CN114058067B - 一种制备钙钛矿量子点-聚合物多孔复合材料的方法 - Google Patents

一种制备钙钛矿量子点-聚合物多孔复合材料的方法 Download PDF

Info

Publication number
CN114058067B
CN114058067B CN202111392804.7A CN202111392804A CN114058067B CN 114058067 B CN114058067 B CN 114058067B CN 202111392804 A CN202111392804 A CN 202111392804A CN 114058067 B CN114058067 B CN 114058067B
Authority
CN
China
Prior art keywords
solution
polymer
quantum dot
porous
composite material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111392804.7A
Other languages
English (en)
Other versions
CN114058067A (zh
Inventor
李璠
郭威
王晓峰
夏雪峰
徐翼飞
徐光勇
李样生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanchang University
Original Assignee
Nanchang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanchang University filed Critical Nanchang University
Priority to CN202111392804.7A priority Critical patent/CN114058067B/zh
Publication of CN114058067A publication Critical patent/CN114058067A/zh
Application granted granted Critical
Publication of CN114058067B publication Critical patent/CN114058067B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/26Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a solid phase from a macromolecular composition or article, e.g. leaching out
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/14Methyl esters, e.g. methyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/36After-treatment
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • C09K11/025Use of particular materials as binders, particle coatings or suspension media therefor non-luminescent particle coatings or suspension media
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/66Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing germanium, tin or lead
    • C09K11/664Halogenides
    • C09K11/665Halogenides with alkali or alkaline earth metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/04Foams characterised by the foaming process characterised by the elimination of a liquid or solid component, e.g. precipitation, leaching out, evaporation
    • C08J2201/042Elimination of an organic solid phase
    • C08J2201/0422Elimination of an organic solid phase containing oxygen atoms, e.g. saccharose
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2333/04Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters
    • C08J2333/06Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters of esters containing only carbon, hydrogen, and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C08J2333/10Homopolymers or copolymers of methacrylic acid esters
    • C08J2333/12Homopolymers or copolymers of methyl methacrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/16Halogen-containing compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Optics & Photonics (AREA)
  • Composite Materials (AREA)
  • Luminescent Compositions (AREA)

Abstract

本发明公开了一种制备高亮度高稳定性钙钛矿量子点‑聚合物多孔复合材料的方法,包括以下步骤:S1.含铅前驱体溶液的制备,S2.卤化甲胺、卤化甲脒、卤化铯的溶液制备,S3.含铅多孔聚合物材料的制备,S4.多孔钙钛矿量子点‑聚合物复合材料的制备;依照本发明的方法,能够得到具有发光亮度高、稳定性好的多孔钙钛矿量子点‑聚合物复合材料。

Description

一种制备钙钛矿量子点-聚合物多孔复合材料的方法
技术领域
本发明属于复合材料领域,具体涉及一种制备高亮度高稳定性钙钛矿量子点-聚合物多孔复合材料的方法。
背景技术
钙钛矿量子点是一种十分具有潜力的材料,由于其具有窄的发射光谱、宽的可调荧光发射、高的发光效率等优异的光学性能以及其较低的成本,使其在发光二极管、激光器等高性能光电器件领域备受关注。但是钙钛矿材料的形成能较低,且钙钛矿量子点具有大的比表面积、表面能高,同时表面配体处于动态平衡,从而存在大量的表面缺陷,导致其对外界环境高度敏感,表现出较低的稳定性,严重制约了其实际应用。
针对这一问题,提出一种制备高亮度高稳定性钙钛矿量子点-聚合物多孔复合材料的方法,即首先以方糖为牺牲模板,将含铅离子的甲基丙烯酸铅和聚合物单体引入到方糖中,通过自由基热交联聚合方式,形成热交联的含铅聚合物。再将方糖置于水中溶解,得到多孔的含铅离子的热交联有机聚合物多孔材料。之后,将该多孔含铅有机聚合物材料置于卤化甲胺(或卤化甲脒、卤化铯)溶液中,经反复真空处理排出气体,再经加热烘干,制备得到钙钛矿量子点-聚合物多孔复合材料。研究表明,该多孔复合材料具有高的荧光量子产率和优异的稳定性。
发明内容
本发明的目的是提供了一种制备高亮度高稳定性钙钛矿量子点-聚合物多孔复合材料的方法。
为实现上述目的,本发明采用以下技术方案:
一种制备钙钛矿量子点-聚合物多孔复合材料的方法,包括以下步骤:
S1.含铅前驱体溶液的制备:将甲基丙烯酸铅溶于聚合物单体中,配制浓度为(2.25~10)×10-5 mol/mL的溶液,同时加入自由基引发剂,充分搅拌混合,再用滤头过滤,备用;
S2.卤化甲胺、卤化甲脒、卤化铯的溶液制备:将卤化甲胺或卤化甲脒或卤化铯溶于二甲基亚砜溶剂中,配制浓度为(5~10)×10-5 mol/mL的溶液中,充分搅拌,备用;
S3.含铅多孔聚合物材料的制备:将S1中配置的含铅前驱体溶液滴加在方糖中,经真空处理,使方糖中的空气排出,重复多次使方糖中的空气排尽,使含铅前驱体溶液充满方糖空隙中;再用铝箔将充满溶液的方糖包裹好,避免溶液挥发造成损失,放置于烘箱中加热交联,将交联完成的方糖浸置于大量蒸馏水中,将其中的糖分溶解,再将其进行真空干燥,得到含铅离子的多孔聚合物材料;
S4. 多孔钙钛矿量子点-聚合物复合材料的制备:将S2中配置的卤化甲胺、卤化甲脒、卤化铯的溶液滴至含铅离子的多孔聚合物材料中,用热风枪加热,制备得到多孔钙钛矿量子点-聚合物复合材料。
步骤S1中的自由基引发剂加入量为0.02~0.04g/mL。
步骤S3中烘箱的温度为60~70℃,加热时间为10~15h。
本发明结果表明,所制备的多孔钙钛矿量子点-聚合物复合材料具有发光亮度高、稳定性好的特点。本发明为制备具有高效荧光、稳定的多孔钙钛矿量子点-聚合物复合材料提供了一种新的工艺和方法。
本发明的有益效果是:本发明的工艺过程简单,制备参数易于控制,重复性好,为制备具有高效荧光、稳定的多孔钙钛矿量子点-聚合物复合材料提供了一种新的工艺和方法。
附图说明
图1为实施例1中所制备的CsPbBr3量子点/PMMA多孔复合材料在紫外灯下的照片。
图2为实施例1中所制备的CsPbBr3量子点/PMMA多孔复合材料的荧光光谱。
图3为实施例1中所制备的CsPbBr3量子点/PMMA多孔复合材料的X射线衍射图谱。
图4为实施例1中所制备的CsPbBr3量子点/PMMA多孔复合材料的湿度稳定性。
具体实施方式
下面结合附图和实施例对本发明作进一步说明。
实施例:参见图1-图4。
一种制备钙钛矿量子点-聚合物多孔复合材料的方法,包括以下步骤:
S1.含铅前驱体溶液的制备:将甲基丙烯酸铅溶于聚合物单体中,配制浓度为(2.25~10)×10-5 mol/mL的溶液,同时加入自由基引发剂,充分搅拌混合,再用滤头过滤,备用;
S2.卤化甲胺、卤化甲脒、卤化铯的溶液制备:将卤化甲胺或卤化甲脒或卤化铯溶于二甲基亚砜溶剂中,配制浓度为(5~10)×10-5 mol/mL的溶液中,充分搅拌,备用;
S3.含铅多孔聚合物材料的制备:将S1中配置的含铅前驱体溶液滴加在方糖中,经真空处理,使方糖中的空气排出,重复多次使方糖中的空气排尽,使含铅前驱体溶液充满方糖空隙中;再用铝箔将充满溶液的方糖包裹好,避免溶液挥发造成损失,放置于烘箱中加热交联,将交联完成的方糖浸置于大量蒸馏水中,将其中的糖分溶解,再将其进行真空干燥,得到含铅离子的多孔聚合物材料;
S4. 多孔钙钛矿量子点-聚合物复合材料的制备:将S2中配置的卤化甲胺、卤化甲脒、卤化铯的溶液滴至含铅离子的多孔聚合物材料中,用热风枪加热,制备得到多孔钙钛矿量子点-聚合物复合材料。
步骤S3中烘箱的温度为60~70℃,加热时间为10~15h。
实施例1:
将甲基丙烯酸铅溶于甲基丙烯酸甲酯 (MMA)中,配制浓度为6×10-5 mol/mL的溶液1mL,同时加入0.03 g的2-2偶氮二异丁腈(AIBN),充分混合后并用滤头过滤掉大颗粒,将溶液滴加在方糖中并真空处理,使方糖中的空气排出,重复多次使方糖中的空气排尽,溶液充满方糖空隙中。用铝箔将充满溶液的方糖包裹好,避免溶液挥发造成损失。放置于烘箱中65℃加热交联12 h。将交联完成的方糖浸置于大量蒸馏水中将其中的糖分溶解得到聚合物,再将方糖溶解后的聚合物通过真空干燥获得热交联的聚甲基丙烯酸甲酯共聚甲基丙烯酸铅多孔复合材料。之后,将溴化铯溶于二甲基亚砜溶剂中,配制浓度为5×10-5 mol/mL的溶液1mL,将配制的溶液滴至多孔复合材料中,用热烘枪加热获得内部生长CsPbBr3量子点的CsPbBr3/PMMA多孔复合物。图1-4分别为所制备的CsPbBr3/PMMA杂化薄膜在紫外灯下的照片、荧光光谱、X射线衍射图谱和湿度稳定性。从图中可以看出,所制备的CsPbBr3/PMMA杂化薄膜中CsPbBr3量子点的发光峰位于518nm,为立方晶体结构,荧光量子产率为45%。该CsPbBr3/PMMA杂化薄膜具有良好的稳定性。
以上实施例仅用以说明本发明的技术方案而非限制。尽管参照实施例对本发明进行了详细说明,本领域的普通技术人员应该理解,对本发明的技术方案进行修改或者等同替换,都不脱离本发明技术方案的精神和范围,其均应涵盖在本发明的权利要求范围当中。

Claims (3)

1.一种制备钙钛矿量子点-聚合物多孔复合材料的方法,其特征在于,包括以下步骤:
S1.含铅前驱体溶液的制备:将甲基丙烯酸铅溶于聚合物单体中,配制浓度为(2.25~10)×10-5 mol/mL的溶液,同时加入自由基引发剂,充分搅拌混合,再用滤头过滤,备用;
S2.卤化甲胺、卤化甲脒、卤化铯的溶液制备:将卤化甲胺或卤化甲脒或卤化铯溶于二甲基亚砜溶剂中,配制浓度为(5~10)×10-5 mol/mL的溶液中,充分搅拌,备用;
S3.含铅多孔聚合物材料的制备:将S1中配置的含铅前驱体溶液滴加在方糖中,经真空处理,使方糖中的空气排出,重复多次使方糖中的空气排尽,使含铅前驱体溶液充满方糖空隙中;再用铝箔将充满溶液的方糖包裹好,避免溶液挥发造成损失,放置于烘箱中加热交联,将交联完成的方糖浸置于大量蒸馏水中,将其中的糖分溶解,再将其进行真空干燥,得到含铅离子的多孔聚合物材料;
S4. 多孔钙钛矿量子点-聚合物复合材料的制备:将S2中配置的卤化甲胺、卤化甲脒、卤化铯的溶液滴至含铅离子的多孔聚合物材料中,用热风枪加热,制备得到多孔钙钛矿量子点-聚合物复合材料。
2.根据权利要求1所述的一种制备钙钛矿量子点-聚合物多孔复合材料的方法,其特征在于:步骤S1中的自由基引发剂加入量为0.02~0.04g/mL。
3.根据权利要求1所述的一种制备钙钛矿量子点-聚合物多孔复合材料的方法,其特征在于:步骤S3中烘箱的温度为60~70℃,加热时间为10~15h。
CN202111392804.7A 2021-11-23 2021-11-23 一种制备钙钛矿量子点-聚合物多孔复合材料的方法 Active CN114058067B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111392804.7A CN114058067B (zh) 2021-11-23 2021-11-23 一种制备钙钛矿量子点-聚合物多孔复合材料的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111392804.7A CN114058067B (zh) 2021-11-23 2021-11-23 一种制备钙钛矿量子点-聚合物多孔复合材料的方法

Publications (2)

Publication Number Publication Date
CN114058067A CN114058067A (zh) 2022-02-18
CN114058067B true CN114058067B (zh) 2022-07-12

Family

ID=80279242

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111392804.7A Active CN114058067B (zh) 2021-11-23 2021-11-23 一种制备钙钛矿量子点-聚合物多孔复合材料的方法

Country Status (1)

Country Link
CN (1) CN114058067B (zh)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104388089B (zh) * 2014-11-04 2017-06-06 深圳Tcl新技术有限公司 一种杂化钙钛矿量子点材料的制备方法
CN104861958B (zh) * 2015-05-14 2017-02-15 北京理工大学 一种钙钛矿/聚合物复合发光材料及其制备方法
CN112154195A (zh) * 2018-03-13 2020-12-29 新加坡国立大学 钙钛矿–聚合物复合材料
WO2019195873A1 (en) * 2018-04-11 2019-10-17 Newsouth Innovations Pty Limited A method of forming a perovskite
CN110105481B (zh) * 2019-05-14 2021-07-23 合肥工业大学 一种通过原位聚合包覆获得甲脒铅溴/pmma复合材料的方法及其应用
CN113621368B (zh) * 2021-07-20 2023-07-18 上海大学 卤化铅铯钙钛矿量子点与金属有机框架复合的塑形超快闪烁体及其制备方法

Also Published As

Publication number Publication date
CN114058067A (zh) 2022-02-18

Similar Documents

Publication Publication Date Title
JP4574816B2 (ja) カラー太陽電池およびその作製方法
JP6609326B2 (ja) ペロブスカイト/ポリマー複合発光材料、製造方法及び用途
CN107650452B (zh) 一种抗氧化的量子点聚合物光学膜及其制备方法和用途
CN109326672B (zh) 一种基于全无机钙钛矿量子点的太阳能荧光集光器的制备方法
CN201185180Y (zh) 发光模组
CN104932136A (zh) 彩膜基板及其制作方法、显示面板和显示装置
CN103459550A (zh) 具有有机磷光体的聚合物基体及其制造
CN107402416B (zh) 量子扩散膜及其制作方法
CN106206965B (zh) 一种量子点封装体及其制备方法
CN107808923B (zh) 一种用于led的荧光薄膜结构的制备方法
CN110196522B (zh) 一种白光电致变色器件的制备方法
CN114058067B (zh) 一种制备钙钛矿量子点-聚合物多孔复合材料的方法
CN109888113A (zh) 钙钛矿层及其制备方法、钙钛矿太阳能电池
CN109742220B (zh) 含液态量子点的白光led及其制备方法
CN111690159A (zh) 基于乙烯基醚液晶/高分子全聚合量子点薄膜的制备方法
CN113045978A (zh) 一种碳量子点-水溶性聚氨酯溶液的制备方法
CN1811528A (zh) Mems液晶光衰减器阵列及制作方法
CN114196401B (zh) 一种原位交联法制备高稳定钙钛矿量子点薄膜的方法
CN110518450B (zh) 光诱导聚集激光器的制备方法及光诱导聚集激光器
CN104017242A (zh) 一种量子点增强复合光转换膜及其制备方法
CN110591111A (zh) 一种基于金属-有机框架纳米晶的可控动态调谐随机激光散射材料、激光器件及制备与应用
CN105957945A (zh) 一种具有光子晶体的发光二极管及其制备方法
CN114940769B (zh) 基于结构色的无角度依赖电响应薄膜及其制备方法和应用
CN104716553A (zh) 光泵浦SiO2-Rh6G凝胶随机激光器及其制备方法
CN109599490A (zh) 二元混合溶剂体系及其在制备钙钛矿材料中的用途

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant