CN114062464A - 一种小尺寸极限电流型氧化锆氧传感器芯体及其制备方法 - Google Patents

一种小尺寸极限电流型氧化锆氧传感器芯体及其制备方法 Download PDF

Info

Publication number
CN114062464A
CN114062464A CN202111489395.2A CN202111489395A CN114062464A CN 114062464 A CN114062464 A CN 114062464A CN 202111489395 A CN202111489395 A CN 202111489395A CN 114062464 A CN114062464 A CN 114062464A
Authority
CN
China
Prior art keywords
layer
porous
sputtering
electrode
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202111489395.2A
Other languages
English (en)
Inventor
高峰
孙志檬
李春贺
刘皓
孙俊杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mingshi Innovation Industry Technology Research Institute Co ltd
Mingshi Innovation Yantai Micro Nano Sensor Technology Research Institute Co ltd
Original Assignee
Mingshi Innovation Industry Technology Research Institute Co ltd
Mingshi Innovation Yantai Micro Nano Sensor Technology Research Institute Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mingshi Innovation Industry Technology Research Institute Co ltd, Mingshi Innovation Yantai Micro Nano Sensor Technology Research Institute Co ltd filed Critical Mingshi Innovation Industry Technology Research Institute Co ltd
Priority to CN202111489395.2A priority Critical patent/CN114062464A/zh
Publication of CN114062464A publication Critical patent/CN114062464A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/406Cells and probes with solid electrolytes
    • G01N27/407Cells and probes with solid electrolytes for investigating or analysing gases
    • G01N27/4071Cells and probes with solid electrolytes for investigating or analysing gases using sensor elements of laminated structure
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/081Oxides of aluminium, magnesium or beryllium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/083Oxides of refractory metals or yttrium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • C23C14/352Sputtering by application of a magnetic field, e.g. magnetron sputtering using more than one target
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/406Cells and probes with solid electrolytes
    • G01N27/407Cells and probes with solid electrolytes for investigating or analysing gases
    • G01N27/409Oxygen concentration cells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/417Systems using cells, i.e. more than one cell and probes with solid electrolytes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electrochemistry (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Measuring Oxygen Concentration In Cells (AREA)

Abstract

本发明涉及氧传感器技术领域,特别涉及一种小尺寸极限电流型氧化锆氧传感器芯体,自上而下依次包括多孔Pt电极阳极层、YSZ固体电解质层、多孔Pt电极阴极层、绝缘层和加热电极层,多孔Pt电极阳极层、多孔Pt电极阴极层和加热电极层均连接有导电丝。以此减少YSZ固体电解质层的层数,减少测氧时氧气的扩散路径,进而降低响应时间,使其快速响应。同时,还提供了相应的制造方法,采用该方法可以制造微米级尺寸芯体;芯体各功能层的总厚度在1.1μm‑24μm,很大程度上降低了芯体的厚度,进而在后续加热处理时可以降低功耗并改善加热不均匀性。

Description

一种小尺寸极限电流型氧化锆氧传感器芯体及其制备方法
技术领域
本发明涉及氧传感器技术领域,特别涉及一种小尺寸极限电流型氧化锆氧传感器芯体及其制备方法。
背景技术
极限电流型氧化锆氧传感器由于其具有响应速度快,无需参比气体且对密封性要求不高等优势,在医疗、工业、汽车、仓储等多个领具有广泛的应用。以氧化锆为固体电解质的氧传感器其工作温度要求在650℃及以上,故需提供一个加热电压使其正常工作。
目前制备氧化锆固体电解质氧传感器芯体方法大多为陶瓷流延工艺,单层流延生坯厚度一般控制在0.03-2.5mm,整个芯体一般需要2~3层固体电解质,将各个功能层叠加之后芯体厚度达到毫米级,使得在对其进行加热处理时消耗大量能量,且不能保证加热一致性;随着应用场景和应用需求的增加和扩展,对于低功耗、小尺寸、快速响应、高精度氧传感器的需求更加迫切;传统陶瓷流延工艺难以实现芯体各功能层尺寸减小至微米甚至纳米级,且无法保证其精度,从而使氧传感器最终性能出现偏差。
因此,亟需针对小尺寸极限电流氧传感器芯体及其制备工艺。
发明内容
本发明的目的在于克服现有技术中存在的缺陷与不足,为此本发明提供了一种小尺寸极限电流型氧化锆氧传感器芯体及其制备方法,能够制得微米级尺寸芯体,可以降低功耗,改善加热的均匀性,提升氧传感器的精度。
为了实现上述目的,本发明提供了一种小尺寸极限电流型氧化锆氧传感器芯体,自上而下依次包括多孔Pt电极阳极层、YSZ固体电解质层、多孔Pt电极阴极层、绝缘层和加热电极层,所述多孔Pt电极阳极层、多孔Pt电极阴极层和加热电极层均连接有导电丝;所述小尺寸极限电流型氧化锆氧传感器芯体的总厚度为1.1μm-24μm。
进一步地,所述多孔Pt电极阳极层的厚度为0.2μm-3μm。
进一步地,所述YSZ固体电解质层的厚度为0.3μm-12μm。
进一步地,所述多孔Pt电极阴极层的厚度为0.2μm-3μm。
进一步地,所述绝缘层的厚度为0.2μm-3μm。
进一步地,所述加热电极层的厚度为0.2μm-3μm。
进一步地,所述绝缘层的形状与所述加热电极层的形状保持一致,所述绝缘层的形状为S形。
本发明还提供了一种上述小尺寸极限电流型氧化锆氧传感器芯体的制造方法,其步骤为:
步骤1、准备一个硅衬底,对硅衬底先用丙酮进行超声清洗10min-20min,再用无水乙醇超声清洗10min-30min,之后在去离子水中清洗10min-20min,将硅衬底吹干;
步骤2、将步骤1中吹干的硅衬底固定在多靶磁控溅射设备中溅射室的衬底盘上,将溅射室真空抽至4×10-5Pa-6×10-3Pa,向溅射室内通入氧气与氩气的混合气体,混合气体的流速为16sccm-75sccm;所述氧气和氩气的体积比为1:1-1:20;
步骤3、调整溅射室内的压力,并在硅衬底上进行功能层的薄膜沉积,功能层在硅基底上沉积的顺序依次包括多孔Pt电极阳极层、YSZ固体电解质层、多孔Pt电极阴极层、绝缘层和加热电极层;功能层的总厚度为1.1μm-24μm;
步骤4、将功能层放进退火炉中进行热退火处理,退火温度为500℃-1000℃,退火时间为0.5h-1.5h,以消除在磁控溅射过程中功能层的残留应力;
步骤5、将功能层冷却至室温,将多孔Pt电极阳极层、多孔Pt电极阴极层和加热电极层熔接相应的导电丝,得到小尺寸极限电流型氧化锆氧传感器芯体。
进一步地,所述步骤3包括以下步骤:
步骤3-1、溅射多孔Pt电极阳极层时,采用直流溅射的方式溅射沉积;溅射室的压力为20Pa-80Pa,薄膜沉积的速度为6nm/min-15nm/min,以得到厚度为0.2μm-3μm的多孔Pt电极阳极层;
步骤3-2、溅射YSZ固体电解质层时,采用射频溅射的方式溅射沉积,YSZ固体电解质层的材质为三氧化二钇和氧化锆,三氧化二钇的质量百分比为3mol%-8mol%;靶基距为90mm,溅射室的压力为0.1Pa-0.75Pa,薄膜沉积的速度为2nm/min-5nm/min,以得到厚度为0.3μm-12μm的YSZ固体电解质层;
步骤3-3、溅射多孔Pt电极阴极层时,采用直流溅射的方式溅射沉积;沉积功率保持在400W,溅射室的压力为20Pa-80Pa,薄膜沉积的速度为6nm/min-15nm/min,以得到厚度为0.2μm-3μm的多孔Pt电极阴极层;
步骤3-4、溅射绝缘层时,采用射频溅射的方式溅射沉积;绝缘层的材质为纯度达99%以上的氧化铝,沉积功率保持在400W,溅射室压力为0.1Pa-0.75Pa,薄膜沉积速度为2nm/min-5nm/min,以得到厚度为0.2μm-3μm的绝缘层;
步骤3-5、溅射加热电极层时,采用直流溅射的方式溅射沉积;溅射室的压力为0.1Pa-0.75Pa,薄膜沉积的速度为2nm/min-5nm/min,以得到厚度为0.2μm-3μm的加热电极层。
与现有技术相比,本发明的有益效果是:满足对于低功耗、小尺寸、快速响应、高精度氧传感器的需求,本发明利用薄膜沉积工艺制备出厚度在微米级的小尺寸芯体,且该芯体只需要一层YSZ固体电解质。具体如下:
(1)芯体尺寸小型化,即制备的芯体各功能层的总厚度在1.1μm-24μm,很大程度上降低了芯体的厚度,进而在后续加热处理时可以降低功耗并改善加热不均匀性;
(2)加热均匀,测氧浓度精度高。芯体中加热电极采用S型分布,此时可以使YSZ固体电解质层的各个位置尤其是边角位置能同时均匀受热,进一步可以保证氧气在经过YSZ固体电解质层时,其输运特性保持一致,从而提升氧传感器的精度;
(3)芯体只需要一层YSZ固体电解质,不需要额外带有一定形状的其他YSZ层;同时,绝缘层形状和加热电极层保持一致,不会对氧气的扩散造成阻挡,因此,不需要额外增加带有一定形状的YSZ层形成氧气扩散通道;
(4)快速响应。YSZ固体电解质层数为一层,可以减少测氧时氧气的扩散路径,进而降低响应时间,使其快速响应。
附图说明
图1为本发明的小尺寸极限电流型氧化锆氧传感器芯体的结构示意图。
图2为图1的俯视图。
图3为图1的仰视图。
其中:1、多孔Pt电极阳极层;2、YSZ固体电解质层;3、多孔Pt电极阴极层;4、绝缘层;5、加热电极层;6、导电丝。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
实施例
请参阅图1至图3,本发明提供了一种小尺寸极限电流型氧化锆氧传感器芯体及其制备方法,自上而下依次包括多孔Pt电极阳极层1、YSZ固体电解质层2、多孔Pt电极阴极层3、绝缘层4和加热电极层5,多孔Pt电极阳极层1、多孔Pt电极阴极层3和加热电极层5均连接有导电丝6;该小尺寸极限电流型氧化锆氧传感器芯体的总厚度为1.1μm-24μm。
优选地,多孔Pt电极阳极层1的厚度为0.2μm-3μm。
优选地,YSZ固体电解质层2的厚度为0.3μm-12μm。
优选地,多孔Pt电极阴极层3的厚度为0.2μm-3μm。
优选地,绝缘层4的厚度为0.2μm-3μm。这里绝缘层4的材质可以是纯度达99%以上的氧化铝。
优选地,加热电极层5的厚度为0.2μm-3μm。
优选地,绝缘层4的形状与加热电极层5的形状保持一致,绝缘层4的形状为S形。
根据上述本发明的结构,本发明还提供了一种小尺寸极限电流型氧化锆氧传感器芯体的制造方法,其步骤为:
步骤1、准备一个硅衬底,对硅衬底先用丙酮进行超声清洗10min-20min,再用无水乙醇超声清洗10min-30min,之后在去离子水中清洗10min-20min,将硅衬底吹干;
步骤2、将步骤1中吹干的硅衬底固定在多靶磁控溅射设备中溅射室的衬底盘上,将溅射室真空抽至4×10-5Pa-6×10-3Pa,向溅射室内通入氧气与氩气的混合气体,混合气体的流速为16sccm-75sccm;氧气和氩气的体积比为1:1-1:20;
步骤3、调整溅射室内的压力,并在硅衬底上进行功能层的薄膜沉积,功能层在硅基底上沉积的顺序依次包括多孔Pt电极阳极层1、YSZ固体电解质层2、多孔Pt电极阴极层3、绝缘层4和加热电极层5;功能层的总厚度为1.1μm-24μm;
步骤4、将功能层放进退火炉中进行热退火处理,退火温度为500℃-1000℃,退火时间为0.5h-1.5h,以消除在磁控溅射过程中功能层的残留应力;
步骤5、将功能层冷却至室温,将多孔Pt电极阳极层1、多孔Pt电极阴极层3和加热电极层5熔接相应的导电丝6,得到小尺寸极限电流型氧化锆氧传感器芯体。
优选地,步骤3包括以下步骤:
步骤3-1、溅射多孔Pt电极阳极层1时,采用直流溅射的方式溅射沉积;溅射室的压力为20Pa-80Pa,薄膜沉积的速度为6nm/min-15nm/min,以得到厚度为0.2μm-3μm的多孔Pt电极阳极层1;这种多孔Pt电极阳极层1能够进行气体的扩散。
步骤3-2、溅射YSZ固体电解质层2时,采用射频溅射的方式溅射沉积,YSZ固体电解质层2的材质为三氧化二钇和氧化锆,三氧化二钇的质量百分比为3mol%-8mol%,也就是说,YSZ固体电解质层2的材质是一种钇稳定氧化锆固体电解质;靶基距为90mm,溅射室的压力为0.1Pa-0.75Pa,薄膜沉积的速度为2nm/min-5nm/min,以得到厚度为0.3μm-12μm的YSZ固体电解质层2;
步骤3-3、溅射多孔Pt电极阴极层3时,采用直流溅射的方式溅射沉积;沉积功率保持在400W,溅射室的压力为20Pa-80Pa,薄膜沉积的速度为6nm/min-15nm/min,以得到厚度为0.2μm-3μm的多孔Pt电极阴极层3;这种多孔Pt电极阴极层3能够进行气体的扩散。
步骤3-4、溅射绝缘层4时,采用射频溅射的方式溅射沉积;绝缘层(4)的材质为纯度达99%以上的氧化铝,沉积功率保持在400W,溅射室压力为0.1Pa-0.75Pa,薄膜沉积速度为2nm/min-5nm/min,以得到厚度为0.2μm-3μm的绝缘层4;
步骤3-5、溅射加热电极层5时,采用直流溅射的方式溅射沉积;溅射室的压力为0.1Pa-0.75Pa,薄膜沉积的速度为2nm/min-5nm/min,以得到厚度为0.2μm-3μm的加热电极层5。
上述这种绝缘层4能够防止加热电极层5工作时电流流向多孔Pt电极阴极层3,也不会对氧气的扩散造成阻挡。
上述的多靶磁控溅射设备是现有设备,其配置的电源为直流电源和射频电源,直流电源可用于金属薄膜的制备,射频电源可用于非金属膜的制备,多个靶可以满足多层或者多次镀膜的需要。具体可使用郑州成越科学仪器有限公司生产的磁控溅射镀膜仪,产品名称为三英寸三靶磁控溅射镀膜仪;产品型号为CY-MSP300S-2DC1RF;该镀膜仪配有两路高精度质量流量计,以满足复杂的气体环境构建需求;仪器标配先进的涡轮分子泵组,极限真空可达1.0E-5Pa,在电脑程序上可以实现真空泵组的控制、溅射电源的控制等功能。靶基距、溅射室的压力、衬底盘均与多靶磁控溅射设备相关,具体不再赘述。
本发明可用其他的不违背本发明的精神或主要特征的具体形式来概述。因此,无论从哪一点来看,本发明的上述实施方案都只能认为是对本发明的说明而不能限制本发明,权利要求书指出了本发明的范围,而上述的说明并未指出本发明的范围,因此,在与本发明的权利要求书相当的含义和范围内的任何改变,都应认为是包括在本发明的权利要求书的范围内。

Claims (9)

1.一种小尺寸极限电流型氧化锆氧传感器芯体,其特征在于,自上而下依次包括多孔Pt电极阳极层(1)、YSZ固体电解质层(2)、多孔Pt电极阴极层(3)、绝缘层(4)和加热电极层(5),所述多孔Pt电极阳极层(1)、多孔Pt电极阴极层(3)和加热电极层(5)均连接有导电丝(6);所述小尺寸极限电流型氧化锆氧传感器芯体的总厚度为1.1μm-24μm。
2.根据权利要求1所述的小尺寸极限电流型氧化锆氧传感器芯体,其特征在于,所述多孔Pt电极阳极层(1)的厚度为0.2μm-3μm。
3.根据权利要求2所述的小尺寸极限电流型氧化锆氧传感器芯体,其特征在于,所述YSZ固体电解质层(2)的厚度为0.3μm-12μm。
4.根据权利要求3所述的小尺寸极限电流型氧化锆氧传感器芯体,其特征在于,所述多孔Pt电极阴极层(3)的厚度为0.2μm-3μm。
5.根据权利要求4所述的小尺寸极限电流型氧化锆氧传感器芯体,其特征在于,所述绝缘层(4)的厚度为0.2μm-3μm。
6.根据权利要求5所述的小尺寸极限电流型氧化锆氧传感器芯体,其特征在于,所述加热电极层(5)的厚度为0.2μm-3μm。
7.根据权利要求6所述的小尺寸极限电流型氧化锆氧传感器芯体,其特征在于,所述绝缘层(4)的形状与所述加热电极层(5)的形状保持一致,所述绝缘层(4)的形状为S形。
8.根据权利要求7所述的小尺寸极限电流型氧化锆氧传感器芯体的制造方法,其特征在于,其步骤为:
步骤1、准备一个硅衬底,对硅衬底先用丙酮进行超声清洗10min-20min,再用无水乙醇超声清洗10min-30min,之后在去离子水中清洗10min-20min,将硅衬底吹干;
步骤2、将步骤1中吹干的硅衬底固定在多靶磁控溅射设备中溅射室的衬底盘上,将溅射室真空抽至4×10-5Pa-6×10-3Pa,向溅射室内通入氧气与氩气的混合气体,混合气体的流速为16sccm-75sccm;所述氧气和氩气的体积比为1:1-1:20;
步骤3、调整溅射室内的压力,并在硅衬底上进行功能层的薄膜沉积,功能层在硅基底上沉积的顺序依次包括多孔Pt电极阳极层(1)、YSZ固体电解质层(2)、多孔Pt电极阴极层(3)、绝缘层(4)和加热电极层(5);功能层的总厚度为1.1μm-24μm;
步骤4、将功能层放进退火炉中进行热退火处理,退火温度为500℃-1000℃,退火时间为0.5h-1.5h,以消除在磁控溅射过程中功能层的残留应力;
步骤5、将功能层冷却至室温,将多孔Pt电极阳极层(1)、多孔Pt电极阴极层(3)和加热电极层(5)熔接相应的导电丝(6),得到小尺寸极限电流型氧化锆氧传感器芯体。
9.根据权利要求8所述的小尺寸极限电流型氧化锆氧传感器芯体的制造方法,其特征在于,所述步骤3包括以下步骤:
步骤3-1、溅射多孔Pt电极阳极层(1)时,采用直流溅射的方式溅射沉积;溅射室的压力为20Pa-80Pa,薄膜沉积的速度为6nm/min-15nm/min,以得到厚度为0.2μm-3μm的多孔Pt电极阳极层(1);
步骤3-2、溅射YSZ固体电解质层(2)时,采用射频溅射的方式溅射沉积,YSZ固体电解质层(2)的材质为三氧化二钇和氧化锆,三氧化二钇的质量百分比为3mol%-8mol%;靶基距为90mm,溅射室的压力为0.1Pa-0.75Pa,薄膜沉积的速度为2nm/min-5nm/min,以得到厚度为0.3μm-12μm的YSZ固体电解质层(2);
步骤3-3、溅射多孔Pt电极阴极层(3)时,采用直流溅射的方式溅射沉积;沉积功率保持在400W,溅射室的压力为20Pa-80Pa,薄膜沉积的速度为6nm/min-15nm/min,以得到厚度为0.2μm-3μm的多孔Pt电极阴极层(3);
步骤3-4、溅射绝缘层(4)时,采用射频溅射的方式溅射沉积;绝缘层(4)的材质为纯度达99%以上的氧化铝,沉积功率保持在400W,溅射室压力为0.1Pa-0.75Pa,薄膜沉积速度为2nm/min-5nm/min,以得到厚度为0.2μm-3μm的绝缘层(4);
步骤3-5、溅射加热电极层(5)时,采用直流溅射的方式溅射沉积;溅射室的压力为0.1Pa-0.75Pa,薄膜沉积的速度为2nm/min-5nm/min,以得到厚度为0.2μm-3μm的加热电极层(5)。
CN202111489395.2A 2021-12-08 2021-12-08 一种小尺寸极限电流型氧化锆氧传感器芯体及其制备方法 Pending CN114062464A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111489395.2A CN114062464A (zh) 2021-12-08 2021-12-08 一种小尺寸极限电流型氧化锆氧传感器芯体及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111489395.2A CN114062464A (zh) 2021-12-08 2021-12-08 一种小尺寸极限电流型氧化锆氧传感器芯体及其制备方法

Publications (1)

Publication Number Publication Date
CN114062464A true CN114062464A (zh) 2022-02-18

Family

ID=80228863

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111489395.2A Pending CN114062464A (zh) 2021-12-08 2021-12-08 一种小尺寸极限电流型氧化锆氧传感器芯体及其制备方法

Country Status (1)

Country Link
CN (1) CN114062464A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114923973A (zh) * 2022-05-18 2022-08-19 明石创新(烟台)微纳传感技术研究院有限公司 高原制氧机专用小尺寸氧分压型氧传感器及其制备方法
CN115166008A (zh) * 2022-07-08 2022-10-11 明石创新(烟台)微纳传感技术研究院有限公司 一种氧分压型氧传感器及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005201841A (ja) * 2004-01-19 2005-07-28 Hitachi Ltd 酸素濃度検出素子及びその製造方法
CN101949882A (zh) * 2010-08-31 2011-01-19 郑龙华 平板式氧传感器芯片结构及其制造方法
DE102012208387A1 (de) * 2012-05-18 2013-11-21 Robert Bosch Gmbh Vorrichtung zur Erfassung mindestens eines Anteils mindestens einer Gaskomponente eines Gases in einem Messgasraum
CN210142096U (zh) * 2019-03-31 2020-03-13 苏州工业园区传世汽车电子有限公司 一种极限电流型氧传感器
CN216646336U (zh) * 2021-12-08 2022-05-31 明石创新(烟台)微纳传感技术研究院有限公司 一种小尺寸极限电流型氧化锆氧传感器芯体

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005201841A (ja) * 2004-01-19 2005-07-28 Hitachi Ltd 酸素濃度検出素子及びその製造方法
CN101949882A (zh) * 2010-08-31 2011-01-19 郑龙华 平板式氧传感器芯片结构及其制造方法
DE102012208387A1 (de) * 2012-05-18 2013-11-21 Robert Bosch Gmbh Vorrichtung zur Erfassung mindestens eines Anteils mindestens einer Gaskomponente eines Gases in einem Messgasraum
CN210142096U (zh) * 2019-03-31 2020-03-13 苏州工业园区传世汽车电子有限公司 一种极限电流型氧传感器
CN216646336U (zh) * 2021-12-08 2022-05-31 明石创新(烟台)微纳传感技术研究院有限公司 一种小尺寸极限电流型氧化锆氧传感器芯体

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114923973A (zh) * 2022-05-18 2022-08-19 明石创新(烟台)微纳传感技术研究院有限公司 高原制氧机专用小尺寸氧分压型氧传感器及其制备方法
CN114923973B (zh) * 2022-05-18 2023-10-20 明石创新(烟台)微纳传感技术研究院有限公司 高原制氧机专用小尺寸氧分压型氧传感器及其制备方法
CN115166008A (zh) * 2022-07-08 2022-10-11 明石创新(烟台)微纳传感技术研究院有限公司 一种氧分压型氧传感器及其制备方法
CN115166008B (zh) * 2022-07-08 2023-10-13 明石创新(烟台)微纳传感技术研究院有限公司 一种氧分压型氧传感器及其制备方法

Similar Documents

Publication Publication Date Title
CN114062464A (zh) 一种小尺寸极限电流型氧化锆氧传感器芯体及其制备方法
EP3229298B1 (en) Membrane electrode assembly and solid oxide fuel cell
Li et al. Effect of densification processes on the properties of plasma-sprayed YSZ electrolyte coatings for solid oxide fuel cells
JP5421101B2 (ja) 導電性層を製作する方法
CN103872367B (zh) 一种固体氧化物燃料电池氧化锆基电解质薄膜
Hedayat et al. Fabrication of anode-supported microtubular solid oxide fuel cells by sequential dip-coating and reduced sintering steps
CN216646336U (zh) 一种小尺寸极限电流型氧化锆氧传感器芯体
Marcano et al. Manufacturing of high performance solid oxide fuel cells (SOFCs) with atmospheric plasma spraying (APS) and plasma spray-physical vapor deposition (PS-PVD)
US5395704A (en) Solid-oxide fuel cells
US20180138533A1 (en) Membrane electrode assembly and solid oxide fuel cell
Lu et al. Enhanced performance of an anode-supported YSZ thin electrolyte fuel cell with a laser-deposited Sm0. 2Ce0. 8O1. 9 interlayer
He et al. Electron beam physical vapor deposition of YSZ electrolyte coatings for SOFCs
Sochugov et al. The effect of pulsed electron beam pretreatment of magnetron sputtered ZrO2: Y2O3 films on the performance of IT-SOFC
Ha et al. Low temperature solid oxide fuel cells with proton-conducting Y: BaZrO3 electrolyte on porous anodic aluminum oxide substrate
Yang et al. Fabrication of YSZ/GDC bilayer electrolyte thin film for solid oxide fuel cells
WO2010085507A1 (en) Electrodes for fuel cells
Meng et al. Preparation of YSZ electrolyte coatings for SOFC by electron beam physical vapor deposition combined with a sol infiltration treatment
Hill et al. Fabricating Pinhole‐Free YSZ Sub‐Microthin Films by Magnetron Sputtering for Micro‐SOFCs
Fondard et al. Effect of total pressure on La2NiO4 coatings deposited by reactive magnetron sputtering using plasma emission monitoring
JP2018139180A (ja) 固体電解質部材の製造方法
CN104600324A (zh) 一种钙钛矿阴极薄膜及其制备方法
JPH09266000A (ja) 固体電解質型燃料電池及びその製造方法
JPH1012252A (ja) 固体電解質型燃料電池とその製造方法
US20200313218A1 (en) Method for manufacturing an electrolyte for solid oxide cells by magnetron cathode sputtering
US20080047826A1 (en) Protective coating method of pervoskite structure for SOFC interconnection

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination