CN114032539B - 一种石墨烯增强紫铜触头材料的制备方法 - Google Patents

一种石墨烯增强紫铜触头材料的制备方法 Download PDF

Info

Publication number
CN114032539B
CN114032539B CN202111228241.8A CN202111228241A CN114032539B CN 114032539 B CN114032539 B CN 114032539B CN 202111228241 A CN202111228241 A CN 202111228241A CN 114032539 B CN114032539 B CN 114032539B
Authority
CN
China
Prior art keywords
laser
graphene
powder
red copper
preset layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111228241.8A
Other languages
English (en)
Other versions
CN114032539A (zh
Inventor
徐国辉
曹阳
吕通发
唐冰
张凤强
郭冬雨
杜晓明
何永春
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xingan Power Supply Company State Grid East Inner Mongolia Electric Power Co ltd
State Grid Corp of China SGCC
State Grid Eastern Inner Mongolia Power Co Ltd
Original Assignee
Xingan Power Supply Company State Grid East Inner Mongolia Electric Power Co ltd
State Grid Corp of China SGCC
State Grid Eastern Inner Mongolia Power Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xingan Power Supply Company State Grid East Inner Mongolia Electric Power Co ltd, State Grid Corp of China SGCC, State Grid Eastern Inner Mongolia Power Co Ltd filed Critical Xingan Power Supply Company State Grid East Inner Mongolia Electric Power Co ltd
Priority to CN202111228241.8A priority Critical patent/CN114032539B/zh
Publication of CN114032539A publication Critical patent/CN114032539A/zh
Application granted granted Critical
Publication of CN114032539B publication Critical patent/CN114032539B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/08Coating starting from inorganic powder by application of heat or pressure and heat

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明涉及一种石墨烯增强紫铜触头材料的制备方法,包括步骤(1)制备预制层:将固态碳源和催化剂按一定比例混合,预涂在紫铜材料表面;以及步骤(2)制备石墨烯:采用高功率激光辐照在步骤(1)制备的预置层上,当激光关闭后,在预制层上即刻生长出表面覆盖的石墨烯。本发明制备出的石墨烯增强紫铜触头材料充分发挥了石墨烯高熔点、高热导率、高电导率、化学惰性及高摩擦系数的优点,为减少电气设备中触头材料烧蚀、磨损提供了可靠保障,解决了紫铜触头材料在服役过程中因直流开关中的电弧、动静触头摩擦造成的烧蚀和机械磨损,提高了直流开关关键零部件触头材料的使用性能和使用寿命。

Description

一种石墨烯增强紫铜触头材料的制备方法
技术领域
本发明属于高压触头材料技术领域,具体涉及一种石墨烯增强紫铜触头的制备方法。
背景技术
电触头是电器开关、仪器组件等的接触元件,其性能与服役情况直接决定了电气开关的开断能力、接触安全和可靠性等。在实际使用过程中,触头材料面临着电弧开断难度大、电弧烧蚀严重等巨大挑战。因此,开发一种新型的耐电弧烧蚀的电触头材料对我国高压电气行业发展将大有裨益。
铜具有高导电、高导热的优异特性,是高压电力系统中的关键触头材料。但铜存在熔点低、杨氏模量低等缺点,通常采用合金化的方法可以提高铜触头的机械性能,但同时又会牺牲铜的部分优异的导电、导热性能。而石墨烯作为新兴材料,其具有超高的杨氏模量、电导率和热导率,满足高压系统对电工材料的需要。目前已有技术在铜及铜合金触头中添加石墨烯,结果显示石墨烯的添加可以提高铜基触头的使用性能和寿命。但石墨烯仅作为添加剂未能发挥其最大的性能,因此本发明采用激光加工技术在紫铜表面原位生长石墨烯,将石墨烯作为独立涂层抵抗外界破坏。
发明内容
本发明的目的在于提出一种石墨烯增强紫铜触头材料的制备方法,所制备出的石墨烯增强紫铜触头材料充分发挥了石墨烯高熔点、高热导率、高电导率,化学惰性及高摩擦系数的优点,为减少电气设备中触头材料烧蚀、磨损提供了可靠保障,解决了紫铜触头材料在服役过程中因直流开关中的电弧、动静触头摩擦造成的烧蚀和机械磨损,提高了直流开关关键零部件触头材料的使用性能和使用寿命。
本发明具体是通过以下技术方案来实现的,依据本发明提出的一种石墨烯增强紫铜触头材料的制备方法,具体包括:
(1)制备预制层:将固态碳源和催化剂按一定比例混合,预涂在紫铜材料表面;
(2)制备石墨烯:采用高功率激光辐照在步骤(1)制备的预置层上,当激光关闭后,在预制层上即刻生长出表面覆盖的石墨烯。
进一步地,步骤(1)中所述的固态碳源选用天然石墨粉、人造石墨粉、高定向热解石墨粉、镍包石墨粉中的任一种。所述石墨粉的粒径为0.1-20μm。
进一步地,步骤(1)中所述的催化剂包括镍粉,其粒径为1-10μm。
进一步地,步骤(1)中所述的催化剂由镍粉与铜粉混合而成,镍粉与铜粉的质量比为1:1-1:4,镍粉的粒径为1-10μm。
进一步地,步骤(1)中固态碳源与催化剂的质量之比为1:1-10:1。
进一步地,步骤(1)中预涂的方式包括但不限于旋涂、模压。
进一步地,步骤(2)中所述的高功率激光选用半导体激光、二氧化碳激光、光纤激光中的任一种。所述高功率激光的波长为1-12μm,激光的额定功率为3000-10000W。
进一步地,步骤(2)中激光辐照的工艺条件为:激光功率1000-6000W,扫描速度10-1000mm/s,激光光斑直径0.5-5mm。
与现有技术相比,本发明具有以下优点:
本发明提供了一种石墨烯增强紫铜触头材料的制备方法,采用高功率激光辐照覆盖了预置层的紫铜材料,预置层包括固态碳源和催化剂;激光关闭后,激光辐照区域的紫铜表面立即生长出石墨烯。本发明实现了在紫铜表面一次生长石墨烯,将石墨烯作为独立表面涂层,充分发挥了全覆盖石墨烯膜高强度、耐烧蚀、超高杨氏模量的优异性能,与紫铜金属基底紧密结合,其“零摩擦”的特点,使其具有超高的抗摩擦能力,为金属提供了可靠的抗烧蚀性和耐磨性,可极大程度提升触头材料的使用性能和使用寿命,同时激光加工是一种高效的、环保的加工手段,适于在行业内推广使用。
附图说明
图1是本发明所得石墨烯增强紫铜触头材料过渡层的形貌与成分;
图2是本发明一次激光法生长石墨烯后触头材料的表面形貌;
图3是本发明所得石墨烯增强紫铜触头材料的拉曼图谱。
具体实施方式
为了更好地理解本发明的内容,下面将结合实施例和附图来进一步阐述本发明。本实施例以本发明的技术为基础实施,给出了详细的实施方式和操作步骤,但本发明的保护范围不限于下述实施例。
为了实现在触头材料表面一次生长石墨烯,本发明提供的技术方案具体包括:
(1)制备预制层:将固态碳源和催化剂按一定比例混合,预涂在紫铜材料表面;固态碳源选用天然石墨粉、人造石墨粉、高定向热解石墨粉、镍包石墨粉中的任一种,石墨粉的粒径为0.1-20μm。催化剂采用镍粉或者镍粉与铜粉的混合,镍粉粒径为1-10μm,镍粉与铜粉的质量比为1:1-1:4。固态碳源与催化剂的质量之比为1:1-10:1。预涂方式包括但不限于旋涂、模压等方式。
(2)制备石墨烯:采用高功率激光辐照在步骤(1)制备的预置层上,当激光关闭后在预制层上即刻生长出表面覆盖的石墨烯。其中,所述的高功率激光可以选用半导体激光、二氧化碳激光、光纤激光中的任一种;选用的高功率激光的波长为1-12μm,激光的额定功率为3000-10000W。
激光辐照的工艺条件为:激光功率1000-6000W,扫描速度为10-1000mm/s,激光光斑直径0.5-5mm。
下面以具体实施例详细说明。
实施例1:
(1)制备预制层:将粒径为10μm的天然石墨粉和粒径为5μm的镍粉按质量之比为1:1混合,旋涂在紫铜材料表面;
(2)制备石墨烯:采用波长为1.06μm,额定功率为5000W的半导体激光辐照在步骤(1)制备的预置层上,当激光关闭后在预制层上即刻生长出表面覆盖的石墨烯。激光辐照的工艺条件为:激光功率2000W,扫描速度为10mm/s,激光光斑直径3mm。
实施例2:
(1)制备预制层:将粒径为20μm的高定向热解石墨粉和粒径为10μm的镍粉按质量之比为4:1混合,旋涂在紫铜材料表面;
(2)制备石墨烯:采用波长为10.6μm,额定功率为6000W的光纤激光辐照在步骤(1)制备的预置层上,当激光关闭后在预制层上即刻生长出表面覆盖的石墨烯。激光辐照的工艺条件为:激光功率5000W,扫描速度为100mm/s,激光光斑直径5mm。
实施例3:
(1)制备预制层:将粒径为5μm的镍包石墨粉和粒径为1μm的镍粉按质量之比为10:1混合,旋涂在紫铜材料表面;
(2)制备石墨烯:采用波长为12μm,额定功率为3000W的二氧化碳激光激光辐照在步骤(1)制备的预置层上,当激光关闭后在预制层上即刻生长出表面覆盖的石墨烯。激光辐照的工艺条件为:激光功率1000W,扫描速度为1000mm/s,激光光斑直径5mm。
实施例4:
(1)制备预制层:将粒径为0.1μm的人造石墨粉和粒径为8μm的镍粉按质量之比为5:1混合,通过模压方式预涂在紫铜材料表面;
(2)制备石墨烯:采用波长为1.06μm,额定功率为10000W的半导体激光辐照在步骤(1)制备的预置层上,当激光关闭后在预制层上即刻生长出表面覆盖的石墨烯。激光辐照的工艺条件为:激光功率6000W,扫描速度为800mm/s,激光光斑直径0.5mm。
实施例5:
(1)制备预制层:将粒径为3μm的高定向热解石墨粉和粒径为5μm的镍粉按质量之比为10:1混合,通过模压方式预涂在紫铜材料表面;
(2)制备石墨烯:采用波长为10.6μm,额定功率为8000W的二氧化碳激光辐照在步骤(1)制备的预置层上,当激光关闭后在预制层上即刻生长出表面覆盖的石墨烯。激光辐照的工艺条件为:激光功率4000W,扫描速度为300mm/s,激光光斑直径1mm。
实施例6:
(1)制备预制层:将粒径为4μm的镍包石墨粉和粒径为6μm的镍粉按质量之比为8:1混合,通过模压方式预涂在紫铜材料表面;
(2)制备石墨烯:采用波长为10.6μm,额定功率为6000W的光纤激光辐照在步骤(1)制备的预置层上,当激光关闭后在预制层上即刻生长出表面覆盖的石墨烯。激光辐照的工艺条件为:激光功率3000W,扫描速度为500mm/s,激光光斑直径2mm。
实施例7:
(1)制备预制层:将粒径为5μm的镍包石墨粉和催化剂按照质量比为1:1混合,通过模压方式预涂在紫铜材料表面;其中,催化剂为镍粉和铜粉的混合物,镍粉与铜粉的质量比为1:2,镍粉粒径为1μm;
(2)制备石墨烯:采用波长为10.6μm,额定功率为6000W的光纤激光辐照在步骤(1)制备的预置层上,当激光关闭后在预制层上即刻生长出表面覆盖的石墨烯。激光辐照的工艺条件为:激光功率3000W,扫描速度为500mm/s,激光光斑直径2mm。
实施例8:
(1)制备预制层:将粒径为1μm的高定向热解石墨粉和催化剂按照质量比为3:1混合,通过旋涂方式预涂在紫铜材料表面;其中,催化剂为镍粉和铜粉的混合物,镍粉与铜粉的质量比为1:1,镍粉粒径为3μm;
(2)制备石墨烯:采用波长为12μm,额定功率为8000W的半导体激光辐照在步骤(1)制备的预置层上,当激光关闭后在预制层上即刻生长出表面覆盖的石墨烯。激光辐照的工艺条件为:激光功率2000W,扫描速度为500mm/s,激光光斑直径3mm。
实施例9:
(1)制备预制层:将粒径为5μm的镍包石墨粉和催化剂按照质量比为5:1混合,通过模压方式预涂在紫铜材料表面;其中,催化剂为镍粉和铜粉的混合物,镍粉与铜粉的质量比为1:4,镍粉粒径为10μm;
(2)制备石墨烯:采用波长为10.6μm,额定功率为5000W的二氧化碳激光辐照在步骤(1)制备的预置层上,当激光关闭后在预制层上即刻生长出表面覆盖的石墨烯。激光辐照的工艺条件为:激光功率3000W,扫描速度为800mm/s,激光光斑直径1mm。
实施例10:
(1)制备预制层:将粒径为10μm的高定向热解石墨粉和催化剂按照质量比为10:1混合,通过旋涂方式预涂在紫铜材料表面;其中,催化剂为镍粉和铜粉的混合物,镍粉与铜粉的质量比为1:3,镍粉粒径为5μm;
(2)制备石墨烯:采用波长为12μm,额定功率为8000W的光纤激光辐照在步骤(1)制备的预置层上,当激光关闭后在预制层上即刻生长出表面覆盖的石墨烯。激光辐照的工艺条件为:激光功率6000W,扫描速度为500mm/s,激光光斑直径3mm。
以上10个实施例通过不同的固态碳源、不同的催化剂和不同类的激光实现了在紫铜表面原位生长石墨烯,相比现有技术,本发明实现了一次生长石墨烯,一次生长石墨烯的原理是利用激光的热作用,使石墨中SP3杂化的碳-碳键断裂,形成活性碳源,在催化剂的催化作用下活性碳源形成以SP2杂化形式的碳-碳键,进而形成六元碳环,最终长成石墨烯。本发明方法更为简便,石墨烯作为独立涂层覆盖在紫铜触头的表面,充分发挥了全覆盖石墨烯膜高强度、耐烧蚀、耐磨损、超高杨氏模量的优异性能。镍粉一方面作为石墨烯生长的催化剂,另一方面可以增加紫铜合金基底的机械性能。石墨烯与紫铜金属基底紧密结合,其“零摩擦”的特点,使其具有超高的抗摩擦能力,为金属提供了可靠的抗烧蚀性和耐磨性,极大程度提升了触头材料的使用性能和使用寿命。
图1是实施例7所得石墨烯增强紫铜触头材料过渡层的形貌与成分;催化剂为镍粉与铜粉的混合,镍粉与铜粉的质量比为1:2,最终形成过渡层。
图2是本发明采用激光法一次生长石墨烯后触头材料的表面形貌,从图2中可以看出材料表面石墨烯形貌呈典型的褶皱状。
图3是本发明所得石墨烯增强紫铜触头材料的拉曼图谱,从图3中可以看出在紫铜触头材料表面成功生长了石墨烯。
以上所述仅是本发明的实施例,并非对本发明作任何形式上的限制,本发明还可以根据以上结构和功能具有其它形式的实施例,不再一一列举。因此,任何熟悉本专业的技术人员,在不脱离本发明技术方案范围内,依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化与修饰,均仍属于本发明技术方案的范围内。

Claims (4)

1.一种石墨烯增强紫铜触头材料的制备方法,其特征在于具体包括:
(1)制备预置层:将粒径为5μm的镍包石墨粉和催化剂按质量比为1:1混合,通过模压方式预涂在紫铜材料表面;所述的催化剂为镍粉和铜粉的混合物,镍粉与铜粉的质量比为1:2,镍粉粒径为1μm;
(2)制备石墨烯:采用波长为10.6μm,额定功率为6000W的光纤激光辐照在步骤(1)制备的预置层上,当激光关闭后,在预置层上即刻生长出表面覆盖的石墨烯,激光辐照的工艺条件为:激光功率3000W,扫描速度为500mm/s,激光光斑直径2mm。
2.一种石墨烯增强紫铜触头材料的制备方法,其特征在于具体包括:
(1)制备预置层:将粒径为1μm的高定向热解石墨粉和催化剂按照质量比为3:1混合,通过旋涂方式预涂在紫铜材料表面;其中,催化剂为镍粉和铜粉的混合物,镍粉与铜粉的质量比为1:1,镍粉粒径为3μm;
(2)制备石墨烯:采用波长为12μm,额定功率为8000W的半导体激光辐照在步骤(1)制备的预置层上,当激光关闭后在预置层上即刻生长出表面覆盖的石墨烯;激光辐照的工艺条件为:激光功率2000W,扫描速度为500mm/s,激光光斑直径3mm。
3.一种石墨烯增强紫铜触头材料的制备方法,其特征在于具体包括:
(1)制备预置层:将粒径为5μm的镍包石墨粉和催化剂按照质量比为5:1混合,通过模压方式预涂在紫铜材料表面;其中,催化剂为镍粉和铜粉的混合物,镍粉与铜粉的质量比为1:4,镍粉粒径为10μm;
(2)制备石墨烯:采用波长为10.6μm,额定功率为5000W的二氧化碳激光辐照在步骤(1)制备的预置层上,当激光关闭后在预置层上即刻生长出表面覆盖的石墨烯;激光辐照的工艺条件为:激光功率3000W,扫描速度为800mm/s,激光光斑直径1mm。
4.一种石墨烯增强紫铜触头材料的制备方法,其特征在于具体包括:
(1)制备预置层:将粒径为10μm的高定向热解石墨粉和催化剂按照质量比为10:1混合,通过旋涂方式预涂在紫铜材料表面;其中,催化剂为镍粉和铜粉的混合物,镍粉与铜粉的质量比为1:3,镍粉粒径为5μm;
(2)制备石墨烯:采用波长为12μm,额定功率为8000W的光纤激光辐照在步骤(1)制备的预置层上,当激光关闭后在预置层上即刻生长出表面覆盖的石墨烯;激光辐照的工艺条件为:激光功率6000W,扫描速度为500mm/s,激光光斑直径3mm。
CN202111228241.8A 2021-10-21 2021-10-21 一种石墨烯增强紫铜触头材料的制备方法 Active CN114032539B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111228241.8A CN114032539B (zh) 2021-10-21 2021-10-21 一种石墨烯增强紫铜触头材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111228241.8A CN114032539B (zh) 2021-10-21 2021-10-21 一种石墨烯增强紫铜触头材料的制备方法

Publications (2)

Publication Number Publication Date
CN114032539A CN114032539A (zh) 2022-02-11
CN114032539B true CN114032539B (zh) 2024-03-22

Family

ID=80141698

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111228241.8A Active CN114032539B (zh) 2021-10-21 2021-10-21 一种石墨烯增强紫铜触头材料的制备方法

Country Status (1)

Country Link
CN (1) CN114032539B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016090755A1 (zh) * 2014-12-11 2016-06-16 福达合金材料股份有限公司 一种石墨烯增强的复合铜基触点材料及其制备工艺
CN111441047A (zh) * 2020-04-01 2020-07-24 陕西科技大学 一种石墨烯/金属基复合触头材料及其制备方法和应用
CN111621768A (zh) * 2020-06-02 2020-09-04 陕西科技大学 一种基于激光在金属表面原位生长石墨烯的方法及其应用
CN113005402A (zh) * 2021-02-22 2021-06-22 陕西科技大学 一种基于管式炉加热的石墨烯/金属基复合触头的制备方法
CN113481461A (zh) * 2021-05-27 2021-10-08 陕西科技大学 激光在等离子体合金化触头表面原位生长石墨烯的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016090755A1 (zh) * 2014-12-11 2016-06-16 福达合金材料股份有限公司 一种石墨烯增强的复合铜基触点材料及其制备工艺
CN111441047A (zh) * 2020-04-01 2020-07-24 陕西科技大学 一种石墨烯/金属基复合触头材料及其制备方法和应用
CN111621768A (zh) * 2020-06-02 2020-09-04 陕西科技大学 一种基于激光在金属表面原位生长石墨烯的方法及其应用
CN113005402A (zh) * 2021-02-22 2021-06-22 陕西科技大学 一种基于管式炉加热的石墨烯/金属基复合触头的制备方法
CN113481461A (zh) * 2021-05-27 2021-10-08 陕西科技大学 激光在等离子体合金化触头表面原位生长石墨烯的方法

Also Published As

Publication number Publication date
CN114032539A (zh) 2022-02-11

Similar Documents

Publication Publication Date Title
CN107434905B (zh) 导热聚合物复合材料及其制备方法与应用
JP4704899B2 (ja) 熱伝導材料の製造方法
JP5102328B2 (ja) 熱伝導部材の製造方法
KR101641145B1 (ko) 폴리도파민을 이용한 촉매 합성법, 이에 의해 제조된 촉매, 및 이를 이용한 연료전지
CN1744974A (zh) 热压法制碳/碳复合材料
CN108504096B (zh) 一种碳纳米管/聚合物复合材料的制备方法
JP2002088250A (ja) 熱伝導性高分子組成物及び熱伝導性成形体
JP2003112915A (ja) 黒鉛化炭素粉末及び熱伝導性複合材料組成物
KR100790423B1 (ko) 친수성 카본블랙 결집체 및 이의 제조 방법과, 이를포함하는 친수성 복합재 및 연료 전지용 바이폴라 플레이트
CN111441047B (zh) 一种石墨烯/金属基复合触头材料及其制备方法和应用
CN113481461A (zh) 激光在等离子体合金化触头表面原位生长石墨烯的方法
Song et al. Short carbon fiber reinforced electrically conductive aromatic polydisulfide/expanded graphite nanocomposites
CN113105716B (zh) 一种等离子体改性六方氮化硼/树脂复合材料的制备方法
CN114032539B (zh) 一种石墨烯增强紫铜触头材料的制备方法
CN108934087B (zh) 碳发热体
JPWO2007096989A1 (ja) モータ用金属黒鉛質ブラシ材料の製造方法
JP2002097371A (ja) 熱伝導性高分子組成物及び熱伝導性成形体
CN109686501B (zh) 一种石墨烯/铝复合导电材料及其制备方法
WO2002056404A1 (en) Catalyst composition for cell, gas diffusion layer, and fuel cell comprising the same
WO2022176725A1 (ja) 熱伝導性シート、および電子機器
CN115249817B (zh) 一种燃料电池气体扩散层用碳纸材料的催化石墨化方法
CN114988716A (zh) 一种碳化钨/石墨烯复合材料及其制备方法
CN112853144A (zh) 一种金刚石/石墨烯/金属的复合材料的制备方法
CN113005402A (zh) 一种基于管式炉加热的石墨烯/金属基复合触头的制备方法
CN114361905A (zh) 一种镀铜石墨粉原位生长螺旋纳米碳纤维及其碳刷

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant