CN114088819B - 一种基于分子模拟玉米秸秆纤维吸附沥青效果的评价方法 - Google Patents

一种基于分子模拟玉米秸秆纤维吸附沥青效果的评价方法 Download PDF

Info

Publication number
CN114088819B
CN114088819B CN202111358227.XA CN202111358227A CN114088819B CN 114088819 B CN114088819 B CN 114088819B CN 202111358227 A CN202111358227 A CN 202111358227A CN 114088819 B CN114088819 B CN 114088819B
Authority
CN
China
Prior art keywords
asphalt
molecular
model
corn straw
corn
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111358227.XA
Other languages
English (en)
Other versions
CN114088819A (zh
Inventor
张亮
程鹏健
周秋红
易军艳
陈梓宁
张平
张艳
徐宝栋
顾太福
裴忠实
周雯怡
王莹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Heilongjiang Highway Construction Center
Harbin Institute of Technology
Original Assignee
Heilongjiang Highway Construction Center
Harbin Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Heilongjiang Highway Construction Center, Harbin Institute of Technology filed Critical Heilongjiang Highway Construction Center
Priority to CN202111358227.XA priority Critical patent/CN114088819B/zh
Publication of CN114088819A publication Critical patent/CN114088819A/zh
Application granted granted Critical
Publication of CN114088819B publication Critical patent/CN114088819B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Road Paving Structures (AREA)

Abstract

一种基于分子模拟玉米秸秆纤维吸附沥青效果的评价方法,属于固体废物在道路工程中的应用技术领域。所述方法为:选择具有代表性且能表征沥青中沥青质、胶质、饱和分、芳香分四种组分的分子结构;根据沥青各组分间的比例,计算各种沥青中各种组分的分子配比;根据沥青分子配比计算结果,对沥青分子模型进行优化;玉米秸秆分子模型构建;界面模型构建与模拟计算;通过分子扩散系数对沥青分子模型的扩散行为进行描述,进而评价玉米秸秆纤维在不同条件下对于沥青中不同组分的吸附能力;扩散系数越大,分子扩散速率越快,即玉米秸秆纤维在当前条件下对沥青中的该组分吸附能力越强。本发明用于秸秆纤维吸附沥青效果的评价。

Description

一种基于分子模拟玉米秸秆纤维吸附沥青效果的评价方法
技术领域
本发明属于固体废物在道路工程中的应用技术领域,具体地说是一种玉米秸秆纤维与 沥青结合能力的评价方法。
背景技术
玉米秸秆如果被随意弃置,经过长期的日晒雨淋,会逐渐腐化,大量养分包括氮、磷、 钾以及微量元素会随着雨水进入地表与地下水系,造成水体的富营养化。将秸秆进行露天 焚烧会引起区域间歇性大气污染,产生包括CO、CO2、NO、NO2等有害气体,也会导致 空气中的细颗粒物(PM2.5)增多,对大气环境和人体造成极大的危害。同时,玉米秸秆的 焚烧还会破坏土壤中的生态系统平衡,使土壤中的水分大量减少,碱性增强,使原本肥沃 的土壤变得贫瘠,造成农作物的减产。因此,玉米秸秆的资源化综合利用具有重要意义。
传统的沥青路面面对复杂多变的环境因素以及愈加繁重的交通荷载,往往在未达到设 计年限的情况下产生各种病害,带来行车安全隐患以及经济损失。为了优化沥青混合料的 路用性能以及提升其耐久性,不同类型的纤维被作为稳定剂、改性剂加入到沥青混合料中,常用的纤维包括木质素纤维、聚酯纤维、矿物纤维等。通过物理化学手段,由玉米秸秆加 工而成的玉米秸秆纤维,同样能够满足沥青混合料中纤维的要求,相比于其它类型纤维, 在环保节能方面体现出较大优势。
玉米秸秆在沥青混合料中强化效果体现在对混合料中自由沥青的吸附作用。沥青质在 玉米秸秆纤维多孔表面被吸附的过程分为三个阶段:首先沥青质在玉米秸秆纤维表面的沥 青液膜中扩散,沥青液膜则是由胶质、饱和分以及芳香分组成。之后克服液膜阻力穿过液膜到达纤维表面,这一过程则被称为液膜扩散过程。接下来沥青质从玉米秸秆纤维外表面 扩散到纤维内表面吸附点位,这一过程为颗粒内扩散过程,玉米秸秆纤维吸附沥青质机理 如图1所示。
沥青的组成成分复杂,玉米秸秆纤维对沥青的吸附过程难以通过常规的试验方法进行 探究。玉米秸秆纤维对沥青的吸附过程受温度、沥青组成成分等因素影响,在不同条件下 纤维更易吸收沥青中的哪种组分,是否具备改善沥青性能的能力有待明确,基于此,本专利提出了一种基于分子模拟玉米秸秆纤维吸附沥青效果的评价方法,探究秸秆纤维在沥青 混合料中的改性机理,为秸秆纤维在公路建设领域的推广应用提供参考。
发明内容
本发明的目的在于提出一种基于分子模拟玉米秸秆纤维吸附沥青效果的评价方法,通 过该方法能够探究玉米秸秆纤维在沥青混合料中的改性机理,为玉米秸秆纤维在公路建设 领域的推广应用提供参考。
为实现上述目的,本发明采取的技术方案如下:
一种基于分子模拟玉米秸秆纤维吸附沥青效果的评价方法,所述方法包括以下步骤:
步骤一、选择具有代表性且能够较好地表征沥青中沥青质、胶质、饱和分、芳香分四 种组分的分子结构;
步骤二、根据沥青各组分间的比例,计算各种沥青中各种组分的分子配比,通过调节 不同种类分子的数量,使得构建的沥青分子模型中每种组分的质量比例与实际沥青中的比 例接近;对于同一种组分中的不同分子类型,通过小幅度的调试使得每种分子类型数量尽量接近;
步骤三、根据沥青分子配比计算结果,对沥青分子模型进行优化;
步骤四、玉米秸秆分子模型构建;
步骤五、界面模型构建与模拟计算;对优化后的玉米纤维素晶胞模型,利用Surfaces 模块中的Cleave Surface工具进行切割,在(-100)方向上切出厚度为的晶体表面, 最后构建一个面积为/>的超晶胞;之后利用Build Layers工具将纤维素超晶 胞晶体模型与沥青分子模型拼接在一起,建立具有三维周期性条件的模型结构,与此同时 在盒子边界与沥青分子模型之间建立一个厚度为/>的真空层,最后在Forcite模块中使用 Medium质量的Dynamics工具,在正测系统以及298K下运行100ps的分子动力学模拟计 算,时间步长为1fs;
步骤六、通过分子扩散系数D对沥青分子模型的扩散行为进行描述,进而评价玉米秸 秆纤维在不同条件下对于沥青中不同组分的吸附能力,其中扩散系数D越大,分子扩散速 率越快,即玉米秸秆纤维在当前条件下对沥青中的该组分吸附能力越强;扩散系数D表达 式为:
式中:MSD为均方位移,作为反映粒子运动规律的指标参数,t表示时间;
MSD计算公式如下:
MSD(t)=〈|r(t)-r(0)|2
其中:﹤﹥为由各种沥青分子模型构成的系统内所有原子的平均,r(t)和r(0)分别表 示为粒子在t时刻的位置矢量以及初始位置矢量,扩散系数D通过MSD与t线性拟合 得到,数值为MSD变化曲线斜率的1/6。
本发明相对于现有技术的有益效果是:现有技术中,缺少对于玉米秸秆纤维对沥青吸 附效果的研究,吸附过程及机理有待明确,本方法提出了一种基于分子模拟玉米秸秆纤维 吸附沥青效果的评价方法,探究玉米秸秆纤维在沥青混合料中的改性机理,为玉米秸秆纤维在公路建设领域的推广应用提供参考。通过分子建模与模拟计算,对微观尺度下沥青分 子扩散与玉米秸秆纤维的吸附情况进行了探究,结果表明,玉米秸秆纤维对沥青中不同组 分的吸附效果有所差异,沥青中的轻质组分更易被吸附于玉米秸秆纤维的表面。除此之外, 吸附效果会受到温度的影响,温度升高分子运动更剧烈,吸附效果更为显著。对不同种类沥青而言,沥青质含量越高,扩散速度越慢,达到吸附平衡状态所需要的时间更长。
附图说明
图1为玉米秸秆吸附沥青质机理图;
图2为沥青分子与玉米秸秆纤维素超晶胞模型结构示意图;
图3为沥青分子模型在玉米秸秆纤维素晶体结构表面的扩散过程示意图,其中图3(a) 为0ps扩散示意图,图3(b)为10ps扩散示意图,图3(c)为100ps扩散示意图;
图4为实施例1中安达70#沥青分子模型示意图;
图5为实施例1中玉米秸秆纤维素的晶胞模型图;
图6为实施例1中在不同温度下安达70#沥青中沥青质的MSD曲线图;
图7为实施例2在298K下安达50#沥青四组分的MSD曲线图;
图8为玉米秸秆纤维素超晶胞模型示意图。
具体实施方式
具体实施方式一:本实施方式披露了一种基于分子模拟玉米秸秆纤维吸附沥青效果的 评价方法,所述方法包括以下步骤:
步骤一、选择具有代表性且能够较好地表征沥青中沥青质、胶质、饱和分、芳香分四 种组分的分子结构(此处代表性指相对分子质量接近沥青中该组分的平均相对分子质量, 且能够较好地体现该组分的极性特征);
步骤二、根据沥青各组分间的比例(通过棒状薄层色谱-氢火焰例子探测测试方法测 得,为现有技术),计算各种沥青中各种组分的分子配比,通过调节不同种类分子的数量, 使得构建的沥青分子模型中每种组分的质量比例与实际沥青中的比例接近;对于同一种组 分中的不同分子类型(例如,实测Anda-50沥青中沥青质组分的含量为5.73%,模型中所 选择的五种分子类型(指五种不同的沥青质分子,即表1中的沥青质a~e),质量占比分别为1.47%、1.42%、1.13%、0.92%、0.85%,合计5.79%),通过小幅度的调试使得每种分子类型数量尽量接近(计算各种沥青中各种组分的分子配比的要求为:1、模型中的各 组分与实测沥青中各组分接近;2、各组分中的每种分子模型质量比例相差不过大,在满 足第1条的前提下尽量接近);
步骤三、根据沥青分子配比计算结果,对沥青分子模型进行优化;
步骤四、玉米秸秆分子模型构建;
步骤五、界面模型构建与模拟计算;对优化后的玉米纤维素晶胞模型,利用Surfaces 模块中的Cleave Surface工具进行切割,在(-100)(坐标)方向上切出厚度为的晶体 表面,最后构建一个面积(长×宽)为/>的超晶胞(如图1);之后利用Build Layers工具将纤维素超晶胞晶体模型与沥青分子模型拼接在一起,建立具有三维周期性条 件的模型结构(如图2所示),与此同时在盒子边界(即初始模型所处空间的边框,所述初 始模型是指由纤维素超晶胞晶体模型与沥青分子模型拼接而成的建立具有三维周期性条件 的模型)与沥青分子模型之间建立一个厚度为/>的真空层(避免沥青分子在周期性边界 条件下越过上方边界与纤维素晶体模型底层相遇),最后在Forcite模块中使用Medium质 量的Dynamics工具,在正测系统(NVT)以及298K下运行100ps的分子动力学模拟计算 (由Materials Studio软件实现),时间步长为1fs(扩散过程如图3所示);
步骤六、通过分子扩散系数D对沥青分子模型的扩散行为进行描述,进而评价玉米秸 秆纤维在不同条件下对于沥青中不同组分的吸附能力(分子扩散系数D用来评价物质本身扩散能力的指标),其中扩散系数D越大,分子扩散速率越快,即玉米秸秆纤维在当前 条件下对沥青中的该组分吸附能力越强;扩散系数D表达式为:
式中:MSD为均方位移,作为反映粒子运动规律的指标参数,t表示时间;
MSD计算公式如下:
MSD(t)=<|r(t)-r(0)|2
其中:﹤﹥为由各种沥青分子模型构成的系统内所有原子的平均,r(t)和r(0)分别表 示为粒子在t时刻的位置矢量以及初始位置矢量,扩散系数D通过MSD与t线性拟合 得到,数值为MSD变化曲线斜率的1/6。
具体实施方式二:本实施方式是对具体实施方式一作出的进一步说明,步骤三中,所 述对沥青分子模型进行优化具体为:
根据沥青分子配比计算结果,使用Materials studio软件中的COMPASS力场,分子动力学计算时间步长为1fs,利用Materials Studio软件中的Forcite模块,对沥青分子进行 Medium质量的几何优化,算法选择Smart,能量收敛精度为0.001kcal/mol,范德华力采用Atom Based方法,所述Atom Based方法的截断半径为最大迭代步数设置为1000步,之后通过由各种沥青分子模型构成的系统弛豫使所述系统达到平衡状态,通过对比计算得到的模型与实际沥青的密度数值以及径向分布函数,验证沥青分子模型的准确性。
具体实施方式三:本实施方式是对具体实施方式二作出的进一步说明,所述通过对比 计算得到的模型与实际沥青的密度数值以及径向分布函数,其计算公式为:
其中:g(r)为在距离中心粒子r的位置出现其它粒子的概率;dN为距离中心粒子r的位置,球面区域的其他粒子数量;ρ为由各种沥青分子模型构成的系统密度;dr为 球面区域的厚度;r为距离中心粒子的距离。
晶体结构由于其分子呈周期性排列,通常是有序的。通过径向分布函数的描述,相对 于中心粒子,一般随着固定距离的增加,总是会出现波峰或者波谷。而对于非晶体结构,由于其分子是无序排列的,因此呈现出短程有序,长程无序的规律。
具体实施方式四:如图所示,本实施方式是对具体实施方式一作出的进一步说明,其 特征在于:步骤四中,所述玉米秸秆分子模型构建具体为:
将玉米秸秆纤维成分进行简化,认为其完全由含量最高的纤维素组成,并以纤维素Ⅰβ构型的纤维素晶体结构近似代表玉米秸秆纤维;首先在Materials Studio软件中使用Crystals模块建立空间群,之后在Lattice Parameters中输入晶胞的长度以及角度,之后利用AddAtom任务栏来添加原子,在构建完初始模型后使用Adjust Hydrogen工具添加氢原子,从而得到纤维素的晶胞模型;之后利用Forcite模块对纤维素晶胞进行Medium质量的几何优化,选用周期性边界条件,选择Smart算法,能量收敛精度为0.001kcal/mol, 范德华力采用Atom Based方法,截断半径为最大迭代步数设置为1000步。
实施例1:以安达70#沥青为例,对本发明的一种基于分子模拟玉米秸秆纤维吸附沥青 效果的评价方法的具体实施步骤进行说明:
步骤一、选择具有代表性且能够较好地表征沥青中沥青质、胶质、饱和分、芳香分四 种组分的分子结构;沥青各组分分子信息如表1所示:
表1:沥青分子信息
步骤二、进行沥青分子配比计算,计算结果如表2所示。
表2:安达70#沥青分子配比计算结果
步骤三、沥青分子模型优化;根据沥青分子配比计算结果,在Materials Studio软件中 使用Amorphous cell模块,将几何优化好的沥青分子进行无定形聚合物模型搭建,模型选 用周期性边界条件,选择Medium质量并且初始密度设定为0.5g/cm3,建立的安达70#沥青 分子模型如图4所示;之后通过系统弛豫使系统达到平衡状态,通过MaterialsStudio软件 进行分子模拟计算得到的沥青密度为0.996g/cm3,通过试验得到的沥青密度为1.005g/cm3
步骤四、玉米秸秆纤维分子模型构建;将玉米秸秆纤维成分进行简化,认为其完全由 含量最高的纤维素组成,并以纤维素Ⅰβ构型的纤维素晶体结构近似代表玉米秸秆纤维;首先 在Materials Studio软件中使用Crystals模块建立空间群,之后在LatticeParameters中输入 晶胞的长度以及角度,之后利用AddAtom任务栏来添加原子,在构建完初始模型后使用 Adjust Hydrogen工具添加氢原子,从而得到玉米秸秆纤维素的晶胞模型;之后利用Forcite 模块对纤维素晶胞进行Medium质量的几何优化,选用周期性边界条件,选择Smart算法, 能量收敛精度为0.001kcal/mol,范德华力采用Atom Based方法,其截断半径为最 大迭代步数设置为1000步,玉米秸秆纤维素的晶胞模型如图5所示。
步骤五、界面模型构建与模拟计算;对优化后的玉米秸秆纤维素晶胞模型,利用Surfaces 模块中的Cleave Surface工具进行切割,在(-100)方向上切出厚度为的晶体表面, 最后构建一个面积(长×宽)为/>的超晶胞(见图8)。之后利用Build Layers 工具将所述纤维素晶体模型与沥青分子模型拼接在一起,建立具有三维周期性条件的模型 结构,与此同时在盒子边界(即初始模型所处空间的边框)与沥青分子模型之间建立一个 厚度为/>的真空层,避免沥青分子在周期性边界条件下越过上方边界与纤维素晶体模型 底层相遇;最后在Forcite模块中使用Medium质量的Dynamics工具,在Materials Studio 软件的正测系统(NVT)以及298K下运行100ps的分子动力学模拟计算,时间步长为1fs;
步骤六、玉米秸秆纤维吸附沥青效果评价;利用安达70#沥青分子模型与纤维素晶体 结构模型进行建模,模拟计算了248K(-25℃)、273K(0℃)、298K(25℃)以及333K(60℃)四个温度下沥青分子模型的扩散过程。通过模拟计算得到四个温度下安达70#沥青不同组分的均方位移(MSD)如图6所示,并拟合计算沥青组分的扩散系数,如表3所示;
表3:在25℃条件下沥青四组分的扩散系数
通过对比不同温度下的扩散系数,即可对在当前条件下玉米秸秆纤维对沥青中不同组 分的吸附效果进行评价。在本实例中,沥青中四种组分沥青质、胶质、芳香分以及饱和分 的扩散系数都随着温度的升高不断增大,这说明随着温度的升高,沥青分子运动更加剧烈,加速了扩散过程,玉米秸秆纤维的吸附效果更优。从整体上来看,随着温度从-25℃增长至 60℃,芳香分的扩散系数数值一直是四种组分中最大,这表明沥青中的轻质组分芳香分更 易于被吸附在玉米秸秆纤维表面。
实施例2:以安达50#沥青为例,对本发明的一种基于分子模拟玉米秸秆纤维吸附沥青 效果的评价方法的具体实施步骤进行说明:
步骤一、选择具有代表性且能够较好地表征沥青中沥青质、胶质、饱和分、芳香分四 种组分的分子结构;沥青各组分分子信息如实施例1的表1所示;
步骤二、沥青分子配比计算,计算结果如表4所示;
表4:安达50#沥青分子配比计算结果
步骤三、沥青分子模型优化;根据分子配比计算结果,在Materials Studio软件中使用 Amorphous cell模块,将几何优化好的沥青分子进行无定形聚合物模型搭建,模型选用周期 性边界条件,选择Medium质量并且初始密度设定为0.5g/cm3,之后通过系统弛豫使系统达 到平衡状态;通过分子模拟计算得到的沥青密度为0.991g/cm3,通过试验得到的沥青密度 为1.026g/cm3
步骤四、玉米秸秆纤维分子模型构建;构建方法与实施例1相一致;
步骤五、界面模型构建与模拟计算;对优化后的纤维素晶胞模型,利用Surfaces模块 中的Cleave Surface工具进行切割,在(-100)方向上切出厚度为的晶体表面,最后构建一个面积(长×宽)为/>的超晶胞;之后利用Build Layers工具将纤维素晶体模型与沥青分子模型拼接在一起,建立具有三维周期性条件的模型结构,与此同时在盒子边界与沥青分子模型之间建立一个厚度为/>的真空层,避免沥青分子在周期性边界条件下越过上方边界与纤维素晶体模型底层相遇;最后在Forcite模块中使用Medium质量的Dynamics工具,在Materials Studio软件的正测系统(NVT)以及298K下运行100ps 的分子动力学模拟计算,时间步长为1fs;
步骤六、玉米秸秆纤维吸附沥青效果评价;利用安达50#沥青分子模型与纤维素晶体 结构模型进行建模,模拟计算298K(25℃)温度下沥青分子模型的扩散过程;通过模拟计算得到四个温度下(与实施例1中的四个温度相同)安达50#沥青不同组分的均方位移(MSD),如图7所示,并拟合计算沥青组分的扩散系数,如表5所示。
表5:不同温度下安达50#沥青四组分的扩散系数
通过对比不同类型沥青的扩散系数,即可对在当前条件下玉米秸秆纤维对沥青中不同 组分的吸附效果进行评价。在本实施例2中,随着沥青质含量的增加,其扩散系数数值在 减小,这说明沥青中沥青质初始含量越高,其扩散速率越慢,玉米秸秆纤维吸附沥青质所达到的吸附平衡时间越长。芳香分和饱和分两种组分的扩散系数是大于沥青质和胶质两种 组分,说明玉米秸秆纤维对沥青中的芳香分和饱和分吸附效果更优。
以上仅为本发明较佳的具体实施方式,但本发明的保护范围,并不局限于此,任何熟 悉本技术领域的技术人员在本发明揭露的技术范围内,根据本发明的技术方案及其发明构 思加以等同替换或改变,都应涵盖在本发明的保护范围之内。

Claims (2)

1.一种基于分子模拟玉米秸秆纤维吸附沥青效果的评价方法,其特征在于:所述方法包括以下步骤:
步骤一、选择具有代表性且能够较好地表征沥青中沥青质、胶质、饱和分、芳香分四种组分的分子结构;
步骤二、根据沥青各组分间的比例,计算各种沥青中各种组分的分子配比,通过调节不同种类分子的数量,使得构建的沥青分子模型中每种组分的质量比例与实际沥青中的比例接近;对于同一种组分中的不同分子类型,通过小幅度的调试使得每种分子类型数量尽量接近;
步骤三、根据沥青分子配比计算结果,对沥青分子模型进行优化;根据沥青分子配比计算结果,使用Materials studio软件中的COMPASS力场,分子动力学计算时间步长为1fs,利用Materials Studio软件中的Forcite模块,对沥青分子进行Medium质量的几何优化,算法选择Smart,能量收敛精度为0.001kcal/mol,范德华力采用Atom Based方法,所述AtomBased方法的截断半径为最大迭代步数设置为1000步,之后通过由各种沥青分子模型构成的系统弛豫使所述系统达到平衡状态,通过对比计算得到的模型与实际沥青的密度数值以及径向分布函数,验证沥青分子模型的准确性;
步骤四、玉米秸秆分子模型构建;将玉米秸秆纤维成分进行简化,认为其完全由含量最高的纤维素组成,并以纤维素Ⅰβ构型的纤维素晶体结构近似代表玉米秸秆纤维;首先在Materials Studio软件中使用Crystals模块建立空间群,之后在Lattice Parameters中输入晶胞的长度以及角度,之后利用Add Atom任务栏来添加原子,在构建完初始模型后使用Adjust Hydrogen工具添加氢原子,从而得到纤维素的晶胞模型;之后利用Forcite模块对纤维素晶胞进行Medium质量的几何优化,选用周期性边界条件,选择Smart算法,能量收敛精度为0.001kcal/mol,范德华力采用Atom Based方法,截断半径为最大迭代步数设置为1000步;
步骤五、界面模型构建与模拟计算;对优化后的玉米纤维素晶胞模型,利用Surfaces模块中的Cleave Surface工具进行切割,在(-100)方向上切出厚度为的晶体表面,最后构建一个面积为/>的超晶胞;之后利用Build Layers工具将纤维素超晶胞晶体模型与沥青分子模型拼接在一起,建立具有三维周期性条件的模型结构,与此同时在盒子边界与沥青分子模型之间建立一个厚度为/>的真空层,最后在Forcite模块中使用Medium质量的Dynamics工具,在正测系统以及298K下运行100ps的分子动力学模拟计算,时间步长为1fs;
步骤六、通过分子扩散系数D对沥青分子模型的扩散行为进行描述,进而评价玉米秸秆纤维在不同条件下对于沥青中不同组分的吸附能力,其中扩散系数D越大,分子扩散速率越快,即玉米秸秆纤维在当前条件下对沥青中的该组分吸附能力越强;扩散系数D表达式为:
式中:MSD为均方位移,作为反映粒子运动规律的指标参数,t表示时间;
MSD计算公式如下:
MSD(t)=<|r(t)-r(0)|2>
其中:﹤﹥为由各种沥青分子模型构成的系统内所有原子的平均,r(t)和r(0)分别表示为粒子在t时刻的位置矢量以及初始位置矢量,扩散系数D通过MSD与t线性拟合得到,数值为MSD变化曲线斜率的1/6。
2.根据权利要求1所述的一种基于分子模拟玉米秸秆纤维吸附沥青效果的评价方法,其特征在于:所述通过对比计算得到的模型与实际沥青的密度数值以及径向分布函数,其计算公式为:
其中:g(r)为在距离中心粒子r的位置出现其它粒子的概率;dN为距离中心粒子r的位置,球面区域的其他粒子数量;ρ为由各种沥青分子模型构成的系统密度;dr为球面区域的厚度;r为距离中心粒子的距离。
CN202111358227.XA 2021-11-16 2021-11-16 一种基于分子模拟玉米秸秆纤维吸附沥青效果的评价方法 Active CN114088819B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111358227.XA CN114088819B (zh) 2021-11-16 2021-11-16 一种基于分子模拟玉米秸秆纤维吸附沥青效果的评价方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111358227.XA CN114088819B (zh) 2021-11-16 2021-11-16 一种基于分子模拟玉米秸秆纤维吸附沥青效果的评价方法

Publications (2)

Publication Number Publication Date
CN114088819A CN114088819A (zh) 2022-02-25
CN114088819B true CN114088819B (zh) 2024-01-05

Family

ID=80301121

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111358227.XA Active CN114088819B (zh) 2021-11-16 2021-11-16 一种基于分子模拟玉米秸秆纤维吸附沥青效果的评价方法

Country Status (1)

Country Link
CN (1) CN114088819B (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107988784A (zh) * 2017-11-28 2018-05-04 哈尔滨工业大学 沥青路用玉米秸秆纤维材料的制备方法及其应用
CN108977186A (zh) * 2018-07-04 2018-12-11 东北石油大学 用于抑制或清除稠油沥青质沉积的纳米粒子及其制备方法
CN110124623A (zh) * 2019-05-21 2019-08-16 南昌大学 一种改性玉米秸秆纤维素吸附剂、制备方法及用途
GB202018479D0 (en) * 2020-10-29 2021-01-06 Univ South China Normal A straw fiber adsorption material, its preparation methods and applications
WO2021004103A1 (zh) * 2019-07-11 2021-01-14 中国科学院城市环境研究所 一种秸秆与污泥协同处理的装置及其方法
CN113160897A (zh) * 2021-03-26 2021-07-23 东南大学 一种石墨烯改性沥青抗裂性能评价方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107988784A (zh) * 2017-11-28 2018-05-04 哈尔滨工业大学 沥青路用玉米秸秆纤维材料的制备方法及其应用
CN108977186A (zh) * 2018-07-04 2018-12-11 东北石油大学 用于抑制或清除稠油沥青质沉积的纳米粒子及其制备方法
CN110124623A (zh) * 2019-05-21 2019-08-16 南昌大学 一种改性玉米秸秆纤维素吸附剂、制备方法及用途
WO2021004103A1 (zh) * 2019-07-11 2021-01-14 中国科学院城市环境研究所 一种秸秆与污泥协同处理的装置及其方法
GB202018479D0 (en) * 2020-10-29 2021-01-06 Univ South China Normal A straw fiber adsorption material, its preparation methods and applications
CN113160897A (zh) * 2021-03-26 2021-07-23 东南大学 一种石墨烯改性沥青抗裂性能评价方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
Preparation Method of Corn Stalk Fiber Material and Its Performance Investigation in Asphalt Concrete;Zining Chen 等;Sustainability;全文 *
Properties of asphalt binder modified by corn stalk fiber;Zining Chen 等;Construction and Building Materials;第212卷;全文 *
改性玉米秸秆对水中磷酸根的吸附动力学研究;王宇 等;环境科学(第03期);全文 *
玉米秸秆生物炭对水中对苯醌的吸附性能研究;李国亭 等;华北水利水电大学学报(自然科学版)(第04期);全文 *
秸秆纤维路用性能试验研究;郎森 等;武汉工业学院学报(第01期);全文 *

Also Published As

Publication number Publication date
CN114088819A (zh) 2022-02-25

Similar Documents

Publication Publication Date Title
Fan et al. A novel method for analyzing the effect of dust accumulation on energy efficiency loss in photovoltaic (PV) system
Yang et al. PM2. 5 concentrations forecasting in Beijing through deep learning with different inputs, model structures and forecast time
Jiang et al. Aerosols from fires: An examination of the effects on ozone photochemistry in the Western United States
Itahashi et al. Source contributions of sulfate aerosol over East Asia estimated by CMAQ-DDM
Witek et al. Global sea‐salt modeling: Results and validation against multicampaign shipboard measurements
Street et al. Urban heat island in Boston–an evaluation of urban air temperature models for predicting building energy use
Luo et al. Optical modeling of black carbon with different coating materials: The effect of coating configurations
Li et al. Impact of urban roughness representation on regional hydrometeorology: An idealized study
CN107908847A (zh) 一种考虑荷载与高温间隙的沥青路面抗车辙性能模拟方法
Bao et al. Debris flow prediction and prevention in reservoir area based on finite volume type shallow-water model: a case study of pumped-storage hydroelectric power station site in Yi County, Hebei, China
Paudyal et al. Soiling-induced transmittance losses in solar PV modules installed in Kathmandu Valley
Yerramsetti et al. Role of nitrogen oxides, black carbon, and meteorological parameters on the variation of surface ozone levels at a tropical urban site–Hyderabad, India
CN114088819B (zh) 一种基于分子模拟玉米秸秆纤维吸附沥青效果的评价方法
Deng et al. A freezing-thawing damage characterization method for highway subgrade in seasonally frozen regions based on thermal-hydraulic-mechanical coupling model
Zhao et al. Impact of meteorological conditions at multiple scales on ozone concentration in the Yangtze River Delta
Xu et al. Permeability control and flood risk assessment of urban underlying surface: a case study of Runcheng south area, Kunming
Valger et al. CFD methods in architecture and city planning
Zhang et al. Examining the impact of nitrous acid chemistry on ozone and PM over the Pearl River Delta Region
Seshadri et al. Parametric design of an additively manufactured building façade for bespoke response to solar radiation
Shen et al. Evaluating the impacts of updated aerodynamic roughness length in the WRF/Chem model over Pearl River Delta
Pleim et al. A new aerosol dry deposition model for air quality and climate modeling
Cao et al. Exploring the impact of landscape ecological risk on water quality in the Danjiangkou Reservoir, China
Zhang et al. Lensing effect of black carbon with brown coatings: Dominant microphysics and parameterization
Zhou et al. The impact of urban morphology on multiple ecological effects: Coupling relationships and collaborative optimization strategies
Feng et al. Improving surface wind speed forecasts using an offline surface multilayer model with optimal ground forcing

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant