CN114127898A - 以高能量低剂量等离子体后处理氮化硅基的介电膜的方法 - Google Patents

以高能量低剂量等离子体后处理氮化硅基的介电膜的方法 Download PDF

Info

Publication number
CN114127898A
CN114127898A CN202080041799.2A CN202080041799A CN114127898A CN 114127898 A CN114127898 A CN 114127898A CN 202080041799 A CN202080041799 A CN 202080041799A CN 114127898 A CN114127898 A CN 114127898A
Authority
CN
China
Prior art keywords
substrate
helium
silicon nitride
sin
plasma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202080041799.2A
Other languages
English (en)
Inventor
孙顒
J·C·李
P·P·杰哈
梁璟梅
S·S·奥哈
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Applied Materials Inc
Original Assignee
Applied Materials Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Applied Materials Inc filed Critical Applied Materials Inc
Publication of CN114127898A publication Critical patent/CN114127898A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02318Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
    • H01L21/02337Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment by exposure to a gas or vapour
    • H01L21/0234Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment by exposure to a gas or vapour treatment by exposure to a plasma
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • C23C16/345Silicon nitride
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/56After-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/321Radio frequency generated discharge the radio frequency energy being inductively coupled to the plasma
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/321Radio frequency generated discharge the radio frequency energy being inductively coupled to the plasma
    • H01J37/3211Antennas, e.g. particular shapes of coils
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32357Generation remote from the workpiece, e.g. down-stream
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/3244Gas supply means
    • H01J37/32449Gas control, e.g. control of the gas flow
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32623Mechanical discharge control means
    • H01J37/32633Baffles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32798Further details of plasma apparatus not provided for in groups H01J37/3244 - H01J37/32788; special provisions for cleaning or maintenance of the apparatus
    • H01J37/32816Pressure
    • H01J37/32834Exhausting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/0217Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon nitride not containing oxygen, e.g. SixNy or SixByNz
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02205Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition
    • H01L21/02208Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/02274Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition in the presence of a plasma [PECVD]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67155Apparatus for manufacturing or treating in a plurality of work-stations
    • H01L21/67161Apparatus for manufacturing or treating in a plurality of work-stations characterized by the layout of the process chambers
    • H01L21/67167Apparatus for manufacturing or treating in a plurality of work-stations characterized by the layout of the process chambers surrounding a central transfer chamber

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

一种对在基板的表面上形成的氮化硅(SiN)基的介电膜进行后处理的方法,包括:将具有形成在其上的氮化硅(SiN)基的介电膜的基板定位在处理腔室中;以及使氮化硅(SiN)基的介电膜在处理腔室中暴露于含氦高能量低剂量等离子体。含氦高能量低剂量等离子体中的氦离子的能量在1eV与3.01eV之间,且含氦高能量低剂量等离子体中的氦离子的通量密度在5×1015个离子/cm2·秒与1.37×1016个离子/cm2·秒之间。

Description

以高能量低剂量等离子体后处理氮化硅基的介电膜的方法
技术领域
本公开内容的实施例总体上涉及可流动的间隙填充膜及其制造工艺,且更特定而言涉及通过高能量低剂量等离子体对可流动的膜进行后处理。
背景技术
小型半导体元件(包括浅沟槽隔离(STI)、金属间介电(IMD)层、层间介电(ILD)层、金属前介电(PMD)层、钝化层、鳍片场有效晶体管(FinFET)等等)的制造在用于图案化纳米级栅极结构的先进光刻中面临挑战。氮化硅是在此种结构中使用的主要介电材料中的一种。间隙和沟槽的无空隙填充已通过可流动的化学气相沉积(CVD)进行,其中处于液相的含硅和氮的介电前驱物被输送到基板上的间隙和沟槽中(称为可流动膜),并接着常规地通过蒸气退火、紫外线(UV)辐射、热压和高温烧结而固化成处于固相的氮化硅(SiN)基的介电膜。然而,此类固化工艺受限于高深宽比特征内的特定深度,且因此特征没有被氮化硅(SiN)基的介电膜完全填充。在一些情况下,可流动膜用含有高能量离子的标准高密度等离子体(HDP)处理,以增加固化深度。然而,已知此类HDP处理不会渗透到氮化硅(SiN)基的介电膜中,且不会将固化深度增加到高深宽比特征的深度。因此,在高深宽比特征内(部分包括氮化硅)的材料相较于氧化硅的湿法蚀刻选择性小于氮化硅相较于氧化硅的湿法蚀刻选择性。
因此,需要新的固化工艺来形成可流动的膜,所述可流动的膜填充高深宽比的间隙和沟槽并且相对于氧化硅具有改善的机械特性,诸如改善的湿法蚀刻速率(WERR,<2:1)。
发明内容
于此描述的实施例总体上涉及一种对在基板的表面上形成的氮化硅(SiN)基的介电膜进行后处理的方法,包括:将具有形成在其上的氮化硅(SiN)基的介电膜的基板定位在处理腔室中;以及使氮化硅(SiN)基的介电膜在处理腔室中暴露于含氦高能量低剂量等离子体。含氦高能量低剂量等离子体中的氦离子的能量在1eV与3.01eV之间,且含氦高能量低剂量等离子体中的氦离子的通量密度在5×1015个离子/cm2·秒与1.37×1016个离子/cm2·秒之间。
本公开内容的实施例可进一步提供一种在基板的表面上形成和后处理氮化硅(SiN)基的介电膜的方法,所述方法包括:将介电前驱物传送到设置在第一腔室的处理区域中的基板上,介电前驱物包括硅和氮;在第一腔室的处理区域中提供自由基通量;以及在第二腔室中将输送的介电前驱物暴露于含氦的高能量低剂量等离子体。含氦高能量低剂量等离子体中的氦离子的能量在1eV与3.01eV之间,且含氦高能量低剂量等离子体中的氦离子的通量密度在5×1015个离子/cm2·秒与1.37×1016个离子/cm2·秒之间。
附图说明
为了可详细地理解本公开内容的上述特征的方式,可通过参考实施例来获得以上简要概述的本公开内容的更详细的描述,在附图中示出一些实施例。然而,应当注意,附图仅示出本公开内容的典型实施例,且因此不应被认为是对其范围的限制,因为本公开内容可允许其他等效实施例。
图1是示出根据一个实施例的形成可流动膜的方法的流程图。
图2是根据一个实施例的群集工具的示意图。
图3A是根据一个实施例的沉积腔室的示意图。
图3B是根据一个实施例的喷头的示意性底视图。
图4是根据一个实施例的等离子体腔室的示意图。
图5A和图5B示出根据一个实施例的含氦等离子体的发光光谱(OES)强度。
图6示出根据一个实施例的氮化硅(SiN)基的介电膜的蚀刻量。
为了清楚起见,在可适用的情况下,使用了相同的参考标号表示附图间共用的相同元件。另外,一个实施例的元件可有利地适用于于此描述的其他实施例中的利用。
具体实施方式
于此所述的实施例提供了例如通过可流动的化学气相沉积(CVD)对沉积在基板上的氮化硅(SiN)基的介电膜进行后处理的方法。氮化硅(SiN)基的介电膜包括硅氮(Si–N–Si)键。沉积在基板上的氮化硅(SiN)基的介电膜可能会由于硅氢的交联限于沉积的硅氮(Si-N)基的介电膜的表面附近而含有大量的硅氢(Si–H)和氮氢(N–H)键结,从而导致间隙和沟槽填充不足。于此所述的方法包括通过将沉积的氮化硅(SiN)基的介电膜暴露于含氦的高能量低剂量等离子体来对沉积在基板的表面上的氮化硅(SiN)基的介电膜进行后处理。于此描述的方法可用以减少或消除氮化硅(SiN)基的介电膜中的Si–H和N–H键,从而将氮化硅(SiN)基的介电膜致密化为大厚度。
于此所述的实施例还提供了通过可流动的CVD形成氮化硅(SiN)基的介电膜以填充具有高深宽比(AR)和小尺寸(例如,AR≥8)的间隙和沟槽的方法。在一些实施例中,通过可流动的CVD而形成的氮化硅(SiN)基的介电膜是无缝隙的,且可使用处于液相的硅和氮介电前驱物和自由基形式的共反应物(反应气体)(例如,氧(O2)或氨(NH3))来填充高AR的间隙和沟槽。
图1是示出根据一个实施例的用以在基板的表面上形成氮化硅(SiN)基的介电膜的方法100的流程图。
在框102中,将基板定位在沉积腔室中。例如,基板可为金属基板(诸如铝或不锈钢)、半导体基板(诸如硅、绝缘体上硅(SOI)或砷化镓)、玻璃基板或塑料基板。半导体基板可为集成电路形成中的任何制造/制作(manufacture/fabrication)阶段的图案化基板。图案化基板可包括将被介电材料填充的间隙、沟槽、孔、通孔等等。
在框104中,处于液相的一种或多种介电前驱物和载气(诸如氩(Ar)或氦(He))经由气体输送装置(诸如双通道喷头(DCSH))流入沉积腔室中,以DSCH的每个通道在约250sccm和约5000sccm的流速之间的流率将介电前驱物输送到位于沉积腔室内的基板的表面上。基板的表面可保持在约40℃和约150℃之间的降低的温度下,例如在约80℃下。沉积腔室的压力可保持在约0.5托(Torr)与约3.0托之间。
在一些实施例中,介电前驱物是包括硅、氮、氢和氯的有机硅化合物(诸如甲硅烷基胺(silyl-amine)及其衍生物(包括三甲硅烷基胺(TSA)和二甲硅烷基胺(DSA)))、包括硅、氮、氢和氧或其组合的有机硅化合物。
在框106中,可在沉积腔室外侧的远程等离子体源(RPS)中生成等离子体,并与载气(例如,Ar、He)一起流入沉积腔室的基板处理区域中。等离子体可通过处理前驱物气体的分解而产生,处理前驱物气体包括分子氧(O2)、臭氧(O3)、分子氢(H2)、氮氢化合物(例如,NH3、N2H4)、氮氧化合物(例如,NO、NO2、N2O)、氢氧化合物(例如,H2O、H2O2)、氮氢氧化合物(例如,NH4OH)、碳氧化合物(例如,CO、CO2)或其组合。在等离子体中,可活化含有O*、H*和/或N*的自由基,诸如O*、H*、N*、NH3*、N2H4*、NH2*、NH*、N*O*、C3H6*、C2H2*或其组合。
在一些实施例中,在RPS中活化的自由基以在约1sccm和约10000sccm之间的流率流入沉积腔室(称为“自由基通量”)。
在框108中,基板处理区域中的一个或多个自由基(也称为反应性气体)与所输送的介电前驱物反应,以形成氮化硅(SiN)基的介电膜。可通过改变自由基通量中反应性气体的成分来调节形成的氮化硅(Si-N)基的介电膜的成分。为了形成含氮膜(诸如SiON、SiCON和SiN膜),反应气体可为(例如)氨(NH3)、氢(H2)、肼(N2H4)、二氧化氮(NO2)或氮(N2)。当基板处理区域中的反应气体与所输送的介电前驱物反应时,Si–H和N-H键(弱键)会部分断裂,并被Si–N、Si–NH和/或Si–NH2键代替(牢固的键),以形成氮化硅(SiN)介电膜。
在框110中,将所形成的氮化硅(SiN)基的介电膜在等离子体腔室中暴露于含有轻离子(即,元素周期表中原子序小的离子物种)(诸如氦(He)、氢(H2)、氩(Ar)或氮(N2))的高能量低剂量等离子体,以固化所形成的氮化硅(SiN)基的介电膜。等离子体腔室耦合到两个功率源,经由感应线圈控制离子通量的密度(也称为离子剂量)的RF功率源、和控制离子能量的RF功率源。
暴露于含有轻离子的高能量低剂量等离子体导致所形成的氮化硅(SiN)基的介电膜中在具有S-H和N-H键的化合物之间的进一步交联。也就是,当所形成的氮化硅(SiN)基的介电膜中相邻化合物中的S-H和N-H键与含轻离子的等离子体反应时,相邻化合物通过移除S–H键并形成Si–N、Si-NH和/或Si-NH2键而发生交联,且因此固化了氮化硅(SiN)基的介电膜的相应部分。
尽管不受理论的束缚,但据信在等离子体中活化的离子的自由基可能会物理地轰击在氮化硅(SiN)基的介电膜内的Si–H键,从而破坏Si–H键并导致形成Si–N、Si–NH和/或Si–NH2键。轻离子穿过形成所的氮化硅(SiN)基的介电膜到达选定深度,而基本上不损坏所形成的氮化硅(SiN)基的介电膜。通过轻离子的自由基的此种处理使得均匀地执行深度在从0nm至4.2nm范围内的氮化工艺(即,形成Si–N、Si–NH和/或Si–NH2键)而不会损害所形成的氮化硅(SiN)基的介电膜成为可能,(例如)通过热退火或紫外线照射进行固化的同时,不可避免地受限于在氮化硅(SiN)基的介电膜的暴露表面附近固化。
通常,但不限于此,在不同于沉积腔室的腔室(等离子体腔室)中执行介电前驱物的固化(框110),在沉积腔室中,执行介电前驱物与反应性气体的传送和反应(框104-108)。通常,可将操作组(例如,框104-108)重复多个周期以形成整体上较厚的膜。
沉积系统的实施例可结合到用于生产集成电路晶片的更大的制造系统中。图2示出根据一个实施例的一种此类群集工具1001,其包括处理腔室1008a-f。在图2中,一对前开式标准舱(FOUP)1002供应由机械臂1004接收并定位到低压保持区域1006中的基板(例如,300mm直径的晶片)。第二机械臂1010可用以运输在低压保持区域1006和处理腔室1008a-f之间的基板。
图3A是根据一个实施例的具有腔室主体302和盖组件304的处理腔室300的示意图。盖组件304通常包括远程等离子体源(RPS)306、盖308和双通道喷头(DCSH)310。RPS 306可处理从处理前驱物气体源312提供的处理前驱物气体。在RPS 306中形成的等离子体可接着经由与盖308耦接的气体入口组件314和挡板316被输送到腔室等离子体区域318中。载气(例如,Ar、He)可被输送到腔室等离子体区域中。盖(即导电顶部部分)308和双通道喷头(DCSH)310之间设置有绝缘环320,这允许相对于DCSH 310将AC电位施加到盖308。
DCSH 310设置在腔室等离子体区域318和基板处理区域324之间,并允许在存在于腔室等离子体区域318内的等离子体中活化的自由基穿过多个通孔326进入基板处理区域324。自由基的流动(自由基通量)在图3A中由实线箭头“A”指示。基板328设置在基板支撑件330上,基板支撑件330设置在基板处理区域324内。DCSH 310还具有一个或多个空心容积332,空心容积332可填充有由前驱物源334提供的介电前驱物。介电前驱物从一个或多个空心容积332经由小孔336并绕过腔室等离子体区域318而进入基板处理区域324中。介电前驱物的流动由图3A中的虚线箭头指示。排气环338用以通过使用排气泵340而均匀地排空基板处理区域324。DCSH 310可比通孔326的最小直径的长度更厚。通孔326的最小直径的长度可通过形成部分穿过DCSH 310的通孔326的较大直径部分来限制,以维持从腔室等离子体区域318到基板处理区324中的自由基通量的流动。在一些实施例中,通孔326的最小直径的长度可与通孔326的最小直径处于相同的数量级或更小。
在一些实施例中,图2中的一对处理腔室(例如,1008c-d)(称为双腔室)可用以将介电前驱物沉积在基板上。处理腔室中的每一个(例如,1008c-d)可具有图3A所描绘的处理腔室300的横截面结构。上述DCSH的每个通道的流率对应于经由相应的DCSH 310进入腔室的每一个(例如,1008c-d)的流率。
图3B是根据一个实施例的DCSH 310的示意性底视图。DCSH 310可经由通孔326传送存在于腔室等离子体区域318内的自由基通量和载气。
在一些实施例中,通孔326的数量可在约60个和约2000个之间。通孔326可具有圆形或多种形状。在一些实施例中,通孔326的最小直径可在约0.5mm和约20mm之间或在约1mm和约6mm之间。通孔326的横截面形状可制成圆锥形、圆柱形或两种形状的组合。在一些实施例中,小孔336的数量可用以将介电前驱物引入到基板处理区域324中,且可在约100个与约5000个之间或在约50个0与约2000个之间。小孔336的直径可在约0.1mm和约2mm之间。
图4是根据一个实施例的具有腔室主体402和盖组件404的等离子体腔室400的示意图。盖组件404包括气体输送组件406和盖408。盖408具有开口410,以允许一种或多种处理前驱物气体进入。气体输送组件406经由开口410设置在盖408上方。气体输送组件406可经由气体入口414连接到气体源412,以将一种或多种处理前驱物气体供应到基板处理区域424中。基板428设置在基板支撑件430上,基板支撑件430设置在基板处理区域424内并且耦合至偏压功率源(未示出)。一种或多种处理前驱物气体可通过使用排气环438和排气泵440而离开基板处理区域424。
在盖组件404中,内部线圈442、中间线圈444和外部线圈446设置在盖408之上。内部线圈442和外部线圈446经由匹配电路450耦合到RF功率源448。从RF功率源448施加到外部线圈446的功率经由盖408被感应地耦合,以从在基板处理区域424内从气体源412提供的处理前驱物气体产生等离子体。RF功率源448可在不同的频率下提供电流,以控制在等离子体中的等离子体密度(即,每立方公分(cc)的离子数),并且因此控制离子通量的密度(ions/cm2·秒)。偏压功率源控制在基板428和等离子体之间的电压,并且因此控制离子的能量和方向性。因此,可独立地控制离子通量和离子能量两者。
加热器组件452可设置在盖408之上。加热器组件452可通过夹紧构件454、456而固定至盖408。
基板的表面可保持在约100℃与约400℃之间的温度。等离子体腔室的压力可维持在约5毫托(mTorr)和与500毫托之间。
在下文中,提供用以处理沉积膜的处理参数的实验测量作为示例,以说明于此所述的本公开内容的实施例的方面。所述示例并非旨在限制本公开内容的范围。
在实验测量中,将根据上述方法100形成的氮化硅(SiN)基的介电膜在15mT与150mT之间的压力下暴露于含氦的高能量低剂量等离子体中,持续时间在约2分钟和3.5分钟之间。通过偏压功率源施加到设置在基板支撑件内的电极的功率(称为偏压功率)在100W与700W之间变化,以改变由于所施加的偏压功率而用以轰击基板的表面的氦离子(即,等离子体中产生的离子)的能量。施加到RF功率源的功率(在此示例中为ICP等离子体源)在0kW与2.7kw之间变化,以改变等离子体中生成的氦离子的密度(即,较低的功率对应于较低的通量密度)。所形成的氮化硅(SiN)基的介电膜被氦离子轰击并被致密化(即,被氮化)成每个循环在
Figure BDA0003394331580000082
Figure BDA0003394331580000083
之间的深度以及在3nm与4.2nm之间的总深度。下面总结了可在本文所述的实施例的一个或多个中使用的一些工艺参数的摘要。
Figure BDA0003394331580000081
图5A示出在(i)2.7kW(参见线591)及(ii)700W(参见线592)的RF功率源(称为RF源功率)的功率下在波长200nm与900nm之间测得的含氦等离子体的光发射光谱(OES)强度。图5A中的主要发射线示出亚稳态的氦(He)原子(例如,388.8nm、402.6nm、447.1nm、501.5nm、587.5nm、667.8nm、706.5nm和728.1nm)。此外,检测到的与氮相关联的反应性物种是激发的氮分子,其具有在300与400nm之间的光发射光谱波长。在700WRF源功率情况下(请参见线591),与亚稳氦(He)原子相对应的OES强度比在2.7kW RF源功率情况下(请参见线592)的OES强度小10到1000倍。因此,在700W RF源功率情况下,含氦离子的等离子体的等离子体密度小10到1000倍。
图5B示出在各种偏压功率(诸如在100W与500W之间)及在150毫托的压力下的含氦等离子体的OES强度。RF源功率保持在0W,且因此通过施加到基板支撑电极的偏压的施加而产生含氦的等离子体。如从图5B可看出,对应于图5A中的主要发射线的OES强度随所施加的偏压功率线性增加,且因此随氦离子能量线性增加。因此,在所述示例中,向高能量低剂量等离子体提供低RF源功率(例如,700W)和高偏压功率(例如,100-500W)。
含氦等离子体(其中等离子体密度和氦离子的能量可如上所述地控制)可用以致密化所形成的沉积层,诸如氮化硅(SiN)基的介电膜。轰击基板表面的具有低等离子体密度并含有高能量氦离子的含氦等离子体可在氮化硅(SiN)基的介电膜内更深地渗透,而不会由于在较高的等离子体密度工艺中产生的对膜的过度轰击和在常规等离子体工艺中通常使用的较高原子质量的气体的使用而对膜造成重大损伤。具有低等离子体密度并含有高能氦离子的含氦等离子体在所形成的氮化硅(SiN)基的介电膜中产生增加的厚度致密化,并具有较小的总损伤。例如,可用此种高能量低剂量的含氦等离子体来处理沉积在高深宽比特征内的含硅和氮化物的可流动膜,以使可流动膜致密化,以形成氮化硅(SiN)基的介电膜,使所述氮化硅(SiN)基的介电膜致密化为在高深宽比特征内增加的深度,而不会显著损伤所形成的可流动的膜层。
图6示出使用通过用去离子水将1%HF稀释5分钟而制备的稀HF(DHF)溶液来移除的氮化硅(SiN)基的介电膜的量。根据上述方法100形成氮化硅(SiN)基的介电膜,并接着在2.7kW(高剂量)与700W(低剂量)的RF源功率下、在300W(低能量)与700W(高能量)的偏压功率下暴露于含氦等离子体。如从图6可看出,等离子体中氦离子的较低剂量(即,在较低的RF源功率下)和较高能量(即,在较高的偏压功率下)增加了氮化硅基的介电膜的蚀刻量,这表明所形成的氮化硅(SiN)基的介电膜具有更深的氮化物(致密化)部分,且蚀刻速率提高至
Figure BDA0003394331580000091
较低的压力还导致等离子体中氦离子的能量较高,并且因此提高了蚀刻速率。
如上所述,具有含氦的高能量低剂量等离子体的氮化硅(SiN)基的可流动膜的后处理可增加氮化深度并改善湿法蚀刻速率(WERR),而不会损坏可流动膜。应当注意,上述特定示例实施例仅仅是可通过根据本公开内容的高能量低剂量等离子体进行后处理的氮化硅(SiN)基的介电膜的一些可能示例,且不限于氮化硅(SiN)基的介电膜的可能的配置、规格、沉积方法等等。例如,通过包括轻离子的高能量低剂量等离子体的后处理可应用于任何掺杂或未掺杂的SiCOH、SiCON、SiO和SiN膜。
尽管前述涉及特定实施例,但是可设计其他和进一步的实施例而不背离其基本范围,且其范围由所附的权利要求书确定。

Claims (20)

1.一种对在基板的表面上形成的氮化硅(SiN)基的介电膜进行后处理的方法,包括:
将基板定位在处理腔室中,所述基板具有形成在所述基板上的氮化硅(SiN)基的介电膜;以及
使所述氮化硅(SiN)基的介电膜在所述处理腔室中暴露于含氦高能量低剂量的等离子体,其中
所述含氦高能量低剂量等离子体中的多个氦离子的能量在1eV与3.01eV之间,并且
所述含氦高能量低剂量等离子体中的所述氦离子的通量密度在5×1015个离子/cm2·秒与1.37×1016个离子/cm2·秒之间。
2.如权利要求1所述的方法,其中所述氮化硅(SiN)基的介电膜包括S-H键。
3.如权利要求1所述的方法,其中所述氮化硅(SiN)基的介电膜包括N-H键。
4.如权利要求1所述的方法,其中在所述氮化硅(SiN)基的介电膜暴露于所述含氦高能量低剂量等离子体期间,所述基板处于在10℃与200℃之间的温度下。
5.如权利要求1所述的方法,其中在所述氮化硅(SiN)基的介电膜暴露于所述高密度等离子体期间,所述基板处于在15毫托与300毫托之间的压力下。
6.如权利要求1所述的方法,其中所述基板由选自金属、半导体和塑料所组成的群组的材料所制成。
7.一种对在基板的表面上形成的硅基膜进行后处理的方法,包括:
将基板定位在处理腔室中,所述基板具有形成在所述基板上的硅基膜;以及
使所述硅基膜在所述处理腔室中暴露于含氦高能量低剂量的等离子体,其中
所述含氦高能量低剂量等离子体中的多个氦离子的能量在1eV与3.01eV之间,并且
所述含氦高能量低剂量等离子体中的所述氦离子的通量密度在5×1015个离子/cm2·秒与1.37×1016个离子/cm2·秒之间。
8.如权利要求7所述的方法,其中所述硅基膜包括氮化硅(SiN)。
9.如权利要求7所述的方法,其中所述硅基膜包括S-H键。
10.如权利要求7所述的方法,其中所述硅基膜包括N-H键。
11.如权利要求7所述的方法,其中在所述硅基膜暴露于所述含氦高能量低剂量等离子体期间,所述基板处于在10℃与200℃之间的温度下。
12.如权利要求7所述的方法,其中在所述硅基膜暴露于所述高密度等离子体期间,所述基板处于在15毫托与300毫托之间的压力下。
13.如权利要求1所述的方法,其中所述基板由选自金属、半导体和塑料所组成的群组的材料所制成。
14.一种在基板的表面上形成和后处理氮化硅(SiN)基的介电膜的方法,所述方法包括:
将介电前驱物传送到设置在第腔室的处理区域中的基板上,所述介电前驱物包括硅和氮;
在所述第一腔室的所述处理区域中提供自由基通量;以及
在第二腔室中将输送的所述介电前驱物暴露于含氦的高能量低剂量等离子体,其中
所述含氦高能量低剂量等离子体中的多个氦离子的能量在1eV与3.01eV之间,并且
所述含氦高能量低剂量等离子体中的所述氦离子的通量密度在5×1015个离子/cm2·秒与1.37×1016个离子/cm2·秒之间。
15.如权利要求14所述的方法,其中在所述氮化硅(SiN)基的介电膜暴露于所述含氦高能量低剂量等离子体期间,所述基板处于在10℃与200℃之间的温度下。
16.如权利要求14所述的方法,其中在所述氮化硅(SiN)基的介电膜暴露于所述高密度等离子体期间,所述基板处于在15毫托与300毫托之间的压力下。
17.如权利要求14所述的方法,其中所述基板由选自金属、半导体和塑料所组成的群组的材料所制成。
18.如权利要求14所述的方法,其中所述介电前驱物是包括硅、氮、氢和氯的有机硅化合物。
19.如权利要求14所述的方法,其中所述介电前驱物是包括硅、氮、氢和氧的有机硅化合物。
20.如权利要求14所述的方法,其中所述自由基通量包括选自由氧气(O2)、臭氧(O3)、水(H2O)、氨(NH3)、肼(N2H4)、二氧化氮(NO2)、氮(N2)、丙烯(C3H6)和乙炔(C2H2)所组成的群组中的自由基气体。
CN202080041799.2A 2019-06-06 2020-06-03 以高能量低剂量等离子体后处理氮化硅基的介电膜的方法 Pending CN114127898A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201962858158P 2019-06-06 2019-06-06
US62/858,158 2019-06-06
PCT/US2020/035970 WO2020247531A1 (en) 2019-06-06 2020-06-03 Methods of post treating silicon nitride based dielectric films with high energy low dose plasma

Publications (1)

Publication Number Publication Date
CN114127898A true CN114127898A (zh) 2022-03-01

Family

ID=73651582

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202080041799.2A Pending CN114127898A (zh) 2019-06-06 2020-06-03 以高能量低剂量等离子体后处理氮化硅基的介电膜的方法

Country Status (6)

Country Link
US (1) US20200388483A1 (zh)
KR (1) KR20220025758A (zh)
CN (1) CN114127898A (zh)
SG (1) SG11202112611PA (zh)
TW (1) TW202113128A (zh)
WO (1) WO2020247531A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11952660B2 (en) * 2019-07-29 2024-04-09 Applied Materials, Inc. Semiconductor processing chambers and methods for cleaning the same
CN114686972A (zh) * 2022-02-21 2022-07-01 上海华力集成电路制造有限公司 一种改善外延层异常生长的方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100560654B1 (ko) * 2004-01-08 2006-03-16 삼성전자주식회사 질화실리콘막을 형성을 위한 질소화합물 및 이를 이용한질화실리콘 막의 형성방법
US7732342B2 (en) * 2005-05-26 2010-06-08 Applied Materials, Inc. Method to increase the compressive stress of PECVD silicon nitride films
US8084356B2 (en) * 2007-09-29 2011-12-27 Lam Research Corporation Methods of low-K dielectric and metal process integration
JP2012084707A (ja) * 2010-10-13 2012-04-26 Mitsubishi Heavy Ind Ltd 窒化珪素膜形成装置及び方法
US9214333B1 (en) * 2014-09-24 2015-12-15 Lam Research Corporation Methods and apparatuses for uniform reduction of the in-feature wet etch rate of a silicon nitride film formed by ALD

Also Published As

Publication number Publication date
WO2020247531A1 (en) 2020-12-10
TW202113128A (zh) 2021-04-01
JP2022534801A (ja) 2022-08-03
US20200388483A1 (en) 2020-12-10
SG11202112611PA (en) 2021-12-30
KR20220025758A (ko) 2022-03-03

Similar Documents

Publication Publication Date Title
JP7458457B2 (ja) 高品質のボイド充填法のための流動性堆積及び高密度プラズマ処理工程サイクル
US9390914B2 (en) Wet oxidation process performed on a dielectric material formed from a flowable CVD process
KR101327923B1 (ko) 보론 니트라이드 및 보론 니트라이드-유도된 물질 증착 방법
US8586487B2 (en) Low temperature plasma enhanced chemical vapor deposition of conformal silicon carbon nitride and silicon nitride films
US7704816B2 (en) Boron derived materials deposition method
US20140273530A1 (en) Post-Deposition Treatment Methods For Silicon Nitride
KR102339803B1 (ko) 산화제 없이 규소 및 산-함유 막들을 증착시키는 방법
KR20090017665A (ko) 질소 플라즈마 인-시튜 처리 및 엑스-시튜 uv 경화를 이용하여 실리콘 질화물 인장 스트레스를 증가시키는 방법
US20200388483A1 (en) Methods of post treating silicon nitride based dielectric films with high energy low dose plasma
JP7556891B2 (ja) 高エネルギー低線量プラズマを用いた窒化ケイ素ベースの誘電体膜の後処理の方法
TWI839527B (zh) 微波輻射後處理介電膜的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination