CN114058815B - 一种1150MPa级高强度高韧性易焊接纳米钢及其制备方法 - Google Patents

一种1150MPa级高强度高韧性易焊接纳米钢及其制备方法 Download PDF

Info

Publication number
CN114058815B
CN114058815B CN202111341987.XA CN202111341987A CN114058815B CN 114058815 B CN114058815 B CN 114058815B CN 202111341987 A CN202111341987 A CN 202111341987A CN 114058815 B CN114058815 B CN 114058815B
Authority
CN
China
Prior art keywords
steel
rolling
strength
toughness
nano
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111341987.XA
Other languages
English (en)
Other versions
CN114058815A (zh
Inventor
张中武
魏兴豪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Engineering University
Original Assignee
Harbin Engineering University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Engineering University filed Critical Harbin Engineering University
Priority to CN202111341987.XA priority Critical patent/CN114058815B/zh
Publication of CN114058815A publication Critical patent/CN114058815A/zh
Application granted granted Critical
Publication of CN114058815B publication Critical patent/CN114058815B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/04Making ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

本发明公开一种1150MPa级高强度高韧性易焊接钢及其制备方法,组成如下:按合金元素质量百分比计,C:0.05~0.08,Si:0.2~0.6,Mn:0.8~1.5,P≤0.005,S≤0.0015,Cu:2.0~3.5,Ni:6.0~9.0,Cr:0.5~1.5,Mo:0.5~1.0,Nb:0.02~0.1,Ti:0.01~0.05,Al:0.005~0.05,余量为Fe及不可避免的杂质,包括下述步骤:熔炼和精炼‑浇注成钢锭‑轧制‑热处理。本发明纳米钢屈服强度≥1150MPa,‑84℃夏比V缺口冲击功≥150J,延伸率≥15%,具有高强度、高韧性、高塑性、易焊接的特点。

Description

一种1150MPa级高强度高韧性易焊接纳米钢及其制备方法
技术领域
本发明属于合金钢领域,具体涉及一种1150MPa级高强度高韧性易焊接纳米钢及其制造方法,可用于舰船、海洋工程装备、管道、重型机械装备等领域。
背景技术
随着工业社会的快速发展,人们对于钢铁材料综合性能的需求越来越高,要求钢板具有超高强度、超高韧性以及优良的焊接性能。传统高强度钢的强化机制主要为含碳量较高的马氏体或下贝氏体结构。为了保证有足够的淬透性,通常需添加较高含量的C、Ni、Cr、Mo、V等合金元素,导致材料的碳当量高,焊接性差。目前1100MPa以上级别高强钢大多仍采用低碳加微合金元素的成分设计,较高碳含量导致塑韧性和焊接性能都不理想。
公开号为CN110578095A、CN104513936B和CN111910129A等专利文件中,都公开了屈服强度大于1100MPa的高强钢及其制造方法,但其碳含量均高于0.1%不易焊接,且低温韧性均远低于本发明。
公开号为CN108486505A的专利文件中,公开了一种1200MPa级硅锰铬系热轧低碳钢及其制备方法,其抗拉强度大于1250Mpa,但屈服强度不足1150MPa,且仅对-20℃冲击性能进行了表征,在-20℃不足120J。
公开号为CN110358971B的专利文件中,公开了一种屈服强度1300MPa级的低碳超高强钢及其制备方法,通过添加1.5~2.5%的铜进行沉淀强化,屈服强度大于1300MPa,但是低温韧性较差,-60℃冲击功不足50J。
公开号为CN106636961A的专利文件中,公开了一种Cu纳米相强化易焊接钢及制备方法,其铝含量较高,低温韧性不足。
综上所述,目前还没有一种能够同时满足高强度、高韧性以及良好的焊接性能的钢铁材料,这对传统的组织设计思路和热处理工艺来说都是极大的挑战。
纳米相强化是一种有效的提高强度的同时不损失塑韧性的强化方法,通过使用Cu纳米析出相强化来代替传统的碳强化,同时超低的含碳量也可以达到更好的焊接性能。本发明采用创造性的成分设计,形成富铜、镍、锰、铝的具有层级结构的复合纳米相,利用其细小尺寸(半径5纳米以下)和高的稳定性提高强度和塑韧性。本发明控制了铝元素在较低的水平,同时采用了二次精炼和轧后缓冷和特定的热处理工艺,可以生产更大厚度的钢板。本发明的1150MPa级高强度高韧性易焊接纳米钢可在更严苛的条件下服役。
发明内容
发明目的:本发明旨在提供一种1150MPa级高强度高韧性易焊接钢及其制备方法,可满足对于钢板高强度、高韧性和良好的焊接性能的要求,通过固溶处理加时效处理两步热处理工艺,钢板的屈服强度≥1150MPa,-84℃的夏比V缺口冲击功≥150J,延伸率≥15%。
本发明的技术方案是:
一种1150MPa级高强度高韧性易焊接纳米钢的制备方法,包括如下步骤:
(1)熔炼和精炼:采用高炉铁水或者电炉冶炼的铁水,吹氧脱磷脱碳,铝脱氧,再转入钢包炉精炼,并同时加入合金材料,调整成分至目标成分,然后再VD真空炉中进行脱氢脱氧;
(2)浇注成钢锭:采用模铸的方法将冶炼完成的铁水浇注成钢锭,铸锭堆垛缓冷24小时以上;
(3)轧制:将铸坯加热至1120~1160℃,保温2~6小时,轧前用高压水除净氧化铁皮,轧制过程中采用高压水除磷;轧制包括粗轧和精轧,粗轧采用大压下量轧制,其中至少有三道次压下率大于15%,粗轧温度控制在980~1130℃;精轧开轧温度为930~1030℃,终轧温度高于900℃;
(4)热处理:钢板经750℃~950℃保温一定时间后超快冷淬火至室温,淬火保温时间t=30+(H-10)×1.5,单位为min,H为成品钢板厚度,单位为mm;随后在550~700℃回火,空冷至室温,回火保持时间为t=60+(H-10)×2.5,单位为min,H为成品钢板厚度,单位为mm。
一种1150MPa级高强度高韧性易焊接纳米钢,微组织由超低碳板条马氏体或下贝氏体组织和片状逆转变变奥氏体组成。
所述纳米钢屈服强度≥1150MPa,-84℃夏比V缺口冲击功≥150J,延伸率≥15%。
本发明相比现有技术具有以下有益效果:
1、本发明的1150MPa级高强度高韧性易焊接纳米钢通过使用高数量密度细小的具有层级结构的富铜、镍、锰、铝复合纳米相强化代替传统的碳强化,含碳量较低,焊接性能好。高的强韧性提高了大重型钢结构的安全稳定性,良好的焊接性节省了构件制造的成本,特别是对于超高强度钢板,焊接冷裂纹敏感性大幅度减少,焊接预热、后热温度降低、热出入量范围更宽,大大降低了成本。
2、本发明的1150MPa级高强度高韧性易焊接纳米钢制备方法简单,工艺可控性强,容易实现工业化生产。
3、本发明的1150MPa级高强度高韧性易焊接钢通过调控轧制和热处理工艺,充分发挥了合金元素淬透、淬硬性的潜能,有效细化了原奥氏体和马氏体板条束的尺寸,保证了较高密度的大角度晶界,获得了优异的强度和低温韧性匹配。
附图说明
图1实施例1的光学显微镜照片;
图2实施例1的工程应力应变曲线。
具体实施方式
下面结合附图和实施例对本发明申请作进一步的说明:
本发明所述的一种1150MPa级高强度高韧性易焊接纳米钢及其制备方法,该高强钢的组成如下:按质量百分比计,C:0.05~0.08,Si:0.2~0.6,Mn:0.8~1.5,P≤0.005,S≤0.0015,Cu:2.0~3.5,Ni:6.0~9.0,Cr:0.5~1.5,Mo:0.5~1.0,Nb:0.02~0.1,Ti:0.01~0.05,Al:0.005~0.05,余量为Fe及不可避免的杂质。
该1150MPa级高强度高韧性易焊接钢的发明原理及成分设计依据如下:
发明原理:本发明的1150MPa级高强度高韧性易焊接纳米钢的显微组织为板条马氏体或下贝氏体、富铜、镍、锰、铝的具有层级结构的复合纳米相和逆变奥氏体。为了保证钢的焊接性,本发明的设计思路是尽可能降碳含量和合金元素的碳当量来提高焊接性。碳含量和合金元素碳当量降低后,会引发强度剧烈下降。为了满足强度要求,提出新的强化方式:一是通过成分和热机械处理设计实现高数量密度细小的具有层级结构的富铜、镍、锰、铝复合纳米相(纳米相数量密度每立方米1023以上,纳米相尺寸小于10nm);二是在纳米相沉淀强化的同时控制基体相显微结构实现板条马氏体的细晶强化和超低碳板条马氏体或下贝氏体的位错强化;四是合金元素的固溶强化。沉淀强化主要来自合金中添加的铜、镍和锰元素在时效过程中析出,均匀分布在基体相中,阻碍位错运动起到强化作用。细晶强化一是由于Nb等元素的化合物在再结晶粗轧阶段钉扎晶界,以及随后的非在结晶区精轧阶段进一步细化奥氏体晶粒尺寸,二是由于板条马氏体的有效晶粒尺寸为板条束尺寸,板条束的尺寸仅为原奥氏体尺寸的几分之一,因此细晶强化带来很大的强度贡献。位错强化主要来自于板条马氏体中的高密度位错。固溶强化来自添加的各种合金元素带来的强化。钢的优异低温韧性由逆变奥氏体保证。通过控制纳米相析出过程,调控基体相成分,在纳米相析出的同时形成逆变奥氏体,并通过本发明的工艺方案控制逆变奥氏体的形态、分布等特性保证优异的低温韧性。
为了保证淬火后能得到足够多的板条马氏体,本发明采用理想临界直径DI来模拟计算不同合金成分的淬透性,通过调整合金成分使DI大于钢板厚度的1.5倍来保证中厚板的心部也有足够比例的马氏体来提供细晶强化和位错强化,保证了材料的强度。
本发明采用的理想临界直径DI公式的参数为本系列高强钢实验总结得出,其更符合本类钢种,根据碳和合金元素因子计算理想临界直径DI。
本发明钢的韧性主要来自板条马氏体对于裂纹扩展的阻碍作用和逆转变奥氏体钝化裂纹尖端抑制裂纹萌生和扩展,同时对于磷、硫等杂质元素含量和夹杂物的控制。通过调控合金的理想临界直径DI来控制中厚板钢心部的板条马氏体的数量密度,通过VD真空脱气来控制杂质元素和夹杂物的含量,保证了中厚板钢心部的韧性可以达到较高的水平。
成分设计依据:
C:碳是固溶强化的元素,对于强度的提升具有重要的作用。传统钢铁材料主要通过碳的固溶强化来提升强度,但是过量的碳在回火的过程中会形成大块的脆性渗碳体严重影响韧性,同时高的碳含量的增加会对焊接性造成影响。本发明通过使用纳米相强化代替了传统的的碳强化,所以碳含量控制在了0.05~0.08%。
Cu:铜是析出相的最主要的形成元素,可以通过形成纳米级沉淀相在不损失塑、韧性的情况下提高强度,同时铜也有细化晶粒的效果。铜含量过低会影响强化效果,过高容易产生热脆,影响焊接和热加工。因此本发明的铜含量控制在2.0~3.5%。
Ni:镍是纳米析出相形成的主要元素之一,形成B2有序结构包裹在铜元素形成的沉淀相表面,能够增加沉淀相的热稳定性,同时镍能够强化基体,显著提高低温韧性,本发明的镍含量控制在6.0~9.0%。
Mn:锰是纳米沉淀相的主要组成元素之一,同时也可以细化晶粒,提高钢材的强度和低温韧性,但是含量过高容易造成铸坯偏析、组织应力大、焊接性能下降等,本发明的锰含量控制在0.8~1.5%。
Al:铝是炼钢过程中的一种强脱氧元素,同时可以起到细化晶粒的效果,但是当含量过高时会促进钢中碳的石墨化倾向,并且降低细化晶粒的效果,本发明的铝含量控制在了0.005~0.05%。
Cr:铬可以增加钢的耐腐蚀性,同时提高淬透性并提高钢的回火稳定性。本发明的铬含量控制在0.5~1.5%。
Mo:钼可以增加钢的淬透性,细化晶粒,也可以形成碳化物提高强度,同时对于纳米沉淀相的形核具有促进作用。本发明的钼含量控制在0.5~1.0%。
Nb:铌可以形成碳氮化物钉扎奥氏体晶界,阻止晶粒长大,同时也能起到沉淀强化的作用提高强度。本发明的铌含量控制在0.02~0.1%。
Ti:钛可以形成碳氮化物钉扎晶界,细化晶粒。本发明的铌含量控制在0.01~0.05%
本发明所述的1150MPa级高强度高韧性易焊接钢及其制备方法,包括如下步骤:
转炉或电炉中冶炼成铁水→吹氧脱磷脱碳→LF钢包精炼→VD真空炉处理→铸造→铸坯加热→轧制→淬火→回火;
主要工序的具体操作如下:
1)熔炼和精炼:采用高炉铁水或者电炉冶炼的铁水,吹氧脱磷脱碳,铝脱氧,再转入钢包炉精炼,并同时加入合金材料,调整成分至目标成分,然后再VD真空炉中进行脱氢脱氧;
2)浇注成钢锭:采用模铸的方法将冶炼完成的铁水浇注成钢锭,铸锭堆垛缓冷24小时以上;
3)轧制:将铸坯加热至1120~1160℃,保温2~6小时,轧前用高压水除净氧化铁皮,轧制过程中采用高压水除磷。
轧制包括粗轧和精轧,粗轧采用大压下量轧制,其中至少有三道次压下率大于15%,粗轧温度控制在980~1130℃;精轧开轧温度为930~1030℃,终轧温度高于900℃。
4)热处理:钢板经750℃~950℃保温一定时间后超快冷淬火至室温,淬火保温时间t=30+(H-10)×1.5,单位为min,H为成品钢板厚度,单位为mm;随后在550~700℃回火,空冷至室温,回火保持时间为t=60+(H-10)×2.5,单位为min,H为成品钢板厚度,单位为mm。
本发明各实施例的化学成分见表1(质量百分比),余量为Fe及不可避免的杂质。
表1
C Si Mn P S Cu Ni Cr Mo Nb Ti Als
实施例1 0.050 0.21 0.82 0.003 0.0009 2.5 6.0 0.95 0.7 0.05 0.015 0.035
实施例2 0.079 0.55 1.32 0.004 0.0008 3.4 8.6 1.45 0.9 0.08 0.048 0.046
将钢锭加热至1120~1160℃,保温2~6小时,轧制包括粗轧和精轧两步,粗轧温度控制在980~1030℃;精轧开轧温度为930~1030℃,终轧温度高于900℃。
钢板经750℃~950℃保温一定时间后超快冷淬火至室温,淬火保温时间t=30+(H-10)×1.5,单位为min,H为成品钢板厚度,单位为mm;随后在550~700℃回火,空冷至室温,回火保持时间为t=60+(H-10)×2.5,单位为min,H为成品钢板厚度,单位为mm。
表2为各实施例主要轧制工艺参数。
表2为实施例1和实施例2的轧制工艺参数
表3为实施例1和实施例2的热处理工艺参数。
热处理后的钢板,横向取样加工成拉伸、冲击试样,进行力学性能测试,结果见表4。
本发明试验钢板强度、冲击韧性、延伸率性能优异,富裕量较大,低温韧性和塑性优异。
图1所示为实施例1中钢板组织结构图,组织为铁素体贝氏体+板条马氏体。该组织不仅保证了钢具有较好的强韧性,还保证在了较好的延伸率。
图2所示为实施例1中钢板的拉伸曲线。
本发明用途广泛,可以应用于于舰船、海洋工程、航空航天工程等关键结构。
本发明公开一种1150MPa级高强度高韧性易焊接钢及其制备方法,该高强度高韧性易焊接钢组成如下:按合金元素质量百分比计,C:0.05~0.08,Si:0.2~0.6,Mn:0.8~1.5,P≤0.005,S≤0.0015,Cu:2.0~3.5,Ni:6.0~9.0,Cr:0.5~1.5,Mo:0.5~1.0,Nb:0.02~0.1,Ti:0.01~0.05,Al:0.005~0.05,余量为Fe及不可避免的杂质。该高强度高韧性易焊接钢制备方法包括下述步骤:熔炼和精炼-浇注成钢锭-轧制-热处理。本发明的高强度高韧性易焊接钢在超低碳含量的情况下通过调整纳米沉淀相形成元素的含量和热机械处理工艺,析出大量纳米沉淀相提高强度的同时,通过控制逆变奥氏体形态、分布和体积分数优化塑性和低温韧性,可以达到屈服强度≥1150MPa,-84℃夏比V缺口冲击功≥150J,延伸率≥15%,具有高强度、高韧性、高塑性、易焊接的特点。本发明的高强度高韧性易焊接钢可广泛用于舰船、海洋工程、工程机械、桥梁、输油管道、航空航天工程等关键结构。
需要指出的是,以上例举的仅为本发明的具体实施例,显然本发明不限于以上实施例,而是根据需要有许多类似的变化。本领域的技术人员如果从本发明公开的内容直接导出或联想到相关设计,均应属于本发明的保护范围。

Claims (2)

1.一种1150MPa级高强度高韧性易焊接纳米钢的制备方法,其特征在于,包括如下步骤:
(1)熔炼和精炼:采用高炉铁水或者电炉冶炼的铁水,吹氧脱磷脱碳,铝脱氧,再转入钢包炉精炼,并同时加入合金材料,调整成分至目标成分,然后再VD真空炉中进行脱氢脱氧;
(2)浇注成钢锭:采用模铸的方法将冶炼完成的铁水浇注成钢锭,铸锭堆垛缓冷24小时以上;
(3)轧制:将铸坯加热至1120~1160℃,保温2~6小时,轧前用高压水除净氧化铁皮,轧制过程中采用高压水除磷;轧制包括粗轧和精轧,粗轧采用大压下量轧制,其中至少有三道次压下率大于15%,粗轧温度控制在980~1130℃;精轧开轧温度为930~1030℃,终轧温度高于900℃;
(4)热处理:钢板经750℃~950℃保温一定时间后超快冷淬火至室温,淬火保温时间t=30+(H-10)×1.5,单位为min,H为成品钢板厚度,单位为mm;随后在550~700℃回火,空冷至室温,回火保持时间为t=60+(H-10)×2.5,单位为min,H为成品钢板厚度,单位为mm;
所述纳米钢的组成如下:按质量百分比计,C:0.05~0.08,Si:0.2~0.6,Mn:0.8~1.5,P≤0.005,S≤0.0015,Cu:2.0~3.5,Ni:6.0~9.0,Cr:0.5~1.5,Mo:0.5~1.0,Nb:0.02~0.1,Ti:0.01~0.05,Al:0.005~0.05,余量为Fe及不可避免的杂质;
所述1150MPa级高强度高韧性易焊接纳米钢的显微组织为板条马氏体、富铜、镍、锰、铝的具有层级结构的复合纳米相和逆变奥氏体;或,所述1150MPa级高强度高韧性易焊接纳米钢的显微组织为下贝氏体、富铜、镍、锰、铝的具有层级结构的复合纳米相和逆变奥氏体。
2.根据权利要求1所述的制备方法,其特征在于,所述1150MPa级高强度高韧性易焊接纳米钢的屈服强度≥1150MPa,-84℃夏比V缺口冲击功≥150J,延伸率≥15%。
CN202111341987.XA 2021-11-12 2021-11-12 一种1150MPa级高强度高韧性易焊接纳米钢及其制备方法 Active CN114058815B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111341987.XA CN114058815B (zh) 2021-11-12 2021-11-12 一种1150MPa级高强度高韧性易焊接纳米钢及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111341987.XA CN114058815B (zh) 2021-11-12 2021-11-12 一种1150MPa级高强度高韧性易焊接纳米钢及其制备方法

Publications (2)

Publication Number Publication Date
CN114058815A CN114058815A (zh) 2022-02-18
CN114058815B true CN114058815B (zh) 2023-12-19

Family

ID=80271962

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111341987.XA Active CN114058815B (zh) 2021-11-12 2021-11-12 一种1150MPa级高强度高韧性易焊接纳米钢及其制备方法

Country Status (1)

Country Link
CN (1) CN114058815B (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011168843A (ja) * 2010-02-19 2011-09-01 Jfe Steel Corp Cu含有高強度鋼材の製造方法
CN103361566A (zh) * 2012-03-30 2013-10-23 鞍钢股份有限公司 一种高强高韧含Cu钢及其生产方法
CN106636961A (zh) * 2016-10-17 2017-05-10 哈尔滨工程大学 一种含Cu纳米相强化易焊接钢及制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011168843A (ja) * 2010-02-19 2011-09-01 Jfe Steel Corp Cu含有高強度鋼材の製造方法
CN103361566A (zh) * 2012-03-30 2013-10-23 鞍钢股份有限公司 一种高强高韧含Cu钢及其生产方法
CN106636961A (zh) * 2016-10-17 2017-05-10 哈尔滨工程大学 一种含Cu纳米相强化易焊接钢及制备方法

Also Published As

Publication number Publication date
CN114058815A (zh) 2022-02-18

Similar Documents

Publication Publication Date Title
JP7457843B2 (ja) 極地海洋工事用鋼板及びその製造方法
CN108728743B (zh) 低温断裂韧性良好的海洋工程用钢及其制造方法
CN102560284B (zh) 高强度高韧性x100管线钢热轧钢带及其制造方法
US20240052470A1 (en) Non-quenched and Tempered Round Steel with High Strength, High Toughness and Easy Cutting and Manufacturing Method Therefor
CN109628828B (zh) 一种低屈强比超厚水电高强度钢板及其制造方法
CN102691018A (zh) 一种低压缩比超高强度海洋工程用钢板及其生产方法
CN105112782A (zh) 一种热轧态船用低温铁素体lt-fh40钢板及其生产方法
CN113136533B (zh) 一种低温用奥氏体不锈钢及其制造方法
CN114622126A (zh) 超高强度钢丝用弹簧钢盘条及其制造方法
CN114480806A (zh) 一种厚规格TiC粒子增强型马氏体耐磨钢板的制造方法
CN113737090B (zh) 一种高强韧合金结构钢及其制备方法
CN112048659B (zh) 一种高强度高塑韧性钢板及其制备方法
CN101812634B (zh) 低碳低焊接裂纹敏感性的高强度钢、钢板及其制造方法
CN115305409B (zh) 一种5~60mm厚850MPa级高强度高韧性易焊接纳米钢及其制备方法
CN114058960B (zh) 一种25~60mm厚1000MPa级高强度高韧性易焊接纳米钢及其制备方法
CN115558863B (zh) 一种屈服强度≥750MPa的低屈强比海工钢及其生产工艺
CN114164315B (zh) 一种60~120mm厚1000MPa级高强度高韧性易焊接纳米钢及其制备方法
CN110791713A (zh) 一种低压缩比690MPa级特厚钢板及其制造方法
CN114737109B (zh) 厚壁抗hic油气管道用x52直缝焊管用钢及制造方法
CN115572901A (zh) 一种630MPa级高调质稳定性低碳低合金钢板及其制造方法
CN114058815B (zh) 一种1150MPa级高强度高韧性易焊接纳米钢及其制备方法
CN109881123B (zh) 一种1000Mpa级高强度亚稳态奥氏体-马氏体不锈钢
CN114086051B (zh) 一种60~120mm厚850MPa级高强度高韧性易焊接纳米钢及其制备方法
CN114086083A (zh) 一种1100MPa级抗硫高压气瓶钢、高压气瓶及其制造方法
CN113549825B (zh) 一种海洋工程装备用高耐蚀性超级不锈钢及其制造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant