1 mL超纯水重悬,随后在涡旋条件下向其中滴加10 μL吲哚菁绿水溶液(10 mM),涡旋1 min后,在15000 rpm的条件下离心30 min,再次收集沉淀并用1 mL超纯水重悬,即得吲哚菁绿标记的纳米药物的水溶液。
将HepG2细胞接种到12孔板中(5×104 cells/孔),并在37 ℃温育24 h。移去旧DMEM细胞培养基,将吲哚菁绿标记的纳米药物按照5 μM的终浓度与DMEM细胞培养基混合,在常氧条件下,与细胞共孵育2 h。除去旧含药培养基,于每孔中加入400 μL Hochest33342染色液(2 μg/mL)继续孵育10 min。然后,将每个孔中的细胞用生理盐水洗涤两次,最后将样品用共聚焦显微镜观测。其中吲哚菁绿在633 nm处激发,其荧光在638-747 nm处监测。Hoechst 33342染色液在405nm处激发,并在410-500 nm处监测其荧光。
结果如图1所示,纳米药物进入HepG2细胞的量要比游离的吲哚菁绿多,表明肿瘤细胞的EPR效应使得纳米药物具有被动靶向的作用,增加其内吞率。在三种不同摩尔比下制备的纳米药物中,1 : 2 : 6组纳米药物和1 : 8 : 6组纳米药物与HepG2 细胞共孵育后的荧光比1 : 4 : 6组纳米药物更强,表明了HepG2细胞对1 : 2 : 6和1 : 8 : 6这两种摩尔比所制备的纳米药物的摄取能力更强。
实施例3
通过流式细胞分析仪对细胞内纳米药物的摄取情况进行定量。具体步骤如下:将2mL DMEM细胞培养基培养的HepG2细胞接种在6孔板中孵育过夜(3×105 cells/孔)。随后除去旧培养基,替换为2 mL含有吲哚菁绿标记的纳米药物(终浓度为5 μM)的DMEM细胞培养基(所述吲哚菁绿标记的纳米药物的制备方法同实施例2),并于37 ℃培养箱中孵育2 h。孵育结束后,将每个孔中的细胞用0.9 wt % NaCl冲洗两次,然后用不含EDTA的0.25 wt %胰蛋白酶消化,随后在1500 rpm的条件下离心3 min,再次用0.9 wt % NaCl洗涤细胞沉淀,然后在1500 rpm的条件下离心 3 min,并将细胞沉淀重悬于0.4 mL冷的0.9 wt % NaCl中之后。通过流式细胞仪进行分析,每个样品中计数104个细胞,收集细胞的荧光信号。
结果如图2所示,HepG2细胞对不同摩尔比下所制备的纳米药物摄取情况有些差别。相比1 : 4 : 6组纳米药物和1 : 8 : 6组纳米药物,摩尔比1 : 2 : 6组的纳米药物内在化效率更强,因此选择该摩尔比所制备的纳米药物进行之后的研究。
实施例4
取20 μL实施例3筛选的摩尔比为(1 : 2 : 6)所制备的纳米药物的水溶液滴在硅片上中,并在室温下自然干燥。接下来,将其喷纳米金处理,随后采用场发射扫描电镜仪观察其形貌。
结果如图3所示,纳米药物在纳米级尺寸内呈现规则的球形形态,大小约为80 nm,这结果相对与DLS所测得的水合粒径较小一些。
实施例5
取实施例3筛选的熊果酸:索拉非尼:铁离子摩尔比为1 : 2 : 6所制备的纳米药物分散在1 mL去离子水中或分散在1 mL含体积分数为10% 胎牛血清(FBS)的RMPI 1640培养基中(所述纳米药物在去离子水或培养基中的终浓度为200 μg/mL),4 ℃条件下保存7天。在不同时间取出进行DLS测量。
结果如图4所示,纳米药物在去离子水中7天内其粒径保持了相对稳定的状态,即证实该纳米药物具有单分散稳定性;并且,其在生理环境(胎牛血清)中也具有出色的稳定性,放置7天内平均粒径仍约为120 nm。
实施例6
构建小鼠H22肝癌移植瘤模型(构建方法参照:Zhang B, Wu P, Zou J, et al.Efficient CRISPR/Cas9 gene-chemo synergistic cancer therapy via astimuliresponsive chitosan-based nanocomplex elicits anti-tumorigenic pathwayeffect. Chem. Eng. J. 2020, 393: 124688)。当ICR小鼠注射200 μL(1×107 cells/mL)肿瘤细胞后第7天,肿瘤大小达到50~80 mm3 时,将小鼠随机分为5组,每组5只。每两天分别给各组小鼠注射一次熊果酸(10 mg/kg),索拉非尼(20 mg/kg),熊果酸(10 mg/kg)+索拉非尼(20 mg/kg)及实施例3筛选出的熊果酸:索拉非尼:铁离子摩尔比为1 : 2 : 6所制备的纳米药物(含索拉非尼20 mg/kg)。每两天测量一次小鼠的肿瘤大小和体重。肿瘤体积(V)和肿瘤抑制率(%)计算公式如下:
肿瘤体积(V, mm3 )=长度(最长直径)×宽度2(最短直径2)×0.5
肿瘤抑制率(%)=(对照组平均肿瘤重量-治疗组平均肿瘤重量)/对照组平均肿瘤重量×100%
结果如图5所示,纳米药物治疗组显示出更强的肿瘤抑制效果,在第15天,纳米药物组的肿瘤抑制率为75.9%,而使用熊果酸或索拉非尼单药治疗组抑制率分别显示约为39.1%和48.1%,结果说明,纳米药物组表现出比任何单一疗法以及双药联用都优异的协同抗癌作用,其主要原因有可能在于纳米制剂提高了药物的水溶性,同时通过EPR效应使其在肿瘤部位集聚,从而增强了药物的生物利用度。

Claims (8)

1.一种基于金属-有机共组装的无载体纳米药物,其特征在于:所述无载体纳米药物是由疏水性天然产物、疏水性抗癌药物与铁离子通过多重配位、π-π 堆积、静电和疏水作用力共组装而成。
2.根据权利要求1所述的一种基于金属-有机共组装的无载体纳米药物,其特征在于:所述疏水性天然产物为熊果酸,所述疏水性抗癌药物为索拉非尼。
3.一种如权利要求2所述的基于金属-有机共组装的无载体纳米药物的制备方法,其特征在于:所述制备方法具体包括如下步骤:
1)将熊果酸与索拉非尼分别溶于甲醇中,得到熊果酸-甲醇混合液和索拉非尼-甲醇混合液;
2)将熊果酸-甲醇混合液和索拉非尼-甲醇混合液混合均匀作为有机相,以FeCl3·6H2O水溶液作为水相,在搅拌状态下,将有机相加入到水相中,将混合液静置一段时间,氮气吹干甲醇,即得到熊果酸、索拉非尼和Fe3+三者共组装所形成的纳米药物的水溶液。
4.根据权利要求3所述的一种基于金属-有机共组装的无载体纳米药物的制备方法,其特征在于:步骤1)中,所述熊果酸-甲醇混合液中熊果酸的浓度为10 mM,所述索拉非尼-甲醇混合液中索拉非尼的浓度为10 mM。
5.根据权利要求3所述的一种基于金属-有机共组装的无载体纳米药物的制备方法,其特征在于:步骤2)中,所述静置时间为10~15 h。
6.根据权利要求3所述的基于金属-有机共组装的无载体纳米药物的制备方法,其特征在于:步骤2)中,所述熊果酸:索拉非尼:Fe3+三者的摩尔比为1 : 2~8 : 6。
7.根据权利要求3所述的基于金属-有机共组装的无载体纳米药物的制备方法,其特征在于:步骤2)中,所述纳米药物的粒径为100-150 nm。
8.如权利要求1所述的纳米药物在制备抗肿瘤药物中的应用。
CN202111441191.1A 2021-11-30 2021-11-30 一种基于金属-有机共组装的无载体纳米药物及其制备与应用 Active CN114129571B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111441191.1A CN114129571B (zh) 2021-11-30 2021-11-30 一种基于金属-有机共组装的无载体纳米药物及其制备与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111441191.1A CN114129571B (zh) 2021-11-30 2021-11-30 一种基于金属-有机共组装的无载体纳米药物及其制备与应用

Publications (2)

Publication Number Publication Date
CN114129571A true CN114129571A (zh) 2022-03-04
CN114129571B CN114129571B (zh) 2023-11-14

Family

ID=80389677

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111441191.1A Active CN114129571B (zh) 2021-11-30 2021-11-30 一种基于金属-有机共组装的无载体纳米药物及其制备与应用

Country Status (1)

Country Link
CN (1) CN114129571B (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014002108A1 (en) * 2012-06-27 2014-01-03 Amrita Vishwa Vidyapeetham University A core-shell nanostructure on the basis of proteins with corresponding therapeutic agents
WO2014087413A1 (en) * 2012-12-03 2014-06-12 Vishwa Vidya Peetham University Amrita Nanoparticles comprising sorafenib
CN105920019A (zh) * 2016-07-05 2016-09-07 福州大学 一种含熊果酸与索拉菲尼的药物组合物及其在制备抗肿瘤药物中的应用
CN105963306A (zh) * 2016-07-05 2016-09-28 福州大学 一种具有协同抗肿瘤转移活性的药物组合物
CN107158014A (zh) * 2017-05-19 2017-09-15 福州大学 无载体共组装肿瘤靶向抗癌纳米药物及其制备方法与应用
CN107349429A (zh) * 2017-07-18 2017-11-17 福州大学 一种核酸适配体‑熊果酸的偶联物无载体自组装纳米粒及其制备和应用
CN107875158A (zh) * 2017-11-15 2018-04-06 福州大学 一种兼具化疗/光治疗的无载体纳米药物的制备方法
WO2021139395A1 (zh) * 2020-01-08 2021-07-15 南京师范大学 细胞及活体内自催化合成的高效低毒抗癌化合物及其合成方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014002108A1 (en) * 2012-06-27 2014-01-03 Amrita Vishwa Vidyapeetham University A core-shell nanostructure on the basis of proteins with corresponding therapeutic agents
WO2014087413A1 (en) * 2012-12-03 2014-06-12 Vishwa Vidya Peetham University Amrita Nanoparticles comprising sorafenib
CN105920019A (zh) * 2016-07-05 2016-09-07 福州大学 一种含熊果酸与索拉菲尼的药物组合物及其在制备抗肿瘤药物中的应用
CN105963306A (zh) * 2016-07-05 2016-09-28 福州大学 一种具有协同抗肿瘤转移活性的药物组合物
CN107158014A (zh) * 2017-05-19 2017-09-15 福州大学 无载体共组装肿瘤靶向抗癌纳米药物及其制备方法与应用
CN107349429A (zh) * 2017-07-18 2017-11-17 福州大学 一种核酸适配体‑熊果酸的偶联物无载体自组装纳米粒及其制备和应用
CN107875158A (zh) * 2017-11-15 2018-04-06 福州大学 一种兼具化疗/光治疗的无载体纳米药物的制备方法
WO2021139395A1 (zh) * 2020-01-08 2021-07-15 南京师范大学 细胞及活体内自催化合成的高效低毒抗癌化合物及其合成方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
RUIRUI ZHAO 等: "Simultaneous inhibition of growth and metastasis of hepatocellular carcinoma by co-delivery of ursolic acid and sorafenib using lactobionic acid modified and pH-sensitive chitosan-conjugated mesoporous silica nanocomplex", BIOMATERIALS, vol. 143, pages 1 - 16 *
方敏 等: "熊果酸纳米制剂的研究进展", 药学研究, vol. 38, no. 6, pages 359 - 369 *

Also Published As

Publication number Publication date
CN114129571B (zh) 2023-11-14

Similar Documents

Publication Publication Date Title
Shi et al. A tumor-targeting near-infrared laser-triggered drug delivery system based on GO@ Ag nanoparticles for chemo-photothermal therapy and X-ray imaging
Jia et al. 8-Hydroxyquinoline functionalized covalent organic framework as a pH sensitive carrier for drug delivery
Ping et al. Construction of highly stable selenium nanoparticles embedded in hollow nanofibers of polysaccharide and their antitumor activities
Bi et al. Doxorubicin-conjugated CuS nanoparticles for efficient synergistic therapy triggered by near-infrared light
US11638700B2 (en) Iron/shikonin nano-composite and use thereof and method for preparing the same by supermolecular self-assembly
Wang et al. Uniform magnesium silicate hollow spheres as high drug-loading nanocarriers for cancer therapy with low systemic toxicity
Pooresmaeil et al. D-mannose functionalized MgAl-LDH/Fe-MOF nanocomposite as a new intelligent nanoplatform for MTX and DOX co-drug delivery
Song et al. Fabrication of the biomimetic DOX/Au@ Pt nanoparticles hybrid nanostructures for the combinational chemo/photothermal cancer therapy
Rajan et al. Magneto-chemotherapy for cervical cancer treatment with camptothecin loaded Fe 3 O 4 functionalized β-cyclodextrin nanovehicle
Fang et al. Sgc8 aptamer targeted glutathione-responsive nanoassemblies containing Ara-C prodrug for the treatment of acute lymphoblastic leukemia
Wang et al. Functionalized graphene oxide against U251 glioma cells and its molecular mechanism
Zhu et al. Facile preparation of indocyanine green and tiny gold nanoclusters co-loaded nanocapsules for targeted synergistic sono-/photo-therapy
Bhattarai et al. Enhanced chemotherapeutic toxicity of cyclodextrin templated size-tunable rhodamine 6G nanoGUMBOS
Xiao et al. Reverse anti-breast cancer drug resistance effects by a novel two-step assembled nano-celastrol medicine
JP5466173B2 (ja) 水溶性、カチオン性および両親媒性の薬学的に活性な物質を投与するためのドラッグ・デリバリー・システム
Yadav et al. Chondroitin sulphate decorated nanoparticulate carriers of 5-fluorouracil: development and in vitro characterization
CN113461754A (zh) 一种碱基修饰的阿霉素前药及其制备方法和应用
CN111529721B (zh) 一种自聚型纳米诊疗系统及其制备方法和应用
CN108434124B (zh) 一种表阿霉素ves复合物和制备方法及其应用
CN110302391B (zh) 一种葡聚糖-槲皮素聚合物载药胶束制剂及其制备方法
CN114129571B (zh) 一种基于金属-有机共组装的无载体纳米药物及其制备与应用
CN114948880A (zh) 一种咖啡酸苯乙酯纳米稳定缓释剂型的制备方法
CN109276720B (zh) 一种金属-有机物配合物纳米材料及其制备方法和应用
Li et al. Hyaluronic acid oligosaccharide-modified zeolitic imidazolate framework-8 nanoparticles loaded with oxaliplatin as a targeted drug-delivery system for colorectal cancer therapy
CN117138055B (zh) 一种双载体的阿霉素载药纳米材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant