CN1140474A - 铝锂合金的热处理 - Google Patents

铝锂合金的热处理 Download PDF

Info

Publication number
CN1140474A
CN1140474A CN95191555A CN95191555A CN1140474A CN 1140474 A CN1140474 A CN 1140474A CN 95191555 A CN95191555 A CN 95191555A CN 95191555 A CN95191555 A CN 95191555A CN 1140474 A CN1140474 A CN 1140474A
Authority
CN
China
Prior art keywords
hours
roughly
carry out
temperature range
artificial aging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN95191555A
Other languages
English (en)
Other versions
CN1062315C (zh
Inventor
H·J·普里斯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BAE Systems PLC
Original Assignee
British Aerospace PLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by British Aerospace PLC filed Critical British Aerospace PLC
Publication of CN1140474A publication Critical patent/CN1140474A/zh
Application granted granted Critical
Publication of CN1062315C publication Critical patent/CN1062315C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/057Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with copper as the next major constituent

Abstract

提供一种铝锂合金的热处理方法。该方法包括实施一系列至少两个人工时效步骤。第一个步骤先在某一温度范围内进行,第二个或更多的步骤在依次降低的温度范围内进行,以促进合金中δ′相的析出。

Description

铝锂合金的热处理
本发明涉及铝锂合金的热处理,特别是目的在于此类合金的增强或平面应力断裂韧性优化的热处理。此类合金多用于飞机蒙皮构造,尤其是商用飞机机身、机翼及尾翼构造。在这一类应用中铝锂合金的低密度、高刚性及优异的疲劳性能特别有利于飞机减重以获得最佳效益。
在本发明完成之时与本发明有关的现有技术文献如下:“Effect ofthermal exposure at 70℃ on the performance of damage tolerantaluminium-lithium alloy sheet”,1995年2月,文献号DRA/SMC/WP952008,作者D.S.McDarmaid;“Mechanical properties of 2024-T3aluminium alloy sheet”,1991年12月,文献号TR91071,作者D.S.McDarmaid,C.E.Thomas和C.Wheeler.
在ALUMINUM ASSOCIATION注册为AA8090和AA2091(此后提及时省略前缀“AA”)的铝锂(Al-Li)合金,在再结晶薄板状态或欠回火态时,具有“损伤容限”特性,即疲劳裂纹扩展速率相当慢,同时有相当高水平的平面应力断裂韧性(KC)。因此,这两种产品都作为目前在民用飞机蒙皮中应用最广泛的材料的潜在的替代品而得到了充分的研究,特别是用于机身的材料如包铝2024 T3及2014A T4薄板,其由于含锂合金而带来的密度下降可使重量显著减轻。8090厚板材也已作过上、下翼蒙皮及尾翼应用的研究,也可能被考虑用于上翼蒙皮。
除损伤容限方面的要求之外,还有其它几项任何新型蒙皮材料特别是机身、机翼及尾翼蒙皮材料都必须具备的特性,包括足够的强度、良好的抗腐蚀性以及一项经常不明确提出但又非常重要的关于长期热稳定性的要求,即长时间承受中等高温而不引起任何关键性能的显著的或不能接受的丧失的能力。对于亚音速民用飞机机身,考虑热稳定性时的最坏情况包括在地面上暴露于高的环境温度及强烈阳光辐照的联合作用之下的情况。通常认为在热带条件下当太阳在最高点及其附近时机身蒙皮温度可高达70~85℃。最坏情况下一架飞机的寿命范围内,相当于总共在高温下暴露约65000小时(即每天6小时,共30年),尽管这种暴露只有在沙漠条件下存放及不定期在热带基地服役的飞机才可能遇到。热稳定性在考虑以Al-Li合金用于机翼及尾翼蒙皮时也是一个应当关注的方面。
8090和2091合金为用于机身蒙皮已分别在T81及T84状态下进行了初步的研究。8090合金的T81状态是通过由T31状态(即固溶处理和控制拉拔)进行160℃下24小时的人工时效(“时效”)获得的,而2091的T84状态的获得则是由T3状态自室温缓慢升温至135℃后在135℃下时效12小时。这些处理的目的在于生产具备与包铝2024 T3相仿的机械性能的产品(即0.2%屈服应力下限值定为约270MPa),以便更易于考虑替代应用。另外,人们大都觉得Al-Li合金要成功应用于机身蒙皮,应具有至少与包铝2024 T3相同的静态强度。事实上未必如此,因为与锂含量相关的杨氏模量的升高足以抵消强度的任何轻微下降,而这一点现在被视为是合理地满足极高断裂韧性和优良冲击抗力的实际要求所必须的。
尽管使用了人工时效处理,上面提到的两种Al-Li合金产品已知在70~85℃的温度范围内是缺乏热稳定性的,经短时间等温暴露之后,伴随着强度提高有不成比例的大幅度Kc下降(即1000小时后影响就很显著)。强度和Kc的这种相互背离的关系在很多情况下都已经显现出来。
这两种合金分别时效到其现有技术状态(即对于8090和2091分别为T81和T84)时,其初始断裂韧性水平与包铝2024 T3相比(现行工业标准),针对应用目标而言仅是勉强合格,在这种情况下,热稳定性的缺乏以及当强度虽然只有极微小上升时就会损害韧性的性质,被广泛认为是造成目前在民用飞机机身上未获得大规模应用的这一情况的主要因素之一。
热不稳定性起源于δ′(Al3Li)的持续析出。δ′的连续析出也即热不稳定性的原因,是δ′的平衡体积分数与温度存在相互背离的关系(即平衡体积分数随温度下降而上升)。锂在铝中的高扩散速度保证了δ′的形成并非由扩散速率有效控制,直至温度降低到显著低于所关心的暴露温度。由此可知,即使在前面提到的现有技术的时效温度(即135~150℃)下的强烈时效也不可能使δ′近于全部析出,并且在所考虑的最高热暴露温度下或近于(低于)该温度时,存在持续析出的高热力学驱动力以及足够的锂扩散速度。相反地,在这样的“较高”温度下强烈时效只会引起其它相如S′(Al2CuMg)体积分数的提高,使得结构的强度过高而δ′含量相对较低。因而随后的长时期热暴露会引起δ′体积分数的大幅度提高,强度提高并发生脆化。
为了揭示持续δ′析出的影响,将一批(此后称为“批号1”材料)8090 T81做成相同试样,进行一定范围的热处理,随后在高温下暴露相当长的一段时间。批号1材料的重量百分比组成为:Li   Cu   Mg    Fe    Zr     Al2.23   1.14   0.79    0.045   0.06    其余
所选处理包括了在200℃自T81状态的一个10分钟的“回复”(“reversion”)(即由于δ′的溶解造成0.2%屈服应力的下降),随后是170℃下4小时的再时效(即使强度恢复到T81的0.2%屈服应力的原始水平),最后,除T81的初始处理之外,是220℃下12小时的过时效处理。
在拉伸试验之后,以一个长横向(LT)取向的试样代表每一种状态,每种状态包括T81“控制”状态都加工成同样试样,在100℃下暴露920小时,来粗略代表寿命时间内在热带温度下的暴露。机械性能测试和电导率测量结果示于表1。
表1清楚表明,100℃下的持续析出使得强度显著提高。回复后的材料可恢复到比控制状态下更高的强度,表明以回复作为提高8090韧性的一种手段是不可取的,还必须考虑到热不稳定性的影响,因为回复最初所具备的好作用是短效的,由于它使得热暴露之后的最终强度较高,这种处理最终可能是有害的。经回复材料与未回复材料相比强度的提高归因于回复过程中额外的S′析出。同样地,与T81和T84加回复的状态相比,经回复及再时效的材料在热暴露之后强度的额外提高也归因于与170℃4小时时效相关的S′的增加。
最后,920小时暴露之后0.2%屈服应力有48MPa的明显提高,采用过时效来获得稳定性看来是完全无效的,所有起始状态下经过如70℃的温度下的暴露都可以预料会得到同样的结果,并且在这样的温度下甚至可获得比100℃时更高的δ′平衡体积分数,虽然在较低温度下因为扩散速率较低要达到饱和所需暴露的时间要长得多。
必须指出的是,批号1 8090薄板T81态的长横向0.2%屈服应力为293MPa,100℃下920℃热暴露之后可达到被认为是δ′饱和时的0.2%屈服应力值320MPa,即有27MPa的提高。
根据本发明,提出了一种铝一锂合金热处理的改进方法,包括实施一系列至少两步的人工时效,第一步在第一温度范围进行,然后再在一个依次下降的温度范围内进行至少一步处理。
由此获得对于δ′析出的显著促进,而且在适当选择的温度范围内S′体积分数受到抑制,与此同时获得与高断裂韧性的要求相符的足够但不过高的初始强度,具备在较高温度下长期暴露后仍保持足够的断裂韧性的能力。根据本发明选择其它适宜温度范围,可以做到将对δ′析出的促进与S′体积分数的高水平结合在一起,以得到在一定的总时效处理时间下对于该种成分的合金比用其它处理方法可能获得的更高的强度水平。
所得结论是,在例如70~85℃下的热稳定性只能通过达到该温度下的δ′平衡体积分数来获得。δ′的饱和必须在不使0.2%屈服应力水平太高的条件下获得,否则就将与高断裂韧性的一般要求相抵触。
根据本发明,采用8090 T31起始状态的材料进行时效试验,该状态通过对部分批号1 8090 T81材料进行重溶处理及控制拉拔达到。注意:重溶处理在505℃进行以避免晶粒长大。在150℃下开始时效,但持续时间很短(远少于现有技术的150℃下24小时),随后逐步降低温度并延长时效时间,从而使除δ′外S′相和其它相的体积分数受抑制,获得高的δ′体积分数。
可以相信,通过这种办法可以达到δ′和S′析出相体积分数和析出相大小分布的高度平衡,其0.2%屈服应力水平相对较低(并从而具有高的断裂韧性),并具有有限的通过持续析出δ′获得进一步强化的能力。
根据本发明采用这种逆向阶梯式(RS-W)时效处理,是完全考虑到了析出足够的S′对于避免以强烈的平面滑移为主的塑性变形机制的必要性—如该变形机制未被S′的存在有效抑制,则会造成塑性水平低,长度方向尤其如此。
在针对重溶处理的批号1材料的初步工作中研究了大量的温度/时间RS-W时效组合。特别应注意的是以一种四步RS-W时效程序为基础的处理方法,即先在150℃时效1或3小时,随后在135℃,120℃及100℃进行一定时间的处理,即:
1小时/150+6/135+3/120+50/100℃     (见表2A)
1小时/150+6/135+8/120+50/100℃     (见表2B)
1小时/150+6/135+16/120+50/100℃    (见表2C)
1小时/150+12/135+6/120+50/100℃    (见表2D)
1小时/150+12/135+16/120+50/100℃   (见表2E)
3小时/150+12/135+6/120+50/100℃    (见表2F)
3小时/150+6/135+16/120+50/100℃    (见表2G)
这些处理及其导致的机械性能及电导率结果,包括时效程序中及经85℃和70℃不同时间的热暴露之后的情况,均示于表2A-2G。
其次,采用一批新的事先未经固溶处理的8090薄板(此后提及时称“批号2”),这批材料被用来做固溶热处理及时效试验,目的在于RS-W时效过程的优化。批号2材料的重量百分比组成为:
Li    Cu    Mg    Fe     Zr   Al
2.26    1.21    0.69    0.047    0.06   其余
由批号1试验的结果可以看出,135℃这一步显然会造成非δ′相的过度时效,可能被放弃。另外也认识到如果机身结构是胶接的(即桁条与蒙皮的连接),就很可能要采用一种150℃或120℃的固化树脂系统,诸如REDUX(注册商标)775(CIBA)或AF163-2(3M)之类。比如使用REDUX775(150℃固化),固化热循环就与150℃RS-W时效步骤及所有后续步骤一道都作用于蒙皮/桁条组合体。在这种情况下,降低第二步的温度就无须对(酚醛)粘接剂实行过压保护,因而有经济上的优势。这可通过将第二步温度从135℃降至125~120℃实现,而要继续采用135℃的时效步骤就必须在高压釜或连接压机中进行。如果要采用120℃固化树脂系统如AF163-2,固化循环可在所有高于120℃的时效步骤都完成之后引入。当时效温度选在120℃或120℃以下时则无需过压。
采用经530℃固溶处理及1.75%±0.25%控制拉拔的批号2材料进行了一系列RS-W时效试验。值得注意的是以下几种RS-W处理:
1小时/150+6/135+8/120+50/120℃    (借此将批号2材料与批号1材
                                   料进行对比)  (见表3A)
1小时/150+8/120+24/105+24/95℃        (见表3B)
1小时/150+16/120+24/105+24/95℃       (见表3C)
1小时/150+8/125+24/105+24/95℃        (见表3D)
1小时/150+16/125+24/105+24/95℃       (见表3E)
1小时/135+8/120+24/105+24/95℃        (见表3F)
1小时/135+16/120+24/105+24/95℃       (见表3G)
2小时/120+32/105+24/95℃              (见表3H)
8小时/120+24/105+24/95℃              (见表3J)
这些试验表明135℃步骤是多余的,由150℃直接变到约120℃(或125℃)更可取。在135℃或120℃开始的处理有一些好处,但产生一种低强度的完全热处理状态,而最后通过热暴露,提高到可与始于150℃处理状态相比拟的水平,因此从可资利用的韧性角度看不能期望有什么益处。
在由上述试验获得的拉伸测试数据的基础上,选择程序1小时/150℃+8/120℃+24/105℃+24/95℃进行进一步的研究和改良。其中包括时效全尺寸薄板以便进行宽板断裂韧性测试。
在经过1小时/150℃+8/120℃+24/105℃+24/95℃时效的1.9毫米厚的批号2材料上进行的第一次断裂韧性测试结果以断裂阻力曲线(R-曲线)的形式示于图1。该结果在此与可用于现有技术8090 T81、此前已表明其可产生韧性提高的非稳状态的回复态8090 T81(参考文献1)和包铝2024 T3(参考文献2)的R-曲线放在一起进行比较。
可以看出,运用本发明的RS-W处理能够产生高韧性状态,可与包铝2024 T3相比拟或优于包铝2024 T3。这是8090薄板韧性超过包铝2024 T3的首例报道。另一块1.9毫米8090薄板进行了上述RS-W处理后在70℃至75℃之间作了2000小时热暴露。该材料的R-曲线与未暴露的R-曲线一起示于图2,同时示出的还有现有技术8090 T81材料经过或未经过70℃2000小时热暴露的R-曲线。可以看出,尽管RS-W材料的断裂韧性有所下降,但其下降幅度(约6%)远低于、起始水平远高于现有技术8090 T81。注意:在此以图示形式给出的由参考文献1和2摘录的比较数据只起说明作用,并不意在限制本发明。
另外还作了试验来确定第一时效步骤对于温度和时间变化的敏感性及确定最后一步24小时/95℃的处理可否缩短。对于批号2材料的这些实验其结果示于表4A、4B和4C。业已证实,第1步可缩短至0.75小时或延长至1.25小时而不带来明显的有害影响。还发现最后一步对于经1小时/150℃或1.25小时/150℃处理的材料可缩短至8小时,并不显著影响其最终强度,并且对于对强度要求不严格的应用情况而言,这一步可以完全取消,和/或采用较短的150℃时效处理。由本工作确定的优化时效处理为
1小时/150℃+8/120℃+24/105℃+24/95℃
这种四步处理的优越性在于可获得最大程度的有益强化(即由于δ′析出而产生的强化)而不要求不经济的过长时间的时效处理。
研究发现该处理对于时效±5℃范围内的时效温度的变化(所有步骤)及每一步骤25%范围内的处理时间的变化相当不敏感。
ASTM G110腐蚀试验发现,该优化时效处理引起晶间腐蚀抗力的提高,腐蚀穿透深度限制在约150μm,趋向于形成局部化腐蚀坑,很少或几乎没有晶间腐蚀存在。这与8090 T81形成鲜明对比。后者腐蚀度超过250~300μm,其特征是晶间贯穿的扩展网络。RS-W和T81状态晶间腐蚀的形式分别见图3和图4。
对几种全尺寸的薄板进行1小时/150℃+8/120℃+24/105℃+24/95℃的优化时效处理。这些薄板用于确定1.6毫米板的初始韧性水平并为长时间热暴露提供试样以测定热敏化之后的R-曲线。该材料完全热处理状态的R-曲线测试结果见图5。R-曲线比1.9毫米材料的略低,这种差别可能源于与1.6毫米的尺寸相关的轧制制度、锂贫化的差别、本质上为厚度效应,或是这些影响的共同作用。
对一块足以加工成大量拉伸试样的批号2材料的薄板进行优化时效处理并在70℃完成了2000小时热暴露试验,同时以时效到T81状态的批号2材料作为参照。结果示于表5,并将0.2%屈服应力与Log10(暴露时间)的关系作曲线示于图6。
从图6可明显看出,T81材料在约100小时暴露点到稍超过1000小时暴露点之间有一个孕育期,显然其间0.2%屈服应力几乎没有变化,然后0.2%屈服应力急剧上升。相反,RS-W时效的材料未表现出这种孕育效应,可看到0.2%屈服应力随对数暴露时间稳定上升。必须注意的是这两条曲线的斜率(T81的孕育期除外)几乎相同,因而表明RS-W材料的低强度“优势”仍保持,且外推到65000小时点发现T81最终可时效到0.2%屈服应力约为349MPa而RS-W材料不会超过约318MPa。就避免发生约31MPa的强度提高而论,这是一个进步。
然而,与要达到平面应力断裂韧性可与包铝2024 T3相比的目标所对应的数值相比,批号2 RS-W材料的这一最终预测0.2%屈服应力水平被认为高了25~30MPa。
要实现δ′饱和0.2%屈服应力水平的进一步下降,可能需要在实施RS-W处理的同时对成分进行调整。对于8090合金,认为其镁含量应从批号2材料中的0.69%水平降到大体是成分记录最低水平(即0.6%),甚至到低于这一数值即低到大约0.4%,这样会进一步限制由于S′析出产生的强化,并会引起锂在铝中溶解度的提高从而限制了δ′的析出量。同样地,锂含量也可能需要保持在或低于8090的成分下限(即2.2%)。降低铜含量可能会对韧性不利,因而不宜在批号2材料成分基础上继续降低。
为了进一步说明根据本发明降低时效温度以提高δ′析出物体积分数的好处,将再结晶后的8090 T31板在170℃时效24小时以达到中等强度状态,接着在120℃时效8小时。根据现有技术在170℃时效24小时后的长度方向拉伸性能与根据本发明在120℃时效8小时后的性能一道如下所示。可以看出,由于较低温度下较短时间时效的步骤的引入而使强度提高显著,并且最终达到强度水平比采用170℃下约32小时(即24+8小时)时也显著地提高。时效处理               0.2%屈服应力  拉伸强度(MPa)  延伸率(%)24小时/170℃                374           468             724小时/170℃+8小时/120℃    406           499             8
由此可以看出,本发明提出的RS-W时效的概念,即在一个现有技术时效步骤之后继续进行一步或是由初始时效温度逐步降低的数步时效以获得中—高强度状态,在增大最终可获得的强度以及在比一般可能的更短的总时效时间内达到一定强度水平方面,具有其优越性。这种加工对于所有由δ′析出实现部分强化的Al-Li合金都适用,也适用于所有产品形式如厚板、挤压件、锻件、管等等。现将根据本发明的这种特定形式的时效处理称为高强度逆向阶梯式时效(“HRS-W”)。热处理范围
根据本发明RS-W方面的热处理其性质是在一宽广的处理工艺范围内可获得近似相同的最终状态。由此揭示了一个可产生高平面应力断裂韧性状态的极宽广的范围,并揭示了最终可达到特别适用于8090合金,能获得初始强度、韧性和热稳定性的最佳配合的优化工艺范围(RS-W范围4)的多种改良措施。
根据本发明的HSRS-W时效处理,将增加δ′体积分数的过程与意在产生中高强度状态(即高的S′和δ′)的时效处理相结合,获得了比单独采用原始的现有技术处理或是仅在较高温度下进行的相同总时效时间的等温时效处理更高的强度水平。
对于“短”时效步骤(即少于或等于约3小时),标示时间可起始于当由接触式测温装置(热电偶)显示产品温度达到距处理工艺名义温度5℃之内的时刻。典型情况是,对于置于经预热的空气循环炉中的1.6毫米薄板进行的150℃时效步骤,研究发现10到15分钟的加热时间是合适的。
当时效时间长于3小时时,金属与炉内空气温度之间的滞后可忽略,处理时间从炉内空气温度恢复到设定温度的时刻开始计算。
对于极短时间的时效,可能有必要以油浴或其它类似手段取代空气炉。在这种情况下必须对金属加热时间作适当调整。
根据本发明,在90℃以下进行的处理被认为是无效的。
每两个相邻步骤之间的温度的连续转换被计作标示温度范围和时间范围的一部分。RS-W处理—范围1
       温度范围                    时间范围第1步     165~130℃                15分钟~24小时第2步     130~90℃                 1小时~72小时RS-W处理—范围2
     温度范围          时间范围第1步    160~130℃       30分钟~12小时第2步    130~90℃        2小时~72小时RS-W处理—范围3
     温度范围          时间范围第1步    150±5℃         45分钟~75分钟第2步    120±5℃         4~12小时第3步    105±5℃         12~36小时第4步    95±5℃          0~24小时RS-W处理—范围4
     温度范围          时间范围第1步    150±5℃         1小时±15分钟第2步    120±5℃         8±2小时第3步    105±5℃         24±6小时第4步    95±5℃          0~8小时HSRS-W
HSRS-W处理范围被描述为2步或3/4步(即4步处理,但第四步是选择性的,如取消,则变为3步处理)。HSRS-W处理—2步,范围1
     温度范围           时间范围第1步    190±40℃        20分钟~72小时第2步     120±30℃            1小时~48小时HSRS-W处理—2步,范围2
      温度范围               时间范围第1步     170±20℃            4小时~48小时第2步     125±15℃            4小时~36小时HSRS-W处理—2步,范围3
      温度范围               时间范围第1步     170±20℃            12小时~36小时第2步     125±15℃            6小时~24小时HSRS-W处理—2步,范围4
      温度范围               时间范围第1步     170±10℃              24±4小时第2步     125±10℃              8±2小时HSRS-W处理—3/4步,范围1
      温度范围               时间范围第1步     170±20℃            4小时~48小时第2步     125±10℃            6小时~24小时第3步     105±5℃             8小时~30小时第4步     95±5℃              0~8小时HSRS-W处理—3/4步,范围2
       温度范围          时间范围第1步      170±10℃         24±4小时第2步      125±15℃         8±4小时第3步      105±10℃         18±6小时第4步      95±5℃           0~8小时
总之,采用本发明的RS-W时效法为提高象8090这样的铝锂合金的强度水平了提供一条途径。此类合金由δ′和S′析出强化,与常规的铝铜合金材料类似。同时也限制了在中等高温条件下长期暴露造成的后续有害强化及相应的断裂韧性损失,如在较高环境温度和/或强烈的阳光辐射加热的情况下地面暴露时机身、机翼及尾翼结构所遇到的情况。
采用本发明的HSRS-W时效法为提高象8090这样的铝锂合金的强度水平提供了一条途径。此类合金由δ′和S′析出强化,与常规铝铜合金以及铝锌合金类似。
本发明也为提高其它所有铝锂合金的韧性水平提供了一条途径。无论该合金是以厚板、薄板、挤压件形式存在,或者是主要由δ′(Al3Li)析出相与其它析出相如S′(Al2CuMg)一起产生析出强化。
另外,本发明也改善了8090合金再结晶薄板的晶间腐蚀抗力。
初始状态                        供货态性能                       920小时/100℃处理后性能
                    0.2%     拉伸强度   延伸率    电导率     0.2%     拉伸   延伸率  电导率
                  屈服应力                                  屈服应力    强度
                     MPa        MPa        %      %IACS    MPa       MPa      %    %IACST81(T31+150℃/24小时)    293        424       13.5      18.8      320       439     10.2    19.6T81+回复                 260        379       14.8      17.6      324       451     10.5    19.8(200℃/10分钟)T81+200℃/10分钟+        295        416       13.6      18.6      339       471     10.0    20.5+170℃/4小时T81+220℃/12小时         346        411       8.4       18.5      394       471     5.4     20.4
表1    不同初始状态的批号1 8090合金经100℃920小时热暴露之后的
       室温力学性能及电导性
 时效处理                热敏化           屈服应力         拉伸强度  延伸率     室温电导率(相应温度下的小时数)                    0.1%   0.2%   0.5%              %150℃  135℃  120℃  100℃  85℃  70℃  MPa     MPa     MPa       MPa                  %IACS1      -      -      -      -     -     205     216     238       342     20.0         17.51      6      -      -      -     -     249     260     284       384     15.8         18.21      6      3      -      -     -     256     267     291       392     15.8         18.61      6      3      50     -     -     255     277     303       408     15.8         19.01      6      3      50     100   -     274     285     310       413     13.9         19.31      6      3      50     500   -     282     294     318       416     14.3         19.41      6      3      50     500   500   284     294     319       416     13.5         19.6
表2A    批号1 1.6mm的8090薄板在进行程序为1小时/150℃+6小时
        /135℃+3小时/120℃+50小时/100℃的时效处理时各时效阶段
        以及经85℃和70℃热暴露之后的长横向拉伸性能和电导性测量
        结果
        初始状态:505℃固溶处理和长度方向2%±0.5%的控制拉拔
  时效处理                热敏化          屈服应力         拉伸强度  延伸率    室温电导率(相应温度下的小时数)                    0.1%   0.2%   0.5%              %150℃  135℃  120℃  100℃  85℃  70℃  MPa     MPa     MPa      MPa                 %IACS1      -      -      -      -     -     205     216     238      342      20.0       17.51      6      -      -      -     -     249     260     284      384      15.8       18.21      6      8      -      -     -     252     269     294      393      14.9       18.61      6      8      50     -     -     264     280     305      406      14.5       19.01      6      8      50     100   -     277     287     311      415      14.5       19.31      6      8      50     500   -     284     296     321      426      16.1       19.31      6      8      50     500   500   281     292     316      419      13.6       19.6表2B    批号1 1.6mm的8090薄板在进行程序为1小时/150℃+6小时
    /135℃+8小时/120℃+50小时/100℃的时效处理时各时效阶段
    以及经85℃和70℃热暴露之后的长横向拉伸性能和电导性测量
    结果
    初始状态:505℃固溶处理和长度方向2%±0.5%的控制拉拔
 时效处理                热敏化           屈服应力        拉伸强度  延伸率    室温电导率(相应温度下的小时数)                    0.1%   0.2%   0.5%             %150℃  135℃  120℃  100℃  85℃  70℃  MPa     MPa     MPa      MPa                %IACS1      -      -      -      -     -     205     216     238      342     20.0        17.51      6      -      -      -     -     249     260     284      384     15.8        18.21      6      16     -      -     -     265     275     301      403     15.4        18.71      6      16     50     -     -     251     280     306      407     15.8        19.11      6      16     50     100   -     276     287     312      413     14.9        19.31      6      16     50     500   -     283     295     320      425     13.3        19.41      6      16     50     500   500   283     294     319      420     12.2        19.7表2C    批号1 1.6mm的8090薄板在进行程序为1小时/150℃+6小时
    /135℃+1 6小时/120℃+50小时/100℃的时效处理时各时效阶段
    以及经85℃和70℃热暴露之后的长横向拉伸性能和电导性测量
    结果
    初始状态:505℃固溶处理和长度方向2%±0.5%的控制拉拔
  时效处理                热敏化          屈服应力       拉伸强度  延伸率    室温电导率(相应温度下的小时数)                    0.1%   0.2%   0.5%            %150℃  135℃  120℃  100℃  85℃  70℃  MPa     MPa     MPa     MPa                %IACS1      -      -      -      -     -     205     216     238     342     20.0        17.51      12     -      -      -     -     260     270     295     393     14.7        18.51      12     6      -      -     -     269     278     302     405     14.7        18.81      12     6      50     -     -     272     287     312     411     14.1        19.11      12     6      50     100   -     274     290     316     420     14.8        19.41      12     6      50     500   -     292     301     325     432     16.8        19.51      12     6      50     500   500   289     300     325     428     13.3        19.7表2D    批号1 1.6mm的8090薄板在进行程序为1小时/150℃+12小时
    /135℃+6小时/120℃+50小时/100℃的时效处理时各时效阶段以
    及经85℃和70℃热暴露之后的长横向拉伸性能和电导性测量结
    果
    初始状态:505℃固溶处理和长度方向2%±0.5%的控制拉拔
  时效处理               热敏化           屈服应力         拉伸强度  延伸率    室温电导率(相应温度下的小时数)                    0.1%   0.2%   0.5%              %150℃  135℃  120℃  100℃  85℃  70℃  MPa     MPa     MPa       MPa                %IACS1      -      -      -      -     -     205     216     238       342     20.0        17.51      12     -      -      -     -     260     270     295       393     14.7        18.51      12     16     -      -     -     274     284     309       410     15.5        18.91      12     16     50     -     -     274     289     314       417     13.6        19.21      12     16     50     100   -     283     295     319       422     12.8        19.51      12     16     50     500   -     290     299     324       427     11.8        19.61      12     16     50     500   500   292     302     327       427     12.5        19.8
表2E    批号1 1.6mm的8090薄板在进行程序为1小时/150℃+12小时
        /135℃+16小时/120℃+50小时/100℃的时效处理时各时效阶段
        以及经85℃和70℃热暴露之后的长横向拉伸性能和电导性测量
        结果
        初始状态:505℃固溶处理和长度方向2%±0.5%的控制拉拔
  时效处理              热敏化            屈服应力       拉伸强度  延伸率    室温电导率(相应温度下的小时数)                     0.1%  0.2%   0.5%            %150℃  135℃  120℃ 100℃  85℃  70℃    MPa    MPa     MPa     MPa                %IACS3      -      -     -      -     -       237    247     270     372     16.0        17.93      12     -     -      -     -       266    279     304     406     15.0        18.73      12     6     -      -     -       277    287     311     415     17.4        19.03      12     6     50     -     -       264    293     318     421     14.3        19.33      12     6     50     100   -       285    296     322     423     13.3        19.63      12     6     50     500   -       291    301     325     429     13.6        19.73      12     6     50     500   500     291    302     326     429     14.1        19.9表2F    批号1 1.6mm的8090薄板在进行程序为3小时/150℃+12小时
    /135℃+6小时/120℃+50小时/100℃的时效处理时各时效阶段以
    及经85℃和70℃热暴露之后的长横向拉伸性能和电导性测量结
    果
    初始状态:505℃固溶处理和长度方向2%±0.5%的控制拉拔
 时效处理                热敏化           屈服应力        拉伸强度  延伸率    室温电导率(相应温度下的小时数)                     0.1%  0.2%  0.5%              %150℃  135℃  120℃  100℃  85℃  70℃   MPa    MPa    MPa       MPa                 %IACS3      -      -      -      -     -      237    247    270       372     16.0         17.93      12     -      -      -     -      266    279    304       406     15.0         18.73      12     16     -      -     -      280    291    316       422     16.5         19.13      12     16     50     -     -      275    291    317       418     13.3         19.43      12     16     50     100   -      279    298    324       426     12.3         19.63      12     16     50     500   -      294    303    328       434     12.6         19.73      12     16     50     500   500    294    306    331       436     11.8         20.0表2G    批号1 1.6mm的8090薄板在进行程序为3小时/150℃+12小时
    /135℃+16小时/120℃+50小时/100℃的时效处理时各时效阶段
    以及经85℃和70℃热暴露之后的长横向拉伸性能和电导性测量
    结果
    初始状态:505℃固溶处理和长度方向2%±0.5%的控制拉拔
 时效处理                热敏化           屈服应力          拉伸强度   延伸率    室温电导率(相应温度下的小时数)                    0.1%    0.2%    0.5%              %150℃  125℃  120℃  100℃  85℃  70℃  MPa      MPa      MPa      MPa                %IACS1      -      -      -      -     -     224.2    232.0    254.3    366.3    20.6       16.41      6      -      -      -     -     259.1    267.3    290.8    398.2    18.5       17.51      6      8      -      -     -     275.4    283.4    307.9    414.3    14.4       17.91      6      8      50     -     -     287.2    295.1    320.2    430.0    16.8       18.31      6      8      50     100   -     288.7    296.5    320.9    429.8    17.2       18.51      6      8      50     250   -     290.5    298.0    322.1    429.3    14.6       18.61      6      8      50     250   500   297.3    309.7    328.3    434.5    12.7       18.81      6      8      50     -     -     (301.7)  (307.3)  (320.6)  (415.2)  (12.8)     (18.3)表3A    批号2 1.9mm的8090薄板在进行程序为1小时/150℃+6小时
    /135℃+8小时/120℃+50小时/100℃的时效处理时各时效阶段
    以及经85℃和70℃热暴露之后的长横向拉伸性能和电导性测量
    结果(长度方向的结果示于括号内)
    初始状态:530℃固溶处理和长度方向2%±0.5%的控制拉拔
 时效处理               热敏化            屈服应力         拉伸强度   延伸率    室温电导率(相应温度下的小时数)                   0.1%    0.2%    0.5%              %150℃  120℃  105℃  95℃  85℃  70℃  MPa      MPa      MPa      MPa                 %IACS1      -      -      -     -     -     224.2    232.0    254.3    366.3    20.6        16.41      8      -      -     -     -     253.7    260.9    283.3    394.3    18.3        17.41      8      24     -     -     -     268.1    275.5    299.2    409.7    18.0        17.81      8      24     24    -     -     274.1    281.8    306.2    413.6    19.1        17.91      8      24     24    100   -     277.4    284.7    308.4    416.3    14.7        18.21      8      24     24    250   -     283.2    291.0    315.8    422.4    17.7        18.31      8      24     24    250   500   288.5    296.1    320.5    427.0    16.8        18.41      8      24     24    250   500   287.9    294.7    317.7    426.9    19.5        18.41      8      24     24    -     -     (288.7)  (293.5)  (305.9)  (402.5)  (13.9)      (17.9)表3B    批号2 1.9mm的8090薄板在进行程序为1小时/150℃+8小时
    /120℃+24小时/105℃+24小时/95℃的时效处理时各时效阶段
    以及经85℃和70℃热暴露之后的长横向拉伸性能和电导性测量
    结果(长度方向的结果示于括号内)
    初始状态:530℃固溶处理和长度方向2%±0.5%的控制拉拔
 时效处理                热敏化           屈服应力          拉伸强度     延伸率    室温电导率(相应温度下的小时数)                   0.1%    0.2%    0.5%                 %150℃  120℃  105℃  95℃  85℃  70℃  MPa      MPa      MPa       MPa                  %IACS1      -      -      -     -     -     224.2    232.0    254.3     366.3      20.6       16.41      16     -      -     -     -     264.4    272.1    295.1     405.7      18.5       17.51      16     24     -     -     -     274.1    281.9    305.7     415.6      19.0       18.01      16     24     24    -     -     276.9    284.5    309.1     419.7      16.4       18.11      16     24     24    100   -     274.8    282.5    306.1     417.7      17.6       18.31      16     24     24    250   -     285.8    293.6    317.9     424.5      14.4       18.41      16     24     24    250   500   290.7    298.4    323.2     433.6      17.6       18.61      16     24     24    -     -     (299.4)  (304.7)  (316.3)   (405.7)    (12.6)     (18.1)表3C    批号2 1.9mm的8090薄板在进行程序为1小时/150℃+16小时
    /120℃+24小时/105℃+24小时/95℃的时效处理时各时效阶段以
    及经85℃和70℃热暴露之后的长横向拉伸性能和电导性测量结
    果(长度方向的结果示于括号内)
    初始状态:530℃固溶处理和长度方向2%±0.5%的控制拉拔
  时效处理              热敏化             屈服应力           拉伸强度   延伸率    室温电导率(相应温度下的小时数)                    0.1%    0.2%    0.5%                %150℃  125℃  105℃  95℃  85℃  70℃   MPa      MPa      MPa        MPa                 %IACS1      -      -      -     -     -      224.2    232.0    254.3      366.3    20.6        16.41      8      -      -     -     -      254.5    263.2    286.4      398.2    18.7        17.41      8      24     -     -     -      269.8    277.7    300.7      410.8    14.1        17.91      8      24     24    -     -      275.6    282.9    306.6      417.4    17.7        18.11      8      24     24    100   -      282.0    289.3    312.3      423.8    17.1        18.31      8      24     24    250   -      286.6    294.1    318.0      428.3    16.5        18.41      8      24     24    250   500    287.3    294.8    318.7      424.9    17.1        18.51      8      24     24    250   500    286.0    293.1    316.5      424.6    16.3        18.51      8      24     24    -     -      (293.7)  (299.6)  (312.1)    (403.2)  (12.7)      (18.0)表3D    批号2 1.9mm的8090薄板在进行程序为1小时/150℃+8小时
    /125℃+24小时/105℃+24小时/95℃的时效处理时各时效阶段
    以及经85℃和70℃热暴露之后的长横向拉伸性能和电导性测量
    结果(长度方向的结果示于括号内)
    初始状态:530℃固溶处理和长度方向2%±0.5%的控制拉拔
 时效处理               热敏化               屈服应力          拉伸强度  延伸率     室温电导率(相应温度下的小时数)                      0.1%    0.2%    0.5%               %150℃  125℃  105℃  95℃  85℃  70℃     MPa      MPa      MPa       MPa                 %IACS1      -      -      -     -     -        224.2    232.0    254.3     366.3    20.6        16.41      16     -      -     -     -        267.1    274.9    298.8     406.9    17.6        17.61      16     24     -     -     -        279.6    287.4    311.6     420.6    20.1        18.11      16     24     24    -     -        285.1    292.7    317.0     425.6    14.9        18.21      16     24     24    100   -        287.9    295.4    319.2     428.0    14.8        18.41      16     24     24    250   -        291.5    299.4    324.7     435.7    15.9        18.51      16     24     24    250   500      293.2    300.5    324.0     433.9    15.8        18.71      16     24     24    -     -        (301.4)  (306.8)  (318.7)   (410.2)  (12.4)      (18.2)表3E    批号2 1.9mm的8090薄板在进行程序为1小时/150℃+16小时
    /125℃+24小时/105℃+24小时/95℃的时效处理时各时效阶段以
    及经85℃和70℃热暴露之后的长横向拉伸性能和电导性测量结
    果(长度方向的结果示于括号内)
    初始状态:530℃固溶处理和长度方向2%±0.5%的控制拉拔
时效处理                 热敏化             屈服应力          拉伸强度    延伸率    室温电导率(相应温度下的小时数)                     0.1%    0.2%    0.5%                %150℃  120℃  105℃  95℃  85℃  70℃    MPa      MPa      MPa       MPa                  %IACS1      -      -      -     -     -       198.4    205.9    225.8     341.6     22.4        15.91      8      -      -     -     -       232.2    239.4    260.6     374.4     19.3        16.81      8      24     -     -     -       252.1    259.5    282.1     399.3     20.3        17.41      8      24     24    -     -       256.6    264.2    286.5     399.0     20.3        17.51      8      24     24    100   -       267.3    274.9    298.3     412.8     19.5        17.91      8      24     24    250   -       278.2    285.6    309.3     418.3     15.5        18.01      8      24     24    250   500     279.4    286.6    309.4     420.3     16.3        18.21      8      24     24    250   1250    283.8    290.5    313.0     425.4     17.2        18.21      8      24     24    -     -       (273.9)  (278.3)  (290.8)   (386.9)   (10.5)      (17.5)表3F    批号2 1.9mm的8090薄板在进行程序为1小时/135℃+8小时
    /120 ℃+24小时/105℃+24小时/95℃的时效处理时各时效阶段
    以及经85℃和70℃热暴露之后的长横向拉伸性能和电导性测量
    结果(长度方向的结果示于括号内)
    初始状态:530℃固溶处理和长度方向2%±0.5%的控制拉拔
时效处理                  热敏化             屈服应力         拉伸强度   延伸率    室温电导率(相应温度下的小时数)                      0.1%    0.2%    0.5%              %150℃  120℃  105℃  95℃    85℃  70℃   MPa      MPa      MPa      MPa                 %IACS1      -      -      -       -     -      198.4    205.9    225.8    341.6    22.4        15.91      16     -      -       -     -      245.3    252.7    274.8    387.5    22.8        17.21      16     24     -       -     -      258.9    266.2    288.8    400.0    19.0        17.51      16     24     24      -     -      261.8    269.6    292.5    395.5    16.4        17.81      16     24     24      100   -      270.2    277.2    299.5    414.8    18.1        18.01      16     24     24      250   -      280.2    287.9    311.9    420.6    15.9        18.11      16     24     24      250   500    282.4    288.9    311.6    417.6    16.7        18.31      16     24     24      250   1250   289.2    296.5    319.7    425.8    14.9        18.41      16     24     24      -     -      (286.6)  (292.0)  (303.8)  (399.5)  (11.8)      (17.8)表3G    批号2 1.9mm的8090薄板在进行程序为1小时/135℃+16小时
    /120℃+24小时/105℃+24小时/95℃的时效处理时各时效阶段以
    及经85℃和70℃热暴露之后的长横向拉伸性能和电导性测量结
    果(长度方向的结果示于括号内)
    初始状态:530℃固溶处理和长度方向2%±0.5%的控制拉拔
  时效处理               热敏化            屈服应力          拉伸强度   延伸率    室温电导率(相应温度下的小时数)                    0.1%    0.2%    0.5%               %150℃  120℃  105℃  95℃  85℃  70℃   MPa      MPa      MPa       MPa                 %IACS-      2      -      -     -     -      189.5    196.2    213.5     336.1    20.7        15.7-      2      32     -     -     -      235.2    242.2    263.5     375.5    21.4        16.8-      2      32     24    -     -      242.7    249.9    271.3     386.7    18.6        17.1-      2      32     24    100   -      256.2    263.6    286.2     403.7    19.3        17.5-      2      32     24    250   -      267.7    274.9    297.2     411.9    16.9        17.7-      2      32     24    250   500    272.4    279.2    301.3     414.3    15.8        18.0-      2      32     24    250   1250   276.1    283.5    306.5     412.5    17.1        18.0-      2      32     24    -     -      (260.0)  (263.8)  (274.8)   (377.4)  (16.6)      (17.1)表3H    批号2 1.9mm的8090薄板在进行程序为2小时/120℃+32小时
    /105℃+24小时/95℃的时效处理时各时效阶段以及经85℃和70
    ℃热暴露之后的长横向拉伸性能和电导性测量结果(长度方向的
    结果示于括号内)
    初始状态:530℃固溶处理和长度方向2%±0.5%的控制拉拔
  时效处理              热敏化           屈服应力          拉伸强度   延伸率  室温电导率(相应温度下的小时数)                    0.1%   0.2%    0.5%              %150℃  120℃  105℃  95℃  85℃  70℃   MPa     MPa      MPa      MPa               %IACS-      8      -      -     -     -      217.8   224.9    244.8    364.1    21.5      16.4-      8      24     -     -     -      240.6   247.5    268.4    389.9    18.6      17.1-      8      24     24    -     -      249.5   256.7    279.1    388.7    18.3      17.4-      8      24     24    100   -      262.6   269.6    291.0    408.8    16.5      17.6-      8      24     24    250   -      271.9   278.6    300.9    415.9    19.1      17.8-      8      24     24    250   500    271.3   278.6    300.7    413.1    20.5      18.1-      8      24     24    250   1250   279.0   286.0    308.7    416.4    17.0      18.1
   8      24     24    -     -      (265.2) (269.8)  (281.1)  (384.1)  (167.6    (17.3)表3J    批号2 1.9mm的8090薄板在进行程序为8小时/120℃+24小时
    /105℃+24小时/95℃的时效处理时各时效阶段以及经85℃和70
    ℃热暴露之后的长横向拉伸性能和电导性测量结果(长度方向的
    结果示于括号内)
    初始状态:530℃固溶处理和长度方向2%±0.5%的控制拉拔
  时效处理              热敏化            屈服应力         拉伸强度   延伸率    室温电导率(相应温度下的小时数)                   0.1%    0.2%    0.5%              %150℃  120℃  105℃  95℃  85℃  70℃  MPa      MPa      MPa      MPa                  %IACS0.75   8      -      -     -     -     241.6    248.7    271.3    389.4    20.7         17.60.75   8      24     -     -     -     261.6    268.4    291.4    405.2    20.1         18.00.75   8      24     8     -     -     262.5    270.2    294.4    406.3    18.6         18.20.75   8      24     24    -     -     268.3    276.1    300.6    417.5    19.6         18.2表4A    批号2 1.6mm的8090薄板在进行程序为0.75小时/150℃+8小
    时/120℃+24小时/105℃+8小时/95℃或24小时/95℃的时效处
    理时各时效阶段的长横向拉伸性能和电导性测量结果
    初始状态:530℃固溶处理和长度方向1.75%±0.25%的控制拉
    拔
时效处理    热敏化                        屈服应力         拉伸强度   延伸率    室温电导率(相应温度下的小时数)                   0.1%    0.2%    0.5%              %150℃  120℃  105℃  95℃  85℃  70℃  MPa      MPa      MPa      MPa                 %IACS1.00   8      -      -     -     -     250.1    258.2    283.4    394.4    18.3        17.81.00   8      24     -     -     -     266.7    274.8    299.7    411.3    19.3        18.11.00   8      24     8     -     -     272.1    280.2    305.8    421.0    18.1        18.31.00   8      24     24    -     -     273.6    281.5    306.3    415.8    16.2        18.3
表4B    批号2 1.6mm的8090薄板在进行程序为1小时/150℃+8小时
        /120℃+24小时/105℃+8小时/95℃或24小时/95℃的时效处理
        时各时效阶段的长横向拉伸性能和电导性测量结果
        初始状态:530℃固溶处理和长度方向1.75%±0.25%的控制拉
        拔
时效处理                 热敏化             屈服应力             拉伸强度   延伸率    室温电导率(相应温度下的小时数)                    0.1%    0.2%    0.5%                  %150℃  120℃  105℃  95℃  85℃  70℃   MPa      MPa      MPa          MPa                 %IACS1.25   8      -      -     -     -      247.8    255.1    278.6        391.4    18.9        17.91.25   8      24     -     -     -      270.7    278.9    304.5        415.2    16.8        18.21.25   8      24     8     -     -      272.9    280.9    306.2        419.7    16.8        18.31.25   8      24     24    -     -      272.2    279.4    303.4        416.8    18.0        18.4表4C    批号2 1.6mm的8090薄板在进行程序为1.25小时/150℃+8小
    时/120℃+24小时/105℃+8小时/95℃或24小时/95℃的时效处
    理时各时效阶段的长横向拉伸性能和电导性测量结果
    初始状态:530℃固溶处理和长度方向1.75%±0.25%的控制拉
    拔 热暴露    起始状态      0.2%    拉伸强度   延伸率小时/70                屈服应力
                     MPa         MPa       %-(比较)      T81         309.41     441.31  13.31-(比较)      Rs-W        279.02     413.72  16.62100          T81         314.5       449.4    13.9100          RS-W        284.91     416.71  16.81200          T81         315.5       446.1    14.2200          RS-W        286.71     422.31  17.31500          T81         314.2       451.9    13.3500          RS-W        291.21     431.71  15.811000         T81         316.4       454.3    11.11000         RS-W        297.71     440.41  16.112000         T81         330.71     466.31  12.612000         RS-W        300.81     436.91  15.71表5批号2 1.6mm 8090薄板T81态及经优化RS-W时效(即1小时/150℃+8小时/120℃+24小时/105℃+8小时/95℃)状态的材料在70℃热暴露试验后的室温长横向拉伸性能1 两次测试平均值2 16次测试平均值。RS-W“控制”试验的0.2%屈服应力极高值和极低值为高于平均值2.3MPa和低于平均值2.5MPa

Claims (14)

1.一种有关铝锂合金热处理的方法,包括进行一系列至少两个步骤的人工时效,第一步在第一温度范围进行,随后在依次降低的温度范围进行至少一步时效。
2.根据权利要求1的方法,包括在大致为165℃至130℃的温度范围和大致为15分钟至24小时的时间范围内进行第一步人工时效,然后在大致为130℃至90℃的温度范围和大致为1小时至72小时的时间范围内进行第二步人工时效。
3.根据权利要求1的方法,包括在大致为160℃至130℃的温度范围和大致为30分钟至12小时的时间范围内进行第一步人工时效,然后在大致为130℃至90℃的温度范围和大致为2小时至72小时的时间范围内进行第二步人工时效。
4.根据权利要求1的方法,包括在大致为155℃至145℃的温度范围和大致为45分钟至75分钟的时间范围内进行第一步人工时效,然后在大致为125℃至115℃的温度范围和大致为4小时至12小时的时间范围内进行第二步人工时效,然后在大致为110℃至100℃的温度范围和大致为12小时至36小时的时间范围内进行第三步人工时效,然后在大致为100℃至90℃的温度范围和大致为0小时至24小时的时间范围内进行第四步人工时效。
5.根据权利要求1的方法,包括在大致为155℃至145℃的温度范围和大致为45分钟至75分钟的时间范围内进行第一步人工时效,然后在大致为125℃至115℃的温度范围和大致为6小时至10小时的时间范围内进行第二步人工时效,然后在大致为110℃至100℃的温度范围和大致为18小时至30小时的时间范围内进行第三步人工时效,然后在大致为100℃至90℃的温度范围和大致为0小时至8小时的时间范围内进行第四步人工时效。
6.根据权利要求1的方法,包括在大致为230℃至150℃的温度范围和大致为20分钟至72小时的时间范围内进行第一步人工时效,然后在大致为150℃至90℃的温度范围和大致为1小时至48小时的时间范围内进行第二步人工时效。
7.根据权利要求1的方法,包括在大致为190℃至150℃的温度范围和大致为4小时至48小时的时间范围内进行第一步人工时效,然后在大致为140℃至110℃的温度范围和大致为4小时至36小时的时间范围内进行第二步人工时效。
8.根据权利要求1的方法,包括在大致为190℃至150℃的温度范围和大致为12小时至36小时的时间范围内进行第一步人工时效,然后在大致为140℃至110℃的温度范围和大致为6小时至24小时的时间范围内进行第二步人工时效。
9.根据权利要求1的方法,包括在大致为180℃至160℃的温度范围和大致为20小时至28小时的时间范围内进行第一步人工时效,然后在大致为135℃至115℃的温度范围和大致为6小时至10小时的时间范围内进行第二步人工时效。
10.根据权利要求1的方法,包括在大致为190℃至150℃的温度范围和大致为4小时至48小时的时间范围内进行第一步人工时效,然后在大致为140℃至110℃的温度范围和大致为6小时至24小时的时间范围内进行第二步人工时效,然后在大致为115℃至95℃的温度范围和大致为8小时至30小时的时间范围内进行第三步人工时效,然后在大致为100℃至90℃的温度范围和大致为0小时至8小时的时间范围内进行第四步人工时效。
11.根据权利要求1的方法,包括在大致为180℃至160℃的温度范围和大致为20小时至28小时的时间范围内进行第一步人工时效,然后在大致为135℃至115℃的温度范围和大致为4小时至12小时的时间范围内进行第二步人工时效,然后在大致为110℃至100℃的温度范围和大致为12小时至24小时的时间范围内进行第三步人工时效,然后在大致为100℃至90℃的温度范围和大致为0小时至8小时的时间范围内进行第四步人工时效。
12.一种形成至少由两个构件组成、其中至少有一个构件包含铝锂合金的胶接热处理结构的方法,该方法包括的步骤是:形成构件与胶粘剂的预固化组合体,根据权利要求1的方法对组合体进行热处理,从而在至少一个人工时效步骤中固化胶粘剂,并因此而形成胶接热处理结构。
13.一种基本上如本文所述的铝锂合金热处理的方法。
14.一种基本上如本文所述的形成胶接热处理结构的方法。
CN95191555A 1994-12-10 1995-12-11 铝锂合金的热处理 Expired - Fee Related CN1062315C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GBGB9424970.3A GB9424970D0 (en) 1994-12-10 1994-12-10 Thermal stabilisation of Al-Li alloy
GB9424970.3 1994-12-10

Publications (2)

Publication Number Publication Date
CN1140474A true CN1140474A (zh) 1997-01-15
CN1062315C CN1062315C (zh) 2001-02-21

Family

ID=10765745

Family Applications (1)

Application Number Title Priority Date Filing Date
CN95191555A Expired - Fee Related CN1062315C (zh) 1994-12-10 1995-12-11 铝锂合金的热处理

Country Status (17)

Country Link
US (1) US5879481A (zh)
EP (1) EP0742846B1 (zh)
JP (1) JP3147383B2 (zh)
KR (1) KR100254948B1 (zh)
CN (1) CN1062315C (zh)
AU (1) AU690784B2 (zh)
BR (1) BR9506759A (zh)
CA (1) CA2181585C (zh)
DE (1) DE69526335T2 (zh)
ES (1) ES2172603T3 (zh)
GB (1) GB9424970D0 (zh)
MY (1) MY111856A (zh)
PL (1) PL179787B1 (zh)
RU (1) RU2127329C1 (zh)
TW (1) TW373025B (zh)
UA (1) UA41975C2 (zh)
WO (1) WO1996018752A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102198576A (zh) * 2010-11-25 2011-09-28 兰州威特焊材炉料有限公司 一种铝锂合金焊丝的加工方法
CN102634707A (zh) * 2012-05-10 2012-08-15 中南大学 一种超高强铝锂合金及热处理工艺
CN108193151A (zh) * 2018-03-28 2018-06-22 北京工业大学 一种Al-Er-Li合金时效处理工艺

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2303595C (en) 1997-09-22 2008-05-06 Thomas Pfannenmueller Aluminum based alloy and procedure for its heat treatment
AUPQ485399A0 (en) * 1999-12-23 2000-02-03 Commonwealth Scientific And Industrial Research Organisation Heat treatment of age-hardenable aluminium alloys
RU2180930C1 (ru) * 2000-08-01 2002-03-27 Государственное предприятие "Всероссийский научно-исследовательский институт авиационных материалов" Сплав на основе алюминия и способ изготовления полуфабрикатов из этого сплава
EP1409759A4 (en) * 2000-10-20 2004-05-06 Pechiney Rolled Products Llc HIGH RESISTANCE ALUMINUM ALLOY
AUPR360801A0 (en) * 2001-03-08 2001-04-05 Commonwealth Scientific And Industrial Research Organisation Heat treatment of age-hardenable aluminium alloys utilising secondary precipitation
US8333853B2 (en) * 2009-01-16 2012-12-18 Alcoa Inc. Aging of aluminum alloys for improved combination of fatigue performance and strength
CN102400069B (zh) * 2011-11-22 2014-04-09 中国航空工业集团公司北京航空材料研究院 一种Al-Li-Cu-X系铝锂合金多级时效强韧化工艺

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3359142A (en) * 1965-10-18 1967-12-19 Reynolds Metals Co Bonding aluminum to titanium and heat treating the composite
US4812178A (en) * 1986-12-05 1989-03-14 Bruno Dubost Method of heat treatment of Al-based alloys containing Li and the product obtained by the method
US4790884A (en) * 1987-03-02 1988-12-13 Aluminum Company Of America Aluminum-lithium flat rolled product and method of making
US5076859A (en) * 1989-12-26 1991-12-31 Aluminum Company Of America Heat treatment of aluminum-lithium alloys
JPH05506271A (ja) * 1990-05-02 1993-09-16 アライド―シグナル・インコーポレーテッド 二重時効による急速凝固アルミニウム―リチウムの強度増大
US5393357A (en) * 1992-10-06 1995-02-28 Reynolds Metals Company Method of minimizing strength anisotropy in aluminum-lithium alloy wrought product by cold rolling, stretching and aging

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102198576A (zh) * 2010-11-25 2011-09-28 兰州威特焊材炉料有限公司 一种铝锂合金焊丝的加工方法
CN102198576B (zh) * 2010-11-25 2013-01-02 兰州威特焊材炉料有限公司 一种铝锂合金焊丝的加工方法
CN102634707A (zh) * 2012-05-10 2012-08-15 中南大学 一种超高强铝锂合金及热处理工艺
CN108193151A (zh) * 2018-03-28 2018-06-22 北京工业大学 一种Al-Er-Li合金时效处理工艺
CN108193151B (zh) * 2018-03-28 2020-02-14 北京工业大学 一种Al-Er-Li合金时效处理工艺

Also Published As

Publication number Publication date
TW373025B (en) 1999-11-01
MY111856A (en) 2001-01-31
JPH09504833A (ja) 1997-05-13
KR970701272A (ko) 1997-03-17
CA2181585A1 (en) 1996-06-20
DE69526335D1 (de) 2002-05-16
KR100254948B1 (ko) 2000-05-01
EP0742846A1 (en) 1996-11-20
WO1996018752A1 (en) 1996-06-20
RU2127329C1 (ru) 1999-03-10
AU4182096A (en) 1996-07-03
CN1062315C (zh) 2001-02-21
JP3147383B2 (ja) 2001-03-19
GB9424970D0 (en) 1995-02-08
EP0742846B1 (en) 2002-04-10
BR9506759A (pt) 1997-10-07
CA2181585C (en) 2001-02-06
AU690784B2 (en) 1998-04-30
PL315806A1 (en) 1996-12-09
PL179787B1 (pl) 2000-10-31
UA41975C2 (uk) 2001-10-15
ES2172603T3 (es) 2002-10-01
DE69526335T2 (de) 2002-11-14
US5879481A (en) 1999-03-09

Similar Documents

Publication Publication Date Title
CN100347330C (zh) 高强度al-mg-si平衡合金的生产方法以及所述合金的可焊接产品
CN1220842C (zh) 耐水蒸汽氧化性优良的奥氏体系不锈钢管及其制造方法
CN1829812A (zh) 尤其适用于航空航天应用的高损伤容限铝合金产品
CN1234892C (zh) 铝基合金及制造其半成品的方法
CN101927312B (zh) Tc4钛合金锻环加工工艺
CN1050744A (zh) 高强度、抗疲劳断裂的合金制品及其制法
CN1174893A (zh) 抗蠕变及水和蒸汽腐蚀的锆基合金,其制造方法和应用
CN1780926A (zh) 一种铝-锌-镁-铜合金
CN101078080A (zh) 抗蠕变镁合金及其制备方法
CN1489637A (zh) 铝合金产品及人工时效方法
CN86102885A (zh) 具有中等电导率和高强度的多用铜合金及其生产方法
CN1198956C (zh) 具有优异耐腐蚀性能和机械性能的锆合金以及用锆合金制造核燃料涂层管的方法
CN101068943A (zh) 高强度、高韧性Al-Zn合金产品和生产该产品的方法
CN1140474A (zh) 铝锂合金的热处理
CN102337434B (zh) 高强高韧Al-Mg-Si-Cu变形铝合金及其制备方法
CN1060115A (zh) 适于制造罐的铝合金
RU2610657C1 (ru) Сплав на основе титана и изделие, выполненное из него
CN105951008A (zh) 一种高强耐腐蚀铝合金的热处理工艺
CN1075337A (zh) 钼、铼和钨的合金
CN1523241A (zh) 高强度连杆及其制造方法
CN102159742A (zh) 钛部件的固溶热处理和过老化热处理
CN106048310A (zh) 一种Ni‑Cr‑Mo‑W系高温合金材料、其制备方法及其应用
CN1469937A (zh) 高强度镁合金及其制备方法
CN111304493A (zh) 一种超强高塑钛合金及其制备方法
JP5379471B2 (ja) 冷間プレス成形用アルミニウム合金板の製造方法、および冷間プレス成形方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C53 Correction of patent of invention or patent application
COR Change of bibliographic data

Free format text: CORRECT: PATENTEE; FROM: BRITISH AEROSPACE PUBLIC LTD. CO. TO: BAF SYSTEMS PLC

CP01 Change in the name or title of a patent holder

Patentee after: BAE System Public Limited Company

Patentee before: British Aerospace Public Ltd. Co.

C19 Lapse of patent right due to non-payment of the annual fee
CF01 Termination of patent right due to non-payment of annual fee