CN114050198B - A radiation heat flux control device based on semiconductor materials and its application - Google Patents
A radiation heat flux control device based on semiconductor materials and its application Download PDFInfo
- Publication number
- CN114050198B CN114050198B CN202111160015.0A CN202111160015A CN114050198B CN 114050198 B CN114050198 B CN 114050198B CN 202111160015 A CN202111160015 A CN 202111160015A CN 114050198 B CN114050198 B CN 114050198B
- Authority
- CN
- China
- Prior art keywords
- radiator
- material layer
- heat flux
- radiation heat
- semiconductor material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000000463 material Substances 0.000 title claims abstract description 184
- 230000005855 radiation Effects 0.000 title claims abstract description 137
- 239000004065 semiconductor Substances 0.000 title claims abstract description 127
- 230000004907 flux Effects 0.000 title claims abstract description 111
- 239000000758 substrate Substances 0.000 claims abstract description 110
- 239000007769 metal material Substances 0.000 claims abstract description 74
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 107
- 229910052710 silicon Inorganic materials 0.000 claims description 107
- 239000010703 silicon Substances 0.000 claims description 107
- IOLCXVTUBQKXJR-UHFFFAOYSA-M potassium bromide Chemical compound [K+].[Br-] IOLCXVTUBQKXJR-UHFFFAOYSA-M 0.000 claims description 80
- 230000001105 regulatory effect Effects 0.000 claims description 46
- 230000033228 biological regulation Effects 0.000 claims description 24
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 claims description 18
- WCUXLLCKKVVCTQ-UHFFFAOYSA-M Potassium chloride Chemical compound [Cl-].[K+] WCUXLLCKKVVCTQ-UHFFFAOYSA-M 0.000 claims description 17
- 239000005083 Zinc sulfide Substances 0.000 claims description 15
- 229910052984 zinc sulfide Inorganic materials 0.000 claims description 15
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims description 14
- 229910052709 silver Inorganic materials 0.000 claims description 14
- 239000004332 silver Substances 0.000 claims description 14
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 12
- MARUHZGHZWCEQU-UHFFFAOYSA-N 5-phenyl-2h-tetrazole Chemical compound C1=CC=CC=C1C1=NNN=N1 MARUHZGHZWCEQU-UHFFFAOYSA-N 0.000 claims description 11
- XJHCXCQVJFPJIK-UHFFFAOYSA-M caesium fluoride Chemical compound [F-].[Cs+] XJHCXCQVJFPJIK-UHFFFAOYSA-M 0.000 claims description 10
- 229910052582 BN Inorganic materials 0.000 claims description 9
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 claims description 9
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 claims description 9
- LYQFWZFBNBDLEO-UHFFFAOYSA-M caesium bromide Chemical compound [Br-].[Cs+] LYQFWZFBNBDLEO-UHFFFAOYSA-M 0.000 claims description 9
- XQPRBTXUXXVTKB-UHFFFAOYSA-M caesium iodide Chemical compound [I-].[Cs+] XQPRBTXUXXVTKB-UHFFFAOYSA-M 0.000 claims description 9
- 239000000395 magnesium oxide Substances 0.000 claims description 9
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 claims description 9
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 claims description 9
- ADZWSOLPGZMUMY-UHFFFAOYSA-M silver bromide Chemical compound [Ag]Br ADZWSOLPGZMUMY-UHFFFAOYSA-M 0.000 claims description 9
- 239000011780 sodium chloride Substances 0.000 claims description 9
- DRDVZXDWVBGGMH-UHFFFAOYSA-N zinc;sulfide Chemical compound [S-2].[Zn+2] DRDVZXDWVBGGMH-UHFFFAOYSA-N 0.000 claims description 9
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 claims description 8
- 229910001632 barium fluoride Inorganic materials 0.000 claims description 7
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 claims description 6
- 229910021589 Copper(I) bromide Inorganic materials 0.000 claims description 6
- 229910021595 Copper(I) iodide Inorganic materials 0.000 claims description 6
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 claims description 6
- OYLGJCQECKOTOL-UHFFFAOYSA-L barium fluoride Chemical compound [F-].[F-].[Ba+2] OYLGJCQECKOTOL-UHFFFAOYSA-L 0.000 claims description 6
- NKNDPYCGAZPOFS-UHFFFAOYSA-M copper(i) bromide Chemical compound Br[Cu] NKNDPYCGAZPOFS-UHFFFAOYSA-M 0.000 claims description 6
- LSXDOTMGLUJQCM-UHFFFAOYSA-M copper(i) iodide Chemical compound I[Cu] LSXDOTMGLUJQCM-UHFFFAOYSA-M 0.000 claims description 6
- HZXMRANICFIONG-UHFFFAOYSA-N gallium phosphide Chemical compound [Ga]#P HZXMRANICFIONG-UHFFFAOYSA-N 0.000 claims description 6
- 229910052732 germanium Inorganic materials 0.000 claims description 6
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 claims description 6
- RPQDHPTXJYYUPQ-UHFFFAOYSA-N indium arsenide Chemical compound [In]#[As] RPQDHPTXJYYUPQ-UHFFFAOYSA-N 0.000 claims description 6
- PQXKHYXIUOZZFA-UHFFFAOYSA-M lithium fluoride Chemical compound [Li+].[F-] PQXKHYXIUOZZFA-UHFFFAOYSA-M 0.000 claims description 6
- 239000001103 potassium chloride Substances 0.000 claims description 6
- 235000011164 potassium chloride Nutrition 0.000 claims description 6
- 239000011669 selenium Substances 0.000 claims description 6
- 239000000377 silicon dioxide Substances 0.000 claims description 6
- 235000012239 silicon dioxide Nutrition 0.000 claims description 6
- PFNQVRZLDWYSCW-UHFFFAOYSA-N (fluoren-9-ylideneamino) n-naphthalen-1-ylcarbamate Chemical compound C12=CC=CC=C2C2=CC=CC=C2C1=NOC(=O)NC1=CC=CC2=CC=CC=C12 PFNQVRZLDWYSCW-UHFFFAOYSA-N 0.000 claims description 5
- WUKWITHWXAAZEY-UHFFFAOYSA-L calcium difluoride Chemical compound [F-].[F-].[Ca+2] WUKWITHWXAAZEY-UHFFFAOYSA-L 0.000 claims description 5
- HKZLPVFGJNLROG-UHFFFAOYSA-M silver monochloride Chemical compound [Cl-].[Ag+] HKZLPVFGJNLROG-UHFFFAOYSA-M 0.000 claims description 5
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 claims description 4
- BUGBHKTXTAQXES-UHFFFAOYSA-N Selenium Chemical compound [Se] BUGBHKTXTAQXES-UHFFFAOYSA-N 0.000 claims description 4
- 229910052581 Si3N4 Inorganic materials 0.000 claims description 4
- NWAIGJYBQQYSPW-UHFFFAOYSA-N azanylidyneindigane Chemical compound [In]#N NWAIGJYBQQYSPW-UHFFFAOYSA-N 0.000 claims description 4
- 229910052796 boron Inorganic materials 0.000 claims description 4
- NNLOHLDVJGPUFR-UHFFFAOYSA-L calcium;3,4,5,6-tetrahydroxy-2-oxohexanoate Chemical compound [Ca+2].OCC(O)C(O)C(O)C(=O)C([O-])=O.OCC(O)C(O)C(O)C(=O)C([O-])=O NNLOHLDVJGPUFR-UHFFFAOYSA-L 0.000 claims description 4
- VTGARNNDLOTBET-UHFFFAOYSA-N gallium antimonide Chemical compound [Sb]#[Ga] VTGARNNDLOTBET-UHFFFAOYSA-N 0.000 claims description 4
- 239000010931 gold Substances 0.000 claims description 4
- VCEXCCILEWFFBG-UHFFFAOYSA-N mercury telluride Chemical compound [Hg]=[Te] VCEXCCILEWFFBG-UHFFFAOYSA-N 0.000 claims description 4
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 claims description 4
- 229910052711 selenium Inorganic materials 0.000 claims description 4
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims description 4
- 229910052714 tellurium Inorganic materials 0.000 claims description 4
- PORWMNRCUJJQNO-UHFFFAOYSA-N tellurium atom Chemical compound [Te] PORWMNRCUJJQNO-UHFFFAOYSA-N 0.000 claims description 4
- 229910052782 aluminium Inorganic materials 0.000 claims description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 3
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 3
- 229910052737 gold Inorganic materials 0.000 claims description 3
- 229910052594 sapphire Inorganic materials 0.000 claims description 3
- 239000010980 sapphire Substances 0.000 claims description 3
- XSOKHXFFCGXDJZ-UHFFFAOYSA-N telluride(2-) Chemical compound [Te-2] XSOKHXFFCGXDJZ-UHFFFAOYSA-N 0.000 claims 4
- 229910002601 GaN Inorganic materials 0.000 claims 3
- 229910010271 silicon carbide Inorganic materials 0.000 claims 3
- 229910005540 GaP Inorganic materials 0.000 claims 2
- 229910001218 Gallium arsenide Inorganic materials 0.000 claims 2
- 229910000673 Indium arsenide Inorganic materials 0.000 claims 2
- 229910052785 arsenic Inorganic materials 0.000 claims 2
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 claims 2
- 229910052797 bismuth Inorganic materials 0.000 claims 2
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 claims 2
- FBGGJHZVZAAUKJ-UHFFFAOYSA-N bismuth selenide Chemical compound [Se-2].[Se-2].[Se-2].[Bi+3].[Bi+3] FBGGJHZVZAAUKJ-UHFFFAOYSA-N 0.000 claims 2
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 claims 2
- 239000011787 zinc oxide Substances 0.000 claims 2
- 229910021607 Silver chloride Inorganic materials 0.000 claims 1
- 229910001634 calcium fluoride Inorganic materials 0.000 claims 1
- 230000008859 change Effects 0.000 abstract description 33
- 230000007246 mechanism Effects 0.000 abstract description 7
- 239000010408 film Substances 0.000 description 68
- 238000010586 diagram Methods 0.000 description 20
- 238000004458 analytical method Methods 0.000 description 18
- 229910052751 metal Inorganic materials 0.000 description 12
- 239000002184 metal Substances 0.000 description 12
- 238000012546 transfer Methods 0.000 description 12
- 239000013598 vector Substances 0.000 description 11
- 239000002210 silicon-based material Substances 0.000 description 8
- 239000013590 bulk material Substances 0.000 description 6
- 238000000034 method Methods 0.000 description 6
- 229910052755 nonmetal Inorganic materials 0.000 description 6
- 238000011160 research Methods 0.000 description 5
- 229910016036 BaF 2 Inorganic materials 0.000 description 4
- 229910004298 SiO 2 Inorganic materials 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 239000011148 porous material Substances 0.000 description 4
- 230000001902 propagating effect Effects 0.000 description 4
- 239000011800 void material Substances 0.000 description 4
- 230000008901 benefit Effects 0.000 description 3
- 238000004364 calculation method Methods 0.000 description 3
- 230000005684 electric field Effects 0.000 description 3
- 230000003313 weakening effect Effects 0.000 description 3
- GTIUFDICMGTSPM-UHFFFAOYSA-N 12044-54-1 Chemical compound [Te]=[As][Te][As]=[Te] GTIUFDICMGTSPM-UHFFFAOYSA-N 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 2
- PIGFYZPCRLYGLF-UHFFFAOYSA-N Aluminum nitride Chemical compound [Al]#N PIGFYZPCRLYGLF-UHFFFAOYSA-N 0.000 description 2
- 229910005542 GaSb Inorganic materials 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000002310 reflectometry Methods 0.000 description 2
- OMEPJWROJCQMMU-UHFFFAOYSA-N selanylidenebismuth;selenium Chemical compound [Se].[Bi]=[Se].[Bi]=[Se] OMEPJWROJCQMMU-UHFFFAOYSA-N 0.000 description 2
- PDYNJNLVKADULO-UHFFFAOYSA-N tellanylidenebismuth Chemical compound [Bi]=[Te] PDYNJNLVKADULO-UHFFFAOYSA-N 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- 101000827703 Homo sapiens Polyphosphoinositide phosphatase Proteins 0.000 description 1
- 102100023591 Polyphosphoinositide phosphatase Human genes 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 238000004378 air conditioning Methods 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 238000010411 cooking Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 230000005520 electrodynamics Effects 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F30/00—Individual radiation-sensitive semiconductor devices in which radiation controls the flow of current through the devices, e.g. photodetectors
Landscapes
- Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
Abstract
本发明涉及一种基于半导体材料的辐射热流调控器件及其应用,其包含相对设置的第一辐射体和第二辐射体,所述第一辐射体设有半导体材料层,所述半导体材料层含有本征半导体材料和载流子掺杂浓度小于1016cm‑3的掺杂半导体材料中的一种或两种;第一辐射体的设置方式为悬空设置,或者所述第一辐射体包括含金属材料层的第一基底。本发明的技术方案主要利用半导体材料内部载流子浓度随温度的变化而导致的局域电磁态密度的变化来实现辐射热流的大幅度调控。本发明提供的辐射热流调控器件可以通过改变触发机制或是与其他部件进行组合的方式来实现热二极管、热三极管、热开关等功能。
The present invention relates to a radiation heat flux control device based on semiconductor materials and its application, which comprises a first radiator and a second radiator arranged relatively to each other, wherein the first radiator is provided with a semiconductor material layer, wherein the semiconductor material layer contains one or both of an intrinsic semiconductor material and a doped semiconductor material with a carrier doping concentration less than 10 16 cm ‑3 ; the first radiator is arranged in a suspended manner, or the first radiator comprises a first substrate containing a metal material layer. The technical solution of the present invention mainly utilizes the change of the local electromagnetic state density caused by the change of the carrier concentration inside the semiconductor material with the temperature to realize the large-scale control of the radiation heat flux. The radiation heat flux control device provided by the present invention can realize the functions of a thermal diode, a thermal triode, a thermal switch, etc. by changing the trigger mechanism or by combining with other components.
Description
技术领域Technical Field
本发明涉及热辐射技术领域,具体涉及一种基于半导体材料的辐射热流调控器件及其应用。The present invention relates to the field of thermal radiation technology, and in particular to a radiation heat flux regulating device based on semiconductor materials and applications thereof.
背景技术Background technique
热量传递是自然界中最基本的物理现象之一,其广泛存在于科学研究与生产生活之中。超过90%的全球能源生产均与热有关,因此,对热量传递过程的有效调控,对于开发新型热学器件、发展先进热管理技术、提高能源利用效率等诸多方面至关重要。人们的日常生活与热息息相关,从穿衣保暖、烧水做饭,到室内温控、车内空调,涵盖了衣、食、住、行各个方面。而热量传递的调控技术的不断发展,有望进一步改善人们的生活水平。Heat transfer is one of the most basic physical phenomena in nature, and it is widely present in scientific research and production life. More than 90% of global energy production is related to heat. Therefore, effective regulation of the heat transfer process is crucial for the development of new thermal devices, advanced thermal management technologies, and improving energy efficiency. People's daily lives are closely related to heat, from dressing to keep warm, boiling water and cooking, to indoor temperature control and air conditioning in cars, covering all aspects of clothing, food, housing, and transportation. The continuous development of heat transfer regulation technology is expected to further improve people's living standards.
非线性电学元件可以实现对电流的灵活调控,是现代电子信息技术大厦的基石,也彻底改变了人们的生活。然而相比之下,热流的调控则显得困难得多,可灵活调控热流的非线性热学器件的研究尚未成熟,对热量传递机制的研究以及对热量传递过程的有效调控,对于热学领域的科学研究和技术应用具有重要意义。Nonlinear electrical components can achieve flexible control of electric current, which is the cornerstone of modern electronic information technology and has completely changed people's lives. However, in comparison, the control of heat flow is much more difficult. The research on nonlinear thermal devices that can flexibly control heat flow is not yet mature. The research on heat transfer mechanism and the effective control of heat transfer process are of great significance to scientific research and technological applications in the field of thermal science.
热辐射是三种基本的热量输运机制之一,其本质是物体内部电荷随机热运动引发的电磁波,包含了传播波和倏逝波。根据这些电磁波的传播特性,可以分为传播模式、沮挫模式和表面模式的电磁波。其中,倏逝波的振幅随着离开物体表面的距离而呈指数衰减。而当辐射体之间的间距接近或小于热特征波长时,倏逝波开始逐渐参与甚至主导辐射换热,经典的热辐射定律被打破,这种现象叫做近场热辐射。Thermal radiation is one of the three basic heat transfer mechanisms. Its essence is the electromagnetic waves caused by the random thermal motion of charges inside an object, including propagating waves and evanescent waves. According to the propagation characteristics of these electromagnetic waves, they can be divided into propagation mode, frustration mode and surface mode electromagnetic waves. Among them, the amplitude of the evanescent wave decays exponentially with the distance from the surface of the object. When the distance between the radiators is close to or less than the thermal characteristic wavelength, the evanescent wave begins to gradually participate in or even dominate the radiation heat transfer, and the classical law of thermal radiation is broken. This phenomenon is called near-field thermal radiation.
基于近场热辐射的热流调控器件往往有两端,即两侧的辐射体,热流以电磁波的形式在两个辐射体间进行传输。基于近场热辐射的热整流由于可以利用更丰富的电磁模式实现对热流的调控,有望实现较大的调控能力,在热二极管、热三极管、热开关等多种非线性热学器件中均受到了广泛的关注。Thermal flux control devices based on near-field thermal radiation often have two ends, namely, radiators on both sides, and the heat flux is transmitted between the two radiators in the form of electromagnetic waves. Thermal rectification based on near-field thermal radiation is expected to achieve greater control capabilities because it can use richer electromagnetic modes to control heat flux. It has received widespread attention in various nonlinear thermal devices such as thermal diodes, thermal triodes, and thermal switches.
热二极管、热三极管和热开关等不同非线性热学器件背后所基于的物理机制比较相似,在近场热辐射中可以归纳为:通过热、光、电等不同触发机制,实现对近场热辐射中的不同电磁波的调控,从而达到改变辐射热流大小的目的。以热二极管为例——基于热整流效应的热二极管是一种非常典型的热流调控方式,在同样的温差下,热整流器件中的热流大小与温度的偏置方向有关。当温度方向发生改变时,介电常数的改变将导致辐射热流产生差异从而形成热整流。热整流的核心性能参数是整流比,其定义为正反向热流之差与较小的反向热流的比值。The physical mechanisms behind different nonlinear thermal devices such as thermal diodes, thermal triodes and thermal switches are relatively similar. In near-field thermal radiation, they can be summarized as follows: through different triggering mechanisms such as heat, light, and electricity, different electromagnetic waves in near-field thermal radiation are regulated, thereby achieving the purpose of changing the size of the radiation heat flux. Take the thermal diode as an example - the thermal diode based on the thermal rectification effect is a very typical way of heat flow regulation. Under the same temperature difference, the size of the heat flow in the thermal rectification device is related to the bias direction of the temperature. When the temperature direction changes, the change in the dielectric constant will cause a difference in the radiation heat flow, thereby forming thermal rectification. The core performance parameter of thermal rectification is the rectification ratio, which is defined as the ratio of the difference between the forward and reverse heat flows to the smaller reverse heat flow.
综上,为了更好地实现热量运输过程中的调控,本领域技术人员希望开发一种新的技术方案,以有效提高近场辐射热流调控器件的热流调控能力。In summary, in order to better achieve regulation during heat transport, technical personnel in this field hope to develop a new technical solution to effectively improve the heat flow regulation capability of near-field radiation heat flow regulation devices.
发明内容Summary of the invention
本发明的目的在于提供一种基于半导体材料的辐射热流调控器件及其应用,该器件主要利用半导体材料内部载流子浓度随温度的变化而导致的局域电磁态密度的变化来实现辐射热流的大幅度调控。该辐射热流调控器件可以通过改变触发机制或是与其他部件进行组合的方式来实现热整流、热三极管、热开关等功能。The purpose of the present invention is to provide a radiation heat flux control device based on semiconductor materials and its application, which mainly utilizes the change of local electromagnetic state density caused by the change of carrier concentration inside the semiconductor material with temperature to achieve a large-scale control of radiation heat flux. The radiation heat flux control device can realize functions such as thermal rectification, thermal triode, thermal switch, etc. by changing the trigger mechanism or combining with other components.
为此,第一方面,本发明提供一种基于半导体材料的辐射热流调控器件,其包含相对设置的第一辐射体和第二辐射体;To this end, in a first aspect, the present invention provides a radiation heat flux regulating device based on semiconductor materials, which comprises a first radiator and a second radiator arranged opposite to each other;
所述第一辐射体设有半导体材料层,所述半导体材料层含有本征半导体材料和载流子掺杂浓度小于1016cm-3的掺杂半导体材料中的一种或两种;The first radiator is provided with a semiconductor material layer, and the semiconductor material layer contains one or both of an intrinsic semiconductor material and a doped semiconductor material having a carrier doping concentration less than 10 16 cm -3 ;
所述第一辐射体按照如下(a)、(b)、(c)之一的方式设置:The first radiator is arranged in one of the following ways:
(a)所述第一辐射体由所述半导体材料层构成,所述第一辐射体悬空设置;(a) the first radiator is composed of the semiconductor material layer, and the first radiator is suspended in the air;
(b)所述第一辐射体还包括第一基底,所述第一基底由非金属材料构成,所述半导体材料层覆盖于所述第一基底上,所述第一辐射体悬空设置;(b) the first radiator further includes a first substrate, the first substrate is made of a non-metallic material, the semiconductor material layer covers the first substrate, and the first radiator is suspended;
(c)所述第一辐射体还包括第一基底,所述第一基底包括第一金属材料层,所述半导体材料层覆盖于所述第一基底上。(c) The first radiator further includes a first substrate, the first substrate includes a first metal material layer, and the semiconductor material layer covers the first substrate.
进一步,所述第一辐射体和第二辐射体的间距为1nm-10mm,优选为10nm-100μm,更优选为10nm-1μm。例如第一辐射体和第二辐射体的间距为1nm、10nm、20nm、50nm、80nm、100nm、200nm、300nm、400nm、500nm、600nm、700nm、800nm、900nm、1μm、2μm、3μm、4μm、5μm、6μm、7μm、8μm、9μm、10μm、100μm、500μm、1mm、2mm、5mm、10mm等。Further, the spacing between the first radiator and the second radiator is 1nm-10mm, preferably 10nm-100μm, and more preferably 10nm-1μm. For example, the spacing between the first radiator and the second radiator is 1nm, 10nm, 20nm, 50nm, 80nm, 100nm, 200nm, 300nm, 400nm, 500nm, 600nm, 700nm, 800nm, 900nm, 1μm, 2μm, 3μm, 4μm, 5μm, 6μm, 7μm, 8μm, 9μm, 10μm, 100μm, 500μm, 1mm, 2mm, 5mm, 10mm, etc.
进一步,所述半导体材料层中,半导体材料的体积占比为30%-100%(V/V);优选地,所述半导体材料以规则或不规则分布的离散组分形式存在,或者所述半导体材料层中含有规则或不规则分布的非半导体材料组分。Furthermore, in the semiconductor material layer, the volume proportion of semiconductor material is 30%-100% (V/V); preferably, the semiconductor material exists in the form of regularly or irregularly distributed discrete components, or the semiconductor material layer contains regularly or irregularly distributed non-semiconductor material components.
在一些实施方式中,所述半导体材料层由本征半导体材料和载流子掺杂浓度小于1016cm-3的掺杂半导体材料中的一种或两种构成。In some embodiments, the semiconductor material layer is composed of one or both of an intrinsic semiconductor material and a doped semiconductor material having a carrier doping concentration less than 10 16 cm −3 .
在一些实施方式中,所述半导体材料层中,半导体材料的体积占比大于等于30%且小于100%;优选地,所述半导体材料以规则或不规则分布的离散组分形式存在,或者所述半导体材料层中含有规则或不规则分布的非半导体材料组分。In some embodiments, in the semiconductor material layer, the volume proportion of semiconductor material is greater than or equal to 30% and less than 100%; preferably, the semiconductor material exists in the form of regularly or irregularly distributed discrete components, or the semiconductor material layer contains regularly or irregularly distributed non-semiconductor material components.
进一步,所述半导体材料层中,所述半导体选自下组中的一种或两种以上的组合:硅(Si)、锗(Ge)、磷化镓(GaP)、砷化镓(GaAs)、砷化铟(InAs)、硼(B)、碲(Te)、硒(Se)、氮化镓(GaN)、氮化铟(InN)、氮化铝(AlN)、三氧化二铝(Al2O3)、碳化硅(SiC)、氧化锌(ZnO)、氮化硅(Si3N4)、锑化镓(GaSb)、硫化锌(ZnS)、碲化镉(CdTe)、碲化汞(HgTe)、溴化亚铜(CuBr)、碘化亚铜(CuI)、碲化铋(Bi2Te3)、硒化铋(Bi2Se3)、硫化铋(Bi2S3)、碲化砷(As2Te3);优选为硅(Si)、锗(Ge)、磷化镓(GaP)、砷化镓(GaAs)、砷化铟(InAs)等。Further, in the semiconductor material layer, the semiconductor is selected from one or a combination of two or more of the following groups: silicon (Si), germanium (Ge), gallium phosphide (GaP), gallium arsenide (GaAs), indium arsenide (InAs), boron (B), tellurium (Te), selenium (Se), gallium nitride (GaN), indium nitride (InN), aluminum nitride (AlN), aluminum oxide (Al 2 O 3 ), silicon carbide (SiC), zinc oxide (ZnO), silicon nitride (Si 3 N 4 ), gallium antimonide (GaSb), zinc sulfide (ZnS), cadmium telluride (CdTe), mercury telluride (HgTe), cuprous bromide (CuBr), cuprous iodide (CuI), bismuth telluride (Bi 2 Te 3 ), bismuth selenide (Bi 2 Se 3 ), bismuth sulfide (Bi 2 S 3 ), arsenic telluride (As 2 Te 3 ); preferably silicon (Si), germanium (Ge), gallium phosphide (GaP), gallium arsenide (GaAs), indium arsenide (InAs), etc.
进一步,所述半导体材料层的厚度为1nm-100mm,优选为1nm-1mm,更优选为1nm-100μm;例如1nm、10nm、20nm、50nm、80nm、100nm、200nm、300nm、400nm、500nm、600nm、700nm、800nm、900nm、1μm、2μm、3μm、4μm、5μm、6μm、7μm、8μm、9μm、10μm、100μm、500μm、1mm、2mm、5mm、10mm、50mm、100mm等。Further, the thickness of the semiconductor material layer is 1nm-100mm, preferably 1nm-1mm, and more preferably 1nm-100μm; for example, 1nm, 10nm, 20nm, 50nm, 80nm, 100nm, 200nm, 300nm, 400nm, 500nm, 600nm, 700nm, 800nm, 900nm, 1μm, 2μm, 3μm, 4μm, 5μm, 6μm, 7μm, 8μm, 9μm, 10μm, 100μm, 500μm, 1mm, 2mm, 5mm, 10mm, 50mm, 100mm, etc.
根据本发明提供的辐射热流调控器件,当温度变化时,会导致第一辐射体中半导体材料层的载流子浓度发生剧烈变化,从而导致低频区间的高κ模式的强度急剧变化,这是本发明辐射热流调控器件能够实现优异热整流性能的关键要素。而高频区间的低κ模式的强度几乎不随温度发生变化,因为这些电磁模式主要受半导体材料层的介电常数实部ε′的影响,而ε′几乎不随温度发生变化,因此这些低κ模式对于热整流的性能造成很大的负面影响。优选地,当半导体材料层的厚度为1nm-1mm时,这些低κ模式被显著削弱,而低频区间的高κ模式则几乎不受影响,从而能够使辐射热流调控器件的热整流性能得到显著的提高。According to the radiation heat flux control device provided by the present invention, when the temperature changes, the carrier concentration of the semiconductor material layer in the first radiator will change dramatically, thereby causing the intensity of the high κ mode in the low-frequency range to change sharply, which is the key element for the radiation heat flux control device of the present invention to achieve excellent thermal rectification performance. The intensity of the low κ mode in the high-frequency range hardly changes with temperature, because these electromagnetic modes are mainly affected by the real part of the dielectric constant ε′ of the semiconductor material layer, and ε′ hardly changes with temperature, so these low κ modes have a great negative impact on the performance of thermal rectification. Preferably, when the thickness of the semiconductor material layer is 1nm-1mm, these low κ modes are significantly weakened, while the high κ mode in the low-frequency range is almost unaffected, so that the thermal rectification performance of the radiation heat flux control device can be significantly improved.
进一步,所述第一基底的厚度为1nm-100mm,例如1nm、10nm、20nm、50nm、80nm、100nm、200nm、300nm、400nm、500nm、600nm、700nm、800nm、900nm、1μm、2μm、3μm、4μm、5μm、6μm、7μm、8μm、9μm、10μm、100μm、500μm、1mm、2mm、5mm、10mm、50mm、100mm等。Further, the thickness of the first substrate is 1nm-100mm, for example, 1nm, 10nm, 20nm, 50nm, 80nm, 100nm, 200nm, 300nm, 400nm, 500nm, 600nm, 700nm, 800nm, 900nm, 1μm, 2μm, 3μm, 4μm, 5μm, 6μm, 7μm, 8μm, 9μm, 10μm, 100μm, 500μm, 1mm, 2mm, 5mm, 10mm, 50mm, 100mm, etc.
在一些实施方式中,所述第一辐射体包括半导体材料层和由非金属材料构成的第一基底,所述第一基底的厚度为1nm-1μm,例如1nm、10nm、20nm、50nm、80nm、100nm、200nm、300nm、400nm、500nm、600nm、700nm、800nm、900nm、1μm等。In some embodiments, the first radiator includes a semiconductor material layer and a first substrate composed of a non-metallic material, and the thickness of the first substrate is 1nm-1μm, for example, 1nm, 10nm, 20nm, 50nm, 80nm, 100nm, 200nm, 300nm, 400nm, 500nm, 600nm, 700nm, 800nm, 900nm, 1μm, etc.
进一步,所述非金属材料优选为极性材料。Furthermore, the non-metallic material is preferably a polar material.
在一些实施方式中,所述第一辐射体包括半导体材料层和第一基底,所述半导体材料层覆盖于所述第一基底上,所述第一基底含有第一金属材料层;所述第一金属材料层中,金属材料的体积占比为20%(V/V)以上;优选地,所述第一金属材料层的厚度为1nm-100mm,例如1nm、10nm、20nm、50nm、80nm、100nm、200nm、300nm、400nm、500nm、600nm、700nm、800nm、900nm、1μm、2μm、3μm、4μm、5μm、6μm、7μm、8μm、9μm、10μm、100μm、500μm、1mm、2mm、5mm、10mm、50mm、100mm等;In some embodiments, the first radiator includes a semiconductor material layer and a first substrate, the semiconductor material layer is covered on the first substrate, and the first substrate contains a first metal material layer; in the first metal material layer, the volume proportion of the metal material is 20% (V/V) or more; preferably, the thickness of the first metal material layer is 1nm-100mm, for example, 1nm, 10nm, 20nm, 50nm, 80nm, 100nm, 200nm, 300nm, 400nm, 500nm, 600nm, 700nm, 800nm, 900nm, 1μm, 2μm, 3μm, 4μm, 5μm, 6μm, 7μm, 8μm, 9μm, 10μm, 100μm, 500μm, 1mm, 2mm, 5mm, 10mm, 50mm, 100mm, etc.;
优选地,所述第一辐射体和第二辐射体之间垂直线中点距所述第一金属材料层的距离为10nm-100mm;例如10nm、20nm、50nm、80nm、100nm、200nm、300nm、400nm、500nm、600nm、700nm、800nm、900nm、1μm、2μm、3μm、4μm、5μm、6μm、7μm、8μm、9μm、10μm、100μm、500μm、1mm、2mm、5mm、10mm、50mm、100mm等。Preferably, the distance between the midpoint of the vertical line between the first radiator and the second radiator and the first metal material layer is 10nm-100mm; for example, 10nm, 20nm, 50nm, 80nm, 100nm, 200nm, 300nm, 400nm, 500nm, 600nm, 700nm, 800nm, 900nm, 1μm, 2μm, 3μm, 4μm, 5μm, 6μm, 7μm, 8μm, 9μm, 10μm, 100μm, 500μm, 1mm, 2mm, 5mm, 10mm, 50mm, 100mm, etc.
在一些实施方式中,所述第一金属材料层由金属材料构成。In some embodiments, the first metal material layer is made of metal material.
在一些实施方式中,所述第一基底由第一金属材料层构成。In some embodiments, the first substrate is composed of a first metal material layer.
在另一些实施方式中,所述第一基底包括第一金属材料层和非金属材料层;所述非金属材料优选为极性材料。In some other embodiments, the first substrate includes a first metal material layer and a non-metal material layer; the non-metal material is preferably a polar material.
进一步,所述第二辐射体设有极性材料层、掺杂半导体材料层中的一种或两种的组合。Furthermore, the second radiator is provided with one or a combination of a polar material layer and a doped semiconductor material layer.
进一步,所述极性材料层中,极性材料的体积占比为30%-100%(V/V);优选地,所述极性材料以规则或不规则分布的离散组分形式存在,或者所述极性材料层中含有规则或不规则分布的非极性材料组分。Furthermore, in the polar material layer, the volume proportion of polar material is 30%-100% (V/V); preferably, the polar material exists in the form of regularly or irregularly distributed discrete components, or the polar material layer contains regularly or irregularly distributed non-polar material components.
在一些实施方式中,所述极性材料层由极性材料构成。In some embodiments, the polar material layer is made of polar material.
在一些实施方式中,所述极性材料层中,极性材料的体积占比大于等于30%且小于100%;优选地,所述极性材料以规则或不规则分布的离散组分形式存在,或者所述极性材料层中含有规则或不规则分布的非极性材料组分。In some embodiments, in the polar material layer, the volume proportion of polar material is greater than or equal to 30% and less than 100%; preferably, the polar material exists in the form of regularly or irregularly distributed discrete components, or the polar material layer contains regularly or irregularly distributed non-polar material components.
进一步,所述极性材料选自氯化钠(NaCl)、溴化钾(KBr)、氯化钾(KCl)、氟化钡(BaF2)、氟化铯(SrF2)、氟化钙(CaF2)、氟化锂(LiF)、氮化镓(GaN)、氧化镁(MgO)、溴化铯(CsBr)、碘化铯(CsI)、硫化锌(ZnS)、溴化银(AgBr)、氯化银(AgCl)、立方氮化硼(cBN)、碳化硅(SiC)、二氧化硅(SiO2)、六角氮化硼(hBN)、硒化锌(ZnSe)、蓝宝石、碲化镉(CdTe)、二氧化硅(SiO2)等;优选为氯化钠(NaCl)、溴化钾(KBr)、氯化钾(KCl)、氟化钡(BaF2)、氟化铯(SrF2)、氟化钙(CaF2)、氟化锂(LiF)、氮化镓(GaN)、氧化镁(MgO)、溴化铯(CsBr)、碘化铯(CsI)、硫化锌(ZnS)、溴化银(AgBr)或氯化银(AgCl)。Further, the polar material is selected from sodium chloride (NaCl), potassium bromide (KBr), potassium chloride (KCl), barium fluoride (BaF 2 ), cesium fluoride (SrF 2 ), calcium fluoride (CaF 2 ), lithium fluoride (LiF), gallium nitride (GaN), magnesium oxide (MgO), cesium bromide (CsBr), cesium iodide (CsI), zinc sulfide (ZnS), silver bromide (AgBr), silver chloride (AgCl), cubic boron nitride (cBN), silicon carbide (SiC), silicon dioxide (SiO 2 ), hexagonal boron nitride (hBN), zinc selenide (ZnSe), sapphire, cadmium telluride (CdTe), silicon dioxide (SiO 2 ), etc.; preferably sodium chloride (NaCl), potassium bromide (KBr), potassium chloride (KCl), barium fluoride (BaF 2 ), cesium fluoride (SrF 2 ), calcium fluoride (CaF 2 ), lithium fluoride (LiF), gallium nitride (GaN), magnesium oxide (MgO), cesium bromide (CsBr), cesium iodide (CsI), zinc sulfide (ZnS), silver bromide (AgBr) or silver chloride (AgCl).
进一步,所述极性材料层的厚度为1nm-100mm,优选为1nm-10mm;例如1nm、10nm、20nm、50nm、80nm、100nm、200nm、300nm、400nm、500nm、600nm、700nm、800nm、900nm、1μm、2μm、3μm、4μm、5μm、6μm、7μm、8μm、9μm、10μm、100μm、500μm、1mm、2mm、5mm、10mm、50mm、100mm等。Further, the thickness of the polar material layer is 1nm-100mm, preferably 1nm-10mm; for example, 1nm, 10nm, 20nm, 50nm, 80nm, 100nm, 200nm, 300nm, 400nm, 500nm, 600nm, 700nm, 800nm, 900nm, 1μm, 2μm, 3μm, 4μm, 5μm, 6μm, 7μm, 8μm, 9μm, 10μm, 100μm, 500μm, 1mm, 2mm, 5mm, 10mm, 50mm, 100mm, etc.
进一步,所述掺杂半导体层由载流子掺杂浓度大于1015cm-3的掺杂半导体材料构成;优选地,所述掺杂浓度为1015-1020cm-3;更优选地,所述掺杂浓度为1016-1020cm-3;进一步优选地,所述掺杂浓度为1017-1019cm-3;其中,所述半导体选自硅(Si)、锗(Ge)、磷化镓(GaP)、砷化镓(GaAs)、砷化铟(InAs)、硼(B)、碲(Te)、硒(Se)、氮化镓(GaN)、氮化铟(InN)、氮化铝(AlN)、三氧化二铝(Al2O3)、碳化硅(SiC)、氧化锌(ZnO)、氮化硅(Si3N4)、锑化镓(GaSb)、硫化锌(ZnS)、碲化镉(CdTe)、碲化汞(HgTe)、溴化亚铜(CuBr)、碘化亚铜(CuI)、碲化铋(Bi2Te3)、硒化铋(Bi2Se3)、硫化铋(Bi2S3)、碲化砷(As2Te3);优选为硅(Si)、锗(Ge)、磷化镓(GaP)、砷化镓(GaAs)或砷化铟(InAs)。Further, the doped semiconductor layer is composed of a doped semiconductor material with a carrier doping concentration greater than 10 15 cm -3 ; preferably, the doping concentration is 10 15 -10 20 cm -3 ; more preferably, the doping concentration is 10 16 -10 20 cm -3 ; further preferably, the doping concentration is 10 17 -10 19 cm -3 ; wherein the semiconductor is selected from silicon (Si), germanium (Ge), gallium phosphide (GaP), gallium arsenide (GaAs), indium arsenide (InAs), boron (B), tellurium (Te), selenium (Se), gallium nitride (GaN), indium nitride (InN), aluminum nitride (AlN), aluminum oxide (Al 2 O 3 ), silicon carbide (SiC), zinc oxide (ZnO), silicon nitride (Si 3 N 4 ), gallium antimonide (GaSb), zinc sulfide (ZnS), cadmium telluride (CdTe), mercury telluride (HgTe), cuprous bromide (CuBr), cuprous iodide (CuI), bismuth telluride (Bi 2 Te 3 ), bismuth selenide (Bi 2 Se 3 ), bismuth sulfide (Bi 2 S 3 ), arsenic telluride (As 2 Te 3 ); preferably silicon (Si), germanium (Ge), gallium phosphide (GaP), gallium arsenide (GaAs) or indium arsenide (InAs).
所述掺杂半导体层的厚度为1nm-100mm,优选为1nm-10mm;例如1nm、10nm、20nm、50nm、80nm、100nm、200nm、300nm、400nm、500nm、600nm、700nm、800nm、900nm、1μm、2μm、3μm、4μm、5μm、6μm、7μm、8μm、9μm、10μm、100μm、500μm、1mm、2mm、5mm、10mm、50mm、100mm等。The thickness of the doped semiconductor layer is 1nm-100mm, preferably 1nm-10mm; for example, 1nm, 10nm, 20nm, 50nm, 80nm, 100nm, 200nm, 300nm, 400nm, 500nm, 600nm, 700nm, 800nm, 900nm, 1μm, 2μm, 3μm, 4μm, 5μm, 6μm, 7μm, 8μm, 9μm, 10μm, 100μm, 500μm, 1mm, 2mm, 5mm, 10mm, 50mm, 100mm, etc.
进一步,所述第二辐射体还包括第二基底,所述极性材料层或所述掺杂半导体材料层覆盖于所述第二基底上,所述第二基底含有金属材料层;所述金属材料层中,金属材料的体积占比为20%(V/V)以上;Furthermore, the second radiator further comprises a second substrate, the polar material layer or the doped semiconductor material layer covers the second substrate, and the second substrate comprises a metal material layer; in the metal material layer, the volume proportion of the metal material is greater than 20% (V/V);
优选地,所述第二金属材料层的厚度为1nm-100mm,例如1nm、10nm、20nm、50nm、80nm、100nm、200nm、300nm、400nm、500nm、600nm、700nm、800nm、900nm、1μm、2μm、3μm、4μm、5μm、6μm、7μm、8μm、9μm、10μm、100μm、500μm、1mm、2mm、5mm、10mm、50mm、100mm等;Preferably, the thickness of the second metal material layer is 1nm-100mm, for example, 1nm, 10nm, 20nm, 50nm, 80nm, 100nm, 200nm, 300nm, 400nm, 500nm, 600nm, 700nm, 800nm, 900nm, 1μm, 2μm, 3μm, 4μm, 5μm, 6μm, 7μm, 8μm, 9μm, 10μm, 100μm, 500μm, 1mm, 2mm, 5mm, 10mm, 50mm, 100mm, etc.;
优选地,所述第一辐射体和第二辐射体之间垂直线中点距所述第二金属材料层的距离为10nm-100mm,例如10nm、20nm、50nm、80nm、100nm、200nm、300nm、400nm、500nm、600nm、700nm、800nm、900nm、1μm、2μm、3μm、4μm、5μm、6μm、7μm、8μm、9μm、10μm、100μm、500μm、1mm、2mm、5mm、10mm、50mm、100mm等。Preferably, the distance between the midpoint of the vertical line between the first radiator and the second radiator and the second metal material layer is 10nm-100mm, for example, 10nm, 20nm, 50nm, 80nm, 100nm, 200nm, 300nm, 400nm, 500nm, 600nm, 700nm, 800nm, 900nm, 1μm, 2μm, 3μm, 4μm, 5μm, 6μm, 7μm, 8μm, 9μm, 10μm, 100μm, 500μm, 1mm, 2mm, 5mm, 10mm, 50mm, 100mm, etc.
根据本发明所述的辐射热流调控器件,当其包括含金属材料层的基底时,所述第一辐射体和第二辐射体之间垂直线中点距所述该金属材料层的距离为10nm-100mm。本发明在研究中发现,如金属材料层过近(例如小于10nm)会贡献较多的辐射热流,而这些热流对于温度偏置方向的变化并不敏感(因为金属的介电常数对于温度变化并不敏感),所以会削弱热流调控性能;如金属材料层过远(例如大于100mm)则意味着金属层之上有较大体积的辐射体,从而导致较多的低κ模式,同样会削弱热流调控性能。According to the radiation heat flux control device described in the present invention, when it includes a substrate containing a metal material layer, the distance between the midpoint of the vertical line between the first radiator and the second radiator and the metal material layer is 10nm-100mm. The present invention has found in research that if the metal material layer is too close (for example, less than 10nm), it will contribute more radiation heat flux, and these heat fluxes are not sensitive to changes in the temperature bias direction (because the dielectric constant of the metal is not sensitive to temperature changes), so it will weaken the heat flux control performance; if the metal material layer is too far (for example, greater than 100mm), it means that there is a larger volume of radiators above the metal layer, resulting in more low-κ modes, which will also weaken the heat flux control performance.
在一些实施方式中,所述第二金属材料层由金属材料构成。In some embodiments, the second metal material layer is made of a metal material.
在一些实施方式中,所述第二基底由第二金属材料层构成。In some embodiments, the second substrate is composed of a second metal material layer.
在另一些实施方式中,所述第二基底包括第二金属材料层和非金属材料层;所述非金属材料优选为极性材料。In some other embodiments, the second substrate includes a second metal material layer and a non-metal material layer; the non-metal material is preferably a polar material.
进一步,所述金属材料选自下组中的一种或两种以上的组合:银(Ag)、金(Au)和铝(Al)。Furthermore, the metal material is selected from one or a combination of two or more of the following: silver (Ag), gold (Au) and aluminum (Al).
根据本发明所述的辐射热流调控器件,第一基底和第二基底的主要作用为支撑和提升器件的机械强度,其中的金属材料层主要用于屏蔽器件背面的热辐射,当金属材料层的厚度大于等于10nm时,即可实现有效的屏蔽;当金属材料层的厚度大于等于100nm时,即可实现较高效的屏蔽;当金属材料层的厚度大于等于1000nm时,即可实现接近完全的屏蔽,此时将该辐射热流调控器件置于任意物体之上都不会影响器件的热流调控性能。即使金属材料层的厚度仅为1nm时,也能有一定的屏蔽作用。可以根据实际情况在10nm-100mm之间选择合适的金属材料层的厚度,常见的厚度例如100nm-10μm。According to the radiation heat flux control device described in the present invention, the main functions of the first substrate and the second substrate are to support and enhance the mechanical strength of the device, and the metal material layer is mainly used to shield the thermal radiation on the back of the device. When the thickness of the metal material layer is greater than or equal to 10nm, effective shielding can be achieved; when the thickness of the metal material layer is greater than or equal to 100nm, more efficient shielding can be achieved; when the thickness of the metal material layer is greater than or equal to 1000nm, nearly complete shielding can be achieved. At this time, placing the radiation heat flux control device on any object will not affect the heat flux control performance of the device. Even if the thickness of the metal material layer is only 1nm, it can still have a certain shielding effect. The thickness of the appropriate metal material layer can be selected between 10nm-100mm according to actual conditions, and common thicknesses are, for example, 100nm-10μm.
在一些实施方式中,所述第二辐射体包括依次层叠的掺杂半导体材料层、极性材料层和第二基底。In some embodiments, the second radiator includes a doped semiconductor material layer, a polar material layer, and a second substrate stacked in sequence.
根据本发明所述的辐射热流调控器件,如果在第二辐射体靠近所述第一辐射体的一侧的表面增设厚度不超过1μm的覆盖层(例如增设孔隙或非金属材料占比>20%的覆盖层);和/或,如果在第一辐射体靠近所述第二辐射体的一侧的表面增设厚度不超过1μm的覆盖层(例如增设孔隙或非金属材料占比>20%的覆盖层),仍在本发明的保护范围之内。According to the radiation heat flux regulation device of the present invention, if a covering layer with a thickness not exceeding 1 μm is added on the surface of the second radiator on the side close to the first radiator (for example, a covering layer with pores or a non-metallic material accounting for more than 20% is added); and/or, if a covering layer with a thickness not exceeding 1 μm is added on the surface of the first radiator on the side close to the second radiator (for example, a covering layer with pores or a non-metallic material accounting for more than 20% is added), it is still within the protection scope of the present invention.
根据本发明所述的辐射热流调控器件,至少包含第一辐射体和第二辐射体,在此基础上,所述的辐射热流调控器件可以通过层叠多个第一辐射体和第二辐射体的方式设置更多的辐射体,这也在本发明的保护范围之内。The radiation heat flux regulating device according to the present invention comprises at least a first radiator and a second radiator. On this basis, the radiation heat flux regulating device can be provided with more radiators by stacking a plurality of first radiators and second radiators, which is also within the protection scope of the present invention.
在一些实施方式中,所述辐射热流调控器件中,所述第一辐射体和第二辐射体之间,还设置有一个或多个辐射体。In some embodiments, in the radiation heat flux regulating device, one or more radiators are further arranged between the first radiator and the second radiator.
在一些实施方式中,所述辐射热流调控器件中,所述第一辐射体和第二辐射体之间,还设置有一个或多个第一辐射体和/或第二辐射体。In some embodiments, in the radiation heat flux regulating device, one or more first radiators and/or second radiators are further arranged between the first radiator and the second radiator.
本发明的第二方面,提供本发明所述的辐射热流调控器件在热流调节中的应用。A second aspect of the present invention provides application of the radiation heat flux regulating device of the present invention in heat flux regulation.
本发明的第三方面,提供一种包含所述辐射热流调控器件的热流调节器。According to a third aspect of the present invention, a heat flux regulator is provided, which includes the radiation heat flux regulating device.
进一步,所述热流调节器为热二极管、热三极管或热开关。Furthermore, the heat flux regulator is a thermal diode, a thermal triode or a thermal switch.
与现有技术相比,本发明具有以下优点:Compared with the prior art, the present invention has the following advantages:
本发明提供包含第一辐射体和第二辐射体的辐射热流调控器件,第一辐射体含有半导体材料层,从而使其能够提供尽可能大的局域电磁态密度差异;第二辐射体含有极性材料层和/或掺杂半导体材料层,从而能够选择性地筛选合适的频率段来主导辐射换热,从而可以将第一辐射体所提供的尽可能大的局域电磁态密度差异转化为辐射热流的差异,从而实现对辐射热流的高效调控。The present invention provides a radiation heat flux regulation device comprising a first radiator and a second radiator, wherein the first radiator contains a semiconductor material layer, so that it can provide the largest possible local electromagnetic state density difference; the second radiator contains a polar material layer and/or a doped semiconductor material layer, so that it can selectively screen a suitable frequency band to dominate the radiation heat exchange, so that the largest possible local electromagnetic state density difference provided by the first radiator can be converted into a radiation heat flux difference, thereby realizing efficient regulation of the radiation heat flux.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
通过阅读下文优选实施方式的详细描述,各种其他的优点和益处对于本领域普通技术人员将变得清楚明了。附图仅用于示出优选实施方式的目的,而并不认为是对本发明的限制。在附图中:Various other advantages and benefits will become apparent to those skilled in the art by reading the detailed description of the preferred embodiments below. The accompanying drawings are only used for the purpose of illustrating the preferred embodiments and are not to be considered as limiting the present invention. In the accompanying drawings:
图1:基于热辐射的热二极管的原理示意图;Figure 1: Schematic diagram of the principle of a thermal diode based on thermal radiation;
图2:不同温度下,本征硅的介电常数实部和虚部的变化规律;Figure 2: Variation of the real and imaginary parts of the dielectric constant of intrinsic silicon at different temperatures;
图3:不同温度下,半无限大平面结构本征硅的局域电磁态密度;Figure 3: Local electromagnetic state density of intrinsic silicon in a semi-infinite planar structure at different temperatures;
图4:不同厚度的本征硅层状材料的局域电磁态密度变化比例;其中,局域电磁态密度变化比例=1000K下的局域电磁态密度/300K下的局域电磁态密度;Figure 4: Change ratio of local electromagnetic state density of intrinsic silicon layered materials of different thicknesses; where local electromagnetic state density change ratio = local electromagnetic state density at 1000K/local electromagnetic state density at 300K;
图5:本征硅置空薄膜的局域电磁态密度变化比例与无限大平面结构极性材料层的局域电磁态密度;其中,局域电磁态密度变化比例=1000K下的局域电磁态密度/300K下的局域电磁态密度;Figure 5: The change ratio of the local electromagnetic state density of the intrinsic silicon void film and the local electromagnetic state density of the infinite planar structure polar material layer; where the change ratio of the local electromagnetic state density = the local electromagnetic state density at 1000K/the local electromagnetic state density at 300K;
图6:本征硅置空薄膜的局域电磁态密度变化比例与不同厚度的掺杂硅薄膜分别在300K和1000K下的局域电磁态密度;其中,局域电磁态密度变化比例=1000K下的局域电磁态密度/300K下的局域电磁态密度;Figure 6: The change ratio of the local electromagnetic state density of the intrinsic silicon empty film and the local electromagnetic state density of doped silicon films of different thicknesses at 300K and 1000K respectively; where the change ratio of the local electromagnetic state density = the local electromagnetic state density at 1000K/the local electromagnetic state density at 300K;
图7:本发明提供的辐射热流调控器件的第一辐射体的结构示意图;FIG7 is a schematic structural diagram of a first radiator of a radiant heat flux regulating device provided by the present invention;
图8:本发明提供的辐射热流调控器件的第二辐射体的一种结构示意图;FIG8 is a schematic structural diagram of a second radiator of the radiation heat flux regulating device provided by the present invention;
图9:本发明提供的辐射热流调控器件的第二辐射体的另一种结构示意图;FIG9 is another schematic diagram of the structure of the second radiator of the radiation heat flux regulating device provided by the present invention;
图10:本发明提供的热二极管的结构示意图;FIG10 is a schematic diagram of the structure of a thermal diode provided by the present invention;
图11:本发明提供的热三极管的结构示意图;FIG11 is a schematic diagram of the structure of a thermal triode provided by the present invention;
图12:在不同的辐射体间距条件下,本发明提供的热二极管的整流比的变化情况;FIG12 : Changes in the rectification ratio of the thermal diode provided by the present invention under different radiator spacing conditions;
图13:由本征硅构成的第一辐射体在温度变化情形下的局域电磁态密度图;FIG13 is a diagram showing the local electromagnetic state density of a first radiator made of intrinsic silicon under temperature variation;
图14:由本征硅和银构成的第一辐射体的局域电磁态密度变化比例;其中,局域电磁态密度变化比例=1000K下的局域电磁态密度/300K下的局域电磁态密度;FIG14 : Change ratio of local electromagnetic state density of the first radiator composed of intrinsic silicon and silver; wherein, change ratio of local electromagnetic state density=local electromagnetic state density at 1000K/local electromagnetic state density at 300K;
图15:本征硅与溴化钾组合的热二极管分别在正、反向温度偏置情形下的辐射热交换系数图;Figure 15: Radiative heat transfer coefficient diagram of a thermal diode composed of intrinsic silicon and potassium bromide under forward and reverse temperature bias conditions;
图16:本征硅与溴化钾组合的热二极管的整流比随薄膜厚度的变化情况;Figure 16: The rectification ratio of the thermal diode of the combination of intrinsic silicon and potassium bromide varies with film thickness;
图17:本征硅与掺杂硅组合的热二极管分别在正、反向温度偏置情形下的辐射热交换系数图;Figure 17: Radiative heat transfer coefficient diagram of a thermal diode composed of intrinsic silicon and doped silicon under forward and reverse temperature bias conditions;
图18:本征硅与掺杂硅组合的热二极管的整流比随薄膜厚度的变化情况;Figure 18: The rectification ratio of the thermal diode of the combination of intrinsic silicon and doped silicon varies with film thickness;
图19:含基底的本征硅与溴化钾组合的热二极管的结构示意图;FIG. 19 : Schematic diagram of the structure of a thermal diode comprising a combination of intrinsic silicon and potassium bromide on a substrate;
图20:含基底的本征硅与溴化钾组合的热二极管的整流比随薄膜厚度的变化情况;Figure 20: Variation of the rectification ratio of a thermal diode composed of intrinsic silicon and potassium bromide with film thickness;
图21:含基底的本征硅与掺杂硅组合的热二极管的结构示意图;FIG. 21 : Schematic diagram of the structure of a thermal diode comprising a combination of intrinsic silicon and doped silicon on a substrate;
图22:含基底的本征硅与掺杂硅组合的热二极管的整流比随薄膜厚度的变化情况;Figure 22: Variation of the rectification ratio of a thermal diode composed of intrinsic silicon and doped silicon with film thickness;
图23:含基底的本征硅、掺杂硅与溴化钾组合的热二极管的结构示意图;FIG23 : Schematic diagram of the structure of a thermal diode comprising a substrate of intrinsic silicon, doped silicon and potassium bromide;
图24:含基底的本征硅、掺杂硅与溴化钾组合的热二极管的整流比随薄膜厚度的变化情况;Figure 24: Variation of the rectification ratio of a thermal diode with a combination of intrinsic silicon, doped silicon and potassium bromide containing a substrate with film thickness;
图25:含非金属基底的本征硅与立方氮化硼组合的热二极管的结构示意图。FIG. 25 : Schematic diagram of the structure of a thermal diode comprising a combination of intrinsic silicon and cubic boron nitride with a non-metallic substrate.
具体实施方式Detailed ways
下面将参照附图更详细地描述本公开的示例性实施方式。虽然附图中显示了本公开的示例性实施方式,然而应当理解,可以以各种形式实现本公开而不应被这里阐述的实施方式所限制。相反,提供这些实施方式是为了能够更透彻地理解本公开,并且能够将本公开的范围完整的传达给本领域的技术人员。The exemplary embodiments of the present disclosure will be described in more detail below with reference to the accompanying drawings. Although the exemplary embodiments of the present disclosure are shown in the accompanying drawings, it should be understood that the present disclosure can be implemented in various forms and should not be limited by the embodiments described herein. On the contrary, these embodiments are provided to enable a more thorough understanding of the present disclosure and to fully convey the scope of the present disclosure to those skilled in the art.
图1示出了基于热辐射的热二极管的原理示意图,这是一种非常典型的热流调控方式,在同样的温差下,热整流器件中的热流大小与温度的偏置方向有关。当温度方向发生改变时,介电常数的改变将导致辐射热流产生差异从而形成热整流。热整流的核心性能参数是整流比,其定义为正反向热流之差与较小的反向热流的比值。Figure 1 shows a schematic diagram of the principle of a thermal diode based on thermal radiation, which is a very typical way of regulating heat flow. Under the same temperature difference, the heat flow in the thermal rectifier device is related to the bias direction of the temperature. When the temperature direction changes, the change in the dielectric constant will cause a difference in the radiation heat flow, thus forming thermal rectification. The core performance parameter of thermal rectification is the rectification ratio, which is defined as the ratio of the difference between the forward and reverse heat flows to the smaller reverse heat flow.
基于波动电动力学理论框架,两个平行平面辐射体——第一辐射体(处于T1温度下)和第二辐射体(处于T2温度下)之间的辐射热流可以由以下公式来计算:Based on the wave electrodynamics theory framework, the radiation heat flow between two parallel plane radiators, the first radiator (at temperature T1 ) and the second radiator (at temperature T2 ), can be calculated by the following formula:
其中,d为两个辐射体之间的间距,ω为角频率,κ为横向波矢。对于宏观尺度下的远场热辐射而言,只有横向波矢小于ω/c0的电磁波参与辐射换热(c0为真空中光速);而当两个辐射体的间距小于热波长时(室温下约为10μm),横向波矢κ大于ω/c0的倏逝波开始参与甚至主导辐射换热,特别是当一些横向波矢κ很大的电磁模式(称作高κ电磁模式)的参与,能够使得辐射换热能力比远场热辐射增强好几个数量级。因此,通过合理利用这些高κ模式,有望实现对辐射热流的高效调控。Where d is the distance between the two radiators, ω is the angular frequency, and κ is the transverse wave vector. For far-field thermal radiation at a macroscopic scale, only electromagnetic waves with a transverse wave vector less than ω/c 0 participate in radiative heat transfer (c 0 is the speed of light in a vacuum); when the distance between the two radiators is less than the thermal wavelength (about 10 μm at room temperature), evanescent waves with a transverse wave vector κ greater than ω/c 0 begin to participate in or even dominate radiative heat transfer, especially when some electromagnetic modes with large transverse wave vectors κ (called high-κ electromagnetic modes) participate, the radiative heat transfer capacity can be enhanced by several orders of magnitude compared to far-field thermal radiation. Therefore, by rationally utilizing these high-κ modes, it is expected to achieve efficient regulation of radiative heat flux.
本发明通过使第一辐射体提供尽可能大的局域电磁态密度的差异,以使近场辐射热流调控器件具备尽可能大的热流调控能力。并且,由于在不同频率段下的局域电磁态密度的差异不同,因此本发明通过应用第二辐射体来选择性地筛选合适的频率段来主导辐射换热,从而可以将第一辐射体所提供的尽可能大的局域电磁态密度差异转化为辐射热流的差异,从而实现对辐射热流的高效调控。The present invention enables the near-field radiation heat flux control device to have the greatest possible heat flux control capability by enabling the first radiator to provide the greatest possible difference in local electromagnetic state density. In addition, since the difference in local electromagnetic state density in different frequency bands is different, the present invention uses the second radiator to selectively select a suitable frequency band to dominate the radiation heat exchange, so that the greatest possible difference in local electromagnetic state density provided by the first radiator can be converted into a difference in radiation heat flux, thereby achieving efficient control of radiation heat flux.
其中,局域电磁态密度的定义为在辐射体上方某一区域内单位空间、单位频率内的电磁模式的数量。对于一平面辐射体而言,其上方位置z处的局域电磁态密度可以用以下公式进行计算:The local electromagnetic state density is defined as the number of electromagnetic modes per unit space and per unit frequency in a certain area above the radiator. For a planar radiator, the local electromagnetic state density at position z above it can be calculated using the following formula:
式(2)中,rs、rp分别是s、p偏振态的界面菲涅尔反射系数,k0和γ0分别是真空中的横向波矢和纵向波矢(与界面垂直)。之所以选用局域电磁态密度作为参考物理量,是因为局域电磁态密度可以体现一个辐射体的近场辐射能力,一般而言,局域电磁态密度越大的辐射体,其所能实现近场辐射热流也越大。In formula (2), rs and rp are the interface Fresnel reflection coefficients of s and p polarization states, respectively, and k0 and γ0 are the transverse wave vector and longitudinal wave vector (perpendicular to the interface) in vacuum, respectively. The reason why the local electromagnetic state density is selected as the reference physical quantity is that the local electromagnetic state density can reflect the near-field radiation capability of a radiator. Generally speaking, the larger the local electromagnetic state density of a radiator, the greater the near-field radiation heat flux it can achieve.
由上述可知,实现高效热辐射调控的一个关键在于设计一个辐射体使其可在外部环境的控制下(如温度、电场、磁场、压力等)实现较大的局域电磁态密度的变化。为了获得尽可能大的局域电磁态密度的变化,本发明采用层状半导体材料,通过利用其内部载流子变化所导致的介电常数变化来引发局域电磁态密度的较大差异。对于半导体材料而言,其介电常数一般可以写为如下表达式:From the above, it can be seen that a key to achieving efficient thermal radiation regulation is to design a radiator so that it can achieve a large change in local electromagnetic state density under the control of the external environment (such as temperature, electric field, magnetic field, pressure, etc.). In order to obtain the largest possible change in local electromagnetic state density, the present invention uses layered semiconductor materials to induce a large difference in local electromagnetic state density by utilizing the change in dielectric constant caused by the change in internal carriers. For semiconductor materials, their dielectric constant can generally be written as the following expression:
其中,ε′、ε″分别为介电常数的实部和虚部,εbl代表了来自材料内部电子带间跃迁和晶格吸收的贡献,Ne、τe分别为导带中电子的浓度、等效质量和弛豫时间,Nh、/>τh分别为价带中空穴的浓度、等效质量和弛豫时间,ε0为真空介电常数。Among them, ε′ and ε″ are the real and imaginary parts of the dielectric constant, ε bl represents the contribution from the electron interband transition and lattice absorption inside the material, Ne , τ e is the concentration, equivalent mass and relaxation time of electrons in the conduction band, N h ,/> τ h is the concentration, equivalent mass and relaxation time of holes in the valence band, and ε 0 is the vacuum dielectric constant.
以半导体材料在不同温度下的介电常数特征为例,当温度升高时,由于热激发导致自由载流子的浓度增加,从而导致介电常数虚部ε″显著增加,而介电常数实部ε′几乎不变。以本征硅为例,图2中示出了其介电常数实部和虚部随温度的变化规律;图3示出了不同温度下半无限大平面结构本征硅的局域电磁态密度特征。Taking the dielectric constant characteristics of semiconductor materials at different temperatures as an example, when the temperature rises, the concentration of free carriers increases due to thermal excitation, resulting in a significant increase in the imaginary part of the dielectric constant ε″, while the real part of the dielectric constant ε′ remains almost unchanged. Taking intrinsic silicon as an example, Figure 2 shows the variation of the real and imaginary parts of its dielectric constant with temperature; Figure 3 shows the local electromagnetic state density characteristics of intrinsic silicon with a semi-infinite planar structure at different temperatures.
由图3可知,当半无限大平面结构本征硅的温度从300K升高到1000K时,低频区间的局域电磁态密度最大可以变化4个数量级以上。究其原因,主要是因为p偏振态的高κ模式的发射率随着ε″的增加而增加,正是这些高κ模式的增多使得辐射体上方的局域电磁态密度急剧上升。至此,可知温度可以引发半导体的载流子浓度增加,从而导致其介电常数的特征性变化,并最终引发局域电磁态密度的显著差异。As shown in Figure 3, when the temperature of the semi-infinite planar structure intrinsic silicon increases from 300K to 1000K, the local electromagnetic state density in the low-frequency range can change by more than 4 orders of magnitude. The main reason is that the emissivity of the high-κ mode of the p-polarization state It increases with the increase of ε″, and it is the increase of these high-κ modes that causes the local electromagnetic state density above the radiator to rise sharply. So far, it can be known that temperature can cause an increase in the carrier concentration of the semiconductor, resulting in a characteristic change in its dielectric constant, and ultimately causing a significant difference in the local electromagnetic state density.
为了进一步提高半导体层状材料在不同温度下的局域电磁态密度的差异,本发明研究了不同厚度的半导体层状材料的局域电磁态密度特征。本发明发现,将半导体材料做薄并且悬空设置,可以减少材料内部传播的横向波矢κ较小的电磁波对热辐射的贡献,从而在更宽的频率范围内获得更大的局域电磁态密度的差异。以本征硅为例,图4示出了不同厚度下本征硅层状材料的局域电磁态密度变化特征。In order to further improve the difference in local electromagnetic state density of semiconductor layered materials at different temperatures, the present invention studies the local electromagnetic state density characteristics of semiconductor layered materials of different thicknesses. The present invention finds that by making the semiconductor material thin and suspended, the contribution of electromagnetic waves with a small transverse wave vector κ propagating inside the material to thermal radiation can be reduced, thereby obtaining a greater difference in local electromagnetic state density within a wider frequency range. Taking intrinsic silicon as an example, FIG4 shows the variation characteristics of the local electromagnetic state density of intrinsic silicon layered materials at different thicknesses.
为了提供具有尽可能大的局域电磁态密度变化的第一辐射体,在本发明的一些实施例中,所述第一辐射体中的半导体材料为本征硅;在本发明的另一些实施例中,所述第一辐射体中的半导体材料为低掺杂半导体(载流子掺杂浓度小于1016cm-3),当采用低掺杂半导体材料时,由于其载流子浓度较低,因此外界环境(如温度、电场、磁场、压力等)的变化更容易产生较大的载流子浓度变化,从而有助于实现更大的局域电磁态密度差异和相应的辐射热流调控能力。In order to provide a first radiator with the largest possible change in local electromagnetic state density, in some embodiments of the present invention, the semiconductor material in the first radiator is intrinsic silicon; in other embodiments of the present invention, the semiconductor material in the first radiator is a low-doped semiconductor (carrier doping concentration is less than 10 16 cm -3 ). When a low-doped semiconductor material is used, due to its low carrier concentration, changes in the external environment (such as temperature, electric field, magnetic field, pressure, etc.) are more likely to produce larger carrier concentration changes, thereby helping to achieve a larger difference in local electromagnetic state density and corresponding radiation heat flow control capabilities.
为了将第一辐射体中的层状半导体材料所构造的局域电磁态密度差异充分利用并转化为辐射热流的差异,本发明提供了与所述第一辐射体向匹配的第二辐射体。在本发明的一些实施例中,所述第二辐射体为窄带辐射体,主要由极性材料构成;在本发明的另一些实施例中,所述第二辐射体为宽带辐射体,主要由掺杂半导体材料构成。In order to fully utilize the difference in local electromagnetic state density constructed by the layered semiconductor material in the first radiator and convert it into a difference in radiation heat flow, the present invention provides a second radiator that matches the first radiator. In some embodiments of the present invention, the second radiator is a narrowband radiator, mainly composed of polar materials; in other embodiments of the present invention, the second radiator is a broadband radiator, mainly composed of doped semiconductor materials.
在本发明的一些实施例中,所述第二辐射体为窄带辐射体,其主要特征是可以支持在较窄频率段内局域电磁态密度的峰。在一些实施例中,所述第二辐射体包含极性材料层,所述极性材料选自下组中的一种或两种以上的组合:氯化钠(NaCl)、溴化钾(KBr)、氯化钾(KCl)、氟化钡(BaF2)、氟化铯(SrF2)、氟化钙(CaF2)、氟化锂(LiF)、氮化镓(GaN)、氧化镁(MgO)、溴化铯(CsBr)、碘化铯(CsI)、硫化锌(ZnS)、溴化银(AgBr)、氯化银(AgCl)、立方氮化硼(cBN)、碳化硅(SiC)、二氧化硅(SiO2)、六角氮化硼(hBN)、硒化锌(ZnSe)、蓝宝石、碲化镉(CdTe)、二氧化硅(SiO2)等;优选为氯化钠(NaCl)、溴化钾(KBr)、氯化钾(KCl)、氟化钡(BaF2)、氟化铯(SrF2)、氟化钙(CaF2)、氟化锂(LiF)、氮化镓(GaN)、氧化镁(MgO)、溴化铯(CsBr)、碘化铯(CsI)、硫化锌(ZnS)、溴化银(AgBr)、氯化银(AgCl)。In some embodiments of the present invention, the second radiator is a narrow-band radiator, the main feature of which is that it can support a peak of the local electromagnetic state density within a narrow frequency band. In some embodiments, the second radiator comprises a polar material layer, and the polar material is selected from one or a combination of two or more of the following: sodium chloride (NaCl), potassium bromide (KBr), potassium chloride (KCl), barium fluoride (BaF 2 ), cesium fluoride (SrF 2 ), calcium fluoride (CaF 2 ), lithium fluoride (LiF), gallium nitride (GaN), magnesium oxide (MgO), cesium bromide (CsBr), cesium iodide (CsI), zinc sulfide (ZnS), silver bromide (AgBr), silver chloride (AgCl), cubic boron nitride (cBN), silicon carbide (SiC), silicon dioxide (SiO 2 ), hexagonal boron nitride (hBN), zinc selenide (ZnSe), sapphire, cadmium telluride (CdTe), silicon dioxide (SiO 2 ), etc.; preferably sodium chloride (NaCl), potassium bromide (KBr), potassium chloride (KCl), barium fluoride (BaF 2 ), cesium fluoride (SrF 2 ), calcium fluoride (CaF 2 ), lithium fluoride (LiF), gallium nitride (GaN), magnesium oxide (MgO), cesium bromide (CsBr), cesium iodide (CsI), zinc sulfide (ZnS), silver bromide (AgBr), silver chloride (AgCl).
本发明提供了上述可用于第二辐射体的极性材料,通过采用合适的极性材料,可以筛选出半导体层状材料所构造的局域电磁态密度差异较大的频率段,从而实现辐射热流的有效调控。The present invention provides the polar material that can be used for the second radiator. By using a suitable polar material, the frequency band with a large difference in local electromagnetic state density constructed by the semiconductor layered material can be screened out, thereby achieving effective regulation of the radiation heat flow.
作为举例,图5示出了五种不同的极性材料,分别为溴化钾(KBr)、氯化钾(KCl)、氟化钡(BaF2)、碳化硅(SiC)和立方氮化硼(cBN),并示出了具有半无限大平面结构的这五种极性材料层的局域电磁态密度特征;为便于对照和比较,还示出了本征硅置空薄膜的局域电磁态密度变化比例。As an example, FIG5 shows five different polar materials, namely potassium bromide (KBr), potassium chloride (KCl), barium fluoride ( BaF2 ), silicon carbide (SiC) and cubic boron nitride (cBN), and shows the local electromagnetic state density characteristics of these five polar material layers with a semi-infinite planar structure; for the convenience of comparison and contrast, the change ratio of the local electromagnetic state density of the intrinsic silicon void film is also shown.
从图5可知,这五种极性材料都可以在特定频率段形成一个很尖的局域电磁态密度峰,当这些峰对应的频率段内,半导体层状材料所能引发的局域电磁态密度的差异越大时,所能形成的辐射热流调控能力就越大。因此,对于本征硅薄膜而言,这五种材料与其匹配可获得较大辐射热流调控能力,其中以溴化钾与本征硅薄膜匹配为最佳。As shown in Figure 5, these five polar materials can form a very sharp local electromagnetic state density peak in a specific frequency band. When the difference in the local electromagnetic state density caused by the semiconductor layered material in the frequency band corresponding to these peaks is greater, the radiation heat flow control capability that can be formed is greater. Therefore, for intrinsic silicon thin film, these five materials can be matched with it to obtain a greater radiation heat flow control capability, among which potassium bromide is the best match with intrinsic silicon thin film.
在本发明的一些实施例中,所述第二辐射体为宽带辐射体,其主要特征是可以在较宽的低频区间内具有较大的局域电磁态密度,并且该低频区域内的局域电磁态密度不会随着外界环境(如温度、电场、磁场、压力等)的改变而发生显著变化。在一些实施例中,所述第二辐射体包含掺杂半导体材料层,所述掺杂半导体材料的载流子掺杂浓度大于1015cm-3,由于其掺杂的载流子浓度较高,因此局域电磁态密度易随着外界环境的改变而发生显著变化。In some embodiments of the present invention, the second radiator is a broadband radiator, which is mainly characterized by having a large local electromagnetic state density in a wide low-frequency range, and the local electromagnetic state density in the low-frequency region does not change significantly with changes in the external environment (such as temperature, electric field, magnetic field, pressure, etc.). In some embodiments, the second radiator includes a doped semiconductor material layer, and the carrier doping concentration of the doped semiconductor material is greater than 10 15 cm -3 . Due to the high carrier concentration of the doped semiconductor material, the local electromagnetic state density is prone to change significantly with changes in the external environment.
作为举例,图6中示出了不同厚度的掺杂硅(n型掺杂,掺杂浓度为1018cm-3)薄膜分别在300K和1000K下的局域电磁态密度;为便于对照和比较,还示出了本征硅置空薄膜的局域电磁态密度变化比例。As an example, FIG6 shows the local electromagnetic state density of doped silicon (n-type doping, doping concentration of 10 18 cm -3 ) films of different thicknesses at 300K and 1000K respectively; for the convenience of comparison, the change ratio of the local electromagnetic state density of the intrinsic silicon void film is also shown.
从图6可知,半无限大平面结构掺杂硅和不同厚度的掺杂硅薄膜都可以在低频区间内支持很大的局域电磁态密度,这使其可以充分利用半导体层状材料在低频区间所产生的较大的局域电磁态密度的差异。同时,随着掺杂硅薄膜变薄,其在高频区间的局域电磁态密度不断降低,这表面将掺杂硅薄膜减薄可以削弱在其内部传播的横向波矢κ较小的电磁波,从而让高κ电磁模式的变化主导辐射热流的变化,实现更高效的热流调控。As shown in Figure 6, semi-infinite planar structure doped silicon and doped silicon films of different thicknesses can support a large local electromagnetic state density in the low-frequency range, which makes it possible to fully utilize the large difference in local electromagnetic state density generated by semiconductor layered materials in the low-frequency range. At the same time, as the doped silicon film becomes thinner, its local electromagnetic state density in the high-frequency range continues to decrease. This means that thinning the doped silicon film can weaken electromagnetic waves with a small transverse wave vector κ propagating inside it, thereby allowing changes in high-κ electromagnetic modes to dominate changes in radiant heat flow and achieve more efficient heat flow regulation.
在某实施例中,参见图7,所述第一辐射体的设置方式为以下三种中的一种:In one embodiment, referring to FIG. 7 , the first radiator is arranged in one of the following three ways:
(a)第一辐射体由半导体材料层构成,所述第一辐射体悬空设置;(a) The first radiator is composed of a semiconductor material layer, and the first radiator is suspended;
(b)第一辐射体包括半导体材料层和第一基底,所述第一基底由非金属材料构成,所述半导体材料层覆盖于所述第一基底上,所述第一辐射体悬空设置;(b) the first radiator comprises a semiconductor material layer and a first substrate, the first substrate is made of a non-metallic material, the semiconductor material layer covers the first substrate, and the first radiator is suspended;
(c)第一辐射体包括半导体材料层和第一基底,所述第一基底包括第一金属材料层,所述半导体材料层覆盖于所述第一基底上。(c) The first radiator includes a semiconductor material layer and a first substrate, wherein the first substrate includes a first metal material layer, and the semiconductor material layer covers the first substrate.
在某实施例中,参见图8,第二辐射体的设置方式为以下三种中的一种:In one embodiment, referring to FIG8 , the second radiator is arranged in one of the following three ways:
(a)第二辐射体由极性材料层构成,所述第二辐射体悬空设置;(a) the second radiator is composed of a polar material layer, and the second radiator is suspended;
(b)第二辐射体包括极性材料层和第二基底,所述第二基底由非金属材料构成,所述极性材料层覆盖于所述第二基底上,所述第二辐射体悬空设置;(b) the second radiator comprises a polar material layer and a second substrate, the second substrate is made of a non-metallic material, the polar material layer covers the second substrate, and the second radiator is suspended;
(c)第二辐射体包括极性材料层和第二基底,所述第二基底包括第一金属材料层,所述极性材料层覆盖于所述第二基底上。(c) The second radiator includes a polar material layer and a second substrate, the second substrate includes a first metal material layer, and the polar material layer covers the second substrate.
在某实施例中,参见图9,第二辐射体的设置方式为以下两种中的一种:In one embodiment, referring to FIG. 9 , the second radiator is disposed in one of the following two ways:
(a)第二辐射体由掺杂半导体材料层构成,所述第二辐射体悬空设置;(a) the second radiator is composed of a doped semiconductor material layer, and the second radiator is suspended;
(b)第二辐射体包括掺杂半导体材料层和第二基底,所述第二基底由非金属材料构成,所述掺杂半导体材料层覆盖于所述第二基底上,所述第二辐射体悬空设置;(b) the second radiator comprises a doped semiconductor material layer and a second substrate, the second substrate is made of a non-metallic material, the doped semiconductor material layer covers the second substrate, and the second radiator is suspended;
(c)第二辐射体包括掺杂半导体材料层和第二基底,所述第二基底包括第一金属材料层,所述掺杂半导体材料层覆盖于所述第二基底上。(c) The second radiator includes a doped semiconductor material layer and a second substrate, wherein the second substrate includes a first metal material layer, and the doped semiconductor material layer covers the second substrate.
在本发明中,实现大的热流调控性能的一个重要因素在于削弱在辐射体内部传播的低κ模式的贡献,而这些低κ模式与辐射体的体积相关,一般而言,辐射体体积越大,低κ模式越多,热流调控性能就越差。因此,本发明中采用的辐射体采用如下方式之一进行设置:其中一种是采用含金属材料层的基底,由于金属材料层具有较高的反射率,可以屏蔽辐射体背面的热辐射,即辐射体背面其他材料无法影响到辐射换热,相当于产生低κ模式的辐射体体积就只能是金属层之上的辐射体的体积,因此有效限制了低κ模式的数量;而如果不采用含金属层的基底时,为了避免引入过多的低κ模式,辐射体不能过厚且需要悬空设置(即在该辐射体背面不能有其他的辐射体),在悬空设置的条件下,辐射体可以不包含基底,也可以包含由非金属材料如极性材料构成的基底,这种设置方式也能限制低κ模式的贡献。在实际使用中,悬空的方式可以是采用悬臂支撑的方式。In the present invention, an important factor in achieving a large heat flux control performance is to weaken the contribution of the low κ mode propagating inside the radiator, and these low κ modes are related to the volume of the radiator. Generally speaking, the larger the volume of the radiator, the more low κ modes there are, and the worse the heat flux control performance. Therefore, the radiator used in the present invention is set in one of the following ways: one is to use a substrate containing a metal material layer. Since the metal material layer has a high reflectivity, it can shield the thermal radiation on the back of the radiator, that is, other materials on the back of the radiator cannot affect the radiation heat exchange, which is equivalent to the volume of the radiator that produces the low κ mode. The volume of the radiator above the metal layer can only be the volume of the radiator above the metal layer, thereby effectively limiting the number of low κ modes; and if a substrate containing a metal layer is not used, in order to avoid introducing too many low κ modes, the radiator cannot be too thick and needs to be suspended (that is, there can be no other radiators on the back of the radiator). Under the condition of the suspended setting, the radiator may not include a substrate, or may include a substrate composed of non-metallic materials such as polar materials. This setting method can also limit the contribution of low κ modes. In actual use, the suspended method can be a cantilever support method.
根据本发明,当所述半导体材料层覆盖于包含金属材料层的第一基底时,所述第一辐射体可采取悬空设置或非悬空设置,均在本发明的保护范围之内。According to the present invention, when the semiconductor material layer covers the first substrate including the metal material layer, the first radiator may be suspended or non-suspended, both of which are within the protection scope of the present invention.
根据本发明,术语“半导体材料”包括本征半导体材料和掺杂半导体材料,是这两者的上位概念。According to the present invention, the term "semiconductor material" includes intrinsic semiconductor materials and doped semiconductor materials, and is a general concept of the two.
在某实施例中,所述半导体材料层由半导体材料构成。In one embodiment, the semiconductor material layer is made of semiconductor material.
在某实施例中,所述半导体材料层中,半导体材料的体积占比为30%-100%(V/V),例如30%、40%、50%、60%、70%、80%、90%、100%等。In one embodiment, in the semiconductor material layer, the volume percentage of the semiconductor material is 30%-100% (V/V), for example, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 100%, etc.
在某实施例中,所述半导体材料中,当半导体材料的占比小于100%时,除半导体材料外的部分为孔隙或非金属材料(例如极性材料)。In one embodiment, in the semiconductor material, when the proportion of the semiconductor material is less than 100%, the portion other than the semiconductor material is pores or non-metallic material (eg, polar material).
在某些实施例中,所述半导体材料层并非完全由半导体材料构成,这可能是因为器件制备过程中不可避免地引入了杂质,或是为了成本等考虑在半导体材料层中设置孔隙亦或是填充其他非半导体材料,这些技术调整与改进均属于本发明的范畴之中。对于本发明的技术方案,当所述半导体材料层中半导体材料的体积占比≥30%时,即可对第一辐射体的局域电磁态密度形成较大贡献,从而具有显著优良的热流调控性能。In some embodiments, the semiconductor material layer is not entirely composed of semiconductor materials. This may be because impurities are inevitably introduced during the device preparation process, or pores are set in the semiconductor material layer or filled with other non-semiconductor materials for cost considerations. These technical adjustments and improvements are within the scope of the present invention. For the technical solution of the present invention, when the volume proportion of the semiconductor material in the semiconductor material layer is ≥30%, it can make a greater contribution to the local electromagnetic state density of the first radiator, thereby having significantly excellent heat flow control performance.
填充的材料可以为非金属材料,特别是极性材料,这是因为金属材料会引发宽谱的不易调控的表面等离极化激元,从而削弱局域电磁态密度的变化,而极性材料只在极窄的频率段内存在不易调控表面声子极化激元,在较宽的频率段内不会对局域电磁态密度产生大的影响,因此仍可以使得第一辐射体形成较大的局域电磁态密度的差异。The filling material can be a non-metallic material, especially a polar material. This is because metal materials will induce a wide spectrum of difficult-to-control surface plasmon polaritons, thereby weakening the change of the local electromagnetic state density, while polar materials only have difficult-to-control surface phonon polaritons in an extremely narrow frequency band, and will not have a large impact on the local electromagnetic state density in a wider frequency band. Therefore, the first radiator can still form a larger difference in the local electromagnetic state density.
在某实施例中,所述极性材料层由极性材料构成。In one embodiment, the polar material layer is made of polar material.
在某实施例中,所述极性材料层中,极性材料的体积占比为30%-100%(V/V);例如30%、40%、50%、60%、70%、80%、90%、100%等。In one embodiment, in the polar material layer, the volume percentage of the polar material is 30%-100% (V/V); for example, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 100%, etc.
在某实施例中,所述第一基底或第二基底不仅含有金属材料层,还含有非金属材料层。In one embodiment, the first substrate or the second substrate contains not only a metal material layer but also a non-metal material layer.
在某实施例中,所述第一基底或第二基底含有多个金属材料层和非金属材料层。In one embodiment, the first substrate or the second substrate comprises a plurality of metal material layers and non-metal material layers.
在某实施例中,参见图10,所述辐射热流调控器件为热二极管,其含有相对设置的第一辐射体和第二辐射体。In one embodiment, referring to FIG. 10 , the radiation heat flux regulating device is a thermal diode, which includes a first radiator and a second radiator that are arranged opposite to each other.
在某实施例中,参见图11,所述辐射热流调控器件为辐射热三级管,其含有一个第一辐射体和两个第二辐射体,所述第一辐射体夹设在两个第二辐射体之间。In a certain embodiment, referring to FIG. 11 , the radiation heat flux regulating device is a radiation heat triode, which includes a first radiator and two second radiators, wherein the first radiator is sandwiched between the two second radiators.
在某实施例中,所述辐射热流调控器件(图12中记为i-Si-KBr)包括第一辐射体和第二辐射体,所述第一辐射体由厚度为10nm的本征硅薄膜构成,所述第二辐射体由厚度为10nm的溴化钾薄膜构成;在另一实施例中,所述辐射热流调控器件(图12中记为i-Si-d-Si)包括第一辐射体和第二辐射体,所述第一辐射体由厚度为10nm的本征硅薄膜构成,所述第二辐射体由厚度为10nm的掺杂硅(掺杂浓度1018cm-3)薄膜构成。计算分析当两个辐射体的间距发生变化时,整流比的变化情况,结果如图12所示。根据图12可知,当两个辐射体的间距在1μm时,仍能达到三个数量级以上的整流比。In one embodiment, the radiation heat flux control device (denoted as i-Si-KBr in FIG. 12 ) includes a first radiator and a second radiator, wherein the first radiator is composed of an intrinsic silicon film with a thickness of 10 nm, and the second radiator is composed of a potassium bromide film with a thickness of 10 nm; in another embodiment, the radiation heat flux control device (denoted as i-Si-d-Si in FIG. 12 ) includes a first radiator and a second radiator, wherein the first radiator is composed of an intrinsic silicon film with a thickness of 10 nm, and the second radiator is composed of a doped silicon (doping concentration 10 18 cm -3 ) film with a thickness of 10 nm. The change of the rectification ratio when the distance between the two radiators changes is calculated and analyzed, and the result is shown in FIG. 12 . According to FIG. 12 , when the distance between the two radiators is 1 μm, the rectification ratio of more than three orders of magnitude can still be achieved.
在下文中,本发明的辐射热流调控器件以热二极管为典型进行阐述,但这并不表示限制本发明的辐射热流调控器件仅可以用作热二极管,其可以通过改变触发机制或与其他部件进行组合的方式来实现热三极管、热开关等功能。In the following, the radiation heat flux regulation device of the present invention is explained using a thermal diode as an example, but this does not limit the radiation heat flux regulation device of the present invention to be used only as a thermal diode. It can realize the functions of a thermal triode, a thermal switch, etc. by changing the trigger mechanism or combining with other components.
实施例1Example 1
本实施例提供由本征硅材料层构成的第一辐射体,计算分析第一辐射体上方100nm处的局域电磁态密度,相关参数包括:高温端温度为1000K,低温段温度为300K,分析结果如图13所示。This embodiment provides a first radiator composed of an intrinsic silicon material layer. The local electromagnetic state density at 100 nm above the first radiator is calculated and analyzed. The relevant parameters include: the high temperature end temperature is 1000K, the low temperature section temperature is 300K, and the analysis results are shown in FIG13 .
图13中,(a)本征硅材料层为块材,在热辐射分析中等效为半无限大的平面;(d)本征硅材料层的厚度为10nm;在(a)(d)下方的图中,分别示出了该本征硅材料层在温度变化情形下的局域电磁态密度。图中每个点对应特定频率和横向波矢的局域电磁态密度,越明亮则代表该模式的电磁模式数量越多。In Figure 13, (a) the intrinsic silicon material layer is a block material, which is equivalent to a semi-infinite plane in thermal radiation analysis; (d) the thickness of the intrinsic silicon material layer is 10nm; in the figures below (a) and (d), the local electromagnetic state density of the intrinsic silicon material layer under temperature changes is shown respectively. Each point in the figure corresponds to the local electromagnetic state density of a specific frequency and transverse wave vector. The brighter it is, the more electromagnetic modes there are in this mode.
在本发明提供的辐射热流调控器件中,实现热整流的关键在于当温度偏置方向发生改变时,会导致第一辐射体的半导体材料层中载流子浓度的剧烈变化,从而会导致低频区间的高κ模式的强度急剧变化。由图13可知,高频区间的低κ模式(在本征硅材料内部可以传播的电磁模式)的强度几乎不随温度发生变化,因为这些电磁模式主要受本征硅的介电常数实部ε′的影响,而ε′几乎不随温度发生变化,因此这些低κ模式对于热整流的性能造成很大的负面影响。当将半无限大的本征硅块材改为置空的有限厚度的本征硅薄膜后,这些低κ模式被显著削弱,而低频区间的高κ模式则几乎不受影响,这使得热整流性能得到了显著的提升。In the radiation heat flux control device provided by the present invention, the key to achieving thermal rectification is that when the temperature bias direction changes, it will cause a drastic change in the carrier concentration in the semiconductor material layer of the first radiator, which will cause the intensity of the high κ mode in the low-frequency range to change sharply. As shown in Figure 13, the intensity of the low κ mode in the high-frequency range (the electromagnetic mode that can propagate inside the intrinsic silicon material) hardly changes with temperature, because these electromagnetic modes are mainly affected by the real part of the dielectric constant ε′ of the intrinsic silicon, and ε′ hardly changes with temperature, so these low κ modes have a great negative impact on the performance of thermal rectification. When the semi-infinite intrinsic silicon block is changed to a finite thickness intrinsic silicon film with a void, these low κ modes are significantly weakened, while the high κ mode in the low-frequency range is almost unaffected, which significantly improves the thermal rectification performance.
实施例2Example 2
本实施例提供由本征硅材料层和第一基底构成的第一辐射体,所述第一基底由银构成。计算分析第一辐射体上方10nm和100nm处的局域电磁态密度,相关参数包括:高温端温度为1000K,低温段温度为300K,分析结果如图14所示。This embodiment provides a first radiator composed of an intrinsic silicon material layer and a first substrate, wherein the first substrate is composed of silver. The local electromagnetic state density at 10nm and 100nm above the first radiator is calculated and analyzed, and the relevant parameters include: the high temperature end temperature is 1000K, and the low temperature section temperature is 300K. The analysis results are shown in FIG14 .
尽管悬空的薄膜结构可以实现(例如通过悬臂支撑等方式),但为了更便于加工和组装,本实施例提供了具有基底的第一辐射体。为了屏蔽背面辐射的影响,同时提升器件的机械强度,本实施例在本征硅薄膜下方设置具有高反射率的金属基底。从图14中可以看到,当加入块材(等效于半无限大平面结构)银基底时,在合适的本征硅薄膜厚度下,仍可以在低频区间形成较大的局域电磁态密度的差异。Although a suspended film structure can be realized (for example, by cantilever support, etc.), in order to facilitate processing and assembly, this embodiment provides a first radiator with a substrate. In order to shield the influence of back radiation and improve the mechanical strength of the device, this embodiment sets a metal substrate with high reflectivity under the intrinsic silicon film. As can be seen from Figure 14, when a bulk (equivalent to a semi-infinite planar structure) silver substrate is added, a large difference in local electromagnetic state density can still be formed in the low-frequency range at a suitable intrinsic silicon film thickness.
本发明通过计算分析发现,基底中的金属层也会对辐射体上方的局域电磁态密度产生贡献,并且由于金属层在不同温度下所形成的局域电磁态密度变化较小,所以如果半导体材料层过薄,此时基底中的金属层距离辐射体表面较近,这会使得其对总的局域电磁态密度产生较大贡献,从而减少了半导体材料层上方局域电磁态密度在不同温度下的差异,不利于实现大的热流调控性能。而如果为了将金属层与辐射体表面隔开,采用了过厚的半导体材料层,则会引入更多的低κ模式,这也不利于辐射热流调控。所以,根据本发明提供的辐射热流调控器件,当所述第一辐射体含有包含金属层的第一基底时,半导体材料层的厚度需要适中(10nm-10mm),不能过薄也不能过厚。The present invention finds through calculation and analysis that the metal layer in the substrate will also contribute to the local electromagnetic state density above the radiator, and because the local electromagnetic state density formed by the metal layer at different temperatures varies little, if the semiconductor material layer is too thin, the metal layer in the substrate is closer to the surface of the radiator, which will make it contribute more to the total local electromagnetic state density, thereby reducing the difference in the local electromagnetic state density above the semiconductor material layer at different temperatures, which is not conducive to achieving a large heat flow regulation performance. If an overly thick semiconductor material layer is used to separate the metal layer from the surface of the radiator, more low-κ modes will be introduced, which is also not conducive to radiation heat flow regulation. Therefore, according to the radiation heat flow regulation device provided by the present invention, when the first radiator contains a first substrate containing a metal layer, the thickness of the semiconductor material layer needs to be moderate (10nm-10mm), and it cannot be too thin or too thick.
实施例3Example 3
本实施例提供不包含基底的辐射热流调控器件,其包括第一辐射体和第二辐射体,所述第一辐射体由本征硅材料构成,所述第二辐射体由溴化钾材料构成;所述第一辐射体悬空设置;所述第一辐射体和所述第二辐射体的间距为100nm。本实施例分析了当所述第一辐射体、第二辐射体具有不同厚度时,该辐射热流调控器件的热整流性能。This embodiment provides a radiation heat flux regulating device without a substrate, which includes a first radiator and a second radiator, wherein the first radiator is made of an intrinsic silicon material, and the second radiator is made of a potassium bromide material; the first radiator is suspended; and the distance between the first radiator and the second radiator is 100 nm. This embodiment analyzes the thermal rectification performance of the radiation heat flux regulating device when the first radiator and the second radiator have different thicknesses.
本实施例分析了以下三种典型结构的辐射热流调控器件的热整流性能,相关参数包括:高温端温度为1000K,低温段温度为300K,分析结果如表1和图15所示。This embodiment analyzes the thermal rectification performance of the following three typical structures of the radiation heat flux control device, and the relevant parameters include: the high temperature end temperature is 1000K, the low temperature section temperature is 300K, and the analysis results are shown in Table 1 and Figure 15.
表1基于不同结构的本征硅和溴化钾组合的热二极管的性能Table 1 Performance of thermal diodes based on different structures of intrinsic silicon and potassium bromide combinations
在表1中,薄膜的厚度为10nm,块材表示在计算中将厚度设为半无限大(足够厚的层状平面结构,在热辐射分析中等效为半无限大的平面。例如,当厚度大于100mm时,可等效为半无限大进行热辐射性能分析)。In Table 1, the thickness of the film is 10nm, and the bulk material indicates that the thickness is set to semi-infinite in the calculation (a sufficiently thick layered planar structure is equivalent to a semi-infinite plane in thermal radiation analysis. For example, when the thickness is greater than 100mm, it can be equivalent to semi-infinite for thermal radiation performance analysis).
在图15中,(a)(b)(c)分别示出了辐射热流调控器件的结构类型,(a)表示结构类型同表1中的“本征硅块材–溴化钾块材”,(b)表示结构类型同表1中的“本征硅薄膜–溴化钾块材”,(c)表示结构类型同表1中的“本征硅薄膜–溴化钾薄膜”;在(a)(b)(c)下方的图中,分别示出了该结构的热二极管在正、反向温度偏置情形下的辐射热交换系数图。图中每个点对应特定频率和横向波矢下的能量传输通道,越明亮则代表该通道的能量传输能力越强。In Figure 15, (a), (b), and (c) respectively show the structural types of the radiation heat flux control device, (a) indicates the same structural type as "intrinsic silicon bulk material-potassium bromide bulk material" in Table 1, (b) indicates the same structural type as "intrinsic silicon film-potassium bromide bulk material" in Table 1, and (c) indicates the same structural type as "intrinsic silicon film-potassium bromide film" in Table 1; in the figure below (a), (b), and (c), the radiation heat exchange coefficient diagram of the thermal diode of the structure under the forward and reverse temperature bias conditions is shown respectively. Each point in the figure corresponds to an energy transmission channel under a specific frequency and transverse wave vector, and the brighter it is, the stronger the energy transmission capacity of the channel.
由图15可知,当本征硅和溴化钾均为半无限大块材结构时,该热二极管在正、反向情形下都存在较多的低κ模式,因此正反向热流几乎没有差别,整流比也只有0.03;而当将本征硅块材换为悬空的10nm薄膜时,整流比提高到1.67×103,这主要得益于低κ模式被显著削弱了;而通过将半无限大溴化钾块材也换为悬空的10nm薄膜结构时,整流比可以进一步提高到2.52×103,这主要得益于溴化钾薄膜两侧表面声子极化激元的耦合使得其局域电磁态密度的峰发生了红移(即往低频移动),此时对应的频率段内本征硅半导体随着温度变化能形成更大的局域电磁态密度的差异,所以整流比也得到了进一步提高。As shown in Figure 15, when both the intrinsic silicon and potassium bromide are semi-infinite bulk structures, the thermal diode has more low-κ modes in both the forward and reverse conditions, so there is almost no difference in the forward and reverse heat flows, and the rectification ratio is only 0.03; when the intrinsic silicon bulk is replaced with a suspended 10nm film, the rectification ratio is increased to 1.67×10 3 , which is mainly due to the significant weakening of the low-κ mode; and when the semi-infinite potassium bromide bulk is also replaced with a suspended 10nm film structure, the rectification ratio can be further increased to 2.52×10 3 , which is mainly due to the coupling of the surface phonon polaritons on both sides of the potassium bromide film, which causes the peak of its local electromagnetic state density to redshift (i.e. move to a low frequency). At this time, the intrinsic silicon semiconductor in the corresponding frequency band can form a larger difference in local electromagnetic state density as the temperature changes, so the rectification ratio is also further improved.
本实施例还分析了悬空薄膜结构下本征硅和溴化钾组合的热二极管的整流比随薄膜厚度的变化情况。分析结果如图16所示。由图16可知,本发明提供的本征硅薄膜与溴化钾薄膜组合的热二极管在较大的薄膜厚度范围内仍具备较好的热整流性能:当本征硅薄膜厚度为1-1000nm,溴化钾薄膜厚度为1-1000nm时,辐射热流调控器件的整流比为1.67×103-3.07×103。This embodiment also analyzes the change of the rectification ratio of the thermal diode composed of intrinsic silicon and potassium bromide under the suspended membrane structure with the thickness of the film. The analysis results are shown in Figure 16. As can be seen from Figure 16, the thermal diode composed of the intrinsic silicon film and the potassium bromide film provided by the present invention still has good thermal rectification performance in a larger film thickness range: when the thickness of the intrinsic silicon film is 1-1000nm and the thickness of the potassium bromide film is 1-1000nm, the rectification ratio of the radiation heat flux control device is 1.67×10 3 -3.07×10 3 .
实施例4Example 4
本实施例提供不包含基底的辐射热流调控器件,其包括第一辐射体和第二辐射体,所述第一辐射体由本征硅材料构成,所述第二辐射体由掺杂硅(掺杂浓度1018cm-3)材料构成;所述第一辐射体悬空设置;所述第一辐射体和所述第二辐射体的间距为100nm。本实施例分析了当所述第一辐射体、第二辐射体具有不同厚度时,该辐射热流调控器件的热整流性能。This embodiment provides a radiation heat flux regulating device without a substrate, comprising a first radiator and a second radiator, wherein the first radiator is made of intrinsic silicon material, and the second radiator is made of doped silicon (doping concentration 10 18 cm -3 ) material; the first radiator is suspended; and the distance between the first radiator and the second radiator is 100 nm. This embodiment analyzes the thermal rectification performance of the radiation heat flux regulating device when the first radiator and the second radiator have different thicknesses.
本实施例分析了以下三种典型结构的辐射热流调控器件的热整流性能,相关参数包括:高温端温度为1000K,低温段温度为300K,分析结果如表2和图17所示。This embodiment analyzes the thermal rectification performance of the following three typical structures of the radiation heat flux control device, and the relevant parameters include: the high temperature end temperature is 1000K, the low temperature section temperature is 300K, and the analysis results are shown in Table 2 and Figure 17.
表2基于不同结构的本征硅和掺杂硅的热二极管的性能Table 2 Performance of thermal diodes based on intrinsic silicon and doped silicon with different structures
在表2中,薄膜的厚度为10nm,块材表示在计算中将厚度设为半无限大(足够厚的层状平面结构,在热辐射分析中等效为半无限大的平面。例如,当厚度大于100mm时,可等效为半无限大进行热辐射性能分析)。In Table 2, the thickness of the film is 10nm, and the bulk material indicates that the thickness is set to semi-infinite in the calculation (a sufficiently thick layered planar structure is equivalent to a semi-infinite plane in thermal radiation analysis. For example, when the thickness is greater than 100mm, it can be equivalent to semi-infinite for thermal radiation performance analysis).
在图17中,(a)(b)(c)分别示出了辐射热流调控器件的结构类型,(a)表示结构类型同表2中的“本征硅块材–掺杂硅块材”,(b)表示结构类型同表2中的“本征硅薄膜–掺杂硅块材”,(c)表示结构类型同表2中的“本征硅薄膜–掺杂硅薄膜”;在(a)(b)(c)下方的图中,分别示出了该结构的热二极管在正、反向温度偏置情形下的辐射热交换系数图。图中每个点对应特定频率和横向波矢下的能量传输通道,越明亮则代表该通道的能量传输能力越强。In Figure 17, (a), (b), and (c) respectively show the structural types of the radiation heat flux control device, (a) indicates the same structural type as "intrinsic silicon bulk material-doped silicon bulk material" in Table 2, (b) indicates the same structural type as "intrinsic silicon film-doped silicon bulk material" in Table 2, and (c) indicates the same structural type as "intrinsic silicon film-doped silicon film" in Table 2; in the figures below (a), (b), and (c), the radiation heat exchange coefficient diagrams of the thermal diode of the structure under the forward and reverse temperature bias conditions are shown respectively. Each point in the figure corresponds to an energy transmission channel under a specific frequency and transverse wave vector, and the brighter it is, the stronger the energy transmission capacity of the channel.
由图17可知,当本征硅和掺杂硅均为半无限大块材结构时,该热二极管在正、反向情形下都存在较多的低κ模式,因此正反向热流几乎没有差别,整流比也只有0.005;而当将本征硅块材换为悬空的10nm薄膜时,整流比提高到4.66×103,这主要得益于低κ模式被显著削弱了;而通过将半无限大掺杂硅块材也换为悬空的10nm薄膜结构时,整流比可以进一步提高到1.27×104,这主要得益于掺杂硅薄膜两侧表面等离子体极化激元的耦合使得其局域电磁态密度的峰发生了红移(即往低频移动),此时对应的频率段内本征硅半导体随着温度变化能形成更大的局域电磁态密度的差异,所以整流比也得到了进一步提高。As shown in Figure 17, when both the intrinsic silicon and the doped silicon are semi-infinite bulk structures, the thermal diode has more low-κ modes in both the forward and reverse conditions, so there is almost no difference in the forward and reverse heat flows, and the rectification ratio is only 0.005; when the intrinsic silicon bulk is replaced with a suspended 10nm film, the rectification ratio is increased to 4.66×10 3 , which is mainly due to the significant weakening of the low-κ mode; and when the semi-infinite doped silicon bulk is also replaced with a suspended 10nm film structure, the rectification ratio can be further increased to 1.27×10 4 , which is mainly due to the coupling of surface plasmon polaritons on both sides of the doped silicon film, which causes the peak of its local electromagnetic state density to redshift (i.e. move to a lower frequency). At this time, the intrinsic silicon semiconductor in the corresponding frequency band can form a larger difference in local electromagnetic state density as the temperature changes, so the rectification ratio is also further improved.
本实施例还分析了悬空薄膜结构下本征硅和掺杂硅组合的热二极管的整流比随薄膜厚度的变化情况。分析结果如图18所示。由图18可知,本发明提供的本征硅薄膜与掺杂硅薄膜组合的热二极管可以在较大的薄膜厚度范围内仍具备较好的热整流性能:当本征硅薄膜厚度为1-1000nm,掺杂硅薄膜厚度为1-1000nm时,辐射热流调控器件的整流比为2×103-4.67×103。This embodiment also analyzes the change of the rectification ratio of the thermal diode composed of intrinsic silicon and doped silicon under the suspended membrane structure with the thickness of the film. The analysis results are shown in Figure 18. As can be seen from Figure 18, the thermal diode composed of the intrinsic silicon film and the doped silicon film provided by the present invention can still have good thermal rectification performance within a larger film thickness range: when the thickness of the intrinsic silicon film is 1-1000nm and the thickness of the doped silicon film is 1-1000nm, the rectification ratio of the radiation heat flux control device is 2×10 3 -4.67×10 3 .
实施例5Example 5
本实施例提供包含基底的辐射热流调控器件,其包括第一辐射体和第二辐射体,所述第一辐射体由本征硅薄膜和第一基底构成,所述第二辐射体由溴化钾薄膜和第二基底构成;所述第一基底和第二基底均由银构成;所述第一辐射体和所述第二辐射体的间距为10nm;该辐射热流调控器件的结构示意图如图19所示。本实施例分析了当本征硅薄膜、溴化钾薄膜具有不同厚度时,该辐射热流调控器件的热整流性能,相关参数包括:高温端温度为1000K,低温段温度为300K,分析结果如图20所示。This embodiment provides a radiation heat flux control device including a substrate, which includes a first radiator and a second radiator, wherein the first radiator is composed of an intrinsic silicon film and a first substrate, and the second radiator is composed of a potassium bromide film and a second substrate; the first substrate and the second substrate are both composed of silver; the distance between the first radiator and the second radiator is 10nm; the structural schematic diagram of the radiation heat flux control device is shown in Figure 19. This embodiment analyzes the thermal rectification performance of the radiation heat flux control device when the intrinsic silicon film and the potassium bromide film have different thicknesses, and the relevant parameters include: the high temperature end temperature is 1000K, the low temperature section temperature is 300K, and the analysis results are shown in Figure 20.
由图20可知,对于该含银基底的热二极管,本征硅和溴化钾的厚度均不能太薄,否则由于银基底过多地参与辐射换热,会导致整流比很小;当本征硅薄膜的厚度为10nm-1mm,溴化钾薄膜的厚度为1μm-1mm时,辐射热流调控器件的整流比可达到200以上。It can be seen from Figure 20 that for the thermal diode containing a silver substrate, the thickness of the intrinsic silicon and potassium bromide cannot be too thin, otherwise the rectification ratio will be very small due to the excessive participation of the silver substrate in radiation heat exchange; when the thickness of the intrinsic silicon film is 10nm-1mm and the thickness of the potassium bromide film is 1μm-1mm, the rectification ratio of the radiation heat flux control device can reach more than 200.
实施例6Example 6
本实施例提供包含基底的辐射热流调控器件,其包括第一辐射体和第二辐射体,所述第一辐射体由本征硅薄膜和第一基底构成,所述第二辐射体由掺杂硅(掺杂浓度1018cm-3)薄膜和第二基底构成;所述第一基底和第二基底均由银构成;所述第一辐射体和所述第二辐射体的间距为10nm;该辐射热流调控器件的结构示意图如图21所示。本实施例分析了当本征硅薄膜、掺杂硅薄膜具有不同厚度时,该辐射热流调控器件的热整流性能,相关参数包括:高温端温度为1000K,低温段温度为300K,分析结果如图22所示。This embodiment provides a radiation heat flux regulating device including a substrate, which includes a first radiator and a second radiator, wherein the first radiator is composed of an intrinsic silicon film and a first substrate, and the second radiator is composed of a doped silicon (doping concentration 10 18 cm -3 ) film and a second substrate; the first substrate and the second substrate are both composed of silver; the distance between the first radiator and the second radiator is 10 nm; the structural schematic diagram of the radiation heat flux regulating device is shown in FIG21. This embodiment analyzes the thermal rectification performance of the radiation heat flux regulating device when the intrinsic silicon film and the doped silicon film have different thicknesses, and the relevant parameters include: the high temperature end temperature is 1000K, the low temperature section temperature is 300K, and the analysis results are shown in FIG22.
由图22可知,对于该含银基底的热二极管,本征硅和掺杂硅的厚度均不能太薄,否则由于银基底过多地参与辐射换热,会导致整流比很小;当本征硅薄膜的厚度为10μm-100μm,掺杂硅薄膜的厚度为100μm-1mm时,辐射热流调控器件的整流比可达到约80。本实施例的热二极管可实现的整流比比实施例3的热二极管可实现的整流比要小,这主要是由于,与极性材料相比,用掺杂半导体材料来隔开金属基底会带来较大的κ模式。As can be seen from FIG. 22, for the thermal diode containing the silver substrate, the thickness of the intrinsic silicon and the doped silicon cannot be too thin, otherwise the silver substrate will participate too much in the radiation heat exchange, resulting in a very small rectification ratio; when the thickness of the intrinsic silicon film is 10 μm-100 μm, and the thickness of the doped silicon film is 100 μm-1 mm, the rectification ratio of the radiation heat flux control device can reach about 80. The rectification ratio achievable by the thermal diode of this embodiment is smaller than that achievable by the thermal diode of Example 3, mainly because, compared with polar materials, using doped semiconductor materials to separate the metal substrate will bring about a larger κ mode.
实施例7Example 7
本实施例提供包含非金属基底的辐射热流调控器件,其包括第一辐射体和第二辐射体,所述第一辐射体由本征硅薄膜和第一基底构成,所述第二辐射体由掺杂硅(掺杂浓度6×1018cm-3)薄膜、溴化钾薄膜和第二基底构成;所述第一基底和第二基底均由银构成;所述第一辐射体和所述第二辐射体的间距为10nm;该辐射热流调控器件的结构示意图如图23所示。本实施例分析了当掺杂硅薄膜的厚度为1nm,本征硅薄膜、掺杂硅薄膜具有不同厚度时,该辐射热流调控器件的热整流性能,相关参数包括:高温端温度为1000K,低温段温度为300K,分析结果如图24所示。This embodiment provides a radiation heat flux control device including a non-metallic substrate, which includes a first radiator and a second radiator, wherein the first radiator is composed of an intrinsic silicon film and a first substrate, and the second radiator is composed of a doped silicon (doping concentration 6×10 18 cm -3 ) film, a potassium bromide film and a second substrate; the first substrate and the second substrate are both composed of silver; the distance between the first radiator and the second radiator is 10nm; the structural schematic diagram of the radiation heat flux control device is shown in FIG23. This embodiment analyzes the thermal rectification performance of the radiation heat flux control device when the thickness of the doped silicon film is 1nm, and the intrinsic silicon film and the doped silicon film have different thicknesses. The relevant parameters include: the high temperature end temperature is 1000K, and the low temperature section temperature is 300K. The analysis results are shown in FIG24.
与实施例4提供的热二极管相比,本实施例的热二极管在掺杂半导体材料层和第二基底之间加入了极性材料层作为间隔。由于溴化钾的介电常数实部ε′相比于掺杂硅更小,用溴化钾来隔开银基底不会引入过多的低κ模式。由图24可知,当本征硅薄膜的厚度为10nm-1mm,溴化钾薄膜的厚度为1μm-1mm时,辐射热流调控器件的整流比可达到400以上;当本征硅薄膜的厚度为20nm-1mm,溴化钾薄膜的厚度为1μm-1mm时,辐射热流调控器件的整流比可达到约700。Compared with the thermal diode provided in Example 4, the thermal diode of this embodiment adds a polar material layer as a spacer between the doped semiconductor material layer and the second substrate. Since the real part of the dielectric constant ε′ of potassium bromide is smaller than that of doped silicon, using potassium bromide to separate the silver substrate will not introduce too many low-κ modes. As can be seen from Figure 24, when the thickness of the intrinsic silicon film is 10nm-1mm and the thickness of the potassium bromide film is 1μm-1mm, the rectification ratio of the radiation heat flux regulation device can reach more than 400; when the thickness of the intrinsic silicon film is 20nm-1mm and the thickness of the potassium bromide film is 1μm-1mm, the rectification ratio of the radiation heat flux regulation device can reach about 700.
实施例8Example 8
本实施例提供包含基底的辐射热流调控器件,其包括第一辐射体和第二辐射体,所述第一辐射体由本征硅薄膜(厚度为10nm)和第一基底构成,所述第二辐射体由立方氮化硼构成;所述第一基底由溴化钾构成,本征硅薄膜的厚度为10nm,第一辐射体悬空设置;所述第二辐射体为块材;所述第一辐射体和所述第二辐射体的间距为100nm;该辐射热流调控器件的结构示意图如图25所示。The present embodiment provides a radiation heat flux regulation device comprising a substrate, which includes a first radiator and a second radiator, the first radiator is composed of an intrinsic silicon film (with a thickness of 10 nm) and a first substrate, and the second radiator is composed of cubic boron nitride; the first substrate is composed of potassium bromide, the thickness of the intrinsic silicon film is 10 nm, and the first radiator is suspended; the second radiator is a block material; the distance between the first radiator and the second radiator is 100 nm; the structural schematic diagram of the radiation heat flux regulation device is shown in Figure 25.
本实施例分析了当所述第一基底具有不同厚度时,该辐射热流调控器件的热整流性能,相关参数包括:高温端温度为1000K,低温段温度为300K,分析结果如表3所示。为便于比较,在表3中还列出了第一基底不存在,即第一基底厚度为0的性能分析结果。This embodiment analyzes the thermal rectification performance of the radiation heat flux regulating device when the first substrate has different thicknesses, and the relevant parameters include: the high temperature end temperature is 1000K, the low temperature section temperature is 300K, and the analysis results are shown in Table 3. For ease of comparison, Table 3 also lists the performance analysis results when the first substrate does not exist, that is, the thickness of the first substrate is 0.
表3不同厚度溴化钾基底的热二极管的性能Table 3 Performance of thermal diodes with different thicknesses of KBr substrates
根据表3所示的结果,当第一辐射体采取悬空设置时,半导体材料层可以覆盖在非金属基底之上,这类构型也可以得到较大的热整流性能。然而,随着非金属基底层厚度增加,其对近场热辐射的贡献增加,而非金属基底所贡献的辐射热流对热二极管的温度偏置方向的变化不敏感,所以导致整流性能逐渐下降。According to the results shown in Table 3, when the first radiator is suspended, the semiconductor material layer can be covered on the non-metallic substrate, and this type of configuration can also obtain greater thermal rectification performance. However, as the thickness of the non-metallic substrate layer increases, its contribution to near-field thermal radiation increases, and the radiation heat flux contributed by the non-metallic substrate is insensitive to changes in the temperature bias direction of the thermal diode, so the rectification performance gradually decreases.
另外,经分析发现,当第二辐射体采用由非金属构成的第二基底时,也具有类似的情况。当第二辐射体悬空设置时,使第二辐射体中的极性材料层或掺杂半导体材料层覆盖在由非金属材料构成的第二基底上,同样也能得到较好的热整流性能。In addition, it is found through analysis that when the second radiator adopts a second substrate made of non-metallic material, a similar situation also exists. When the second radiator is suspended, the polar material layer or doped semiconductor material layer in the second radiator is covered on the second substrate made of non-metallic material, which can also obtain better thermal rectification performance.
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。The above is only a preferred specific embodiment of the present invention, but the protection scope of the present invention is not limited thereto. Any changes or substitutions that can be easily thought of by a person skilled in the art within the technical scope disclosed by the present invention should be included in the protection scope of the present invention. Therefore, the protection scope of the present invention shall be based on the protection scope of the claims.
Claims (26)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111160015.0A CN114050198B (en) | 2021-09-30 | 2021-09-30 | A radiation heat flux control device based on semiconductor materials and its application |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111160015.0A CN114050198B (en) | 2021-09-30 | 2021-09-30 | A radiation heat flux control device based on semiconductor materials and its application |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114050198A CN114050198A (en) | 2022-02-15 |
CN114050198B true CN114050198B (en) | 2024-05-17 |
Family
ID=80204768
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202111160015.0A Active CN114050198B (en) | 2021-09-30 | 2021-09-30 | A radiation heat flux control device based on semiconductor materials and its application |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114050198B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115218712B (en) * | 2022-07-18 | 2025-05-30 | 国家纳米科学中心 | A near-field radiation thermal rectifier device and design method thereof |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101521238A (en) * | 2009-04-09 | 2009-09-02 | 吉林大学 | Heterojunction thermophotovoltaic cell based on Ga-In-As-Sb quarternary semiconductor |
WO2014045766A1 (en) * | 2012-09-19 | 2014-03-27 | 富士電機株式会社 | Semiconductor device and semiconductor device manufacturing method |
CN113031312A (en) * | 2021-03-05 | 2021-06-25 | 北京大学 | Radiation heat flow modulation device and application thereof |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016058651A (en) * | 2014-09-11 | 2016-04-21 | 株式会社東芝 | Manufacturing method of semiconductor device |
US20160298882A1 (en) * | 2015-04-09 | 2016-10-13 | The Board Of Trustees Of The Leland Stanford Junior University | Heat-flux control and solid-state cooling by regulating chemical potential of photons in near-field electromagnetic heat transfer |
-
2021
- 2021-09-30 CN CN202111160015.0A patent/CN114050198B/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101521238A (en) * | 2009-04-09 | 2009-09-02 | 吉林大学 | Heterojunction thermophotovoltaic cell based on Ga-In-As-Sb quarternary semiconductor |
WO2014045766A1 (en) * | 2012-09-19 | 2014-03-27 | 富士電機株式会社 | Semiconductor device and semiconductor device manufacturing method |
CN113031312A (en) * | 2021-03-05 | 2021-06-25 | 北京大学 | Radiation heat flow modulation device and application thereof |
Non-Patent Citations (1)
Title |
---|
Ultrahigh thermal rectification based on near-field thermal radiation between dissimilar nanoparticles;Shizheng Wen,Xianglei Liu,Sheng Cheng,Zhoubing Wang,Shenghao Zhang,Chunzhuo Dang;《Journal of Quantitative Spectroscopy & Radiative Transfer》;第234卷;第1-9页 * |
Also Published As
Publication number | Publication date |
---|---|
CN114050198A (en) | 2022-02-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Zhang et al. | Nonreciprocal thermal photonics for energy conversion and radiative heat transfer | |
CN113031312B (en) | Radiant heat flow modulation device and application thereof | |
US20070069192A1 (en) | Thermal switching element and method for manufacturing the same | |
CN114050198B (en) | A radiation heat flux control device based on semiconductor materials and its application | |
CN103562127A (en) | Novel compound semiconductor and usage for same | |
CN114975179A (en) | Radiant heat flow control device based on semiconductor micro-nano array structure and its application | |
JPS58213479A (en) | Energy conversion element | |
Yin et al. | Realization of efficient radiative cooling in thermal emitter with inorganic metamaterials | |
TWI480226B (en) | Novel compound semiconductors and their applications | |
Anissa et al. | Study of structural, electronic, elastic, optical and thermoelectric properties of half-Heusler compound RbScSn: A TB-mBJ DFT study | |
US9791183B2 (en) | Thermal rectification device | |
Zhao et al. | Chemical potential of photons and its implications for controlling radiative heat transfer | |
CN113845082B (en) | Radiant heat flow control device and its application | |
TWI469929B (en) | Novel compound semiconductors and their applications | |
CN109075018B (en) | Thermal radiation source | |
CN108963061A (en) | Heat emission tectosome | |
JP6907544B2 (en) | Variable heat insulating element, its driving method, and its forming method | |
JPS61241983A (en) | Photovoltaic device | |
US20050057831A1 (en) | Directional heat exchanger | |
JP2019168174A (en) | Radiation cooling device | |
CN117308676A (en) | Radiant heat flow regulating device and application thereof | |
CN103502144B (en) | Compound semiconductor and uses thereof | |
WO2016205273A1 (en) | Defrosting infrared windows using transparent metallic nanostructures | |
CN114877741B (en) | Heat flux control device based on near-field thermal radiation | |
CN115377693A (en) | Superstructure with simultaneously adjustable temperature and infrared spectral band emissivity and design method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |