CN114127339A - 对用于固体氧化物电池堆应用的铁素体钢互连件进行铬升级的方法 - Google Patents

对用于固体氧化物电池堆应用的铁素体钢互连件进行铬升级的方法 Download PDF

Info

Publication number
CN114127339A
CN114127339A CN202080050715.1A CN202080050715A CN114127339A CN 114127339 A CN114127339 A CN 114127339A CN 202080050715 A CN202080050715 A CN 202080050715A CN 114127339 A CN114127339 A CN 114127339A
Authority
CN
China
Prior art keywords
interconnect
ferritic steel
chromium
steel
ferritic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202080050715.1A
Other languages
English (en)
Inventor
T·H·诺比
J·拉斯-汉森
T·海雷达尔-克劳森
R·金加斯
B·P·G·布伦诺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Topsoe AS
Original Assignee
Haldor Topsoe AS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Haldor Topsoe AS filed Critical Haldor Topsoe AS
Publication of CN114127339A publication Critical patent/CN114127339A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/04Electroplating: Baths therefor from solutions of chromium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/0068Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for particular articles not mentioned below
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C10/00Solid state diffusion of only metal elements or silicon into metallic material surfaces
    • C23C10/28Solid state diffusion of only metal elements or silicon into metallic material surfaces using solids, e.g. powders, pastes
    • C23C10/34Embedding in a powder mixture, i.e. pack cementation
    • C23C10/36Embedding in a powder mixture, i.e. pack cementation only one element being diffused
    • C23C10/38Chromising
    • C23C10/40Chromising of ferrous surfaces
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C10/00Solid state diffusion of only metal elements or silicon into metallic material surfaces
    • C23C10/28Solid state diffusion of only metal elements or silicon into metallic material surfaces using solids, e.g. powders, pastes
    • C23C10/34Embedding in a powder mixture, i.e. pack cementation
    • C23C10/36Embedding in a powder mixture, i.e. pack cementation only one element being diffused
    • C23C10/38Chromising
    • C23C10/40Chromising of ferrous surfaces
    • C23C10/42Chromising of ferrous surfaces in the presence of volatile transport additives, e.g. halogenated substances
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C10/00Solid state diffusion of only metal elements or silicon into metallic material surfaces
    • C23C10/60After-treatment
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/04Electroplating: Baths therefor from solutions of chromium
    • C25D3/10Electroplating: Baths therefor from solutions of chromium characterised by the organic bath constituents used
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/34Pretreatment of metallic surfaces to be electroplated
    • C25D5/36Pretreatment of metallic surfaces to be electroplated of iron or steel
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/48After-treatment of electroplated surfaces
    • C25D5/50After-treatment of electroplated surfaces by heat-treatment
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/06Wires; Strips; Foils
    • C25D7/0614Strips or foils
    • C25D7/0692Regulating the thickness of the coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0206Metals or alloys
    • H01M8/0208Alloys
    • H01M8/021Alloys based on iron
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0223Composites
    • H01M8/0228Composites in the form of layered or coated products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/1231Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte with both reactants being gaseous or vaporised
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • H01M8/2425High-temperature cells with solid electrolytes
    • H01M8/2432Grouping of unit cells of planar configuration
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • H01M8/184Regeneration by electrochemical means
    • H01M8/186Regeneration by electrochemical means by electrolytic decomposition of the electrolytic solution or the formed water product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Electrochemistry (AREA)
  • Mechanical Engineering (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Composite Materials (AREA)
  • Fuel Cell (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

一种对用于固体氧化物电池堆的由铁素体钢制成的互连件进行铬升级的方法包括以下步骤:使互连件成型;在成型的互连件的至少一个表面上沉积包含Cr的涂层;在低于1000℃的温度下进行一次或多次热处理,在该方法中,在互连件表面附近所得的Cr浓度高于成型前铁素体钢中的Cr浓度。具体地,成型的互连件的平均Cr浓度增加到26wt%Cr或更高。

Description

对用于固体氧化物电池堆应用的铁素体钢互连件进行铬升级 的方法
技术领域
本发明涉及铁素体钢材料的铬升级,更具体而言,涉及用于固体氧化物电池(SOC)堆中的铁素体钢互连件的铬升级。
背景
不锈钢是铁合金,其具有10.5wt%的最低Cr含量和1.2wt%的最高碳含量。
根据其晶体结构,不锈钢分为不同的家族:奥氏体、铁素体、双相和马氏体。最大的一类不锈钢是奥氏体。奥氏体不锈钢可进一步分为五个子类:Cr-Mn、Cr-Ni、Cr-Ni-Mo、高性能和高温。最常见的奥氏体钢是Cr-Ni,其含有8-10wt%的Ni和17-18wt%的Cr,其余为Fe,其通常被称为18-8型不锈钢。需要钢中有Ni,以稳定具有面心立方(FCC)晶体结构的奥氏体相(γ-Fe),该结构在室温下保持稳定。奥氏体等级被归类为非磁性的,具有良好的可焊性和成形性。
铁素体不锈钢是第二大常用不锈钢种类,通常被称为奥氏体钢的“无镍”替代品。铁素体钢主要包含Fe和Cr,且取决于应用,Cr含量可以在很宽的范围内变化(从10.5到29wt%)。铁素体钢可以进一步细分为五个不同的类。第1-3类具有最广泛的应用,因此也是铁素体钢的最大产量。第1-3类的钢通常被称为“标准铁素体等级”。第1类的Cr含量最低(在10.5至14wt%的范围内),而第2-3类的Cr含量在14至18wt%的范围内。第2类是使用最广泛的铁素体不锈钢系列。AISI 430是一类使用特别广泛的第2类不锈钢,在许多室内应用中,它已经超越了奥氏体替代品AISI 304,在这些应用中,耐腐蚀性不太重要,但期望较小的价格波动(由于无镍配方)。第3类与第2类的区别在于第3类含有额外的稳定元素,例如Ti、Nb和Zr,这些元素与碳和氮二者结合,在所有温度下都留下完全的铁素体晶体结构。因此,第3类全体物质通常比其他类显示出更好的可焊性和抗敏化性。第4类具有10.5至18wt%的Cr,并与Mo形成合金,以具有额外的耐腐蚀性。第5类的铁素体具有高于18wt%的形成合金的Cr,或者不属于其他类。通常,第5类的铁素体钢具有非常高的耐腐蚀性,但可焊性低,而且它们对脆化也很敏感。第5类中同时含有高的Cr和Mo的等级被称为“超级铁素体”,用于在其中认为腐蚀是极端的应用中取代钛。铁素体不锈钢具有体心立方(BCC)晶体结构(α-Fe),具有磁性,并且具有比奥氏体钢更低的热膨胀系数。
双相不锈钢是另一类不锈钢。双相钢基本上是铁素体和奥氏体相的混合物,具有50%铁素体和50%奥氏体的大致相平衡。双相不锈钢的特征在于高Cr含量(20.1至25.4wt%Cr)但Ni含量相当低(1.4至7wt%Ni)。在双相钢中,结合了奥氏体钢和铁素体钢的许多有益特性。由于铁素体含量,双相等级具有磁性。
马氏体不锈钢是不锈钢中最小的一类。马氏体钢通常含有12-17wt%的Cr和0-5wt%的Ni。正是合金组成和淬火过程中高冷却速率的结合,将微结构转变为具有体心四方(BCT)晶体结构的马氏体。马氏体钢具有可硬化性和磁性。
固体氧化物电池(SOC)可作为固体氧化物燃料电池(SOFC)、固体氧化物电解池运行(SOEC)或可逆的,即在SOFC和SOEC模式之间切换运行。
固体氧化物燃料电池包括氧离子传导电解质、氧电极(阴极,氧在此处被还原)和燃料电极(阳极,燃料(例如氢气、甲烷或天然气)在此处被氧化)。SOFC中的整体反应是所用的燃料和氧气进行电化学反应以产生电、热和被氧化的物质。如果使用氢气作为燃料,则被氧化的物质是水,如果使用一氧化碳作为燃料,则被氧化的物质是二氧化碳,对于烃燃料,则被氧化的物质是水和二氧化碳的混合物。
固体氧化物电解池包括氧离子传导电解质、燃料电极(阴极,在外加电场的帮助下,被氧化的物质(例如水或二氧化碳或其两者)在此处被还原)和氧电极(阳极,氧离子在此处被氧化成分子氧)。SOEC中的整体反应是使用电和热将被氧化的物质以电化学方式转化为被还原的物质。如果供给到电池堆中的被氧化的物质是水,则在燃料电极上形成氢气。如果被氧化的物质是二氧化碳,则在燃料电极上形成一氧化碳。如果被氧化的物质是水和二氧化碳的混合物,则产生一氧化碳和氢气的混合物(也称为合成气)。
SOC在约500℃至约1100℃的温度范围内运行。需要提高运行温度以确保电解质中足够高的氧离子传导率。SOC常用的电解质材料包括但不限于氧化钇稳定化的氧化锆(YSZ)和氧化钆掺杂的氧化铈(CGO)。
在SOC堆中,各自包括燃料电极、电解质、氧电极和任选的附加层的多个电池通过在每对电池之间插入互连板(或“互连件”或“互连器”)的方式串联连接。互连件的作用是提供从一个电池到下一个电池的电接触,以帮助气体在整个电池中分布,并且在某些设计中避免在阳极室和阴极室之间气体发生混合。
互连件可以由陶瓷材料(例如掺杂的镧或钇铬酸盐)制成,也可以由金属(例如不锈钢)制成。金属互连件优于陶瓷互连件的优点包括:1)更低的材料和制造成本;2)成型(shaping)更简单,不那么复杂;3)更高的导电性和导热性;4)延展性。因此,对于在低于850℃的温度下运行的SOC,优选金属互连件。
适用于金属SOC互连件的材料需要在升高的运行温度下对供给至氧电极和燃料电极的气体具有抗氧化性,并且它们还必须表现出与电池的陶瓷组件的热膨胀系数(CTE)相匹配的CTE。此外,在高温下在钢表面上形成的保护性氧化物屏障必须具有导电性。鉴于这些要求,形成氧化铬表面层的铁素体合金(例如形成氧化铬的铁素体钢)特别适合用作SOC堆应用中的互连件。此类高铬铁素体钢的实例包括但不限于AISI 441、AISI 444、AISI430、AISI 446、Crofer 22H、Crofer 22APU、ZMG G10、E-brite、Plansee ITM等。用于金属SOC互连件的其他材料包括Plansee CFY(一种基于<95wt%Cr、5wt%Fe和Y的合金)。
例如,US 6.936.217B2描述了一种高温材料,其由形成铁合金的氧化铬组成,该铁合金包括:a)12至28wt%的Cr,b)0.01至0.4wt%的La,c)0.2至1.0wt%的Mn,d)0.05至0.4wt%的Ti,e)小于0.2wt%的Si,f)小于0.2wt%的Al,其中,在700℃至950℃的温度下,该高温材料能够形成MnCr2O4尖晶石相。上述描述所涵盖的铁素体不锈钢已经以商品名Crofer 22APU商业化。Crofer 22APU在20℃至800℃之间的CTE为11.9ppm K-1
属于申请人的WO 2008/013498 A1涉及一种铁素体铬不锈钢,其包含:a)20至25wt%的Cr,b)0.5至2wt%的Mo,c)0.3至1.5wt%的Nb,d)最多0.1wt%的C,e)最多0.6wt%的Mn,f)最多2wt%的Ni,g)最多0.5wt%的Ti,h)最多0.5wt%的Zr,i)最多0.1wt%的Al,j)最多0.07wt%的N,k)最多0.3wt%的稀土金属,l)余量为Fe和通常存在的杂质,其中Zr+Ti的含量为至少0.20wt%。此外,最优选的实施方案是具有以下近似组成(重量百分比)的钢:Si-0.2,Mn-0.3,Cr-22,Mo-1,Nb-0.4,Zr-0.3,Ti-0.05,余量为Fe和通常存在的杂质。所描述的钢适合用作燃料电池(例如固体氧化物燃料电池)中的互连件,因为在材料表面上形成的氧化物具有良好的粘附性,并且当在750℃下在空气中与(La,Sr)MnO3板接触进行测试时,材料具有低接触电阻。
铁素体不锈钢的腐蚀速率在很大程度上取决于钢中的Cr含量。例如,I.G.Wight在Metals Handbook,9th Edition,Vol.13Corrosion(1987)中教导了随着合金中的Cr含量从0提高到20wt%Cr,Fe-Cr合金腐蚀的抛物线速率常数在1000℃时降低了四个数量级以上。当Cr含量低于约28wt%时,合金表面上形成的氧化物皮由Fe-氧化物或Fe-Cr混合氧化物的层组成,导致对钢的保护不完全。在Cr含量高于约28wt%时,合金表面上形成的氧化物皮由纯的和连续的Cr氧化物组成,为钢提供更完整的保护(即最低腐蚀速率)。因此,对于SOC应用,期望使用Cr含量高于28wt%的铁素体不锈钢。当SOC堆在低于1000℃的温度下运行时,稍微降低Cr含量(例如26wt%)可能就足够了。不幸的是,大多数广泛使用的铁素体钢中的Cr含量不够高,不能承受长期暴露在SOC条件下。
对于将第1-3类铁素体不锈钢(17-18wt%)用于SOC互连件的问题通常通过高温抗氧化涂层来解决。例如,J.G.Grolig等人在Journal of Power Sources,248(2014)1007-1013中表明,当暴露于850℃的SOFC阴极条件和3%水含量的空气中时,铬含量为17.83wt%的AISI 441的腐蚀速率可以通过包含铈或镧的保护涂层,或通过铈或镧与钴的组合的双层涂层而降低。通过物理气相沉积施加涂层。这种涂层的主要缺点是它们在涂层例如由于缺陷、裂纹、针孔、附着力差等破损的情况下不提供防腐蚀保护。如果涂层失效,那么由于Cr含量低,钢很可能会发生严重的铁氧化,从而导致SOC堆失效。此外,钢在涂覆后的成型会破坏涂层的保形性,导致腐蚀保护不完全。
Fe-Cr合金的热膨胀系数(CTE)也取决于合金的Cr含量。一般而言,合金的CTE随Cr含量的增加而降低。例如,在25℃至727℃之间测量的AISI 430(16-18wt%Cr)的CTE为12.94ppm/K。在20℃至800℃之间测量的Crofer 22APU(20-24wt%Cr)的CTE为11.9ppm/K。在室温至800℃之间测量的Plansee ITM(26wt%Cr)的CTE为11.6ppm/K。在室温至800℃之间测量的CFY(95wt%Cr)的CTE为10.5ppm/K。与SOC中40vol%Ni-60vol%8YSZ(8mol%的氧化钇稳定化的氧化锆)支撑层的CTE相匹配的最佳CTE值为12.5ppm/K(F.Tietz,Ionics,5(1999)129)。
制造中的金属成型可分为两大类:材料保持过程和材料去除过程。材料保持过程通常分为成形(forming)或变形过程,是材料在产生形状时经历塑性变形的过程。可成形性(formability)是一个在材料保持工艺类别中经常用在金属制造中的术语。术语“可成形性”描述了金属在不损坏工件的情况下塑性变形为所需形状的能力。塑性变形期间的损坏的实例包括撕裂或断裂形成。成形工艺的实例包括但不限于:冲压、锻造、滚压、挤出、滚压成形和液压成形。材料去除过程是通过从工件上去除材料来成型金属的过程来解释的,通常称为机械加工。机械加工包括多种不同的过程,并分为三个不同的类别:机器、化学和热机械加工。在机器机械加工中,工具通过切削或磨损去除材料。化学机械加工和/或电化学机械加工被定义为通过从工件上蚀刻掉材料来去除材料以获得所需形状的过程。热机械加工通常使用电能将材料从工件上蒸发掉。因此,术语“可机械加工性”非常广泛,因为它涵盖了许多不同的过程。然而,该术语的含义是材料从工件上被去除的能力。
例如,属于申请人的US 8.663.863 B2描述了一种用于燃料电池的互连件,该互连件由具有突出的接触区域的金属片材制成。可以通过任何已知的工艺例如冲压、压制、铣削、深拉等使金属片材成型来制造突出部。
US 7.718.295 B2描述了一种方法,该方法涉及通过蚀刻使平面固体氧化物燃料电池的互连件成型。合适的工艺包括光化学和电化学蚀刻以及激光切割等。
在US 9.472.816 B2中,粉末冶金成型的部件由粉末制成,该粉末由95wt%的Cr和5wt%的FeY母合金(包含0.5wt%的Y的合金)组成。将1wt%的压制助剂(蜡)添加到该粉料中。然后,将粉料在滚筒混合机中混合15分钟。使用压制工具将粉末压制成压块,将其在连续带式炉中在氢气气氛中以1100℃预烧结20分钟,以达到脱蜡目的。然后将部件在氢气气氛中在1400℃下高温烧结7小时,以进一步压实和形成合金。随后在950℃下将部件预氧化10至30小时,以将可能存在的残余孔隙闭合到使材料的渗透性足够低的程度。最后,通过喷砂工艺去除部件表面所有侧面上的氧化物层。所描述的实例涉及许多高温烧结步骤,一些在氢气气氛中,并且进一步涉及使用具有严格粒径和形状要求的金属粉末,使得该过程非常昂贵。此外,通过粉末冶金法生产的互连件板材的尺寸受到模具尺寸和压力机压制力的限制。
US 2008/0269495 A1描述了一种用于生产用于燃料电池堆的金属互连件的方法,其包括提供金属片材坯料并通过模塑工艺使金属片材坯料成形。该方法的主要缺点是需要极高的压力(1000kN/cm2或10000bar)来压印金属片材坯料,这严重限制了可以使用该方法生产的互连件板的尺寸。
通常,铁素体不锈钢的可成形性随着钢中Cr含量的增加而劣化。例如,DesignGuidelines for the Selection and Use of Stainless Steel(Nickel DevelopmentInstitute,A Designers’handbook Series No.9014)教导了AISI 430钢(16-18wt%Cr)在易于压印、压花和滚压成形方面被评为“优秀”,而AISI 446钢(23-27wt%的Cr)被评为“良好”。AISI 430钢还在易于冷镦和旋压方面被评为“优秀”,而AISI 446钢被评为“一般”。
几个不同的参数可用于定量描述钢的可成形性的不同方面。使用的参数包括但不限于加工硬化指数、抗拉强度与屈服强度之比、总伸长率、均匀伸长率和r值。加工硬化指数描述钢的可拉伸性,总伸长率表征钢的可弯曲性,均匀伸长率与钢的片材拉伸能力相关,r值与钢的深拉能力相关。例如,AISI 430钢(16-18wt%Cr)的伸长率(A5)≥20-28%,而AISI446钢(23-27wt%Cr)的伸长率(A5)≥10%,表明随着Cr含量的增加,可成形性降低。
例如,US 2016/0281184 A1涉及一种具有优异防腐和片材成形性能的铁素体不锈钢。该钢含有20-24wt%的Cr,均匀伸长率(Ag)介于17.0%至19.1%之间,r值介于1.81至2.55之间。
EP 1 452 616 B1中描述了一种铁素体不锈钢片材,其具有优异的冲压成形性和可操作性。该钢片材中Cr的含量为10-19wt%,且钢片材在一个或两个表面上具有一层或多层润滑膜。该发明的主要缺点是由于Cr含量低,钢在SOC条件下不能提供足够好的腐蚀保护。
因此,对于SOC应用,期望使用具有以下性质的不锈钢:1)在还原和氧化气氛中均具有高抗氧化性,2)与SOC的热膨胀系数(CTE)相匹配的CTE,3)形成导电氧化物皮的能力,4)易于成形或机械加工,5)低成本,和6)广泛的可用性(即广泛的供应商)。
专为SOC应用开发的铁素体不锈钢,例如Plansee ITM(26wt%Cr),由于其高Cr含量而具有出色的抗氧化性。ITM钢进一步形成基于Cr氧化物的皮,其比基于氧化铝或二氧化硅的皮更具导电性。高Cr钢的主要缺点与材料成型困难有关:例如,由Plansee ITM制成的互连件是通过粉末冶金法制造的。由于昂贵的成型工艺和由于这些钢的产量低,由这种钢制成的互连件非常昂贵。此外,钢的供应有限也是一个问题。最后,此类钢的CTE并非最佳:Plansee ITM的CTE为11.6ppm/K,而与SOC中使用的40vol%Ni-60vol%8YSZ的CTE相匹配的最佳CTE值为12.5ppm/K(F.Tietz,Ionics,5(1999)129)。
另一方面,标准铁素体不锈钢,例如第2类铁素体不锈钢,易于成型、广泛使用、大批量生产且价格低廉,但Cr含量较低(对于AISI 430为16-18wt%Cr)。较低的Cr含量使材料的耐腐蚀性较差,这反过来又将SOC堆的寿命降低到不可接受的低水平。常用铁素体不锈钢的CTE略有变化,但例如AISI 430的CTE为12.94ppm/K,即略高,无法与40vol%Ni-60vol%8YSZ的CTE理想地匹配。
因此,本发明的目标是提供一种制备金属SOC互连件的方法,该方法结合了标准铁素体不锈钢的优点(即低成本、广泛的可用性、易于成型)和优异的抗氧化性。此外,本发明的一个目标是提供一种用于固体氧化物电池堆中的铁素体钢互连件,该互连件成本低、可广泛获得、易于成型并且具有优异的抗氧化性。
发明内容
根据本发明,该目标通过一种对用于固体氧化物电池堆的由铁素体钢制成的互连件进行铬升级的方法实现,所述方法包括以下步骤
-使互连件成型,
-在成型的互连件的至少一个表面上沉积包含Cr的涂层,
-在低于1000℃的温度下进行一次或多次热处理,
由此在互连件表面附近所得的Cr浓度高于成型前铁素体钢中的Cr浓度。
这里,术语“铬升级”是指增加材料中Cr含量的手段。术语“互连件的成型”是指将互连件形成或机械加工成期望的形状。术语“成型的互连件”是指已经被形成或机械加工成期望的形状的互连件。
有利地,成型的互连件的平均Cr浓度增加到26wt%Cr或更高。
有利地,铁素体钢是第1类铁素体钢、第2类铁素体钢、第3类铁素体钢、第4类铁素体钢、或以下钢中的一种:Crofer22APU、Crofer22H、ZMG G10。
有利地,铁素体钢是第2类铁素体钢,例如AISI 430。
因此,本发明的方法允许SOC互连件由例如低成本、易成型、广泛使用的铁素体不锈钢制成,同时实现优异的耐腐蚀性。这通过以下实现:首先将互连件成型为期望的形状,从而利用具有相对较低Cr含量的钢的易成型的优点。成型之后是增加成型的互连件的Cr含量,从而利用具有相对较高Cr含量的钢的更高耐腐蚀性的优点。铁素体显示出非常高的铬溶解度和非常低的碳含量,因此对于使用本发明的方法增加铬含量而言,溶解度和碳化物形成都没有问题。
有利地,沉积步骤被表征为镀硬铬。
电镀铬的方法可分为以下两大类:镀硬铬和镀亮铬。镀硬铬和镀亮铬之间的主要区别且对应用而言很重要的是涂层的层厚。镀硬铬提供相对较厚的涂层,厚度从1到1000μm不等,主要用作技术目的的耐磨和耐腐蚀涂层。镀亮铬提供的层厚度在0.25-1μm范围内,因此它们主要用于改善表面的外观,以用于装饰目的。术语“技术硬铬”和“装饰亮铬”也常用于描述涂层之间的差异。尽管两种镀铬工艺在电镀液组成上相似,但仍将其细分。传统的硫酸盐催化的铬电解液原则上在组成上非常接近,以至于它们可用于镀硬铬涂层和镀亮铬涂层(参见下表1)。两种镀液组成之间的主要区别在于,与镀亮铬工艺相比,镀硬铬可以在高得多的电流密度下运行,可以实现更快的沉积速率。
表1.基于传统硫酸催化工艺的镀硬铬和镀亮铬镀液的组成
硬铬 亮铬
CrO<sub>3</sub>[g/L] 250 400
H<sub>2</sub>SO<sub>4</sub>[g/L] 2.5 4.0
电流密度[A/dm<sup>2</sup>] 15-70 10-20
温度℃ 45-60 35-45
传统的硫酸盐催化工艺,也称为标准100:1硫酸盐镀液(即三氧化铬和硫酸盐各自之间的比例为100:1),是历史上用于铬电镀的最广泛使用的镀液。然而,如果没有一种或多种催化剂的存在,铬不能从六价铬(Cr(VI))还原到其金属态(Cr),这一事实促使行业进一步优化硬铬工艺中使用的催化剂。这种催化剂开发不仅使电镀液具有高得多的电流效率,而且还改善了硬铬涂层的性质。这种改进的性质的例子是更高的硬度、裂纹更少的沉积物以及低的基材蚀刻。
如上所述,硬铬电解质的工业标准已经制定,现在又分为三个不同的类,列在下表2中。所有电解质均基于三氧化铬和硫酸盐。
表2.当今镀硬铬行业使用的主要硬铬工艺种类的描述。
Figure BDA0003466223170000091
有利地,在成型的互连件上通过镀硬铬沉积的涂层的厚度为至少1微米且小于1毫米。
有利地,沉积步骤可以被表征为铬化过程。
铬化是一种热化学过程,其涉及通过扩散的方式,用铬使铁合金(主要是钢)饱和。其目的是延长暴露于磨损和腐蚀(包括气体腐蚀)的工具和部件在高达900℃的温度下的使用寿命。铬化涉及源金属粉末(在这种情况下为Cr)、活化剂(例如卤化物)和稀释剂(惰性粉末,例如Al2O3,其防止堆积的粉末颗粒烧结在一起),该方法通常被称为作为“包埋渗(packcementation)”。第1-3类铁素体钢的碳含量非常低,其特点是Cr的溶解度高,因此铬化过程特别有利于金属Cr扩散到铁素体晶体结构中。活化剂保持界面没有氧化物并允许源金属扩散。铬化按其用途分为两类:防腐蚀和表面硬化。
在US 6.387.194 B1中,描述了一种对400系列,尤其是430不锈钢部件,进行铬化处理的方法。还描述了用于该方法的扩散涂层组合物。
有利地,互连件的成型通过成形来进行。
有利地,成形通过冲压、压制、锻造、滚压、压印、压花、挤出、滚压成形、液压成形或深拉来进行。
有利地,用于使互连件成形的压制功率小于500巴,优选小于200巴。
有利地,互联件的成型通过机械加工来进行。
有利地,机械加工通过钻孔、铣削、光化学蚀刻、电化学蚀刻、干蚀刻或激光切割进行。
有利地,在铬升级之后,互连件的热膨胀系数高于12ppm/K,但低于13ppm/K。
因此,本发明的方法允许SOC互连件由例如铬含量相对较低的铁素体不锈钢(如AISI 430)制成,其CTE高于约12.5ppm/K的最佳值,并且通过铬升级,使钢的CTE降低至更接近于最佳值。
附图简要说明
下文将参考附图更详细地解释本发明。
图1是根据本发明的一个实施方案的方法的示意图,其中沉积步骤可以被表征为镀硬铬。
图2是根据本发明的一个实施方案的方法的示意图,其中沉积步骤可以被表征为铬化过程。
图3是显示铬升级后,Crofer 22APU板材的表面附近的Fe和Cr含量的图。
附图详细说明
图1说明了本发明的一个可能的实施方案。首先将铁素体不锈钢(101)成型(工艺A)为成型的SOC互连件(104)。此后,通过镀硬铬(工艺B)在成型的互连件(104)的至少一个表面上沉积包含Cr的涂层(105),由此获得经涂覆的SOC互连件(106)。然后,在低于1000℃的温度下进行一次或多次热处理(工艺C),由此获得铬升级的SOC互连件(102)。铬升级的互连件(102)表面附近所得的Cr浓度高于成型前铁素体钢(101)中的Cr浓度。
图2说明了本发明的一个可能的实施方案。首先将铁素体不锈钢(101)成型(工艺A)为成型的SOC互连件(104)。此后,通过铬化工艺(工艺D)在成型的互连件(104)的至少一个表面上沉积包含Cr的涂层(107),由此获得经涂覆的SOC互连件(108)。然后,在低于1000℃的温度下进行一次或多次热处理(工艺E),由此获得铬升级的SOC互连件(103)。铬升级的互连件(103)表面附近所得的Cr浓度高于成型前铁素体钢(101)中的Cr浓度。
图3显示了在铬升级后,Crofer 22APU片材表面附近的Fe和Cr含量。元素组成是通过能量色散X射线光谱(EDX)点分析确定的,该分析是在铬升级后,在Crofer 22APU片材的横截面的不同深度,即距片材表面的不同距离(在图3中以“X”表示)处进行的。钢中Cr和Fe的含量以wt%为单位表示(在图3中以“%”表示)。最初的Crofer 22APU片材厚度为300微米,且铬含量为22wt%。根据EDX数据,经过铬化工艺(工艺D)和热处理(工艺E)进行铬升级后,铬升级的金属片材表面附近的铬浓度高于成型前铁素体钢(101)中的铬浓度。更具体地说,钢中的Cr含量为≥26wt%,直至距片材表面约25微米的深度。

Claims (14)

1.一种对用于固体氧化物电池堆的由铁素体钢制成的互连件进行铬升级的方法,所述方法包括以下步骤
-使互连件成型,
-在成型的互连件的至少一个表面上沉积包含Cr的涂层,
-在低于1000℃的温度下进行一次或多次热处理,
由此在互连件表面附近所得的Cr浓度高于成型前铁素体钢中的Cr浓度。
2.根据权利要求1所述的方法,其中成型的互连件中的平均Cr浓度增加到26wt%Cr或更高。
3.根据权利要求1或2所述的方法,其中所述铁素体钢是第1类铁素体钢、第2类铁素体钢、第3类铁素体钢、第4类铁素体钢、或以下钢中的一种:Crofer22APU、Crofer22H、ZMGG10。
4.根据权利要求3所述的方法,其中所述铁素体钢是第2类铁素体钢,例如AISI 430。
5.根据前述权利要求中任一项所述的方法,其中沉积步骤被表征为镀硬铬。
6.根据权利要求5所述的方法,其中沉积的涂层的厚度为至少1微米且小于1毫米。
7.根据权利要求1、2、3或4所述的方法,其中沉积步骤被表征为铬化过程。
8.根据前述权利要求中任一项所述的方法,其中互连件的成型通过成形来进行。
9.根据权利要求8所述的方法,其中所述成形通过冲压、压制、锻造、滚压、压印、压花、挤出、滚压成形、液压成形或深拉来进行。
10.根据权利要求8或9所述的方法,其中用于使互连件成形的压制功率小于500巴,优选小于200巴。
11.根据权利要求1-7中任一项所述的方法,其中互连件的成型通过机械加工来执行。
12.根据权利要求11所述的方法,其中机械加工通过钻孔、铣削、光化学蚀刻、电化学蚀刻、干蚀刻或激光切割来进行。
13.根据前述权利要求中任一项所述的方法,其中在铬升级之后,互连件的热膨胀系数为高于12ppm/K,但低于13ppm/K。
14.一种用于固体氧化物电池堆的铁素体钢互连件,其中所述互连件通过根据前述权利要求中任一项所述的方法制备。
CN202080050715.1A 2019-07-17 2020-07-13 对用于固体氧化物电池堆应用的铁素体钢互连件进行铬升级的方法 Pending CN114127339A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DKPA201900882 2019-07-17
DKPA201900882 2019-07-17
PCT/EP2020/069710 WO2021009100A1 (en) 2019-07-17 2020-07-13 A method for chromium upgrading of ferritic steel interconnects for solid oxide cell stack applications

Publications (1)

Publication Number Publication Date
CN114127339A true CN114127339A (zh) 2022-03-01

Family

ID=71608003

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202080050715.1A Pending CN114127339A (zh) 2019-07-17 2020-07-13 对用于固体氧化物电池堆应用的铁素体钢互连件进行铬升级的方法

Country Status (9)

Country Link
US (1) US20220298663A1 (zh)
EP (1) EP3999666A1 (zh)
JP (1) JP2022540880A (zh)
KR (1) KR20220034179A (zh)
CN (1) CN114127339A (zh)
AU (1) AU2020315120A1 (zh)
CA (1) CA3147019A1 (zh)
TW (1) TW202109955A (zh)
WO (1) WO2021009100A1 (zh)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2366346C2 (de) * 1972-09-18 1985-09-05 Kaman Sciences Corp., Bloomfield, Conn. Verfahren zum Behandeln eines chromhaltigen Formkörpers
EP1600520A1 (en) * 2004-05-19 2005-11-30 Sandvik Intellectual Property AB Heat-resistant steel
WO2006138070A1 (en) * 2005-06-15 2006-12-28 Ati Properties, Inc. Interconnects for solid oxide fuel cells and ferritic stainless steels adapted for use with solid oxide fuel cells
EP1850412A1 (en) * 2006-04-26 2007-10-31 Technical University of Denmark A multi-layer coating
US20090035561A1 (en) * 2007-08-02 2009-02-05 The Trustees Of Boston University Protective oxide coatings for SOFC interconnections
DE102008006039A1 (de) * 2008-01-25 2009-07-30 Elringklinger Ag Verfahren zum Verbinden von metallischen Bauteilen eines Brennstoffzellenstacks und Baugruppe für einen Brennstoffzellenstack
US20090263678A1 (en) * 2008-04-16 2009-10-22 Hitachi Cable, Ltd. Metal material with electric contact layer and manufacturing method of the same
US20100055533A1 (en) * 2008-08-28 2010-03-04 General Electric Company Barrier coatings for interconnects; related devices, and methods of forming
US20130075270A1 (en) * 2011-09-27 2013-03-28 Samsung Electro-Mechanics Co., Ltd. Method for coating metallic interconnect of solid fuel cell
WO2013171651A2 (fr) * 2012-05-15 2013-11-21 Commissariat A L'energie Atomique Et Aux Energies Alternatives Composant de type chromino-formeur, utilisation d'un tel composant dans une atmosphere riche en vapeur d'eau, interconnecteur d'electrolyseur eht
CN107210457A (zh) * 2015-02-10 2017-09-26 赛瑞斯知识产权有限公司 用于低温固体氧化物燃料电池的互连件

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020004155A1 (en) 2000-05-01 2002-01-10 Haltiner Karl Jacob Etched interconnect for fuel cell elements
DE10025108A1 (de) 2000-05-20 2001-11-29 Forschungszentrum Juelich Gmbh Hochtemperaturwerkstoff
US6387194B1 (en) 2001-02-20 2002-05-14 Mcdermott Technology, Inc Process and composition for chromizing 400-series stainless steels
JP3504655B2 (ja) 2001-12-06 2004-03-08 新日本製鐵株式会社 プレス成形性と作業性に優れたフェライト系ステンレス鋼板およびその製造方法
US20080269495A1 (en) 2004-08-04 2008-10-30 Prosenjit Bose Process for Preparation of Piperidine Carboxylic Acid
CA2659596C (en) 2006-07-26 2015-04-28 Sandvik Intellectual Property Ab Ferritic chromium steel
KR101531952B1 (ko) 2008-08-01 2015-06-26 토프쉐 푸엘 셀 에이/에스 연료전지용 인터커넥트 및 연료전지용 인터커넥트 제조방법
FR2940857B1 (fr) * 2009-01-07 2011-02-11 Commissariat Energie Atomique Procede de fabrication d'un electrolyseur haute temperature ou d'une pile a combustible haute temperature comprenant un empilement de cellules elementaires
AT12696U1 (de) 2011-07-21 2012-10-15 Plansee Se Formteil
FI124995B (fi) 2012-11-20 2015-04-15 Outokumpu Oy Ferriittinen ruostumaton teräs
CA3044874C (en) * 2016-12-16 2023-05-16 Haldor Topsoe A/S Deposition of a coating on an interconnect for solid oxide cell stacks

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2366346C2 (de) * 1972-09-18 1985-09-05 Kaman Sciences Corp., Bloomfield, Conn. Verfahren zum Behandeln eines chromhaltigen Formkörpers
EP1600520A1 (en) * 2004-05-19 2005-11-30 Sandvik Intellectual Property AB Heat-resistant steel
WO2006138070A1 (en) * 2005-06-15 2006-12-28 Ati Properties, Inc. Interconnects for solid oxide fuel cells and ferritic stainless steels adapted for use with solid oxide fuel cells
EP1850412A1 (en) * 2006-04-26 2007-10-31 Technical University of Denmark A multi-layer coating
US20090035561A1 (en) * 2007-08-02 2009-02-05 The Trustees Of Boston University Protective oxide coatings for SOFC interconnections
DE102008006039A1 (de) * 2008-01-25 2009-07-30 Elringklinger Ag Verfahren zum Verbinden von metallischen Bauteilen eines Brennstoffzellenstacks und Baugruppe für einen Brennstoffzellenstack
US20090263678A1 (en) * 2008-04-16 2009-10-22 Hitachi Cable, Ltd. Metal material with electric contact layer and manufacturing method of the same
US20100055533A1 (en) * 2008-08-28 2010-03-04 General Electric Company Barrier coatings for interconnects; related devices, and methods of forming
US20130075270A1 (en) * 2011-09-27 2013-03-28 Samsung Electro-Mechanics Co., Ltd. Method for coating metallic interconnect of solid fuel cell
WO2013171651A2 (fr) * 2012-05-15 2013-11-21 Commissariat A L'energie Atomique Et Aux Energies Alternatives Composant de type chromino-formeur, utilisation d'un tel composant dans une atmosphere riche en vapeur d'eau, interconnecteur d'electrolyseur eht
CN107210457A (zh) * 2015-02-10 2017-09-26 赛瑞斯知识产权有限公司 用于低温固体氧化物燃料电池的互连件

Also Published As

Publication number Publication date
AU2020315120A1 (en) 2022-02-24
WO2021009100A1 (en) 2021-01-21
KR20220034179A (ko) 2022-03-17
JP2022540880A (ja) 2022-09-20
US20220298663A1 (en) 2022-09-22
CA3147019A1 (en) 2021-01-21
EP3999666A1 (en) 2022-05-25
TW202109955A (zh) 2021-03-01

Similar Documents

Publication Publication Date Title
AU2006259739B2 (en) Interconnects for solid oxide fuel cells and ferritic stainless steels adapted for use with solid oxide fuel cells
EP1726674B1 (en) Metal material for current-carrying member, separator for fuel cell utilizing the same and fuel cell including the same
US6737186B2 (en) Current collector for SOFC fuel cells
US7842434B2 (en) Interconnects for solid oxide fuel cells and ferritic stainless steels adapted for use with solid oxide fuel cells
US20110229803A1 (en) Interconnects for solid oxide fuel cells and ferritic stainless steels adapted for use with solid oxide fuel cells
CA2851084C (en) Titanium material for polymer electrolyte fuel cell separator, method for producing the same, and polymer electrolyte fuel cell using the same
CN102009504B (zh) 一种镀覆微/纳米晶镍多层薄膜的钢带及其制备方法
EP2560225A1 (en) Metal plate for use as solid polymer fuel cell separator
JP5152193B2 (ja) 固体高分子型燃料電池セパレータ用ステンレス鋼材および固体高分子型燃料電池
CN110249462B (zh) 燃料电池的隔板用钢板的基材不锈钢板及其制造方法
Mao et al. Progress in metal corrosion mechanism and protective coating technology for interconnect and metal support of solid oxide cells
CN114127339A (zh) 对用于固体氧化物电池堆应用的铁素体钢互连件进行铬升级的方法
Lovaši et al. Pr uša, F.; Kouril, M. Corrosion Properties of Boron-and Manganese-Alloyed Stainless Steels as a Material for the Bipolar Plates of PEM Fuel Cells. Materials 2022, 15, 6557
JP2020111806A (ja) ステンレス鋼板及びその製造方法、燃料電池用セパレータ、燃料電池セル、並びに燃料電池スタック
KR100867819B1 (ko) 연료전지용 금속분리판의 표면층 및 이의 형성방법
AU2011244954B2 (en) Interconnects for solid oxide fuel cells and ferritic stainless steels adapted for use with solid oxide fuel cells
JP2022061933A (ja) 燃料電池用セパレータおよびその製造方法
KR100689758B1 (ko) 연료전지용 스테인리스 강재의 제조방법 및 이에 의해제조되는 연료전지
CA2840861A1 (en) Interconnects for solid oxide fuel cells and ferritic stainless steels adapted for use with solid oxide fuel cells
Brady et al. Technical Barriers
Shaigan Protective/Conductive Coatings for Ferritic Stainless Steel Interconnects Used in Solid Oxide Fuel Cells

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination