CN114107322A - Application of gene for regulating and controlling soluble solid content of tomato fruit - Google Patents

Application of gene for regulating and controlling soluble solid content of tomato fruit Download PDF

Info

Publication number
CN114107322A
CN114107322A CN202111502131.6A CN202111502131A CN114107322A CN 114107322 A CN114107322 A CN 114107322A CN 202111502131 A CN202111502131 A CN 202111502131A CN 114107322 A CN114107322 A CN 114107322A
Authority
CN
China
Prior art keywords
leu
ser
lys
val
glu
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202111502131.6A
Other languages
Chinese (zh)
Other versions
CN114107322B (en
Inventor
谭金娟
邓志平
冯寒骞
周忠静
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang Academy of Agricultural Sciences
Original Assignee
Zhejiang Academy of Agricultural Sciences
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang Academy of Agricultural Sciences filed Critical Zhejiang Academy of Agricultural Sciences
Priority to CN202111502131.6A priority Critical patent/CN114107322B/en
Publication of CN114107322A publication Critical patent/CN114107322A/en
Application granted granted Critical
Publication of CN114107322B publication Critical patent/CN114107322B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/415Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8216Methods for controlling, regulating or enhancing expression of transgenes in plant cells
    • C12N15/8218Antisense, co-suppression, viral induced gene silencing [VIGS], post-transcriptional induced gene silencing [PTGS]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8242Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
    • C12N15/8243Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • C12N9/22Ribonucleases RNAses, DNAses
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/20Type of nucleic acid involving clustered regularly interspaced short palindromic repeats [CRISPRs]

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biomedical Technology (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • Cell Biology (AREA)
  • Nutrition Science (AREA)
  • Virology (AREA)
  • Botany (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)

Abstract

The invention discloses an application of a gene for regulating and controlling the soluble solid content of tomato fruits, wherein the gene has a nucleotide sequence shown as SEQ ID NO: 1, the Solyc01g095900 gene knockout in tomato can improve the content of soluble solids. Namely, the application of the gene Solyc01g095900 is as follows: the method is used for constructing the gene-editing tomato, the gene-editing tomato does not contain exogenous gene fragments, and the content of soluble solids is higher than that of wild type.

Description

Application of gene for regulating and controlling soluble solid content of tomato fruit
Technical Field
The invention relates to the technical field of biology, in particular to application of a tomato SlREC1a gene in regulation of soluble solid content of tomato fruits.
Background
Tomatoes (Solanum lycopersicum) are important vegetable crops in the world and have rich nutritional values. According to the statistics of the food and agriculture organization of the United nations, the tomato planting area in China is about 109 ten thousand hectares, the annual yield reaches 6287 ten thousand tons and the tomato is stably positioned at the first place of the world (http:// www.fao.org/home/en /). Tomato breeding has long been of increased interest in yield, shelf life, and disease resistance, leading to a decrease in flavor quality of cultivated tomatoes in the market (Klee and Tieman, 2013; Tieman et al, 2017).
Saccharides are important components of dry matter of fruits, and are one of the important determinants of flavor and quality of fruits. The types, contents and proportions of the sugar and the acid have a crucial effect on the sensory quality of the fruits and are also important factors influencing the market competitiveness of the fruits. The sugar in tomato fruit is mainly derived from carbohydrate generated by photosynthesis of leaves and young fruits, the accumulation type of the sugar is divided into hexose accumulation type and sucrose accumulation type, and the commonly cultivated tomato is hexose accumulation type and mainly accumulates glucose and fructose. The content of Soluble solids (TSS) is one of the important indicators for measuring the quality of fruits, and mainly includes Soluble sugar, organic acid, etc. The soluble solids in tomato fruits are mainly soluble sugars (about 65%, mainly sucrose and hexoses), organic acids (about 13%, mainly citric acid and malic acid) and some other trace substances (such as phenols, amino acids, vitamin C and minerals, etc.) (Balibrea et al, 2006; Kader, 2008). In the tomato domestication process, the content of soluble solids in fruits is reduced, the content of the soluble solids in the commonly cultivated tomatoes is about 4% -6%, and the content of wild species fruits is 2-3 times that of the common tomatoes (Beckles et al, 2011). Due to the high correlation of soluble solids with sugar content in tomato fruits, sugar content is often indicated as how much soluble solids content is (mallundo et al, 1995).
The soluble solid content of tomato fruit is quantitative, the genetic regulation is complex, and many QTL sites related to the soluble solid content are discovered at present (Bernacchi et al, 1998; Eshel and Zamir,1995), wherein the functions of key genes of individual sites are verified, such as the apoplastic sucrose invertase Lin5 gene (Baxter et al, 2005; Fridman and Zamir, 2003). Studies have also found that QTL loci associated with soluble solids content of tomato are genetically close to loci associated with the weight of the tomato fruit, and that fruit soluble solids content is inversely related to fruit weight (Tanksley, 2004; Tieman et al, 2017). Therefore, the molecular mechanism for revealing the accumulation of the soluble solids of the tomato fruits has important significance, and the molecular mechanism not only relates to the formation of the flavor quality of the tomato, but also is closely related to the yield of the tomato. In addition, the tomato is a model plant for researching the development and maturity of fleshy fruits, the regulation and control mechanism of the accumulation of the sugar content of the tomato is explored, and the method has important significance for high-quality breeding of the tomato and other fruits and vegetables.
The TPR (Tetratricopeptide repeat) gene is a gene family containing TPR conserved motif, and the family is widely existed in prokaryotic and eukaryotic genomes. TPR motifs generally mediate interactions between proteins and are involved in transcriptional regulation, protein transport, protein folding, assembly of protein complexes, and RNA splicing in cellular biological processes (Blatch and
Figure BDA0003402756720000022
1999; d' Andrea and Regan, 2003). The tomato Solyc01g095900 protein (designated herein as SlREC1a) contains 3 TPR motifs, the homologous protein in Arabidopsis AtREC1(Reduced Chloroplast Coverage 1) was shown to be involved in the regulation of Chloroplast compartment size in mesophyllic cells (Larkin et al, 2016). In addition, the RCP2(Reduced Carotenoid vaccination 2) protein of the floral plant Hericium erinaceus (Mimulus) is also a TPR protein of REC family, and can be involved in the regulation of the development of chromoplasts in floral organs and the biosynthesis of carotenoids (Stanley et al, 2020).
https:// solgenomics. net/organization/Solanum _ lysopersicum/genome discloses the sequence of Solyc01g095900, but its use is not known at present.
The references referred to are as follows:
Balibrea,M.E.,Martínez-Andújar,C.,Cuartero,J.,Bolarín,M.C.,and Pérez-Alfocea,F.(2006).The high fruit soluble sugar content in wild Lycopersicon species and their hybrids with cultivars depends on sucrose import during ripening rather than on sucrose metabolism.Funct.Plant Biol.33:279-288;
Baxter,C.J.,Carrari,F.,Bauke,A.,Overy,S.,Hill,S.A.,Quick,P.W.,Fernie,A.R.,and Sweetlove,L.J.(2005).Fruit carbohydrate metabolism in an introgression line of tomato with increased fruit soluble solids.Plant Cell Physiol.46:425-437;
Beckles,D.M.,Hong,N.,Stamova,L.,and Luengwilai,K.(2011).Biochemical factors contributing to tomato fruit sugar content:a review.Fruits 67:49-64;
Bernacchi,D.,Beck-Bunn,T.,Eshed,Y.,Lopez,J.,Petiard,V.,Uhlig,J.,Zamir,D.,and Tanksley,S.(1998).Advanced backcross QTL analysis in tomato.I.Identification of QTLs for traits of agronomic importance from Lycopersicon hirsutum.Theoretical and Applied Genetics 97:381-397;
Blatch,G.L.,and
Figure BDA0003402756720000021
M.(1999).The tetratricopeptide repeat:a structural motif mediating protein-protein interactions.Bioessays 21:932-939;
D'Andrea,L.D.,and Regan,L.(2003).TPR proteins:the versatile helix.Trends Biochem.Sci.28:655-662;
Eshed,Y.,and Zamir,D.(1995).An introgression line population of Lycopersicon pennellii in the cultivated tomato enables the identification and fine mapping of yield-associated QTL.Genetics141:1147-1162;
Fridman,E.,and Zamir,D.(2003).Functional divergence of a syntenic invertase gene family in tomato,potato,and Arabidopsis.Plant Physiol.131:603-609;
Kader,A.A.(2008).Flavor quality of fruits and vegetables.J.Sci.Food Agric.88:1863-1868.
Klee,H.J.,and Tieman,D.M.(2013).Genetic challenges of flavor improvement in tomato.Trends Genet.29:257-262;
Larkin,R.M.,Stefano,G.,Ruckle,M.E.,Stavoe,A.K.,Sinkler,C.A.,Brandizzi,F.,Malmstrom,C.M.,and Osteryoung,K.W.(2016).REDUCED CHLOROPLAST COVERAGE genes fromArabidopsis thaliana help to establish the size of the chloroplast compartment.Proc.Natl.Acad.Sci.U.S.A.113:E1116-1125;
Malundo,T.M.M.,Shewfelt,R.L.,and Scott,J.W.(1995).Flavor quality of fresh tomato(Lycopersicon esculentum Mill.)as affected by sugar and acid levels.Postharvest.Biol.Technol.6:103-110;
Stanley,L.E.,Ding,B.,Sun,W.,Mou,F.,Hill,C.,Chen,S.,and Yuan,Y.W.(2020).ATetratricopeptide Repeat Protein Regulates Carotenoid Biosynthesis and Chromoplast Development in Monkeyflowers(Mimulus).Plant Cell 32:1536-1555;
Tanksley,S.D.(2004).The genetic,developmental,and molecular bases of fruit size and shape variation in tomato.Plant Cell 16Suppl:S181-189;
Tieman,D.,Zhu,G.,Resende,M.F.,Jr.,Lin,T.,Nguyen,C.,Bies,D.,Rambla,J.L.,Beltran,K.S.,Taylor,M.,Zhang,B.,Ikeda,H.,Liu,Z.,Fisher,J.,Zemach,I.,Monforte,A.,Zamir,D.,Granell,A.,Kirst,M.,Huang,S.,and Klee,H.(2017).A chemical genetic roadmap to improved tomato flavor.Science 355:391-394。
disclosure of Invention
The invention aims to solve the technical problem of providing the application of a gene SlREC1a (Solyc01g095900) -regulating and controlling the content of soluble solids in tomato fruits.
In order to solve the technical problems, the invention provides a gene SlREC1a (Solyc01g095900) capable of regulating and controlling the content of soluble solids of tomatoes, which has the nucleotide sequence shown in SEQ ID NO: 1.
The invention also provides a protein coded by the gene, which has the amino acid sequence shown in SEQ ID NO: 2, or a pharmaceutically acceptable salt thereof.
The invention also provides the application of the gene for regulating and controlling the soluble solid content of the tomato fruit, and the gene has a nucleotide sequence shown as SEQ ID NO: 1, the Solyc01g095900 gene knockout in tomato can improve the content of soluble solids.
The invention simultaneously provides two targets of a CRISPR/Cas9 gene editing system for editing (knocking out) the genes, wherein the two targets are Target1 and Target2 respectively. The Target1 sequence is (PAM sequence underlined) GCGCAACGGCGCATGTTAGAAGGThe Target point Target2 sequence is (PAM sequence underlined) GACTCTTGCAAGAATGCGCGAGG
The invention also provides a gene editing vector (plasmid) containing the editing target point and based on the CRISPR/Cas9 system.
The invention also provides a host cell of the vector, and the host cell is an escherichia coli cell and an agrobacterium cell.
The invention also provides the application of the gene Solyc01g 095900: the method is used for constructing the gene-editing tomato, the gene-editing tomato does not contain exogenous gene segments, and the content of soluble solids is higher than that of wild type (microTom).
The invention also provides two SlREC1a gene homozygous editing materials rec1a-1 and rec1a-2 (both are edited by Target 1), namely, two tomato SlREC1a gene homozygous editing plants are provided, wherein the editing plants do not contain exogenous gene segments and have higher soluble solid content;
the nucleotide sequence of the 5 th exon of the homozygous editing material rec1a-1 is shown in SEQ ID NO:3, the process is carried out; the nucleotide sequence of the 5 th exon of the homozygous editing material rec1a-2 is shown in SEQ ID NO:4, the method is described in the specification.
The invention also provides a mutant translation product caused by the gene mutation, and the amino acid sequence of the homozygous editing material rec1a-1 is shown as SEQ ID NO: 5, the amino acid sequence of the homozygous editing material rec1a-2 is shown as SEQ ID NO: and 6.
In conclusion, the present invention provides a gene and protein capable of regulating and controlling the soluble solid content of tomato, and provides a gene-edited tomato material with increased soluble solid content.
According to the invention, the SlREC1a gene of the tomato is edited, the soluble solid content of tomato fruits is regulated and controlled, and high-quality tomato varieties are cultivated, so that the method has a good application prospect.
Drawings
In order to make the objects, technical solutions and advantages of the present invention more apparent, embodiments of the present invention are described in detail below with reference to the accompanying drawings.
FIG. 1 is a SlREC1a gene editing vector structure based on CRISPR/Cas9 system;
FIG. 2 is a diagram of an editing target position, an editing (mutation) site sequence and a sequencing peak of SlREC1a gene;
FIG. 3 is an off-target identification analysis of two SlREC1a gene editing homozygous lines;
FIG. 4 is the upper diagram showing the nucleotide sequence of the 5 th exon of the homozygous editing material rec1a-1, and the lower diagram showing the nucleotide sequence of the 5 th exon of the homozygous editing material rec1 a-2; underlined is an inserted nucleotide sequence;
fig. 5 is a graph comparing the soluble solids content of mature fruits of two SlREC1a gene editing homozygous lines with wild type.
Detailed Description
The invention will be further described with reference to specific examples, but the scope of the invention is not limited thereto:
regulating and controlling soluble solid content of tomato fruit
1. Tomato SlREC1a (Solyc01g095900) gene knockout target design
The SlREC1a gene is knocked out by using a gene editing technology based on a CRISPR/Cas9 system, and a basic vector is pYLCRISPR/Cas9Pbui-H (Genbank: KR 029109). Specific vector construction protocol reference (Ma X, Liu Y. CRISPR/Cas9-Based Multiplex Genome Editing in Monocot and Dicot Plants. [ J ]. Current protocols in molecular biology,2016,115 (1)). The on-line tool CRISPR-P v 2.0.0 (http:// CRISPR. hzau. edu. cn/CRISPR2/) is used for target design and off-target prediction, and the on-line software RNA Folding program (http:// unaflow. RNA. albany. edu/.
The nucleotide sequence of SlREC1a gene is shown in SEQ ID NO: 1, the amino acid sequence of the protein coded by the gene is shown as SEQ ID NO: 2, respectively.
Based on that online software can only be used for auxiliary design, therefore, in order to improve targeting efficiency, the invention designs two targets (Target1 and Target2) for tomato SlREC1a gene, and the sgRNAs corresponding to the targets are respectively initiated and transcribed by AtU3d and AtU3b promoters, so that a SlREC1a gene editing vector based on CRISPR/Cas9 system is obtained, and the structure is shown in FIG. 1. Both targets are located on the 5 th exon of the gene, the specific positions are shown in fig. 2(a), and the target sequences are as follows: the Target1 sequence is (PAM sequence underlined) GCGCAACGGCGCATGTTAGAAGGThe Target point Target2 sequence is (PAM sequence underlined) GACTCTTGCAAGAATGCGCGAGG
And synthesizing corresponding primers according to the target sequences:
the upstream and downstream primers of Target1 are respectively: GCGCAACGGCGCATGTTAGAgttttagagctagaaat and TCTAACATGCGCCGTTGCGCTgaccaatggtgctttg;
the upstream and downstream primers of Target2 are respectively: GACTCTTGCAAGAATGCGCGgttttagagctagaaat, and CGCGCATTCTTGCAAGAGTCTgaccaatgttgctcc.
2. Genetic transformation of SlREC1a Gene editing vector
The editing vector constructed in the step 1 is used for transforming Agrobacterium GV3101 and transforming tomato by using an Agrobacterium-Mediated mode, and the transformation method is referred to in the literature (Park S, Morris J L, Park J, et al. effective and genetic-induced Agrobacterium-Mediated transformation [ J ] Journal of Plant Physiology,2003,160(10):1253-1257), and simply, the Agrobacterium is used for infecting pre-cultured tomato cotyledons, tissue culture seedlings are obtained by inducing resistant cluster buds and rooting culture, and then positive transgenic plants are verified by PCR.
3. Screening of SlREC1a gene editing homozygous plants
Amplifying a gene fragment containing two editing targets of the T0 generation positive transgenic seedling by a PCR mode, and then sending the gene fragment to a company for sequencing to determine the editing condition of a transgenic line.
The extraction of the genome DNA is completed by adopting a plant genome DNA extraction kit (TSP101-50) of Beijing Optimalaceae Biotechnology Co. PCR amplification is completed by using a T3 Super PCR Mix kit (TSE030) of the company, and the system and the amplification program are described by referring to the kit, wherein the primers are as follows: AATTTCGGAACTACAAGACG, and CGCATTACACTGAAGAGGAG.
Selecting strains with editing (including homozygous, heterozygous, biallelic editing and the like), planting for T1 generation, firstly, utilizing PCR to amplify T-DNA sequence (including Cas9 gene segment and hygromycin resistance gene segment), determining whether the plants contain transgenic sequence (the transgenic sequence is T-DNA insertion segment, namely the sequence between LB and RB shown in figure 1), then preferentially selecting strains without the transgenic sequence, and utilizing PCR amplification and sequencing to verify the target point editing situation. The T2 generation plants were screened until transgenic lines were screened that did not contain the transgene sequence (T-DNA free) and were homozygous for editing. The invention screens 2 homozygous editing lines of T-DNA free together, and the specific editing information and sequencing evidence are shown in FIG. 2 (B-C). Homozygous editors of 2T-DNA free are rec1a-1 and rec1 a-2; the nucleotide sequence of the 5 th exon of the homozygous editing material rec1a-1 is shown in SEQ ID NO:3, the nucleotide sequence of the 5 th exon of the homozygous editing material rec1a-2 is shown as SEQ ID NO:4, respectively. The rec1a-1 and rec1a-2 are edited at the Target1 site.
Description of the drawings: the sequencing result of a homozygous edit should be that an edit has occurred (i.e., the nucleotide sequence is not identical to the wild type) and the peak pattern is a normal single peak; the sequencing peak diagrams of the heterozygous and biallelic editing are bimodal, and can be predicted according to an online tool DSDecodeM (http:// skl.scau.edu.cn/saddecode /), and if the prediction result is that one of two alleles has mutation and the other has no mutation, the heterozygous editing is carried out; if the result shows that both alleles are mutated, but the mutation mode is different, the mutation is biallelic.
4. SlREC1a gene editing homozygous plant off-target identification
Based on the potential off-Target sites of Target1 and Target2, the 7 sites with the highest score are selected for verification (as shown in Table 1), i.e., fragments containing the potential off-Target sites are cloned by PCR and then sequenced for verification. The results show that no off-target editing phenomenon occurs in both homozygous editing lines, and the related evidence is shown in FIG. 3.
Table 1, potential off-Target sites of SlREC1a gene editing targets Target1 and Target2
Figure BDA0003402756720000061
Figure BDA0003402756720000071
5. Phenotypic analysis of SlREC1a gene editing homozygous plants
Compared with wild type, the fruits of the SlREC1a gene homozygous editing lines rec1a-1 and rec1a-2 obtained by the invention have obvious change.
The rec1a-1, rec1a-2 and wild type (namely, microTom) are planted according to a conventional method, when the ripe fruit (10 days after color breaking), the soluble solid content of the ripe fruit is measured by a Refractometer (ATAGO PAL-1Digital 0-53% Brix Refractometer), and the content is specifically measured according to the instruction of the instrument, namely, pure water is adjusted to zero at normal temperature, and then juice of the tomato fruit is extruded for direct measurement.
The results show that the soluble solids content of the mature fruits (10 days after color breaking) of the homozygous editing lines rec1a-1 and rec1a-2 is significantly higher than that of the wild type (FIG. 5). In conclusion, the sugar content of tomato fruits can be obviously influenced by knocking out the SlREC1a gene by gene editing, so that the nutritional quality such as fruit taste (sugar-acid ratio) and the like can be improved, and the SlREC1a gene can be used as an important target point for molecular regulation of the sugar content of the fruits.
Finally, it is also noted that the above-mentioned lists merely illustrate a few specific embodiments of the invention. It is obvious that the invention is not limited to the above embodiments, but that many variations are possible. All modifications which can be derived or suggested by a person skilled in the art from the disclosure of the present invention are to be considered within the scope of the invention.
Sequence listing
<110> Zhejiang province academy of agricultural sciences
<120> application of gene for regulating and controlling soluble solid content of tomato fruit
<160> 6
<170> SIPOSequenceListing 1.0
<210> 1
<211> 14577
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 1
gtaaattatt ctcaacaaca tgcctaattt ataccaatac tctgtttttg cttatactta 60
taaaaattac atatttcaat tggatttaag aacggagcaa aagtatcgca gaagcggagc 120
cacgatttta aaatttaatt attccatttc ctaaagttat tgagttctgt aaatattaaa 180
tttggtcgaa ttcataatct cttgcggtct cgcccctatt gtttactata attgtctcat 240
gtgaaatttt tgtctatagg tgtagtatat ataaaagaat ttgaaagttt gagtttaaca 300
aatggcaccc aacaagaatg gtcgtggcaa aacaaaggga gacaagaaga agaaagaaga 360
gaagggtatt attacttttt tttctttttt ctgttagtat tatacgatac atttttagca 420
tatgttaaaa attaaatgtc agtatatata taaaatttta tttgttatac taatgatgat 480
atgttttatt tgtgctgctc agttctccca gttgtaatgg atataacgat aaaccttccg 540
gaggagactc aagttatttt aaaggttcgt catttacgaa cacacttttt taaaattaat 600
attgcttata aatatatagt tataacacga agtatattta atcgtctttc tttgtttaaa 660
cttctttatt ttattcgagt acttttttgt tagattttgg ttgatgtttt gttgcttttt 720
tcaaggaaat cagattcagc tctgacagct tggctttcta attatattcc aaaagaagaa 780
aaatgaggcg ctagagctaa tttttcaaac agttggttaa ccattcaata tttcaccggt 840
tacttgcgca agcacaacaa ttttgatatc aattagttca caaaattgaa tggtcaataa 900
acgaagttag tacaagtcat agaaacaaag gtcatatgat tgataaataa agttaagaga 960
agttgtagaa ataaaagata tatatctgtc attaaaacgt acacgcaaca aaatagtgtt 1020
aaataattga taacaataaa atattttagt gaaggtaaca taacttaaat atataaaata 1080
tagtcaactt ttattttatt ataaaatttt actttttcta gaaaaaatta ttgctacacc 1140
attattatta atagtattat tattataact gctattttga ttttaaaata tccttgaatt 1200
taattaaatc atttaacggc tttgtttttc tacgagcagg gaatatctac ggatagaatt 1260
atcgatgttc gtcgattatt atctgtcaat acaacaactt gtaatgtcac taatttctca 1320
ctgtctcatg aggtaagggg acaaatcaga cggctgtcat attttcttta acttatttgt 1380
ttaatttagg accatctgat ttttactgtt tttaacagtt aaggggtcca cgtttaaaag 1440
aaacagtgga cgtttccgca ctgaagccct gcatcctgac tcttatcgaa ggtaaaaaaa 1500
tttcggaact acaagacgtc gtcgtatagg gtattaggat atttctattt taggaagtgg 1560
tcccgggccg gtcaggtcta gatattataa aagcccgatt ataccctcaa ctttcttctt 1620
tgaacagagg aatacgatga agaaagcgca acggcgcatg ttagaaggct gttggacatc 1680
gtcgcttgta caacgagttt tgggccgtcg gggactagtg gtaaagagtt gaaaactgac 1740
tcttgcaaga atgcgcgagg tgtgcaggat aacaagaatg ctaagaaatc caacaaggtt 1800
cgtgggaatg ataagtcatc gtcgccgcca caaacgccaa ctccggtggc gcaacagctg 1860
ggtaaagatg cgggatcgga agaagttgat ggagagatga gcaatacttg ccctaagatt 1920
ggaagcttct atgagttctt ctcgctttct catctcacgc ctcctcttca gtgtaatgcg 1980
ccctctctct ctcacattgt gtctctcttc tcgtgtttct tgttaaaatt aagactcatc 2040
ttgattcttg cagtcataag aagagcaaca agacaacaag atgatgaagt tttgccagat 2100
gatcatcttt tctctcttga agtaagcttt cttggagcca atttcatctt ctttagtcta 2160
atgagttcaa tgatctgata ttttctaggt ttgattaatt cataaaataa catatgtaat 2220
tgtttatagg tgaaactttg taatggaaag ctggttattg ttgaagcttg caagaaagga 2280
ttttacaact ttggaaagca ggggattctt tgtcacaatc ttgttgattt gttgagacaa 2340
ctcagtagag catttgacaa tgtacgcttg ggcagatttt ttttctctat caattcagtc 2400
atgctagttt catgtcttat ttcattgttg acattgctca tcccaatttt caggcatacg 2460
atgatctcat gaaagcattc ttggagcgta ataaggtgca gatgatgatt tctcttgaca 2520
tgtttcatca ccttaagttt tctaaaactg attacacgcg ggaagttctt tcttcgctgc 2580
ataaccttct ctaacccaag gttgtaaact gtttttcttc ttaatacagt ttgggaatct 2640
tccatacgga ttcagagcca acacatggct tataccacct gtggcagcac agttgccagc 2700
tatttttcca cctctacctg tggaggatga tacctgggga gcaaatggag gtggtctagg 2760
ccgagatgga aaatttgatt ctttaccttt tgccaatgaa tttttgaatg ttgcatccat 2820
ggcttgtaag acaacagagg agaggcagat cagagacagg aaggctttta ttcttcatag 2880
tttatttgtt gatgtcgcca ttttacgagc catttcagct gtaaagcatg tcatggagaa 2940
agttaaacca gctcattgtg atttgaatgg agaaatcatt tataatgaga cagttgggga 3000
cttgagcata tttgttacca aagattcttc aaatgctagc tgcaaagtag ataccaaaat 3060
tgatggattt caagcaactg gaatagctat gaagaatctg atggaaagaa atttactgaa 3120
ggggataact gctgatgaaa atactgctgc ccatgtaaga aaatactaag agaaattata 3180
tgggtcctaa ttttctgtgg tacttctaat gtagtgcatc tgattggaaa aaaacttact 3240
gcattttgaa ttcaggatat tgctacttta ggtgttctga atgtaagaca ttgtggttat 3300
attgcaactg taaaagttca aggaaaagaa aatgacaaag tgggcagccc actgcaaagc 3360
atggaacttg ctgatcagcc tgatggtggt gcaaatgccc tcaatatcaa caggtattac 3420
ttgaaaatcc tcattataag ccaataagtc ataatagtag tttattgatt ttttttctgc 3480
tgcggtttat gatgcaaaca ataagtaata gtagtaattt attgatctct ttctgttgtg 3540
gtttcactat gcaaacaata aaatactttg gttctttttg actgttaaaa gtgtaaagac 3600
aaagttatgt tgagctcttg accaaaaaag ttctttggtt tgataaattg agattctcat 3660
tctggttcaa cttttagaag tttgtcggag gaagaaatta tcctggaaaa gtgaagtctt 3720
ctctaagtag gagctgtttc caaaataaca gagcaataaa acaactgcat tctgatagct 3780
tttttctttg ctctgatgat ataacccttt caaatacttc ttggtctagg atccctccaa 3840
aacctcatgg accacaacaa tatttgtaag atcttctgaa ggtaaaaaca aaaagaggaa 3900
ttttagagaa aggttacgcg tcaattgggg taatgataaa atgtaatagc tttaacacaa 3960
ttctagacct tgcacaacaa tcatacatga tgtgtaaaaa tatggataat tgtgtgttac 4020
atctcccaat gtactactat taggttgctt aactgtcatg aatcagagct gggtctcacc 4080
ctgtttgggc cccaatcctg ttccagttgg aggtctgggc gtgtaggggt gtttgagtgg 4140
gttagagttc tactttagtt ccggaatgaa ctggtggttt ctttatatgg atttgcacaa 4200
ttctttcctc gtgttctagc ttttgtggtt gagctaggcc aagggccatt tcttacctaa 4260
tttattatct cctgttaata gtttgtcatt ttggtgtcat attcaccata tcactggtcc 4320
tgtatttcat tatcaatttg ctaggatggt gcattcgtct tctcaagact tagtgcctat 4380
ttttcttatt ttatcacgta atcttgcagt ttacgcttgc tccttcacaa gaaagtggac 4440
aacaaggtaa tgcattcaaa accttcagaa actgaagagc ctaattgctc tcaggcattt 4500
gtaaggagaa tactagaaga gagtcttacc aaacttgaag aagagaaaat agaaggtgac 4560
tctttcatca gatgggaact tggtgcatgc tggatacagc acttacaaga tcagaaaaaa 4620
tcagaaaagg acaagaaacc ctccgctgag aagaaaaaaa atgagatgaa ggttgaggga 4680
cttggaatac ctcttaagtc ccttaagaac agaaagaaga gcacagatgg aactaacatg 4740
gaatcccagt cagaaagctt caaatctgcc gcagatggtg ttggaggggg atcagaaaaa 4800
cctgtcctgc agtctgggga gtctcagttt gagacagata cagatcaaaa tcaggtcgtc 4860
ctcaaggcat tgttgtctga tgctggcttt acaaggttga aggagtcaga gactggactt 4920
caccttaagg tagaaatctt tttaaattta agtgatagat tatgagaaga ccttactatt 4980
tttccatctt ctaaccactt ccggctgttg atagtctttg gaagagctga ttgatctgtc 5040
acagaagtac tataatgaag ttgccctgcc aaagctggta acacttaaaa tagtattgtt 5100
tatatataaa tctacaaaga aaattgtttg tgacaagtgg catcttagct gtgtttcatt 5160
tcacaatgca ttgtaggtgg ctgattttgg ctctttagaa ctctcaccag tagatggtcg 5220
aaccttaact gatttcatgc atacccgagg tctacgtatg cgttctcttg gacaagtagt 5280
aagtcttaat gatcattttt tacccttagt gattttctcc ttctgtatgt gtgtgtgtga 5340
cacatatatt tgtccactta gacttcaatt tgtgtcttct tgttagtatg tttaatctcc 5400
aggtcataat atttttactt tagtatatta atttaaccga gattatcaaa tatagatgtt 5460
gaactttgtc agaactgtcg aaggtttgag aatgatctga aagttgaatt tctcattctt 5520
tatctctttc ctattgcctc tacattgatc tggttttaga tcatgattaa ctcttatgtg 5580
caactgtaaa attatactag gccaactttt atctcattaa gctgtgccta aattgattct 5640
tgcgttttct tcttcttctt gtgtaggtta aactttctga gaagttatca catgtgcaat 5700
ctctttgtat acacgagatg atagtccgag cttttaaaca tattcttcaa gcagctattg 5760
catcagttgt tgacattgaa gatatagctg cgataattgc tgctgccttg aatatgatgc 5820
ttggggtacc tgaaaatgat gattcaaatg agtacggtgt tgattctttg atctggagat 5880
ggctgaaatt atttttgaag aagagatacg aatgggatgt tggcagcctg aactacaaag 5940
atatgaggaa atttgctatc ctccgtggtt tatgccataa ggtacttgaa atcttgttct 6000
aaacaattga ctttttaagg atgacctcag tgtgggactg cactgggtat tttgttgttg 6060
ttgatacata atacatcaaa catttgtctt tgggtggttg catttgaata gatttggtag 6120
gtttcacacc tggctatttt tgaccgttct tctgagaatg tattgaacac ttggaattcg 6180
ctgtctttgg aaggggaaat aaaacacata agaaaatatg aaaagaaatt gaagaaaatt 6240
gtttgctaag acatagagac acttgttggt gtgtcaattc atcaaatatt taacttgggc 6300
aaagatataa cctttgtgca gatgtctttg aatactttgg tgatggaaat gaacgttatt 6360
gaagttttcg ttctataccc aagaacactt acgagtaatt tttctgtcta ggtgggaatt 6420
gaactggttc caagagatta tgatatgagt tcagcaagtc cttttcagaa agtagacatt 6480
gtcagcctag taccagtgca taaggtgata atgcaaccct gtctacgtgt ctgatactag 6540
gagatattat gccgagttca cttctgtttg tacttatcat ttttcttcta ctcccttcgt 6600
gtctttgtgt ctgcttttct gcagcaagct gcttgctctt ctgcagacgg aagacagctt 6660
ttggaatcat ccaaaacagc tctggataag ggaaaacttg aagatgcggt cagctatggg 6720
actaaggtaa ttgatttccg agattagaaa aaagttgtac attacattct ccattcttcc 6780
gattgaaact ttctattgta tagaaaccaa gttattttgg tgggcttcca actccatcgc 6840
ttcttatatt tcttcccttt gttggtcttg ggtacagatt gaaaatattg gaattagaat 6900
aataaaataa ggtaaccttg gttttgaatg gtataaatta ttgcatacca tgtgacaact 6960
gctgcatttt tgtggtgctt tcaggctctt gccaagctgg tcgcagtatg tggtccatac 7020
catcgaatga cagctggagc ttatagcctt cttgctgttg ttctgtatca caccggtgat 7080
tttaatcagg tatgcttcag aagctcgtca gcatagacct ccttggtcct acattgttac 7140
tctttctgcc tgctttaaaa actctgactt ctatcctatt caactcttaa atgtgttgat 7200
ggcggtatcc atgacaggcc acaatctatc agcaaaaggc cttggacata aatgaaagag 7260
agttgggcct tgatcaccca gacactatga aaagttatgg tgatcttgca gttttctatt 7320
accgacttca acacacagag ttggctctca agtatgttta tttctgttgg attgccaagt 7380
acttaaaatt tcttgatgat gccaacaact aaattagcaa aaaaaaaaaa agaaaaagaa 7440
aaaaaagaac aaattacaaa agtggagttg gaggttcatt attctaaact agacattttt 7500
atatttcttg agtttctggt tttcgtattt tcaatggtca tgtatgtttc tttagttgct 7560
cccccatcca ataggactat aaagtaggca ttgttttcct cggcctgtct caataaactt 7620
gtcatctttg ctaagatggc aagttactct ccttcaacaa ttcaagctag tgtaaagaaa 7680
atactactgt actttatatc agtcaaaact aacttaatca agcttgtgaa atacatatga 7740
ttggttgaaa tttggtcgtg gatatgttct tgaatgacgg ttcaaataat aaagttcgca 7800
tatggggttt gattatttac gcagcttttg ggcttactag caccaaacca acatggtcct 7860
tgtaaaaaat accaaatcaa catggtcctt gtaaaaaata ccaaatcaac atggtccttg 7920
taaaaaatac caaatcaaca tggtccttgt aaaaaatacc aaatcaacat ggtggaaact 7980
tatgtcctcc taattatgaa agattgtacc actcatatct gctcctcacg tttaacatta 8040
aatatgaatg atttaatatc tgtttttgat tcttctttcc acttctccct gttgttattc 8100
acatttcaca ctccatatca atttaccatt cccattttta caggtatgta aaacgagctc 8160
tttatttgtt gcatctcaca tgtggcccct cccatccaaa tactgcggcg acatatataa 8220
atgtggctat gatggaggaa gggctcggta atgtgcatgt tgctctcaga tatctccata 8280
aagctttgaa gtgtaaccaa aagttactcg gtccagacca tattcaggtt cctttcttct 8340
tctgctggag cttataagtg tttaattttt attttagcat tcacagctca ctctagtttt 8400
ctaggcttgt gaaactaaag tggatttatt caggaaaaaa atggccgctt atgtcctagt 8460
ttaggagatt cagggtagtt tcatgtcaaa cagtgtactt gagtatgcgt tattcttttt 8520
ccattaactg ctacatatgc attatgtgta tttgactata ggaaaagaag tagtaccatt 8580
caagttattt tttctgatgg caatggcctg gctgttgggc taaggtgttc acaaataaga 8640
acctgtgcag gaacagttac ctatgtcaaa aaaaaagaaa agaatcagtg caggtgtatg 8700
gtttcctttt cttttctttg tgaaacgata tctgtcatct gtcattgacc tcagatactc 8760
gagatgtgcc agaccatact aactattgag ttgcaggcct aaaagttcat tcaatgttcc 8820
atttactttt ttgtcttctc atgttttcat tttaatcgag caacttcagt gtcatcttaa 8880
acgaatgacc gtacttaagg gtccctttcg aatctggctt caatgtgagt actcatagtt 8940
ggcacattga ggtgccaaag tgcaaaaagg aaatataggt caatcatgaa gctgtccaat 9000
ctttccaatc tttatggcca ccagtccatg agagtcattt ttattgcaat aaaggacttg 9060
attgacaatc ttcagtatca atagccttag attgggttat ttggaactcc gtaatctcta 9120
tctcaactca gagcatggtg cgcttgtttt tgttctggta gtttaggtag taaaactatg 9180
cttgacttct ttagttcaag cttgcatagt gttgcatttt gaacttggtt gaatatgtgg 9240
aagattgaaa ccttccagtt gttaaacaaa ctccgtcact atatattctt ggaaacaagt 9300
atgtcttatt ttgttgctgc ataataaaac gcctttcatt tctgatgaac ctggttaatt 9360
atctctacag attcttgcct acacctctct cttatctagt taccttttgt gcctctgtaa 9420
tttccagaca gctgcaagtt atcatgctat agcaattgcc ctctctttga tggaagctta 9480
tcctttgagc gttcagcatg agcaaacaac cttgcagata cttcgagcaa agcttggtcc 9540
agatgatctt cgcacacagg ttaacttctg tcttacacac atgtacacaa taagtaggcc 9600
ctctcttttg cttcagagaa aagatgggcg aacaacttgc agttgctggc acttcaattt 9660
ttttttcctt gtgaagttat aatacctcat atcatagaaa ccagtgaact actagaagta 9720
caacttcaga tgtttctaac caattaggtt gtctttaaat ttcatgtcac ctctattttg 9780
gtcacgtcta ggtgatgaca ccgttgaaag ttgaaataca atatactttt tttttaaaaa 9840
aaaattatgg ttgttttgtt cttacttcag tcatctattt tcataatttt taaatttcta 9900
atctttgctg aaggatgctg ctgcatggct tgagtatttt gagtcgaagg cttttgaaca 9960
gcaagaagct gctcgaaatg gaactaagaa gcctgatgca tcaatagcca gcaagggtca 10020
tttgaggtat atttgcatgt attgcttaaa ttaatttttt ttggtagact taatgagtga 10080
aaagacaacc ttaatttctg ttatagctct tattagactg ctaggtaatg taataactga 10140
aggacttgaa tcgtcataat ctgtgagagc atatgtttga tatttctttt gcccactgtc 10200
tcgtcctttt gcttttaaac tacaagatag ttcactatgc cttcatgtct agtctctttg 10260
atttatgctc aaaagtagtg ctgacaaaaa tgaacccaaa catggataat ccgcctagaa 10320
tttcaagtgt tgggctcaag ataatttgaa ttgagtttaa tctcaatccg ttcatgctta 10380
atccatttga ggagaatttt caattgaacc taattcaatc tccaatttca acccgtttta 10440
aaacttttta ttaagatatg ttcctatact aaaggtatga attattttca atttaatgtc 10500
ttttaggatt tatctatcca tttgttactt ttttcaacaa aaattcttga gcggaaattc 10560
aaatcgtgat tataaaagtt aaatatcaat atgttaaatt attgagatta atcaggttaa 10620
attgggcagg tcaagaccca acccgttttt agctcatttg aacccaaccc atttgagccc 10680
aaattaaact tgggcggatc aagacccaac ccgttttttt atttcaaccc attttaatat 10740
tttcaatttc aacccatccc aacccaacca tttgacaccg ctagttttag aatatgaatt 10800
tatcaagaaa ggacaatgtt caatggctgt caatgtaaaa attttgggtt cctgacttag 10860
taattgcata aattttttgc acataggatt tcaaaaaaat gtacaagcag ataaccatac 10920
tctagataac agtaagtaaa atatttcagt ttaaatcttg tggtgacata ctttattgcg 10980
cagtgtgtca gatttgctcg actacattaa tccaagtcca gatgccaaag ggagagatgt 11040
tggatcaaaa agaagaggtt ttgtctcaaa ggtacgtggt gattggagta caatatcttt 11100
gtttcttgct tatgattttc caatacgtat cagcatgatt aggttcatgg aaattagctt 11160
ggatgaagat tttcatctta tgcaaacttg ttataaaata agcagaaata atcatgttct 11220
ttctggaagg tctaccttgt gtaatacctg tctggaagaa gagagaatga gtgagaacta 11280
gtttaacaga aaactggtaa tgttcagaag ctttgacatg tttcaggctc tctaaaggtc 11340
tgtttgcctt atgtttttcc tattctcctc cctcagtagg cattgacaca cattgcatat 11400
gcctgattaa ctgcctatca tgcttccaca cggaatgtgc atataatgct ccatatattg 11460
taaaagtgga catgctcccg ttttcttatc cttttccttt ttgccatatc ttttctcagg 11520
ctcttatttc tcaggtgaag ggaaaatctg atcaaaacaa tgttgccata ccaaactctg 11580
acacttttaa agatgttcca aaagaagaga cagatgaaaa gaaacaaatt gtcgaagatc 11640
acactgatcc caagatgaat atggaacctg ttgacactgt aattgaatcc catcacaatg 11700
gagatggagg aattactgag aacaaaccca tccaatctgg accattgtta aaggaaactt 11760
caattgagaa gtctatggtc cgtgaagtct tatctgaacc ttctgctgaa gcagaagatg 11820
gatggcagcc agtgcagaga ccaaggtcag gtggtttcta tggacgaaga cgaaggcaga 11880
ggcgtcaaac catcagcaag gttattggtt accagaaaaa ggacccaatt tctgatgttg 11940
atcatgctaa attgaagaat aactatcaag ctagtaaata ttatgtctta aagaaacgga 12000
catcaccagg aagctatgca gattattact tagcaaaaag tcaggcttct ggtaccaaac 12060
ttggtcgaag agtcataaaa gctgtagcct accgtgtgaa gtctgtgtca tcttctgtca 12120
gagatgctgt tcctgagatc tccacaactg gaggagattt gttaaatact tcatcagagc 12180
aggtccaagt ttctgcaaca aaggaggttg gatcactatc aaagagaagt tcaatagtaa 12240
acctaggaaa atctccttcc tataaggaag tagcacttgc cccgccaggt accatttcta 12300
tgttgcagga gagagtttct gaagatgaaa ttcctgataa cccagacgtt atgaaacttg 12360
aaaaggagag caatggagca gaagaaaatt ccaaaataat gggaagagat gcagaatcca 12420
tggagaaaga gaacattcag gatctagttg caaattcttc tgatcatgta aaaagtgaaa 12480
cagtagatac tgacagtaaa gaagaaattc aaatgagtga tctcaaaggt ggtgaaattt 12540
cagatctgat atctgcaaat gcatctattc aacccggcca tgttgatgtt agtccaatgg 12600
aacagggtag tgtcaagact cataatgtcc ctacttctga caattctccc aaagcggatc 12660
cctgtgaaaa ggactcatca agcaatttaa atcctggcgt tatctcaaat atgaccttgc 12720
aagatatgga tcatctgaag gtaaaatctg cgtcatctca tgcaagtgat gccagtcgag 12780
aattgtccag aaagctatct gcatcagcag caccattcag cccttcccca gctgttcccc 12840
gcggtacccc attacctatg aacattaatc tcccttctcc tcctggaaca cgaccaccga 12900
ttggtccttg gtcagtgacc atgtctcttc atcaaggacc accgaccatc ttgcctagtc 12960
caatgtgctc ctcccctcat cacctgtacc cttcacctcc acacacccca aacatgatgc 13020
acccattgcg ctttatctac cctccgtatt ctcaacccca gacgttacct ccaaatacat 13080
tccccatgag tagcagcact ttccatccga atcattatgc ttggcaatgc aatatagctc 13140
ctaatgcatc agagtatgtt cctgccacag tttggcctgg ctgccaccca gtcgagtttt 13200
ctatctcacc acctgtgatt gagcctataa ctgactcaat ttcctctgct aaggagatat 13260
ctgataatcc tgaaaatatt actttgacaa caagcttact agttgatctc aacaccgggg 13320
atgaagtcaa ggaagatgta aatcttccag catcagaaac agtggagaac atagctgcag 13380
ttgtaccaga aaaagagaga gcaagcaaca ctccagattc acattttgtt acctcgtcta 13440
gtgatcaatc aaaagagggc agtggatcaa atcatgtgca aagaaatctt acggagacgg 13500
ataatgagaa gaccttcaac attttggtac ggggccggag gaatcgcaaa caaactctaa 13560
gaatgcctat aagtttgctc aagagaccat attcttctca gcccttcaaa gctgtatata 13620
gcagggtaat aagggagact gaggttccca gctctaccag ctttgatcca catgaacatg 13680
gcataacgac tgctacttga ggctgtttct atgtctttta cgagataata ctagcagaat 13740
ggtctattga agctgagtat acatatctgt tggtcgtata tcatgactgc tggactttat 13800
tgctgttcca attctcatga ctatgatgtt agttggcttt cagactatgc ctcagtttaa 13860
cttgaaggtt agttctcttc aagagatact ctcctcacca aggacatttt ctgctgccaa 13920
tagggtgaaa agatcatcct ttgcttagtc gttcatttac cttctgggaa agtagagata 13980
catctagctt cttcttgacc aaactaccgt tgagataaaa ctaatggaat aatttacctt 14040
ttgagataca gtgaaaattc taaaagattc agtgggtgtc atatcagtta gcgaagcaag 14100
ttgtagcctc atgtagcaaa caattgcaat cccatatgct tctatagaat gacttctaga 14160
aacgattgaa actgcatact gttatgatgc tatgttttca actctttgat cacatctgat 14220
attgatttag tccatgtagc tacaatgcat gatttctgat tatgtattgt tttttattga 14280
catgcaggtt tacttctcaa catacttttt gatgctaagg agttgtcttt tctgtgtaag 14340
ctttacagtt tggctataac attgtctttt taggagcata ctgcaatata gaattaaatt 14400
gtcgtcttgt ttctcagttg ctagtgatta ttggtttcac tgacttgtat acataaccaa 14460
attattcttc aactgctcca acaaagtata tctgcatctg atttaggact tgcagagttg 14520
tatgcaatgc attcttctat aagttcaatc taaaatgatc tggaaagaat tctgaga 14577
<210> 2
<211> 1897
<212> PRT
<213> Artificial Sequence (Artificial Sequence)
<400> 2
Met Ala Pro Asn Lys Asn Gly Arg Gly Lys Thr Lys Gly Asp Lys Lys
1 5 10 15
Lys Lys Glu Glu Lys Val Leu Pro Val Val Met Asp Ile Thr Ile Asn
20 25 30
Leu Pro Glu Glu Thr Gln Val Ile Leu Lys Gly Ile Ser Thr Asp Arg
35 40 45
Ile Ile Asp Val Arg Arg Leu Leu Ser Val Asn Thr Thr Thr Cys Asn
50 55 60
Val Thr Asn Phe Ser Leu Ser His Glu Leu Arg Gly Pro Arg Leu Lys
65 70 75 80
Glu Thr Val Asp Val Ser Ala Leu Lys Pro Cys Ile Leu Thr Leu Ile
85 90 95
Glu Glu Glu Tyr Asp Glu Glu Ser Ala Thr Ala His Val Arg Arg Leu
100 105 110
Leu Asp Ile Val Ala Cys Thr Thr Ser Phe Gly Pro Ser Gly Thr Ser
115 120 125
Gly Lys Glu Leu Lys Thr Asp Ser Cys Lys Asn Ala Arg Gly Val Gln
130 135 140
Asp Asn Lys Asn Ala Lys Lys Ser Asn Lys Val Arg Gly Asn Asp Lys
145 150 155 160
Ser Ser Ser Pro Pro Gln Thr Pro Thr Pro Val Ala Gln Gln Leu Gly
165 170 175
Lys Asp Ala Gly Ser Glu Glu Val Asp Gly Glu Met Ser Asn Thr Cys
180 185 190
Pro Lys Ile Gly Ser Phe Tyr Glu Phe Phe Ser Leu Ser His Leu Thr
195 200 205
Pro Pro Leu Gln Phe Ile Arg Arg Ala Thr Arg Gln Gln Asp Asp Glu
210 215 220
Val Leu Pro Asp Asp His Leu Phe Ser Leu Glu Val Lys Leu Cys Asn
225 230 235 240
Gly Lys Leu Val Ile Val Glu Ala Cys Lys Lys Gly Phe Tyr Asn Phe
245 250 255
Gly Lys Gln Gly Ile Leu Cys His Asn Leu Val Asp Leu Leu Arg Gln
260 265 270
Leu Ser Arg Ala Phe Asp Asn Ala Tyr Asp Asp Leu Met Lys Ala Phe
275 280 285
Leu Glu Arg Asn Lys Phe Gly Asn Leu Pro Tyr Gly Phe Arg Ala Asn
290 295 300
Thr Trp Leu Ile Pro Pro Val Ala Ala Gln Leu Pro Ala Ile Phe Pro
305 310 315 320
Pro Leu Pro Val Glu Asp Asp Thr Trp Gly Ala Asn Gly Gly Gly Leu
325 330 335
Gly Arg Asp Gly Lys Phe Asp Ser Leu Pro Phe Ala Asn Glu Phe Leu
340 345 350
Asn Val Ala Ser Met Ala Cys Lys Thr Thr Glu Glu Arg Gln Ile Arg
355 360 365
Asp Arg Lys Ala Phe Ile Leu His Ser Leu Phe Val Asp Val Ala Ile
370 375 380
Leu Arg Ala Ile Ser Ala Val Lys His Val Met Glu Lys Val Lys Pro
385 390 395 400
Ala His Cys Asp Leu Asn Gly Glu Ile Ile Tyr Asn Glu Thr Val Gly
405 410 415
Asp Leu Ser Ile Phe Val Thr Lys Asp Ser Ser Asn Ala Ser Cys Lys
420 425 430
Val Asp Thr Lys Ile Asp Gly Phe Gln Ala Thr Gly Ile Ala Met Lys
435 440 445
Asn Leu Met Glu Arg Asn Leu Leu Lys Gly Ile Thr Ala Asp Glu Asn
450 455 460
Thr Ala Ala His Asp Ile Ala Thr Leu Gly Val Leu Asn Val Arg His
465 470 475 480
Cys Gly Tyr Ile Ala Thr Val Lys Val Gln Gly Lys Glu Asn Asp Lys
485 490 495
Val Gly Ser Pro Leu Gln Ser Met Glu Leu Ala Asp Gln Pro Asp Gly
500 505 510
Gly Ala Asn Ala Leu Asn Ile Asn Ser Leu Arg Leu Leu Leu His Lys
515 520 525
Lys Val Asp Asn Lys Val Met His Ser Lys Pro Ser Glu Thr Glu Glu
530 535 540
Pro Asn Cys Ser Gln Ala Phe Val Arg Arg Ile Leu Glu Glu Ser Leu
545 550 555 560
Thr Lys Leu Glu Glu Glu Lys Ile Glu Gly Asp Ser Phe Ile Arg Trp
565 570 575
Glu Leu Gly Ala Cys Trp Ile Gln His Leu Gln Asp Gln Lys Lys Ser
580 585 590
Glu Lys Asp Lys Lys Pro Ser Ala Glu Lys Lys Lys Asn Glu Met Lys
595 600 605
Val Glu Gly Leu Gly Ile Pro Leu Lys Ser Leu Lys Asn Arg Lys Lys
610 615 620
Ser Thr Asp Gly Thr Asn Met Glu Ser Gln Ser Glu Ser Phe Lys Ser
625 630 635 640
Ala Ala Asp Gly Val Gly Gly Gly Ser Glu Lys Pro Val Leu Gln Ser
645 650 655
Gly Glu Ser Gln Phe Glu Thr Asp Thr Asp Gln Asn Gln Val Val Leu
660 665 670
Lys Ala Leu Leu Ser Asp Ala Gly Phe Thr Arg Leu Lys Glu Ser Glu
675 680 685
Thr Gly Leu His Leu Lys Ser Leu Glu Glu Leu Ile Asp Leu Ser Gln
690 695 700
Lys Tyr Tyr Asn Glu Val Ala Leu Pro Lys Leu Val Ala Asp Phe Gly
705 710 715 720
Ser Leu Glu Leu Ser Pro Val Asp Gly Arg Thr Leu Thr Asp Phe Met
725 730 735
His Thr Arg Gly Leu Arg Met Arg Ser Leu Gly Gln Val Val Lys Leu
740 745 750
Ser Glu Lys Leu Ser His Val Gln Ser Leu Cys Ile His Glu Met Ile
755 760 765
Val Arg Ala Phe Lys His Ile Leu Gln Ala Ala Ile Ala Ser Val Val
770 775 780
Asp Ile Glu Asp Ile Ala Ala Ile Ile Ala Ala Ala Leu Asn Met Met
785 790 795 800
Leu Gly Val Pro Glu Asn Asp Asp Ser Asn Glu Tyr Gly Val Asp Ser
805 810 815
Leu Ile Trp Arg Trp Leu Lys Leu Phe Leu Lys Lys Arg Tyr Glu Trp
820 825 830
Asp Val Gly Ser Leu Asn Tyr Lys Asp Met Arg Lys Phe Ala Ile Leu
835 840 845
Arg Gly Leu Cys His Lys Val Gly Ile Glu Leu Val Pro Arg Asp Tyr
850 855 860
Asp Met Ser Ser Ala Ser Pro Phe Gln Lys Val Asp Ile Val Ser Leu
865 870 875 880
Val Pro Val His Lys Gln Ala Ala Cys Ser Ser Ala Asp Gly Arg Gln
885 890 895
Leu Leu Glu Ser Ser Lys Thr Ala Leu Asp Lys Gly Lys Leu Glu Asp
900 905 910
Ala Val Ser Tyr Gly Thr Lys Ala Leu Ala Lys Leu Val Ala Val Cys
915 920 925
Gly Pro Tyr His Arg Met Thr Ala Gly Ala Tyr Ser Leu Leu Ala Val
930 935 940
Val Leu Tyr His Thr Gly Asp Phe Asn Gln Ala Thr Ile Tyr Gln Gln
945 950 955 960
Lys Ala Leu Asp Ile Asn Glu Arg Glu Leu Gly Leu Asp His Pro Asp
965 970 975
Thr Met Lys Ser Tyr Gly Asp Leu Ala Val Phe Tyr Tyr Arg Leu Gln
980 985 990
His Thr Glu Leu Ala Leu Lys Tyr Val Lys Arg Ala Leu Tyr Leu Leu
995 1000 1005
His Leu Thr Cys Gly Pro Ser His Pro Asn Thr Ala Ala Thr Tyr Ile
1010 1015 1020
Asn Val Ala Met Met Glu Glu Gly Leu Gly Asn Val His Val Ala Leu
1025 1030 1035 1040
Arg Tyr Leu His Lys Ala Leu Lys Cys Asn Gln Lys Leu Leu Gly Pro
1045 1050 1055
Asp His Ile Gln Thr Ala Ala Ser Tyr His Ala Ile Ala Ile Ala Leu
1060 1065 1070
Ser Leu Met Glu Ala Tyr Pro Leu Ser Val Gln His Glu Gln Thr Thr
1075 1080 1085
Leu Gln Ile Leu Arg Ala Lys Leu Gly Pro Asp Asp Leu Arg Thr Gln
1090 1095 1100
Asp Ala Ala Ala Trp Leu Glu Tyr Phe Glu Ser Lys Ala Phe Glu Gln
1105 1110 1115 1120
Gln Glu Ala Ala Arg Asn Gly Thr Lys Lys Pro Asp Ala Ser Ile Ala
1125 1130 1135
Ser Lys Gly His Leu Ser Val Ser Asp Leu Leu Asp Tyr Ile Asn Pro
1140 1145 1150
Ser Pro Asp Ala Lys Gly Arg Asp Val Gly Ser Lys Arg Arg Gly Phe
1155 1160 1165
Val Ser Lys Ala Leu Ile Ser Gln Val Lys Gly Lys Ser Asp Gln Asn
1170 1175 1180
Asn Val Ala Ile Pro Asn Ser Asp Thr Phe Lys Asp Val Pro Lys Glu
1185 1190 1195 1200
Glu Thr Asp Glu Lys Lys Gln Ile Val Glu Asp His Thr Asp Pro Lys
1205 1210 1215
Met Asn Met Glu Pro Val Asp Thr Val Ile Glu Ser His His Asn Gly
1220 1225 1230
Asp Gly Gly Ile Thr Glu Asn Lys Pro Ile Gln Ser Gly Pro Leu Leu
1235 1240 1245
Lys Glu Thr Ser Ile Glu Lys Ser Met Val Arg Glu Val Leu Ser Glu
1250 1255 1260
Pro Ser Ala Glu Ala Glu Asp Gly Trp Gln Pro Val Gln Arg Pro Arg
1265 1270 1275 1280
Ser Gly Gly Phe Tyr Gly Arg Arg Arg Arg Gln Arg Arg Gln Thr Ile
1285 1290 1295
Ser Lys Val Ile Gly Tyr Gln Lys Lys Asp Pro Ile Ser Asp Val Asp
1300 1305 1310
His Ala Lys Leu Lys Asn Asn Tyr Gln Ala Ser Lys Tyr Tyr Val Leu
1315 1320 1325
Lys Lys Arg Thr Ser Pro Gly Ser Tyr Ala Asp Tyr Tyr Leu Ala Lys
1330 1335 1340
Ser Gln Ala Ser Gly Thr Lys Leu Gly Arg Arg Val Ile Lys Ala Val
1345 1350 1355 1360
Ala Tyr Arg Val Lys Ser Val Ser Ser Ser Val Arg Asp Ala Val Pro
1365 1370 1375
Glu Ile Ser Thr Thr Gly Gly Asp Leu Leu Asn Thr Ser Ser Glu Gln
1380 1385 1390
Val Gln Val Ser Ala Thr Lys Glu Val Gly Ser Leu Ser Lys Arg Ser
1395 1400 1405
Ser Ile Val Asn Leu Gly Lys Ser Pro Ser Tyr Lys Glu Val Ala Leu
1410 1415 1420
Ala Pro Pro Gly Thr Ile Ser Met Leu Gln Glu Arg Val Ser Glu Asp
1425 1430 1435 1440
Glu Ile Pro Asp Asn Pro Asp Val Met Lys Leu Glu Lys Glu Ser Asn
1445 1450 1455
Gly Ala Glu Glu Asn Ser Lys Ile Met Gly Arg Asp Ala Glu Ser Met
1460 1465 1470
Glu Lys Glu Asn Ile Gln Asp Leu Val Ala Asn Ser Ser Asp His Val
1475 1480 1485
Lys Ser Glu Thr Val Asp Thr Asp Ser Lys Glu Glu Ile Gln Met Ser
1490 1495 1500
Asp Leu Lys Gly Gly Glu Ile Ser Asp Leu Ile Ser Ala Asn Ala Ser
1505 1510 1515 1520
Ile Gln Pro Gly His Val Asp Val Ser Pro Met Glu Gln Gly Ser Val
1525 1530 1535
Lys Thr His Asn Val Pro Thr Ser Asp Asn Ser Pro Lys Ala Asp Pro
1540 1545 1550
Cys Glu Lys Asp Ser Ser Ser Asn Leu Asn Pro Gly Val Ile Ser Asn
1555 1560 1565
Met Thr Leu Gln Asp Met Asp His Leu Lys Val Lys Ser Ala Ser Ser
1570 1575 1580
His Ala Ser Asp Ala Ser Arg Glu Leu Ser Arg Lys Leu Ser Ala Ser
1585 1590 1595 1600
Ala Ala Pro Phe Ser Pro Ser Pro Ala Val Pro Arg Gly Thr Pro Leu
1605 1610 1615
Pro Met Asn Ile Asn Leu Pro Ser Pro Pro Gly Thr Arg Pro Pro Ile
1620 1625 1630
Gly Pro Trp Ser Val Thr Met Ser Leu His Gln Gly Pro Pro Thr Ile
1635 1640 1645
Leu Pro Ser Pro Met Cys Ser Ser Pro His His Leu Tyr Pro Ser Pro
1650 1655 1660
Pro His Thr Pro Asn Met Met His Pro Leu Arg Phe Ile Tyr Pro Pro
1665 1670 1675 1680
Tyr Ser Gln Pro Gln Thr Leu Pro Pro Asn Thr Phe Pro Met Ser Ser
1685 1690 1695
Ser Thr Phe His Pro Asn His Tyr Ala Trp Gln Cys Asn Ile Ala Pro
1700 1705 1710
Asn Ala Ser Glu Tyr Val Pro Ala Thr Val Trp Pro Gly Cys His Pro
1715 1720 1725
Val Glu Phe Ser Ile Ser Pro Pro Val Ile Glu Pro Ile Thr Asp Ser
1730 1735 1740
Ile Ser Ser Ala Lys Glu Ile Ser Asp Asn Pro Glu Asn Ile Thr Leu
1745 1750 1755 1760
Thr Thr Ser Leu Leu Val Asp Leu Asn Thr Gly Asp Glu Val Lys Glu
1765 1770 1775
Asp Val Asn Leu Pro Ala Ser Glu Thr Val Glu Asn Ile Ala Ala Val
1780 1785 1790
Val Pro Glu Lys Glu Arg Ala Ser Asn Thr Pro Asp Ser His Phe Val
1795 1800 1805
Thr Ser Ser Ser Asp Gln Ser Lys Glu Gly Ser Gly Ser Asn His Val
1810 1815 1820
Gln Arg Asn Leu Thr Glu Thr Asp Asn Glu Lys Thr Phe Asn Ile Leu
1825 1830 1835 1840
Val Arg Gly Arg Arg Asn Arg Lys Gln Thr Leu Arg Met Pro Ile Ser
1845 1850 1855
Leu Leu Lys Arg Pro Tyr Ser Ser Gln Pro Phe Lys Ala Val Tyr Ser
1860 1865 1870
Arg Val Ile Arg Glu Thr Glu Val Pro Ser Ser Thr Ser Phe Asp Pro
1875 1880 1885
His Glu His Gly Ile Thr Thr Ala Thr
1890 1895
<210> 3
<211> 346
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 3
aggaatacga tgaagaaagc gcaacggcgc atgtttagaa ggctgttgga catcgtcgct 60
tgtacaacga gttttgggcc gtcggggact agtggtaaag agttgaaaac tgactcttgc 120
aagaatgcgc gaggtgtgca ggataacaag aatgctaaga aatccaacaa ggttcgtggg 180
aatgataagt catcgtcgcc gccacaaacg ccaactccgg tggcgcaaca gctgggtaaa 240
gatgcgggat cggaagaagt tgatggagag atgagcaata cttgccctaa gattggaagc 300
ttctatgagt tcttctcgct ttctcatctc acgcctcctc ttcagt 346
<210> 4
<211> 346
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 4
aggaatacga tgaagaaagc gcaacggcgc atgttaagaa ggctgttgga catcgtcgct 60
tgtacaacga gttttgggcc gtcggggact agtggtaaag agttgaaaac tgactcttgc 120
aagaatgcgc gaggtgtgca ggataacaag aatgctaaga aatccaacaa ggttcgtggg 180
aatgataagt catcgtcgcc gccacaaacg ccaactccgg tggcgcaaca gctgggtaaa 240
gatgcgggat cggaagaagt tgatggagag atgagcaata cttgccctaa gattggaagc 300
ttctatgagt tcttctcgct ttctcatctc acgcctcctc ttcagt 346
<210> 5
<211> 109
<212> PRT
<213> Artificial Sequence (Artificial Sequence)
<400> 5
Met Ala Pro Asn Lys Asn Gly Arg Gly Lys Thr Lys Gly Asp Lys Lys
1 5 10 15
Lys Lys Glu Glu Lys Val Leu Pro Val Val Met Asp Ile Thr Ile Asn
20 25 30
Leu Pro Glu Glu Thr Gln Val Ile Leu Lys Gly Ile Ser Thr Asp Arg
35 40 45
Ile Ile Asp Val Arg Arg Leu Leu Ser Val Asn Thr Thr Thr Cys Asn
50 55 60
Val Thr Asn Phe Ser Leu Ser His Glu Leu Arg Gly Pro Arg Leu Lys
65 70 75 80
Glu Thr Val Asp Val Ser Ala Leu Lys Pro Cys Ile Leu Thr Leu Ile
85 90 95
Glu Glu Glu Tyr Asp Glu Glu Ser Ala Thr Ala His Val
100 105
<210> 6
<211> 127
<212> PRT
<213> Artificial Sequence (Artificial Sequence)
<400> 6
Met Ala Pro Asn Lys Asn Gly Arg Gly Lys Thr Lys Gly Asp Lys Lys
1 5 10 15
Lys Lys Glu Glu Lys Val Leu Pro Val Val Met Asp Ile Thr Ile Asn
20 25 30
Leu Pro Glu Glu Thr Gln Val Ile Leu Lys Gly Ile Ser Thr Asp Arg
35 40 45
Ile Ile Asp Val Arg Arg Leu Leu Ser Val Asn Thr Thr Thr Cys Asn
50 55 60
Val Thr Asn Phe Ser Leu Ser His Glu Leu Arg Gly Pro Arg Leu Lys
65 70 75 80
Glu Thr Val Asp Val Ser Ala Leu Lys Pro Cys Ile Leu Thr Leu Ile
85 90 95
Glu Glu Glu Tyr Asp Glu Glu Ser Ala Thr Ala His Val Lys Lys Ala
100 105 110
Val Gly His Arg Arg Leu Tyr Asn Glu Phe Trp Ala Val Gly Asp
115 120 125

Claims (6)

1. The application of the gene for regulating and controlling the soluble solid content of the tomato fruit is characterized in that: the gene has a nucleotide sequence shown as SEQ ID NO: 1, the Solyc01g095900 gene knockout in tomato can improve the content of soluble solids.
2. Two targets for editing the Solyc01g095900 gene, characterized by: the two target points are respectively: target1 and Target 2;
target 1: GCGCAACGGCGCATGTTAGAAGG
Target 2: GACTCTTGCAAGAATGCGCGAGG
3. Two targets for editing (knock-out) the Solyc01g095900 gene according to claim 2, characterized by: target1 is edited, and the edited nucleotide sequence is shown as SEQ ID NO. 3 or SEQ ID NO. 4.
4. A gene editing vector (plasmid) based on CRISPR/Cas9 system comprising the target of claim 2 or 3.
5. Two Solyc01g095900 gene homozygous editing materials are characterized in that: respectively homozygous editing material rec1a-1 and homozygous editing material rec1a-2,
the nucleotide sequence of the 5 th exon of the homozygous editing material rec1a-1 is shown in SEQ ID NO:3, the process is carried out;
the nucleotide sequence of the 5 th exon of the homozygous editing material rec1a-2 is shown in SEQ ID NO:4, the method is described in the specification.
6. The use of the gene Solyc01g095900 according to claim 1, which is characterized in that: the method is used for constructing the gene-editing tomato, the gene-editing tomato does not contain exogenous gene fragments, and the content of soluble solids is higher than that of wild type.
CN202111502131.6A 2021-12-10 2021-12-10 Application of gene for regulating and controlling soluble solid content of tomato fruit Active CN114107322B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111502131.6A CN114107322B (en) 2021-12-10 2021-12-10 Application of gene for regulating and controlling soluble solid content of tomato fruit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111502131.6A CN114107322B (en) 2021-12-10 2021-12-10 Application of gene for regulating and controlling soluble solid content of tomato fruit

Publications (2)

Publication Number Publication Date
CN114107322A true CN114107322A (en) 2022-03-01
CN114107322B CN114107322B (en) 2022-12-06

Family

ID=80364865

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111502131.6A Active CN114107322B (en) 2021-12-10 2021-12-10 Application of gene for regulating and controlling soluble solid content of tomato fruit

Country Status (1)

Country Link
CN (1) CN114107322B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023208078A1 (en) * 2022-04-27 2023-11-02 中国农业科学院农业基因组研究所 Genome structure variation for regulating tomato fruit soluble solid content, related product, and application

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210076578A1 (en) * 2018-05-02 2021-03-18 Epigenetics Ltd. Non-gm improved tomato crops and methods for obtaining crops with improved inheritable traits
CN112522282A (en) * 2020-12-15 2021-03-19 华中农业大学 Gene for regulating and controlling soluble solid content of tomato and application thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210076578A1 (en) * 2018-05-02 2021-03-18 Epigenetics Ltd. Non-gm improved tomato crops and methods for obtaining crops with improved inheritable traits
CN112522282A (en) * 2020-12-15 2021-03-19 华中农业大学 Gene for regulating and controlling soluble solid content of tomato and application thereof

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
BAIKE WANG等: "《Enhanced soluble sugar content in tomato fruit using CRISPR/Cas9-mediated SlINVINH1 and SlVPE5 gene editing》", 《PEER J.》 *
NO REPORTED: "《protein TSS-like isoform X1 [Solanum lycopersicum]》", 《NCBI REFERENCE SEQUENCE: XP_019066391.1》 *
TONG CHEN等: "《Regulatory network of fruit ripening: current understanding and future challenges》", 《NEW PHYTOLOGIST》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023208078A1 (en) * 2022-04-27 2023-11-02 中国农业科学院农业基因组研究所 Genome structure variation for regulating tomato fruit soluble solid content, related product, and application

Also Published As

Publication number Publication date
CN114107322B (en) 2022-12-06

Similar Documents

Publication Publication Date Title
CN107164347B (en) Ideal plant type gene NPT1 for controlling rice stem thickness, tillering number, spike grain number, thousand grain weight and yield and its application
CN101970668B (en) Plants with modified starch metabolism
US20130019334A1 (en) Corn event mzdt09y
US11479784B2 (en) Modulation of seed vigor
RU2665804C2 (en) Cotton phya1 rnai improving fiber quality, root elongation, flowering, maturity and yield potential in upland cultivars (gossypium hirsutum l.)
CN114107322B (en) Application of gene for regulating and controlling soluble solid content of tomato fruit
CN113862265A (en) Method for improving rice grain shape and appearance quality
US6639130B2 (en) Plant sterol reductases and uses thereof
EP3368677B1 (en) Inhibition of bolting and flowering of a beta vulgaris plant
WO1997048793A9 (en) Plant sterol reductases and uses thereof
CN110777150B (en) Application of protein GmPLATZ in regulation and control of plant seed yield
KR20200136921A (en) Control of amino acid content in plants
CN113388015B (en) Pear protein fragment PyDwarf-462 and coding sequence and application thereof
EP0967278A2 (en) Flowering regulating gene and its use
CN110627888B (en) Stiff1 gene for regulating and controlling stalk strength of corn and application of encoded protein thereof
CN113999858B (en) SiPLATZ12 gene for regulating and controlling growth and development of foxtail millet and application thereof
CN114127299B (en) Method for enhancing plant fragrance
KR20230000353A (en) Method for producing rice plant having edited OsAAP2 gene using CRISPR/Cas system
CN116590270A (en) Gene for controlling rice grain size and application thereof
CN116676331A (en) Application of ZmST1 protein and coding gene thereof in regulation and control of green-keeping, disease resistance and yield of plants
CN118109480A (en) Early 15 gene and application thereof in regulating and controlling plant growth and development
CN114174518A (en) Abiotic stress tolerant plants and methods
US20130217019A1 (en) Corn event mzdt09y
JPH06277068A (en) Rice sucrose phosphate synthetase gene
JPH05317057A (en) Gene of rice starch-branching enzyme

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant