CN114015890B - High-alloying high-temperature alloy electroslag remelting slag system and application thereof - Google Patents
High-alloying high-temperature alloy electroslag remelting slag system and application thereof Download PDFInfo
- Publication number
- CN114015890B CN114015890B CN202210007916.4A CN202210007916A CN114015890B CN 114015890 B CN114015890 B CN 114015890B CN 202210007916 A CN202210007916 A CN 202210007916A CN 114015890 B CN114015890 B CN 114015890B
- Authority
- CN
- China
- Prior art keywords
- electroslag remelting
- slag system
- superalloy
- slag
- alloying
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000002893 slag Substances 0.000 title claims abstract description 117
- 229910045601 alloy Inorganic materials 0.000 title claims abstract description 51
- 239000000956 alloy Substances 0.000 title claims abstract description 51
- 238000005275 alloying Methods 0.000 title claims abstract description 18
- 238000003723 Smelting Methods 0.000 claims abstract description 56
- 238000002844 melting Methods 0.000 claims abstract description 34
- 230000008018 melting Effects 0.000 claims abstract description 33
- 238000000034 method Methods 0.000 claims abstract description 19
- 229910000601 superalloy Inorganic materials 0.000 claims description 59
- 238000007711 solidification Methods 0.000 claims description 50
- 230000008023 solidification Effects 0.000 claims description 50
- 229910004261 CaF 2 Inorganic materials 0.000 claims description 22
- 229910010413 TiO 2 Inorganic materials 0.000 claims description 17
- 229910018072 Al 2 O 3 Inorganic materials 0.000 claims description 16
- 238000000605 extraction Methods 0.000 claims description 12
- 238000005728 strengthening Methods 0.000 claims description 12
- 239000002245 particle Substances 0.000 claims description 4
- 229910052751 metal Inorganic materials 0.000 abstract description 5
- 239000002184 metal Substances 0.000 abstract description 5
- 239000007788 liquid Substances 0.000 abstract description 4
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 abstract 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N ZrO2 Inorganic materials O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 abstract 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 abstract 1
- WUKWITHWXAAZEY-UHFFFAOYSA-L calcium difluoride Chemical compound [F-].[F-].[Ca+2] WUKWITHWXAAZEY-UHFFFAOYSA-L 0.000 abstract 1
- 229910001634 calcium fluoride Inorganic materials 0.000 abstract 1
- 229910052593 corundum Inorganic materials 0.000 abstract 1
- 229910001845 yogo sapphire Inorganic materials 0.000 abstract 1
- 230000000052 comparative effect Effects 0.000 description 24
- 238000005336 cracking Methods 0.000 description 9
- 239000012535 impurity Substances 0.000 description 8
- 230000000694 effects Effects 0.000 description 7
- 239000000463 material Substances 0.000 description 7
- 239000000243 solution Substances 0.000 description 7
- 239000010936 titanium Substances 0.000 description 5
- 241001417490 Sillaginidae Species 0.000 description 4
- 241001062472 Stokellia anisodon Species 0.000 description 4
- 230000008646 thermal stress Effects 0.000 description 4
- 229910052719 titanium Inorganic materials 0.000 description 4
- 229910052726 zirconium Inorganic materials 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 230000035882 stress Effects 0.000 description 3
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 238000005266 casting Methods 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 230000004907 flux Effects 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 230000006698 induction Effects 0.000 description 2
- 229910052750 molybdenum Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 229910052721 tungsten Inorganic materials 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 210000001787 dendrite Anatomy 0.000 description 1
- 238000006477 desulfuration reaction Methods 0.000 description 1
- 230000023556 desulfurization Effects 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B9/00—General processes of refining or remelting of metals; Apparatus for electroslag or arc remelting of metals
- C22B9/16—Remelting metals
- C22B9/18—Electroslag remelting
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Manufacture And Refinement Of Metals (AREA)
Abstract
Description
技术领域technical field
本发明涉及高温合金电渣重熔熔炼技术领域,尤其是涉及一种高合金化高温合金电渣重熔渣系及其应用。The invention relates to the technical field of high-temperature alloy electroslag remelting and melting, in particular to a high-alloying high-temperature alloy electroslag remelting slag system and its application.
背景技术Background technique
高温合金为了满足更高温度的使用要求,合金中固溶强化元素Cr、Co、W、Mo等,以及强化相形成元素Ti、Al、Nb、Ta等的含量不断增加,使得高温合金的初熔点更低,合金凝固的固液两相区范围更宽。电渣重熔过程,渣系熔点应当比重熔金属低100~200℃,才能保证熔化和凝固的顺利进行。针对初熔点更低的高温合金而言,冶炼过程难度增加,渣系匹配性差。In order to meet the higher temperature requirements of superalloys, the content of solid solution strengthening elements Cr, Co, W, Mo, etc. in the alloy, as well as the strengthening phase forming elements Ti, Al, Nb, Ta, etc., continue to increase, which makes the initial melting point of superalloys. lower, the solid-liquid two-phase region of alloy solidification is wider. In the electroslag remelting process, the melting point of the slag system should be 100~200°C lower than that of the molten metal to ensure smooth melting and solidification. For superalloys with a lower initial melting point, the smelting process is more difficult and the slag system is poorly matched.
低熔点渣系用于电渣重熔连续定向凝固技术制备高温合金定向凝固铸锭,采用现有的部分电渣重熔连续定向凝固装置,可批量制备高纯晶、低偏析高温合金定向凝固铸锭。如公开号为CN102021348A的专利申请,其采用的设备中包含抽锭装置,抽锭装置要求渣系同时具备合适的黏度和强度,以保证熔炼铸锭的表面质量和过程稳定性。Low-melting slag is used for electroslag remelting continuous directional solidification technology to prepare superalloy directional solidification ingots. Using some existing electroslag remelting continuous directional solidification devices, high-purity crystal, low segregation superalloy directional solidification ingots can be prepared in batches. For example, in the patent application with publication number CN102021348A, the equipment used includes an ingot extraction device. The ingot extraction device requires the slag system to have suitable viscosity and strength at the same time to ensure the surface quality and process stability of the smelting ingot.
渣系熔点太低,会引起电导率升高,熔渣发热量不够,使铸锭产生空洞、气孔、夹杂物等缺陷;熔点过高,将降低电导率,增加渣系黏度,影响铸锭内在质量及表面质量,产生冶金缺陷。当强化相含量更高、熔点更低的高温合金使用常规四元渣CaF2-CaO-Al2O3-MgO时,使用电渣重熔连续定向凝固技术熔炼时为了降低应力需要采用较低的熔炼速度,从而降低了热输入,热输入的减少必然会影响渣的流动性,影响渣-金之间的物质传递,降低熔炼铸锭的内部冶金质量。因而,常规熔渣已无法满足电渣重熔连续定向凝固熔炼高强化相含量低熔点高温合金的需求。If the melting point of the slag system is too low, the electrical conductivity will increase, and the heat generated by the slag will be insufficient, which will cause defects such as voids, pores, and inclusions in the ingot. quality and surface quality, resulting in metallurgical defects. When the conventional quaternary slag CaF 2 -CaO-Al 2 O 3 -MgO is used in the superalloy with higher content of strengthening phase and lower melting point, in order to reduce the stress when smelting by electroslag remelting continuous directional solidification technology, it is necessary to use a lower The smelting speed, thereby reducing the heat input, will inevitably affect the fluidity of the slag, affect the material transfer between the slag and the gold, and reduce the internal metallurgical quality of the smelted ingot. Therefore, conventional slag has been unable to meet the needs of electroslag remelting continuous directional solidification to smelt high strengthening phase content and low melting point superalloy.
有鉴于此,特提出本发明。In view of this, the present invention is proposed.
发明内容SUMMARY OF THE INVENTION
本发明的目的在于提供高合金化高温合金电渣重熔渣系,以解决现有技术中存在的常规熔渣无法满足电渣重熔连续定向凝固熔炼高强化相含量低熔点高温合金等的技术问题。The purpose of the present invention is to provide a high-alloying superalloy electroslag remelting slag system, so as to solve the problem that the conventional slag existing in the prior art cannot satisfy the continuous directional solidification of electroslag remelting and smelting high-strengthening phase content and low melting point superalloy technology. question.
本发明的又一目的在于提供高合金化高温合金电渣重熔渣系在电渣重熔连续定向凝固铸锭冶炼中的应用。Another object of the present invention is to provide the application of electroslag remelting slag system of highly alloyed superalloy in electroslag remelting continuous directional solidification ingot smelting.
为了实现本发明的上述目的,特采用以下技术方案:In order to realize the above-mentioned purpose of the present invention, the following technical solutions are specially adopted:
高合金化高温合金电渣重熔渣系,包括按质量百分比计的如下组分:High alloyed superalloy electroslag remelting slag system, including the following components by mass percentage:
CaF2 45%~55%、Al2O3 15%~25%、CaO 15%~25%、MgO 1%~5%、TiO2 0.5%~5%、ZrO2 0.5%~5%和LiF 5%~10%。CaF 2 45%~55%, Al 2 O 3 15%~25%, CaO 15%~25%, MgO 1%~5%, TiO 2 0.5%~5%, ZrO 2 0.5%~5% and LiF 5 %~10%.
本发明的高合金化高温合金电渣重熔渣系,通过成分调控,使渣系的熔点、黏度和表面张力降低,能够在保证热输入的情况下,提高熔渣的流动性和黏度,保证冶炼铸锭的内部冶金质量,降低因热应力过大造成的热裂倾向,也保证了抽锭的稳定性和冶炼铸锭的表面质量,能够解决高温合金在慢速熔炼时由于热输入减少等造成的熔渣流动性降低导致的冶金质量下降的问题等。The high-alloying superalloy electroslag remelting slag system of the present invention can reduce the melting point, viscosity and surface tension of the slag system through composition control, can improve the fluidity and viscosity of the slag under the condition of ensuring heat input, and ensure The internal metallurgical quality of smelted ingots reduces the tendency of hot cracking caused by excessive thermal stress, and also ensures the stability of ingot extraction and the surface quality of smelted ingots, which can solve the problem of reduced heat input during slow smelting of superalloys, etc. The resulting reduction in the fluidity of the molten slag results in a reduction in the metallurgical quality, etc.
在本发明的具体实施方式中,所述高合金化高温合金电渣重熔渣系,包括按质量百分比计的如下组分:CaF2 45%~50%、Al2O3 15%~20%、CaO 20%~25%、MgO 3%~5%、TiO2 0.5%~2%、ZrO2 0.5%~2%和LiF 5%~9%。In a specific embodiment of the present invention, the highly alloyed superalloy electroslag remelting slag system includes the following components by mass percentage: CaF 2 45%-50%, Al 2 O 3 15%-20% , CaO 20%~25%, MgO 3%~5%, TiO 2 0.5%~2%, ZrO 2 0.5%~2% and LiF 5%~9%.
在本发明的具体实施方式中,所述高合金化高温合金电渣重熔渣系中,按质量百分比计,杂质含量≤1%。In a specific embodiment of the present invention, in the highly alloyed superalloy electroslag remelting slag system, in terms of mass percentage, the impurity content is less than or equal to 1%.
在本发明的具体实施方式中,所述高合金化高温合金电渣重熔渣系中,CaF2与LiF的质量百分比之和为52%~56%。进一步的,所述高合金化高温合金电渣重熔渣系中,CaF2与LiF的质量比为(5~9)﹕1,优选为(6~8)﹕1。In a specific embodiment of the present invention, in the highly alloyed superalloy electroslag remelting slag system, the sum of the mass percentages of CaF 2 and LiF is 52% to 56%. Further, in the highly alloyed superalloy electroslag remelting slag system, the mass ratio of CaF 2 to LiF is (5-9):1, preferably (6-8):1.
在本发明的具体实施方式中,所述高合金化高温合金电渣重熔渣系为颗粒状,颗粒度为1~10mm。In a specific embodiment of the present invention, the highly alloyed superalloy electroslag remelting slag system is granular, and the particle size is 1-10 mm.
在本发明的具体实施方式中,所述高合金化高温合金的强化相的质量百分含量为35%~60%,所述高合金化高温合金的初熔点为1100~1280℃。In a specific embodiment of the present invention, the mass percentage of the strengthening phase of the highly alloyed superalloy is 35% to 60%, and the initial melting point of the highly alloyed superalloy is 1100 to 1280°C.
在本发明的具体实施方式中,所述高合金化高温合金包括GH4198合金、GH4198D合金、GH4151合金、GH4175合金和GH4975合金等中的任一种或多种。In a specific embodiment of the present invention, the highly alloyed superalloy includes any one or more of GH4198 alloy, GH4198D alloy, GH4151 alloy, GH4175 alloy, GH4975 alloy, and the like.
本发明还提供了上述任意一种所述高合金化高温合金电渣重熔渣系在电渣重熔连续定向凝固铸锭冶炼中的应用。The present invention also provides the application of any one of the above-mentioned highly alloyed superalloy electroslag remelting slag systems in electroslag remelting continuous directional solidification ingot smelting.
在本发明的具体实施方式中,所述电渣重熔连续定向凝固铸锭冶炼的方法为抽锭式电渣重熔连续定向凝固冶炼。进一步的,所述抽锭的速度为2~5mm/min。In a specific embodiment of the present invention, the electroslag remelting continuous directional solidification ingot smelting method is ingot extraction type electroslag remelting continuous directional solidification smelting. Further, the speed of the ingot extraction is 2~5mm/min.
在本发明的具体实施方式中,所述电渣重熔连续定向凝固铸锭冶炼中采用的电极棒为真空感应熔炼浇铸得到的电极棒。In a specific embodiment of the present invention, the electrode rod used in the electroslag remelting continuous directional solidification ingot smelting is an electrode rod obtained by vacuum induction melting and casting.
与现有技术相比,本发明的有益效果为:Compared with the prior art, the beneficial effects of the present invention are:
(1)本发明通过成分调控,使渣系的熔点降低,保证适当的黏度,提高金属熔体与渣液间的表面张力,能够在保证热输入的情况下,提高熔渣的流动性,保证冶炼铸锭的内部冶金质量,降低因热应力过大造成的热裂倾向,也保证了抽锭的稳定性和冶炼铸锭的表面质量,能够解决高温合金在较慢熔速条件下熔炼时由于热输入减少等造成的熔渣流动性降低导致的冶金质量下降的问题等。(1) The present invention reduces the melting point of the slag system through component control, ensures proper viscosity, increases the surface tension between the metal melt and the slag liquid, and can improve the fluidity of the slag under the condition of ensuring heat input, ensuring that The internal metallurgical quality of the smelted ingots reduces the tendency of hot cracking caused by excessive thermal stress, and also ensures the stability of the ingots and the surface quality of the smelted ingots, which can solve the problems caused by the melting of superalloys at a slower melting rate. Problems such as reduction of metallurgical quality due to reduction of slag fluidity due to reduction of heat input, etc.
(2)本发明的渣系能够在电渣重熔连续定向凝固设备熔炼高强化相含量、低熔点高温合金时有效保证熔炼热输入,改善熔渣的流动性,提高熔炼过程的稳定性,增加夹杂物与渣液是润湿程度,使熔炼得到的铸锭夹杂物数量减少且无开裂。(2) The slag system of the present invention can effectively ensure the heat input of smelting when the electroslag remelting continuous directional solidification equipment smelts high-strength phase content and low melting point superalloy, improves the fluidity of slag, improves the stability of the smelting process, and increases the Inclusions and slag liquid are the degree of wetting, so that the number of inclusions in the ingot obtained by smelting is reduced and there is no cracking.
附图说明Description of drawings
为了更清楚地说明本发明具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to illustrate the specific embodiments of the present invention or the technical solutions in the prior art more clearly, the following briefly introduces the accompanying drawings that need to be used in the description of the specific embodiments or the prior art. Obviously, the accompanying drawings in the following description The drawings are some embodiments of the present invention. For those of ordinary skill in the art, other drawings can also be obtained based on these drawings without creative efforts.
图1为本发明实施例1冶炼得到的高温合金定向凝固铸锭的冒口;Fig. 1 is the riser of the superalloy directional solidification ingot obtained by smelting in Example 1 of the present invention;
图2为比较例1冶炼得到的高温合金定向凝固铸锭的冒口;Fig. 2 is the riser of the superalloy directional solidification ingot obtained by the smelting of Comparative Example 1;
图3为本发明实施例1冶炼得到的高温合金定向凝固铸锭的表面质量图;Fig. 3 is the surface quality diagram of the superalloy directional solidification ingot obtained by smelting in Example 1 of the present invention;
图4为比较例1冶炼得到的高温合金定向凝固铸锭的表面质量图。4 is a surface quality diagram of a superalloy directional solidification ingot obtained by smelting in Comparative Example 1.
具体实施方式Detailed ways
下面将结合附图和具体实施方式对本发明的技术方案进行清楚、完整地描述,但是本领域技术人员将会理解,下列所描述的实施例是本发明一部分实施例,而不是全部的实施例,仅用于说明本发明,而不应视为限制本发明的范围。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。实施例中未注明具体条件者,按照常规条件或制造商建议的条件进行。所用试剂或仪器未注明生产厂商者,均为可以通过市售购买获得的常规产品。The technical solutions of the present invention will be clearly and completely described below with reference to the accompanying drawings and specific embodiments, but those skilled in the art will understand that the embodiments described below are part of the embodiments of the present invention, rather than all of the embodiments, It is only used to illustrate the present invention and should not be construed as limiting the scope of the present invention. Based on the embodiments of the present invention, all other embodiments obtained by those of ordinary skill in the art without creative efforts shall fall within the protection scope of the present invention. If the specific conditions are not indicated in the examples, it is carried out according to the conventional conditions or the conditions suggested by the manufacturer. The reagents or instruments used without the manufacturer's indication are conventional products that can be purchased from the market.
高合金化高温合金电渣重熔渣系,包括按质量百分比计的如下组分:High alloyed superalloy electroslag remelting slag system, including the following components by mass percentage:
CaF2 45%~55%、Al2O3 15%~25%、CaO 15%~25%、MgO 1%~5%、TiO2 0.5%~5%、ZrO2 0.5%~5%和LiF 5%~10%。CaF 2 45%~55%, Al 2 O 3 15%~25%, CaO 15%~25%, MgO 1%~5%, TiO 2 0.5%~5%, ZrO 2 0.5%~5% and LiF 5 %~10%.
本发明的高合金化高温合金电渣重熔渣系,通过成分调控,使渣系的熔点降低,保证适当的黏度,提高钢液与渣液间的表面张力,能够在保证热输入的情况下,提高熔渣的流动性,保证冶炼铸锭的内部冶金质量,降低因热应力过大造成的热裂倾向,也保证了抽锭的稳定性和冶炼铸锭的表面质量,能够解决高温合金在慢速熔炼时由于热输入减少等造成的熔渣流动性降低导致的冶金质量下降的问题等。The high-alloyed superalloy electroslag remelting slag system of the present invention can reduce the melting point of the slag system, ensure proper viscosity, and improve the surface tension between the molten steel and the slag by adjusting the composition, and can ensure the heat input under the condition of , improve the fluidity of the slag, ensure the internal metallurgical quality of the smelting ingot, reduce the tendency of hot cracking caused by excessive thermal stress, and also ensure the stability of the ingot extraction and the surface quality of the smelting ingot, which can solve the problem of high temperature alloys in the In slow smelting, the problem of metallurgical quality degradation due to reduced slag fluidity due to reduced heat input, etc.
如在不同实施方式中,高合金化高温合金电渣重熔渣系中的各组分的用量按质量百分比计可分别如下:As in different embodiments, the amount of each component in the highly alloyed superalloy electroslag remelting slag system can be respectively as follows in terms of mass percentage:
CaF2的用量可以为45%、46%、47%、48%、49%、50%、51%、52%、53%、54%、55%等等;CaF2作为助熔剂,自身是低熔点化合物,保证渣料熔融态低黏度和较好的流动性;The amount of CaF 2 can be 45%, 46%, 47%, 48%, 49%, 50%, 51%, 52%, 53%, 54%, 55%, etc.; as a flux, CaF 2 itself is low Melting point compound to ensure low viscosity and good fluidity of slag in molten state;
Al2O3的用量可以为15%、16%、17%、18%、19%、20%、21%、22%、23%、24%、25%等等;Al2O3是酸性氧化物,可调节渣的碱度,能显著降低渣的电导率,减少电耗,提高生产率;The amount of Al 2 O 3 can be 15%, 16%, 17%, 18%, 19%, 20%, 21%, 22%, 23%, 24%, 25%, etc.; Al 2 O 3 is an acid oxidation It can adjust the alkalinity of the slag, which can significantly reduce the electrical conductivity of the slag, reduce power consumption and improve productivity;
CaO的用量可以为15%、16%、17%、18%、19%、20%、21%、22%、23%、24%、25%等等;CaO能增大渣的碱度,提高脱硫的效率,并降低渣的电导率;The amount of CaO can be 15%, 16%, 17%, 18%, 19%, 20%, 21%, 22%, 23%, 24%, 25%, etc.; CaO can increase the alkalinity of the slag and improve the desulfurization efficiency, and reduce the conductivity of slag;
MgO的用量可以为1%、1.5%、2%、2.5%、3%、3.5%、4%、4.5%、5%等等;MgO可提高渣中Ti3O5和Al2O3的活度系数,降低渣中TiO2活度系数,抑制TiO2传递供氧的作用,提高结晶器保护渣的稳定性和改善流动性;The amount of MgO can be 1%, 1.5%, 2%, 2.5%, 3%, 3.5%, 4%, 4.5%, 5%, etc.; MgO can improve the activity of Ti 3 O 5 and Al 2 O 3 in the slag. It reduces the activity coefficient of TiO 2 in the slag, inhibits the role of TiO 2 in transmitting and supplying oxygen, improves the stability of the mold slag and improves the fluidity;
TiO2的用量可以为0.5%、1%、1.5%、2%、2.5%、3%、3.5%、4%、4.5%、5%等等;TiO2能够抑制钛的烧损,但其为变价氧化物,会向金属熔池中传递供氧,与MgO配合使用,可兼顾抑制钛烧损作用以及避免传递供养,改善稳定性和流动性;The amount of TiO 2 can be 0.5%, 1%, 1.5%, 2%, 2.5%, 3%, 3.5%, 4%, 4.5%, 5%, etc.; TiO 2 can inhibit the burning loss of titanium, but it is The variable valence oxide will transfer oxygen supply to the molten metal pool. When used in conjunction with MgO, it can take into account the effect of inhibiting titanium burning loss and avoid transfer and supply, improving stability and fluidity;
ZrO2的用量可以为0.5%、1%、1.5%、2%、2.5%、3%、3.5%、4%、4.5%、5%等等;ZrO2为酸性氧化物,可以降低渣的电导率,能够抑制含微量Zr的高温合金中的锆的烧损,且Zr有强化晶界的作用;TiO2和ZrO2配合可控制冶炼金属成分的均匀性;The amount of ZrO 2 can be 0.5%, 1%, 1.5%, 2%, 2.5%, 3%, 3.5%, 4%, 4.5%, 5%, etc.; ZrO 2 is an acidic oxide, which can reduce the conductivity of the slag It can inhibit the burning loss of zirconium in superalloys containing trace Zr, and Zr has the effect of strengthening grain boundaries; the combination of TiO 2 and ZrO 2 can control the uniformity of smelting metal components;
LiF的用量可以为5%、5.5%、6%、6.5%、7%、7.5%、8%、8.5%、9%、9.5%、10%等等;LiF可作为助熔剂,其熔点为850℃,在一定用量范围内,与其余组分配合能够降低渣的液相线温度、黏度、表面张力和电导率。The amount of LiF can be 5%, 5.5%, 6%, 6.5%, 7%, 7.5%, 8%, 8.5%, 9%, 9.5%, 10%, etc.; LiF can be used as a flux, its melting point is 850 ℃, within a certain dosage range, it can reduce the liquidus temperature, viscosity, surface tension and electrical conductivity of slag in combination with other components.
本发明通过对渣系成分调控,在四元渣系基础上添加一定量的TiO2、ZrO2和LiF,使渣系的熔点降低,保证适当的黏度和表面张力,在保证热输入的情况下,提高熔渣的流动性,保证冶炼铸锭的内部和表面冶金质量。The invention controls the composition of the slag system and adds a certain amount of TiO 2 , ZrO 2 and LiF on the basis of the quaternary slag system, so as to reduce the melting point of the slag system, ensure proper viscosity and surface tension, and ensure the heat input under the condition of , to improve the fluidity of the slag and ensure the internal and surface metallurgical quality of the smelted ingot.
在本发明的具体实施方式中,所述高合金化高温合金电渣重熔渣系,包括按质量百分比计的如下组分:CaF2 45%~50%、Al2O3 15%~20%、CaO 20%~25%、MgO 3%~5%、TiO2 0.5%~2%、ZrO2 0.5%~2%和LiF 5%~9%。In a specific embodiment of the present invention, the highly alloyed superalloy electroslag remelting slag system includes the following components by mass percentage: CaF 2 45%-50%, Al 2 O 3 15%-20% , CaO 20%~25%, MgO 3%~5%, TiO 2 0.5%~2%, ZrO 2 0.5%~2% and LiF 5%~9%.
在本发明的具体实施方式中,所述高合金化高温合金电渣重熔渣系,包括按质量百分比计的如下组分:CaF2 45%~48%、Al2O3 18%~20%、CaO 20%~22%、MgO 3%~4%、TiO2 0.5%~1.5%、ZrO2 0.5%~1%和LiF 6%~9%。In a specific embodiment of the present invention, the highly alloyed superalloy electroslag remelting slag system includes the following components by mass percentage: CaF 2 45%-48%, Al 2 O 3 18%-20% , CaO 20%~22%, MgO 3%~4%, TiO 2 0.5%~1.5%, ZrO 2 0.5%~1% and LiF 6%~9%.
在本发明的具体实施方式中,所述高合金化高温合金电渣重熔渣系中,按质量百分比计,杂质含量≤1%。In a specific embodiment of the present invention, in the highly alloyed superalloy electroslag remelting slag system, in terms of mass percentage, the impurity content is less than or equal to 1%.
在本发明的具体实施方式中,所述高合金化高温合金电渣重熔渣系中,CaF2与LiF的质量百分比之和为52%~56%。进一步的,所述高合金化高温合金电渣重熔渣系中,CaF2与LiF的质量比为(5~9)﹕1,优选为(6~8)﹕1。In a specific embodiment of the present invention, in the highly alloyed superalloy electroslag remelting slag system, the sum of the mass percentages of CaF 2 and LiF is 52% to 56%. Further, in the highly alloyed superalloy electroslag remelting slag system, the mass ratio of CaF 2 to LiF is (5-9):1, preferably (6-8):1.
如在不同实施方式中,CaF2与LiF的质量百分比之和可以为52%、52.5%、53%、53.5%、54%、54.5%、55%、55.5%、56%等等;CaF2与LiF的质量比可以为5﹕1、5.5﹕1、6﹕1、6.5﹕1、7﹕1、7.5﹕1、8﹕1、8.5﹕1、9﹕1等等。As in different embodiments, the sum of the mass percentages of CaF 2 and LiF may be 52%, 52.5%, 53%, 53.5%, 54%, 54.5%, 55%, 55.5%, 56%, etc.; The mass ratio of LiF can be 5:1, 5.5:1, 6:1, 6.5:1, 7:1, 7.5:1, 8:1, 8.5:1, 9:1 and so on.
本发明通过引入一定量的LiF,与CaF2及其余组分配合,兼顾保证适当的低熔点以及对冶炼合金质量的改善。In the present invention, by introducing a certain amount of LiF and cooperating with CaF 2 and other components, it can ensure a proper low melting point and improve the quality of the smelted alloy.
在本发明的具体实施方式中,所述高合金化高温合金电渣重熔渣系为颗粒状,颗粒度为1~10mm。In a specific embodiment of the present invention, the highly alloyed superalloy electroslag remelting slag system is granular, and the particle size is 1-10 mm.
在本发明的具体实施方式中,所述高合金化高温合金的强化相的质量百分含量为35%~60%,所述高合金化高温合金的初熔点为1100~1280℃。In a specific embodiment of the present invention, the mass percentage of the strengthening phase of the highly alloyed superalloy is 35% to 60%, and the initial melting point of the highly alloyed superalloy is 1100 to 1280°C.
如在不同实施方式中,所述高合金化高温合金的强化相的质量百分含量可以为35%、40%、45%、50%、55%、60%等等;所述高合金化高温合金的初熔点可以为1100℃、1150℃、1200℃、1250℃、1280℃等等。As in different embodiments, the mass percentage content of the strengthening phase of the high-alloying superalloy may be 35%, 40%, 45%, 50%, 55%, 60%, etc.; the high-alloying high temperature The initial melting point of the alloy may be 1100°C, 1150°C, 1200°C, 1250°C, 1280°C, and the like.
在本发明的具体实施方式中,所述高合金化高温合金包括GH4198合金、GH4198D合金、GH4151合金、GH4175合金和GH4975合金中的任一种或多种,但不仅限于此,其余高合金化程度的合金也可采用本发明的渣系进行电渣重熔。In a specific embodiment of the present invention, the highly alloyed superalloy includes any one or more of GH4198 alloy, GH4198D alloy, GH4151 alloy, GH4175 alloy and GH4975 alloy, but not limited thereto, the rest of the high alloying degree The alloy can also be electroslag remelted using the slag system of the present invention.
本发明还提供了上述任意一种所述高合金化高温合金电渣重熔渣系在电渣重熔连续定向凝固铸锭冶炼中的应用。The present invention also provides the application of any one of the above-mentioned highly alloyed superalloy electroslag remelting slag systems in electroslag remelting continuous directional solidification ingot smelting.
在本发明的具体实施方式中,所述电渣重熔连续定向凝固铸锭冶炼的方法为抽锭式电渣重熔连续定向凝固冶炼。进一步的,所述抽锭的速度为2~5mm/min。In a specific embodiment of the present invention, the electroslag remelting continuous directional solidification ingot smelting method is ingot extraction type electroslag remelting continuous directional solidification smelting. Further, the speed of the ingot extraction is 2~5mm/min.
如在不同实施方式中,所述抽锭的速度可以为2mm/min、2.5mm/min、3mm/min、3.5mm/min、4mm/min、4.5mm/min、5mm/min等等。As in various embodiments, the speed of the ingot extraction may be 2 mm/min, 2.5 mm/min, 3 mm/min, 3.5 mm/min, 4 mm/min, 4.5 mm/min, 5 mm/min, and the like.
对于高合金化高温合金材料而言,材料的强化相在50%以上,熔炼应力非常大,易出现铸锭开裂等情况,在采用慢速熔炼的情况下,可适当降低内应力,减少开裂;然而,在采用慢速熔炼的情况下,热输入降低,进而影响流动性,影响渣-金之间的物质传递,降低熔炼铸锭的表面及内部质量;因而,现有的渣系无法满足电渣重熔连续定向凝固熔炼高强化相含量低熔点高温合金的需求。而本发明通过对渣系成分进行调控,使在慢速熔炼的情况下,保证熔炼热输入,改善熔渣的流动性,提高熔炼过程的稳定性,改善熔炼铸锭的表面及内部质量等。For high-alloyed superalloy materials, the strengthening phase of the material is more than 50%, the melting stress is very large, and ingot cracking is prone to occur. In the case of slow melting, the internal stress can be appropriately reduced to reduce cracking; However, in the case of slow smelting, the heat input is reduced, which in turn affects the fluidity, affects the material transfer between slag and gold, and reduces the surface and internal quality of the smelted ingot; therefore, the existing slag system cannot meet the electrical requirements. Demand for continuous directional solidification of slag remelting to smelt high strengthening phase content and low melting point superalloys. In the present invention, the slag system components are adjusted and controlled, so that in the case of slow smelting, the smelting heat input is guaranteed, the fluidity of the slag is improved, the stability of the smelting process is improved, and the surface and internal quality of the smelting ingot are improved.
以GH4198合金为例,在采用电渣重熔连续定向凝固冶炼得到相应GH4198合金定向凝固铸锭时,枝晶间平均η相尺寸≤22μm,如20~22μm;对于φ270mm的GH4198合金铸锭,熔池深度≤122mm,如120~120mm,渣沟深度≤3mm,表面平整,且无开裂。Taking the GH4198 alloy as an example, when the directional solidification ingot of the corresponding GH4198 alloy is obtained by electroslag remelting continuous directional solidification, the average η phase size between the dendrites is ≤22 μm, such as 20~22 μm; for the GH4198 alloy ingot with a diameter of 270 mm, the melting The depth of the pool is less than or equal to 122mm, such as 120~120mm, the depth of the slag groove is less than or equal to 3mm, and the surface is smooth and free of cracks.
在本发明的具体实施方式中,所述电渣重熔连续定向凝固铸锭冶炼中采用的电极棒为真空感应熔炼浇铸得到的电极棒。In a specific embodiment of the present invention, the electrode rod used in the electroslag remelting continuous directional solidification ingot smelting is an electrode rod obtained by vacuum induction melting and casting.
在实际操作中,可采用常规具有抽锭装置的电渣重熔连续定向凝固装置进行所述熔炼,比如采用公开号为CN102021348A所记载的真空/气体保护电渣重熔连续定向凝固装置和方法进行所述熔炼。In actual operation, conventional electroslag remelting continuous directional solidification device with ingot extraction device can be used to carry out the smelting, for example, the vacuum/gas protection electroslag remelting continuous directional solidification device and method described in publication number CN102021348A can be used to carry out the smelting. the smelting.
实施例1Example 1
本实施例提供了高合金化高温合金电渣重熔渣系,包括按质量百分比计的如下组分:The present embodiment provides a highly alloyed superalloy electroslag remelting slag system, including the following components by mass percentage:
CaF2 48%、Al2O3 19%、CaO 21%、MgO 3.5%、TiO2 1%、ZrO2 0.5%、以及LiF 6%,余量为不可避免杂质。CaF 2 48%, Al 2 O 3 19%, CaO 21%, MgO 3.5%, TiO 2 1%, ZrO 2 0.5%, and LiF 6%, and the balance was unavoidable impurities.
所述渣系的制备包括:按上述配比混合,制备得到颗粒度为1~10mm的颗粒状渣系。The preparation of the slag system includes: mixing according to the above-mentioned proportion to prepare a granular slag system with a particle size of 1-10 mm.
本实施例还提供了采用上述渣系通过电渣重熔连续定向凝固冶炼GH4198合金铸锭的方法,采用公开号为CN102021348A中所记载的装置,包括如下步骤:The present embodiment also provides a method for smelting GH4198 alloy ingots through electroslag remelting continuous directional solidification using the above-mentioned slag system, using the device described in the publication number CN102021348A, including the following steps:
将上述渣系于常规渣料烘烤炉中烘烤处理后,在化渣炉内将烘烤处理后的渣系熔化后,倒入φ274mm的结晶器中,将采用常规真空感应熔炼浇铸得到的GH4198电极棒插入熔渣进行电渣重熔连续定向凝固熔炼φ270mm的GH4198合金铸锭,抽锭速度为3mm/min,电流2500~4000A(如3000A),电压40~45V(如45V)。After the above-mentioned slag system is baked in a conventional slag material baking furnace, the baked slag system is melted in the slag furnace, and then poured into a crystallizer with a diameter of 274 mm. The GH4198 electrode rod is inserted into the molten slag for electroslag remelting and continuous directional solidification to smelt the GH4198 alloy ingot with a diameter of 270mm.
GH4198合金主要成分为:C 0.01wt%~0.03wt%、Cr 12wt%~14wt%、Co 19.5wt%~21.5wt%、W 2.1wt%~2.5wt%、Mo 3.6wt%~4wt%、Al 3wt%~3.6wt%、Ti 3.5wt%~3.9wt%、Ta2.3wt%~2.7wt%、Zr 0.03wt%~0.07wt%、B 0.01wt%~0.02wt%及余量Ni。The main components of GH4198 alloy are: C 0.01wt%~0.03wt%, Cr 12wt%~14wt%, Co 19.5wt%~21.5wt%, W 2.1wt%~2.5wt%, Mo 3.6wt%~4wt%, Al 3wt% %~3.6wt%, Ti 3.5wt%~3.9wt%, Ta2.3wt%~2.7wt%, Zr 0.03wt%~0.07wt%, B 0.01wt%~0.02wt% and balance Ni.
实施例2Example 2
本实施例提供了高合金化高温合金电渣重熔渣系,包括按质量百分比计的如下组分:The present embodiment provides a highly alloyed superalloy electroslag remelting slag system, including the following components by mass percentage:
CaF2 45%、Al2O3 20%、CaO 20%、MgO 3.5%、TiO2 1%、ZrO2 1%、以及LiF 9%,余量为不可避免杂质。CaF 2 45%, Al 2 O 3 20%, CaO 20%, MgO 3.5%, TiO 2 1%, ZrO 2 1%, and LiF 9%, and the balance was unavoidable impurities.
本实施例还提供了采用上述渣系通过电渣重熔连续定向凝固冶炼GH4198合金铸锭的方法,参考实施例1,区别仅在于:渣系不同,本实施例采用本实施例的渣系进行所述电渣重熔连续定向凝固冶炼GH4198合金铸锭。This embodiment also provides a method for smelting GH4198 alloy ingots through electroslag remelting and continuous directional solidification using the above-mentioned slag system. Referring to Example 1, the only difference is that the slag system is different. The electroslag remelting continuous directional solidification smelts the GH4198 alloy ingot.
实施例3Example 3
本实施例提供了高合金化高温合金电渣重熔渣系,包括按质量百分比计的如下组分:The present embodiment provides a highly alloyed superalloy electroslag remelting slag system, including the following components by mass percentage:
CaF2 50%、Al2O3 19%、CaO 20%、MgO 3.5%、TiO2 1%、ZrO2 1%、以及LiF 5%,余量为不可避免杂质。CaF 2 50%, Al 2 O 3 19%, CaO 20%, MgO 3.5%, TiO 2 1%, ZrO 2 1%, and LiF 5%, and the balance was unavoidable impurities.
本实施例还提供了采用上述渣系通过电渣重熔连续定向凝固冶炼GH4198合金铸锭的方法,参考实施例1,区别仅在于:渣系不同,本实施例采用本实施例的渣系进行所述电渣重熔连续定向凝固冶炼GH4198合金铸锭。This embodiment also provides a method for smelting GH4198 alloy ingots through electroslag remelting and continuous directional solidification using the above-mentioned slag system. Referring to Example 1, the only difference is that the slag system is different. The electroslag remelting continuous directional solidification smelts the GH4198 alloy ingot.
比较例1Comparative Example 1
比较例1提供了电渣重熔渣系,包括按质量百分比计的如下组分:Comparative Example 1 provides an electroslag remelting slag system, including the following components by mass percentage:
CaF2 55%、Al2O3 21%、CaO 20%、MgO 3.5%,余量为不可避免杂质。CaF 2 55%, Al 2 O 3 21%, CaO 20%, MgO 3.5%, and the balance is unavoidable impurities.
比较例1还提供了采用上述渣系通过电渣重熔连续定向凝固冶炼GH4198合金铸锭的方法,参考实施例1,区别在于:渣系不同,本比较例采用本比较例的渣系进行所述电渣重熔连续定向凝固冶炼GH4198合金铸锭。Comparative Example 1 also provides a method for smelting GH4198 alloy ingots by electroslag remelting and continuous directional solidification using the above-mentioned slag system. Referring to Example 1, the difference is that the slag system is different. The electroslag remelting continuous directional solidification smelting GH4198 alloy ingot.
比较例2Comparative Example 2
比较例2提供了电渣重熔渣系,包括按质量百分比计的如下组分:Comparative Example 2 provides an electroslag remelting slag system, including the following components by mass percentage:
CaF2 52%、Al2O3 20%、CaO 19%、MgO 3.5%、TiO2 1%、ZrO2 1%、以及LiF 3%,余量为不可避免杂质。CaF 2 52%, Al 2 O 3 20%, CaO 19%, MgO 3.5%, TiO 2 1%, ZrO 2 1%, and LiF 3%, and the balance was unavoidable impurities.
比较例2还提供了采用上述渣系通过电渣重熔连续定向凝固冶炼GH4198合金铸锭的方法,参考实施例1,区别在于:渣系不同,本比较例采用本比较例的渣系进行所述电渣重熔连续定向凝固冶炼GH4198合金铸锭。Comparative Example 2 also provides a method for smelting GH4198 alloy ingots through electroslag remelting and continuous directional solidification using the above-mentioned slag system. Referring to Example 1, the difference is that the slag system is different. The electroslag remelting continuous directional solidification smelting GH4198 alloy ingot.
比较例3Comparative Example 3
比较例3提供了电渣重熔渣系,包括按质量百分比计的如下组分:Comparative Example 3 provides an electroslag remelting slag system, including the following components by mass percentage:
CaF2 48%、Al2O3 18%、CaO 18%、MgO 3.5%、TiO2 1%、ZrO2 1%、以及LiF 12%,余量为不可避免杂质。CaF 2 48%, Al 2 O 3 18%, CaO 18%, MgO 3.5%, TiO 2 1%, ZrO 2 1%, and LiF 12%, and the balance was unavoidable impurities.
比较例3还提供了采用上述渣系通过电渣重熔连续定向凝固冶炼GH4198合金铸锭的方法,参考实施例1,区别在于:渣系不同,本比较例采用本比较例的渣系进行所述电渣重熔连续定向凝固冶炼GH4198合金铸锭。Comparative Example 3 also provides a method for smelting GH4198 alloy ingots by electroslag remelting and continuous directional solidification using the above-mentioned slag system. Referring to Example 1, the difference is that the slag system is different. The electroslag remelting continuous directional solidification smelting GH4198 alloy ingot.
实验例1Experimental example 1
为了对比说明不同渣系在电渣重熔连续定向凝固熔炼合金铸锭时,对得到的铸锭的质量的影响,分别对不同实施例和比较例得到的铸锭的上部分取试样,进行夹杂物统计,统计结果见表1。In order to compare and illustrate the effects of different slag systems on the quality of the obtained ingots during electroslag remelting and continuous directional solidification to smelt alloy ingots, samples were taken from the upper parts of the ingots obtained in different examples and comparative examples, respectively, and the Inclusion statistics, the statistical results are shown in Table 1.
表1 不同实施例和比较例得到的GH4198合金定向凝固铸锭的夹杂物情况Table 1 Inclusions of GH4198 alloy directionally solidified ingots obtained in different examples and comparative examples
通过上述对比可知,采用本发明的渣系冶炼得到的GH4198合金定向凝固铸锭的夹杂物数量更少,进一步说明了本发明的渣系在慢速熔炼条件下表现更好的流动性,更有利于物质传递,夹杂物的去除效果更好。It can be seen from the above comparison that the GH4198 alloy directional solidification ingot obtained by smelting the slag system of the present invention has fewer inclusions, which further illustrates that the slag system of the present invention has better fluidity under the condition of slow smelting, and more It is beneficial to material transfer, and the removal effect of inclusions is better.
如图1~图4分别为本发明实施例1和比较例1得到的GH4198合金定向凝固铸锭的冒口和表面质量图。从图中可知,通过对比不同实施例和比较例得到的GH4198合金定向凝固铸锭的冒口情况和表面质量情况发现,采用本发明的渣系冶炼得到的GH4198合金定向凝固铸锭头部平整且未发现开裂情况,而比较例渣系得到的铸锭明显出现开裂。Figures 1 to 4 are the riser and surface quality diagrams of the GH4198 alloy directionally solidified ingots obtained in Example 1 and Comparative Example 1 of the present invention, respectively. As can be seen from the figure, by comparing the riser conditions and surface quality conditions of the GH4198 alloy directional solidification ingots obtained by different examples and comparative examples, it is found that the GH4198 alloy directional solidification ingot obtained by smelting the slag system of the present invention has a flat head and No cracks were found, but the ingots obtained from the slag system of the comparative example showed obvious cracks.
进一步对不同渣系在电渣重熔连续定向凝固熔炼合金铸锭的质量进行表征,具体见表2。The quality of the alloy ingots smelted by continuous directional solidification of different slag systems in electroslag remelting was further characterized, as shown in Table 2.
表2 不同实施例和比较例得到的GH4198合金定向凝固铸锭的特征情况Table 2 Characteristics of directional solidification ingots of GH4198 alloy obtained by different examples and comparative examples
从上述结果可知,比较例1的渣系中,未添加LiF,渣沟深度较深,铸锭冶炼后表面质量较差,材料成材率低,冶炼过程熔池深度较深,枝晶间有害相η相尺寸达到29μm,同时造成的热应力较大,出现铸锭开裂情况。比较例2中LiF的用量较低,渣沟深度相较于比较例1得到改善,但依然效果较差。比较例3中LiF的用量较高,虽然铸锭表面质量大大改善,但熔池深度较大,枝晶间有害相尺寸较大,铸锭容易出现裂纹。It can be seen from the above results that in the slag system of Comparative Example 1, no LiF was added, the depth of the slag groove was deep, the surface quality of the ingot after smelting was poor, the material yield was low, the depth of the molten pool during the smelting process was deep, and the interdendritic harmful phase The size of the η phase reaches 29 μm, and the thermal stress caused by it is large, and the cracking of the ingot occurs. Compared with Comparative Example 1, the amount of LiF used in Comparative Example 2 was lower, and the depth of the slag groove was improved, but the effect was still poor. In Comparative Example 3, the amount of LiF is relatively high. Although the surface quality of the ingot is greatly improved, the depth of the molten pool is large, the size of the interdendritic harmful phase is large, and the ingot is prone to cracks.
本发明的渣系能够在电渣重熔连续定向凝固设备熔炼高强化相含量、低熔点高温合金时有效保证熔炼热输入,改善熔渣的流动性,提高熔炼过程的稳定性,使熔炼得到的铸锭夹杂物数量减少且无开裂。The slag system of the invention can effectively ensure the smelting heat input when the electroslag remelting continuous directional solidification equipment smelts the high-strengthened phase content and low melting point superalloy, improves the fluidity of the slag, improves the stability of the smelting process, and makes the smelting obtained The number of ingot inclusions is reduced and there is no cracking.
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。Finally, it should be noted that the above embodiments are only used to illustrate the technical solutions of the present invention, but not to limit them; although the present invention has been described in detail with reference to the foregoing embodiments, those of ordinary skill in the art should understand that: The technical solutions described in the foregoing embodiments can still be modified, or some or all of the technical features thereof can be equivalently replaced; and these modifications or replacements do not make the essence of the corresponding technical solutions deviate from the technical solutions of the embodiments of the present invention. scope.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210007916.4A CN114015890B (en) | 2022-01-06 | 2022-01-06 | High-alloying high-temperature alloy electroslag remelting slag system and application thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210007916.4A CN114015890B (en) | 2022-01-06 | 2022-01-06 | High-alloying high-temperature alloy electroslag remelting slag system and application thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114015890A CN114015890A (en) | 2022-02-08 |
CN114015890B true CN114015890B (en) | 2022-04-08 |
Family
ID=80069762
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210007916.4A Active CN114015890B (en) | 2022-01-06 | 2022-01-06 | High-alloying high-temperature alloy electroslag remelting slag system and application thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114015890B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114703374B (en) * | 2022-03-25 | 2023-08-01 | 钢铁研究总院有限公司 | Medium-fluorine high-efficiency desulfurization slag system for electroslag remelting C-HRA-3 alloy and its application method |
CN115354162A (en) * | 2022-07-04 | 2022-11-18 | 北京首钢吉泰安新材料有限公司 | Slag system for preparing zirconium-containing nickel-based alloy through electroslag remelting and smelting method |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8083830B2 (en) * | 2007-12-18 | 2011-12-27 | The Japan Steel Works Ltd. | Slag for electroslag remelting for copper alloy and method for producing copper alloy material |
CN101812605B (en) * | 2009-06-22 | 2011-07-20 | 北京科技大学 | Method for smelting amorphous master alloys under non-vacuum condition |
WO2015003934A1 (en) * | 2013-07-11 | 2015-01-15 | Aleris Rolled Products Germany Gmbh | Method of producing aluminium alloys containing lithium |
CN111172403A (en) * | 2020-01-07 | 2020-05-19 | 北京钢研高纳科技股份有限公司 | Pre-melted slag for smelting electroslag remelting continuous directional solidification high-temperature alloy ingot and application thereof |
-
2022
- 2022-01-06 CN CN202210007916.4A patent/CN114015890B/en active Active
Also Published As
Publication number | Publication date |
---|---|
CN114015890A (en) | 2022-02-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102763513B1 (en) | Non-vacuum down-drawing continuous casting production process of copper-iron alloy slab ingots | |
CN111519068B (en) | Triple smelting process of difficult-deformation nickel-based high-temperature alloy GH4151 | |
CN114015890B (en) | High-alloying high-temperature alloy electroslag remelting slag system and application thereof | |
CN109913702B (en) | Preparation process of nickel-based high-temperature alloy with high content of refractory elements | |
CN111172403A (en) | Pre-melted slag for smelting electroslag remelting continuous directional solidification high-temperature alloy ingot and application thereof | |
CN116855779B (en) | Preparation method of nickel-based alloy for high temperature and nickel-based alloy for high temperature | |
CN110453085A (en) | Slag system, preparation method and application method for electroslag remelting of B-type 9Cr heat-resistant steel | |
CN105950882B (en) | A kind of remelting refining slag and its for the electro-slag re-melting method to the high Ti steel alloys of high Al | |
CN102719682A (en) | Smelting method of GH901 alloy | |
CN102776379A (en) | Electroslag remelting slag system and its application | |
WO2024149404A1 (en) | Disk-shaft integrated turbine disk and preparation method therefor | |
CN112458326B (en) | A kind of deformed superalloy containing Zr-Ce and preparation method thereof | |
CN110172648A (en) | Zirconium-containing electrothermal alloy and preparation method of zirconium-containing alloy | |
CN115109980B (en) | Titanium-containing steel with ultra-low nitrogen content and preparation method thereof | |
CN105803257B (en) | Method for improving liquid-state fluidity of TiAl-Nb alloy | |
CN116254452A (en) | Smelting method for reducing gas content in Ti-containing Al-containing iron-nickel base alloy | |
CN117127036A (en) | Preparation method of strengthening NCu30-4-2-1 alloy by adding rare earth element Ce | |
CN117265366A (en) | Smelting method of Fe-Cr-Ni based martensitic stainless steel | |
CN106282630A (en) | A kind of method refining 800H corrosion resistant alloy ingot solidification tissue | |
CN113564376B (en) | Method for preparing H13 steel through electroslag remelting | |
CN110484742A (en) | A kind of method that electron-beam smelting High Purity prepares Fe-W intermediate alloy | |
CN119491120A (en) | A method for preparing high niobium nickel-based corrosion-resistant alloy steel ingot | |
CN117248146A (en) | Strontium-containing nickel-based alloy and preparation method thereof | |
CN114990346B (en) | Electroslag remelting slag system and method for ZCuAl8Mn14Fe3Ni high-manganese aluminum bronze | |
CN111020248B (en) | Ag-Zr-Zn intermediate alloy and preparation method and application thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |